1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
19 #include "btrfs_inode.h"
21 static struct kmem_cache
*extent_state_cache
;
22 static struct kmem_cache
*extent_buffer_cache
;
24 static LIST_HEAD(buffers
);
25 static LIST_HEAD(states
);
29 static DEFINE_SPINLOCK(leak_lock
);
32 #define BUFFER_LRU_MAX 64
37 struct rb_node rb_node
;
40 struct extent_page_data
{
42 struct extent_io_tree
*tree
;
43 get_extent_t
*get_extent
;
45 /* tells writepage not to lock the state bits for this range
46 * it still does the unlocking
48 unsigned int extent_locked
:1;
50 /* tells the submit_bio code to use a WRITE_SYNC */
51 unsigned int sync_io
:1;
54 int __init
extent_io_init(void)
56 extent_state_cache
= kmem_cache_create("extent_state",
57 sizeof(struct extent_state
), 0,
58 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
59 if (!extent_state_cache
)
62 extent_buffer_cache
= kmem_cache_create("extent_buffers",
63 sizeof(struct extent_buffer
), 0,
64 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
65 if (!extent_buffer_cache
)
66 goto free_state_cache
;
70 kmem_cache_destroy(extent_state_cache
);
74 void extent_io_exit(void)
76 struct extent_state
*state
;
77 struct extent_buffer
*eb
;
79 while (!list_empty(&states
)) {
80 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
81 printk(KERN_ERR
"btrfs state leak: start %llu end %llu "
82 "state %lu in tree %p refs %d\n",
83 (unsigned long long)state
->start
,
84 (unsigned long long)state
->end
,
85 state
->state
, state
->tree
, atomic_read(&state
->refs
));
86 list_del(&state
->leak_list
);
87 kmem_cache_free(extent_state_cache
, state
);
91 while (!list_empty(&buffers
)) {
92 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
93 printk(KERN_ERR
"btrfs buffer leak start %llu len %lu "
94 "refs %d\n", (unsigned long long)eb
->start
,
95 eb
->len
, atomic_read(&eb
->refs
));
96 list_del(&eb
->leak_list
);
97 kmem_cache_free(extent_buffer_cache
, eb
);
99 if (extent_state_cache
)
100 kmem_cache_destroy(extent_state_cache
);
101 if (extent_buffer_cache
)
102 kmem_cache_destroy(extent_buffer_cache
);
105 void extent_io_tree_init(struct extent_io_tree
*tree
,
106 struct address_space
*mapping
)
108 tree
->state
= RB_ROOT
;
109 INIT_RADIX_TREE(&tree
->buffer
, GFP_ATOMIC
);
111 tree
->dirty_bytes
= 0;
112 spin_lock_init(&tree
->lock
);
113 spin_lock_init(&tree
->buffer_lock
);
114 tree
->mapping
= mapping
;
117 static struct extent_state
*alloc_extent_state(gfp_t mask
)
119 struct extent_state
*state
;
124 state
= kmem_cache_alloc(extent_state_cache
, mask
);
131 spin_lock_irqsave(&leak_lock
, flags
);
132 list_add(&state
->leak_list
, &states
);
133 spin_unlock_irqrestore(&leak_lock
, flags
);
135 atomic_set(&state
->refs
, 1);
136 init_waitqueue_head(&state
->wq
);
140 void free_extent_state(struct extent_state
*state
)
144 if (atomic_dec_and_test(&state
->refs
)) {
148 WARN_ON(state
->tree
);
150 spin_lock_irqsave(&leak_lock
, flags
);
151 list_del(&state
->leak_list
);
152 spin_unlock_irqrestore(&leak_lock
, flags
);
154 kmem_cache_free(extent_state_cache
, state
);
158 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 offset
,
159 struct rb_node
*node
)
161 struct rb_node
**p
= &root
->rb_node
;
162 struct rb_node
*parent
= NULL
;
163 struct tree_entry
*entry
;
167 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
169 if (offset
< entry
->start
)
171 else if (offset
> entry
->end
)
177 entry
= rb_entry(node
, struct tree_entry
, rb_node
);
178 rb_link_node(node
, parent
, p
);
179 rb_insert_color(node
, root
);
183 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
184 struct rb_node
**prev_ret
,
185 struct rb_node
**next_ret
)
187 struct rb_root
*root
= &tree
->state
;
188 struct rb_node
*n
= root
->rb_node
;
189 struct rb_node
*prev
= NULL
;
190 struct rb_node
*orig_prev
= NULL
;
191 struct tree_entry
*entry
;
192 struct tree_entry
*prev_entry
= NULL
;
195 entry
= rb_entry(n
, struct tree_entry
, rb_node
);
199 if (offset
< entry
->start
)
201 else if (offset
> entry
->end
)
209 while (prev
&& offset
> prev_entry
->end
) {
210 prev
= rb_next(prev
);
211 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
218 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
219 while (prev
&& offset
< prev_entry
->start
) {
220 prev
= rb_prev(prev
);
221 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
228 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
231 struct rb_node
*prev
= NULL
;
234 ret
= __etree_search(tree
, offset
, &prev
, NULL
);
240 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
241 struct extent_state
*other
)
243 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
244 tree
->ops
->merge_extent_hook(tree
->mapping
->host
, new,
249 * utility function to look for merge candidates inside a given range.
250 * Any extents with matching state are merged together into a single
251 * extent in the tree. Extents with EXTENT_IO in their state field
252 * are not merged because the end_io handlers need to be able to do
253 * operations on them without sleeping (or doing allocations/splits).
255 * This should be called with the tree lock held.
257 static void merge_state(struct extent_io_tree
*tree
,
258 struct extent_state
*state
)
260 struct extent_state
*other
;
261 struct rb_node
*other_node
;
263 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
266 other_node
= rb_prev(&state
->rb_node
);
268 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
269 if (other
->end
== state
->start
- 1 &&
270 other
->state
== state
->state
) {
271 merge_cb(tree
, state
, other
);
272 state
->start
= other
->start
;
274 rb_erase(&other
->rb_node
, &tree
->state
);
275 free_extent_state(other
);
278 other_node
= rb_next(&state
->rb_node
);
280 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
281 if (other
->start
== state
->end
+ 1 &&
282 other
->state
== state
->state
) {
283 merge_cb(tree
, state
, other
);
284 state
->end
= other
->end
;
286 rb_erase(&other
->rb_node
, &tree
->state
);
287 free_extent_state(other
);
292 static void set_state_cb(struct extent_io_tree
*tree
,
293 struct extent_state
*state
, int *bits
)
295 if (tree
->ops
&& tree
->ops
->set_bit_hook
)
296 tree
->ops
->set_bit_hook(tree
->mapping
->host
, state
, bits
);
299 static void clear_state_cb(struct extent_io_tree
*tree
,
300 struct extent_state
*state
, int *bits
)
302 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
303 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
, bits
);
306 static void set_state_bits(struct extent_io_tree
*tree
,
307 struct extent_state
*state
, int *bits
);
310 * insert an extent_state struct into the tree. 'bits' are set on the
311 * struct before it is inserted.
313 * This may return -EEXIST if the extent is already there, in which case the
314 * state struct is freed.
316 * The tree lock is not taken internally. This is a utility function and
317 * probably isn't what you want to call (see set/clear_extent_bit).
319 static int insert_state(struct extent_io_tree
*tree
,
320 struct extent_state
*state
, u64 start
, u64 end
,
323 struct rb_node
*node
;
326 printk(KERN_ERR
"btrfs end < start %llu %llu\n",
327 (unsigned long long)end
,
328 (unsigned long long)start
);
331 state
->start
= start
;
334 set_state_bits(tree
, state
, bits
);
336 node
= tree_insert(&tree
->state
, end
, &state
->rb_node
);
338 struct extent_state
*found
;
339 found
= rb_entry(node
, struct extent_state
, rb_node
);
340 printk(KERN_ERR
"btrfs found node %llu %llu on insert of "
341 "%llu %llu\n", (unsigned long long)found
->start
,
342 (unsigned long long)found
->end
,
343 (unsigned long long)start
, (unsigned long long)end
);
347 merge_state(tree
, state
);
351 static void split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
354 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
355 tree
->ops
->split_extent_hook(tree
->mapping
->host
, orig
, split
);
359 * split a given extent state struct in two, inserting the preallocated
360 * struct 'prealloc' as the newly created second half. 'split' indicates an
361 * offset inside 'orig' where it should be split.
364 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
365 * are two extent state structs in the tree:
366 * prealloc: [orig->start, split - 1]
367 * orig: [ split, orig->end ]
369 * The tree locks are not taken by this function. They need to be held
372 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
373 struct extent_state
*prealloc
, u64 split
)
375 struct rb_node
*node
;
377 split_cb(tree
, orig
, split
);
379 prealloc
->start
= orig
->start
;
380 prealloc
->end
= split
- 1;
381 prealloc
->state
= orig
->state
;
384 node
= tree_insert(&tree
->state
, prealloc
->end
, &prealloc
->rb_node
);
386 free_extent_state(prealloc
);
389 prealloc
->tree
= tree
;
394 * utility function to clear some bits in an extent state struct.
395 * it will optionally wake up any one waiting on this state (wake == 1), or
396 * forcibly remove the state from the tree (delete == 1).
398 * If no bits are set on the state struct after clearing things, the
399 * struct is freed and removed from the tree
401 static int clear_state_bit(struct extent_io_tree
*tree
,
402 struct extent_state
*state
,
405 int bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
406 int ret
= state
->state
& bits_to_clear
;
408 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
409 u64 range
= state
->end
- state
->start
+ 1;
410 WARN_ON(range
> tree
->dirty_bytes
);
411 tree
->dirty_bytes
-= range
;
413 clear_state_cb(tree
, state
, bits
);
414 state
->state
&= ~bits_to_clear
;
417 if (state
->state
== 0) {
419 rb_erase(&state
->rb_node
, &tree
->state
);
421 free_extent_state(state
);
426 merge_state(tree
, state
);
431 static struct extent_state
*
432 alloc_extent_state_atomic(struct extent_state
*prealloc
)
435 prealloc
= alloc_extent_state(GFP_ATOMIC
);
441 * clear some bits on a range in the tree. This may require splitting
442 * or inserting elements in the tree, so the gfp mask is used to
443 * indicate which allocations or sleeping are allowed.
445 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
446 * the given range from the tree regardless of state (ie for truncate).
448 * the range [start, end] is inclusive.
450 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
451 * bits were already set, or zero if none of the bits were already set.
453 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
454 int bits
, int wake
, int delete,
455 struct extent_state
**cached_state
,
458 struct extent_state
*state
;
459 struct extent_state
*cached
;
460 struct extent_state
*prealloc
= NULL
;
461 struct rb_node
*next_node
;
462 struct rb_node
*node
;
469 bits
|= ~EXTENT_CTLBITS
;
470 bits
|= EXTENT_FIRST_DELALLOC
;
472 if (bits
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
475 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
476 prealloc
= alloc_extent_state(mask
);
481 spin_lock(&tree
->lock
);
483 cached
= *cached_state
;
486 *cached_state
= NULL
;
490 if (cached
&& cached
->tree
&& cached
->start
<= start
&&
491 cached
->end
> start
) {
493 atomic_dec(&cached
->refs
);
498 free_extent_state(cached
);
501 * this search will find the extents that end after
504 node
= tree_search(tree
, start
);
507 state
= rb_entry(node
, struct extent_state
, rb_node
);
509 if (state
->start
> end
)
511 WARN_ON(state
->end
< start
);
512 last_end
= state
->end
;
515 * | ---- desired range ---- |
517 * | ------------- state -------------- |
519 * We need to split the extent we found, and may flip
520 * bits on second half.
522 * If the extent we found extends past our range, we
523 * just split and search again. It'll get split again
524 * the next time though.
526 * If the extent we found is inside our range, we clear
527 * the desired bit on it.
530 if (state
->start
< start
) {
531 prealloc
= alloc_extent_state_atomic(prealloc
);
533 err
= split_state(tree
, state
, prealloc
, start
);
534 BUG_ON(err
== -EEXIST
);
538 if (state
->end
<= end
) {
539 set
|= clear_state_bit(tree
, state
, &bits
, wake
);
540 if (last_end
== (u64
)-1)
542 start
= last_end
+ 1;
547 * | ---- desired range ---- |
549 * We need to split the extent, and clear the bit
552 if (state
->start
<= end
&& state
->end
> end
) {
553 prealloc
= alloc_extent_state_atomic(prealloc
);
555 err
= split_state(tree
, state
, prealloc
, end
+ 1);
556 BUG_ON(err
== -EEXIST
);
560 set
|= clear_state_bit(tree
, prealloc
, &bits
, wake
);
566 if (state
->end
< end
&& prealloc
&& !need_resched())
567 next_node
= rb_next(&state
->rb_node
);
571 set
|= clear_state_bit(tree
, state
, &bits
, wake
);
572 if (last_end
== (u64
)-1)
574 start
= last_end
+ 1;
575 if (start
<= end
&& next_node
) {
576 state
= rb_entry(next_node
, struct extent_state
,
578 if (state
->start
== start
)
584 spin_unlock(&tree
->lock
);
586 free_extent_state(prealloc
);
593 spin_unlock(&tree
->lock
);
594 if (mask
& __GFP_WAIT
)
599 static int wait_on_state(struct extent_io_tree
*tree
,
600 struct extent_state
*state
)
601 __releases(tree
->lock
)
602 __acquires(tree
->lock
)
605 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
606 spin_unlock(&tree
->lock
);
608 spin_lock(&tree
->lock
);
609 finish_wait(&state
->wq
, &wait
);
614 * waits for one or more bits to clear on a range in the state tree.
615 * The range [start, end] is inclusive.
616 * The tree lock is taken by this function
618 int wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
, int bits
)
620 struct extent_state
*state
;
621 struct rb_node
*node
;
623 spin_lock(&tree
->lock
);
627 * this search will find all the extents that end after
630 node
= tree_search(tree
, start
);
634 state
= rb_entry(node
, struct extent_state
, rb_node
);
636 if (state
->start
> end
)
639 if (state
->state
& bits
) {
640 start
= state
->start
;
641 atomic_inc(&state
->refs
);
642 wait_on_state(tree
, state
);
643 free_extent_state(state
);
646 start
= state
->end
+ 1;
651 cond_resched_lock(&tree
->lock
);
654 spin_unlock(&tree
->lock
);
658 static void set_state_bits(struct extent_io_tree
*tree
,
659 struct extent_state
*state
,
662 int bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
664 set_state_cb(tree
, state
, bits
);
665 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
666 u64 range
= state
->end
- state
->start
+ 1;
667 tree
->dirty_bytes
+= range
;
669 state
->state
|= bits_to_set
;
672 static void cache_state(struct extent_state
*state
,
673 struct extent_state
**cached_ptr
)
675 if (cached_ptr
&& !(*cached_ptr
)) {
676 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
)) {
678 atomic_inc(&state
->refs
);
683 static void uncache_state(struct extent_state
**cached_ptr
)
685 if (cached_ptr
&& (*cached_ptr
)) {
686 struct extent_state
*state
= *cached_ptr
;
688 free_extent_state(state
);
693 * set some bits on a range in the tree. This may require allocations or
694 * sleeping, so the gfp mask is used to indicate what is allowed.
696 * If any of the exclusive bits are set, this will fail with -EEXIST if some
697 * part of the range already has the desired bits set. The start of the
698 * existing range is returned in failed_start in this case.
700 * [start, end] is inclusive This takes the tree lock.
703 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
704 int bits
, int exclusive_bits
, u64
*failed_start
,
705 struct extent_state
**cached_state
, gfp_t mask
)
707 struct extent_state
*state
;
708 struct extent_state
*prealloc
= NULL
;
709 struct rb_node
*node
;
714 bits
|= EXTENT_FIRST_DELALLOC
;
716 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
717 prealloc
= alloc_extent_state(mask
);
721 spin_lock(&tree
->lock
);
722 if (cached_state
&& *cached_state
) {
723 state
= *cached_state
;
724 if (state
->start
<= start
&& state
->end
> start
&&
726 node
= &state
->rb_node
;
731 * this search will find all the extents that end after
734 node
= tree_search(tree
, start
);
736 prealloc
= alloc_extent_state_atomic(prealloc
);
738 err
= insert_state(tree
, prealloc
, start
, end
, &bits
);
740 BUG_ON(err
== -EEXIST
);
743 state
= rb_entry(node
, struct extent_state
, rb_node
);
745 last_start
= state
->start
;
746 last_end
= state
->end
;
749 * | ---- desired range ---- |
752 * Just lock what we found and keep going
754 if (state
->start
== start
&& state
->end
<= end
) {
755 struct rb_node
*next_node
;
756 if (state
->state
& exclusive_bits
) {
757 *failed_start
= state
->start
;
762 set_state_bits(tree
, state
, &bits
);
764 cache_state(state
, cached_state
);
765 merge_state(tree
, state
);
766 if (last_end
== (u64
)-1)
769 start
= last_end
+ 1;
770 next_node
= rb_next(&state
->rb_node
);
771 if (next_node
&& start
< end
&& prealloc
&& !need_resched()) {
772 state
= rb_entry(next_node
, struct extent_state
,
774 if (state
->start
== start
)
781 * | ---- desired range ---- |
784 * | ------------- state -------------- |
786 * We need to split the extent we found, and may flip bits on
789 * If the extent we found extends past our
790 * range, we just split and search again. It'll get split
791 * again the next time though.
793 * If the extent we found is inside our range, we set the
796 if (state
->start
< start
) {
797 if (state
->state
& exclusive_bits
) {
798 *failed_start
= start
;
803 prealloc
= alloc_extent_state_atomic(prealloc
);
805 err
= split_state(tree
, state
, prealloc
, start
);
806 BUG_ON(err
== -EEXIST
);
810 if (state
->end
<= end
) {
811 set_state_bits(tree
, state
, &bits
);
812 cache_state(state
, cached_state
);
813 merge_state(tree
, state
);
814 if (last_end
== (u64
)-1)
816 start
= last_end
+ 1;
821 * | ---- desired range ---- |
822 * | state | or | state |
824 * There's a hole, we need to insert something in it and
825 * ignore the extent we found.
827 if (state
->start
> start
) {
829 if (end
< last_start
)
832 this_end
= last_start
- 1;
834 prealloc
= alloc_extent_state_atomic(prealloc
);
838 * Avoid to free 'prealloc' if it can be merged with
841 err
= insert_state(tree
, prealloc
, start
, this_end
,
843 BUG_ON(err
== -EEXIST
);
845 free_extent_state(prealloc
);
849 cache_state(prealloc
, cached_state
);
851 start
= this_end
+ 1;
855 * | ---- desired range ---- |
857 * We need to split the extent, and set the bit
860 if (state
->start
<= end
&& state
->end
> end
) {
861 if (state
->state
& exclusive_bits
) {
862 *failed_start
= start
;
867 prealloc
= alloc_extent_state_atomic(prealloc
);
869 err
= split_state(tree
, state
, prealloc
, end
+ 1);
870 BUG_ON(err
== -EEXIST
);
872 set_state_bits(tree
, prealloc
, &bits
);
873 cache_state(prealloc
, cached_state
);
874 merge_state(tree
, prealloc
);
882 spin_unlock(&tree
->lock
);
884 free_extent_state(prealloc
);
891 spin_unlock(&tree
->lock
);
892 if (mask
& __GFP_WAIT
)
897 /* wrappers around set/clear extent bit */
898 int set_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
901 return set_extent_bit(tree
, start
, end
, EXTENT_DIRTY
, 0, NULL
,
905 int set_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
906 int bits
, gfp_t mask
)
908 return set_extent_bit(tree
, start
, end
, bits
, 0, NULL
,
912 int clear_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
913 int bits
, gfp_t mask
)
915 return clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, mask
);
918 int set_extent_delalloc(struct extent_io_tree
*tree
, u64 start
, u64 end
,
919 struct extent_state
**cached_state
, gfp_t mask
)
921 return set_extent_bit(tree
, start
, end
,
922 EXTENT_DELALLOC
| EXTENT_DIRTY
| EXTENT_UPTODATE
,
923 0, NULL
, cached_state
, mask
);
926 int clear_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
929 return clear_extent_bit(tree
, start
, end
,
930 EXTENT_DIRTY
| EXTENT_DELALLOC
|
931 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, mask
);
934 int set_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
937 return set_extent_bit(tree
, start
, end
, EXTENT_NEW
, 0, NULL
,
941 int set_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
942 struct extent_state
**cached_state
, gfp_t mask
)
944 return set_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0,
945 NULL
, cached_state
, mask
);
948 static int clear_extent_uptodate(struct extent_io_tree
*tree
, u64 start
,
949 u64 end
, struct extent_state
**cached_state
,
952 return clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, 0,
957 * either insert or lock state struct between start and end use mask to tell
958 * us if waiting is desired.
960 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
961 int bits
, struct extent_state
**cached_state
, gfp_t mask
)
966 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| bits
,
967 EXTENT_LOCKED
, &failed_start
,
969 if (err
== -EEXIST
&& (mask
& __GFP_WAIT
)) {
970 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
971 start
= failed_start
;
975 WARN_ON(start
> end
);
980 int lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
, gfp_t mask
)
982 return lock_extent_bits(tree
, start
, end
, 0, NULL
, mask
);
985 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
,
991 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
992 &failed_start
, NULL
, mask
);
993 if (err
== -EEXIST
) {
994 if (failed_start
> start
)
995 clear_extent_bit(tree
, start
, failed_start
- 1,
996 EXTENT_LOCKED
, 1, 0, NULL
, mask
);
1002 int unlock_extent_cached(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1003 struct extent_state
**cached
, gfp_t mask
)
1005 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, cached
,
1009 int unlock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
, gfp_t mask
)
1011 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, NULL
,
1016 * helper function to set both pages and extents in the tree writeback
1018 static int set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1020 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1021 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1024 while (index
<= end_index
) {
1025 page
= find_get_page(tree
->mapping
, index
);
1027 set_page_writeback(page
);
1028 page_cache_release(page
);
1034 /* find the first state struct with 'bits' set after 'start', and
1035 * return it. tree->lock must be held. NULL will returned if
1036 * nothing was found after 'start'
1038 struct extent_state
*find_first_extent_bit_state(struct extent_io_tree
*tree
,
1039 u64 start
, int bits
)
1041 struct rb_node
*node
;
1042 struct extent_state
*state
;
1045 * this search will find all the extents that end after
1048 node
= tree_search(tree
, start
);
1053 state
= rb_entry(node
, struct extent_state
, rb_node
);
1054 if (state
->end
>= start
&& (state
->state
& bits
))
1057 node
= rb_next(node
);
1066 * find the first offset in the io tree with 'bits' set. zero is
1067 * returned if we find something, and *start_ret and *end_ret are
1068 * set to reflect the state struct that was found.
1070 * If nothing was found, 1 is returned, < 0 on error
1072 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1073 u64
*start_ret
, u64
*end_ret
, int bits
)
1075 struct extent_state
*state
;
1078 spin_lock(&tree
->lock
);
1079 state
= find_first_extent_bit_state(tree
, start
, bits
);
1081 *start_ret
= state
->start
;
1082 *end_ret
= state
->end
;
1085 spin_unlock(&tree
->lock
);
1090 * find a contiguous range of bytes in the file marked as delalloc, not
1091 * more than 'max_bytes'. start and end are used to return the range,
1093 * 1 is returned if we find something, 0 if nothing was in the tree
1095 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1096 u64
*start
, u64
*end
, u64 max_bytes
,
1097 struct extent_state
**cached_state
)
1099 struct rb_node
*node
;
1100 struct extent_state
*state
;
1101 u64 cur_start
= *start
;
1103 u64 total_bytes
= 0;
1105 spin_lock(&tree
->lock
);
1108 * this search will find all the extents that end after
1111 node
= tree_search(tree
, cur_start
);
1119 state
= rb_entry(node
, struct extent_state
, rb_node
);
1120 if (found
&& (state
->start
!= cur_start
||
1121 (state
->state
& EXTENT_BOUNDARY
))) {
1124 if (!(state
->state
& EXTENT_DELALLOC
)) {
1130 *start
= state
->start
;
1131 *cached_state
= state
;
1132 atomic_inc(&state
->refs
);
1136 cur_start
= state
->end
+ 1;
1137 node
= rb_next(node
);
1140 total_bytes
+= state
->end
- state
->start
+ 1;
1141 if (total_bytes
>= max_bytes
)
1145 spin_unlock(&tree
->lock
);
1149 static noinline
int __unlock_for_delalloc(struct inode
*inode
,
1150 struct page
*locked_page
,
1154 struct page
*pages
[16];
1155 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1156 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1157 unsigned long nr_pages
= end_index
- index
+ 1;
1160 if (index
== locked_page
->index
&& end_index
== index
)
1163 while (nr_pages
> 0) {
1164 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1165 min_t(unsigned long, nr_pages
,
1166 ARRAY_SIZE(pages
)), pages
);
1167 for (i
= 0; i
< ret
; i
++) {
1168 if (pages
[i
] != locked_page
)
1169 unlock_page(pages
[i
]);
1170 page_cache_release(pages
[i
]);
1179 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1180 struct page
*locked_page
,
1184 unsigned long index
= delalloc_start
>> PAGE_CACHE_SHIFT
;
1185 unsigned long start_index
= index
;
1186 unsigned long end_index
= delalloc_end
>> PAGE_CACHE_SHIFT
;
1187 unsigned long pages_locked
= 0;
1188 struct page
*pages
[16];
1189 unsigned long nrpages
;
1193 /* the caller is responsible for locking the start index */
1194 if (index
== locked_page
->index
&& index
== end_index
)
1197 /* skip the page at the start index */
1198 nrpages
= end_index
- index
+ 1;
1199 while (nrpages
> 0) {
1200 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1201 min_t(unsigned long,
1202 nrpages
, ARRAY_SIZE(pages
)), pages
);
1207 /* now we have an array of pages, lock them all */
1208 for (i
= 0; i
< ret
; i
++) {
1210 * the caller is taking responsibility for
1213 if (pages
[i
] != locked_page
) {
1214 lock_page(pages
[i
]);
1215 if (!PageDirty(pages
[i
]) ||
1216 pages
[i
]->mapping
!= inode
->i_mapping
) {
1218 unlock_page(pages
[i
]);
1219 page_cache_release(pages
[i
]);
1223 page_cache_release(pages
[i
]);
1232 if (ret
&& pages_locked
) {
1233 __unlock_for_delalloc(inode
, locked_page
,
1235 ((u64
)(start_index
+ pages_locked
- 1)) <<
1242 * find a contiguous range of bytes in the file marked as delalloc, not
1243 * more than 'max_bytes'. start and end are used to return the range,
1245 * 1 is returned if we find something, 0 if nothing was in the tree
1247 static noinline u64
find_lock_delalloc_range(struct inode
*inode
,
1248 struct extent_io_tree
*tree
,
1249 struct page
*locked_page
,
1250 u64
*start
, u64
*end
,
1256 struct extent_state
*cached_state
= NULL
;
1261 /* step one, find a bunch of delalloc bytes starting at start */
1262 delalloc_start
= *start
;
1264 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1265 max_bytes
, &cached_state
);
1266 if (!found
|| delalloc_end
<= *start
) {
1267 *start
= delalloc_start
;
1268 *end
= delalloc_end
;
1269 free_extent_state(cached_state
);
1274 * start comes from the offset of locked_page. We have to lock
1275 * pages in order, so we can't process delalloc bytes before
1278 if (delalloc_start
< *start
)
1279 delalloc_start
= *start
;
1282 * make sure to limit the number of pages we try to lock down
1285 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
&& loops
)
1286 delalloc_end
= delalloc_start
+ PAGE_CACHE_SIZE
- 1;
1288 /* step two, lock all the pages after the page that has start */
1289 ret
= lock_delalloc_pages(inode
, locked_page
,
1290 delalloc_start
, delalloc_end
);
1291 if (ret
== -EAGAIN
) {
1292 /* some of the pages are gone, lets avoid looping by
1293 * shortening the size of the delalloc range we're searching
1295 free_extent_state(cached_state
);
1297 unsigned long offset
= (*start
) & (PAGE_CACHE_SIZE
- 1);
1298 max_bytes
= PAGE_CACHE_SIZE
- offset
;
1308 /* step three, lock the state bits for the whole range */
1309 lock_extent_bits(tree
, delalloc_start
, delalloc_end
,
1310 0, &cached_state
, GFP_NOFS
);
1312 /* then test to make sure it is all still delalloc */
1313 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1314 EXTENT_DELALLOC
, 1, cached_state
);
1316 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1317 &cached_state
, GFP_NOFS
);
1318 __unlock_for_delalloc(inode
, locked_page
,
1319 delalloc_start
, delalloc_end
);
1323 free_extent_state(cached_state
);
1324 *start
= delalloc_start
;
1325 *end
= delalloc_end
;
1330 int extent_clear_unlock_delalloc(struct inode
*inode
,
1331 struct extent_io_tree
*tree
,
1332 u64 start
, u64 end
, struct page
*locked_page
,
1336 struct page
*pages
[16];
1337 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1338 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1339 unsigned long nr_pages
= end_index
- index
+ 1;
1343 if (op
& EXTENT_CLEAR_UNLOCK
)
1344 clear_bits
|= EXTENT_LOCKED
;
1345 if (op
& EXTENT_CLEAR_DIRTY
)
1346 clear_bits
|= EXTENT_DIRTY
;
1348 if (op
& EXTENT_CLEAR_DELALLOC
)
1349 clear_bits
|= EXTENT_DELALLOC
;
1351 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, NULL
, GFP_NOFS
);
1352 if (!(op
& (EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
1353 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
|
1354 EXTENT_SET_PRIVATE2
)))
1357 while (nr_pages
> 0) {
1358 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1359 min_t(unsigned long,
1360 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1361 for (i
= 0; i
< ret
; i
++) {
1363 if (op
& EXTENT_SET_PRIVATE2
)
1364 SetPagePrivate2(pages
[i
]);
1366 if (pages
[i
] == locked_page
) {
1367 page_cache_release(pages
[i
]);
1370 if (op
& EXTENT_CLEAR_DIRTY
)
1371 clear_page_dirty_for_io(pages
[i
]);
1372 if (op
& EXTENT_SET_WRITEBACK
)
1373 set_page_writeback(pages
[i
]);
1374 if (op
& EXTENT_END_WRITEBACK
)
1375 end_page_writeback(pages
[i
]);
1376 if (op
& EXTENT_CLEAR_UNLOCK_PAGE
)
1377 unlock_page(pages
[i
]);
1378 page_cache_release(pages
[i
]);
1388 * count the number of bytes in the tree that have a given bit(s)
1389 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1390 * cached. The total number found is returned.
1392 u64
count_range_bits(struct extent_io_tree
*tree
,
1393 u64
*start
, u64 search_end
, u64 max_bytes
,
1394 unsigned long bits
, int contig
)
1396 struct rb_node
*node
;
1397 struct extent_state
*state
;
1398 u64 cur_start
= *start
;
1399 u64 total_bytes
= 0;
1403 if (search_end
<= cur_start
) {
1408 spin_lock(&tree
->lock
);
1409 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1410 total_bytes
= tree
->dirty_bytes
;
1414 * this search will find all the extents that end after
1417 node
= tree_search(tree
, cur_start
);
1422 state
= rb_entry(node
, struct extent_state
, rb_node
);
1423 if (state
->start
> search_end
)
1425 if (contig
&& found
&& state
->start
> last
+ 1)
1427 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
1428 total_bytes
+= min(search_end
, state
->end
) + 1 -
1429 max(cur_start
, state
->start
);
1430 if (total_bytes
>= max_bytes
)
1433 *start
= max(cur_start
, state
->start
);
1437 } else if (contig
&& found
) {
1440 node
= rb_next(node
);
1445 spin_unlock(&tree
->lock
);
1450 * set the private field for a given byte offset in the tree. If there isn't
1451 * an extent_state there already, this does nothing.
1453 int set_state_private(struct extent_io_tree
*tree
, u64 start
, u64
private)
1455 struct rb_node
*node
;
1456 struct extent_state
*state
;
1459 spin_lock(&tree
->lock
);
1461 * this search will find all the extents that end after
1464 node
= tree_search(tree
, start
);
1469 state
= rb_entry(node
, struct extent_state
, rb_node
);
1470 if (state
->start
!= start
) {
1474 state
->private = private;
1476 spin_unlock(&tree
->lock
);
1480 int get_state_private(struct extent_io_tree
*tree
, u64 start
, u64
*private)
1482 struct rb_node
*node
;
1483 struct extent_state
*state
;
1486 spin_lock(&tree
->lock
);
1488 * this search will find all the extents that end after
1491 node
= tree_search(tree
, start
);
1496 state
= rb_entry(node
, struct extent_state
, rb_node
);
1497 if (state
->start
!= start
) {
1501 *private = state
->private;
1503 spin_unlock(&tree
->lock
);
1508 * searches a range in the state tree for a given mask.
1509 * If 'filled' == 1, this returns 1 only if every extent in the tree
1510 * has the bits set. Otherwise, 1 is returned if any bit in the
1511 * range is found set.
1513 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1514 int bits
, int filled
, struct extent_state
*cached
)
1516 struct extent_state
*state
= NULL
;
1517 struct rb_node
*node
;
1520 spin_lock(&tree
->lock
);
1521 if (cached
&& cached
->tree
&& cached
->start
<= start
&&
1522 cached
->end
> start
)
1523 node
= &cached
->rb_node
;
1525 node
= tree_search(tree
, start
);
1526 while (node
&& start
<= end
) {
1527 state
= rb_entry(node
, struct extent_state
, rb_node
);
1529 if (filled
&& state
->start
> start
) {
1534 if (state
->start
> end
)
1537 if (state
->state
& bits
) {
1541 } else if (filled
) {
1546 if (state
->end
== (u64
)-1)
1549 start
= state
->end
+ 1;
1552 node
= rb_next(node
);
1559 spin_unlock(&tree
->lock
);
1564 * helper function to set a given page up to date if all the
1565 * extents in the tree for that page are up to date
1567 static int check_page_uptodate(struct extent_io_tree
*tree
,
1570 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1571 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1572 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
1573 SetPageUptodate(page
);
1578 * helper function to unlock a page if all the extents in the tree
1579 * for that page are unlocked
1581 static int check_page_locked(struct extent_io_tree
*tree
,
1584 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1585 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1586 if (!test_range_bit(tree
, start
, end
, EXTENT_LOCKED
, 0, NULL
))
1592 * helper function to end page writeback if all the extents
1593 * in the tree for that page are done with writeback
1595 static int check_page_writeback(struct extent_io_tree
*tree
,
1598 end_page_writeback(page
);
1602 /* lots and lots of room for performance fixes in the end_bio funcs */
1605 * after a writepage IO is done, we need to:
1606 * clear the uptodate bits on error
1607 * clear the writeback bits in the extent tree for this IO
1608 * end_page_writeback if the page has no more pending IO
1610 * Scheduling is not allowed, so the extent state tree is expected
1611 * to have one and only one object corresponding to this IO.
1613 static void end_bio_extent_writepage(struct bio
*bio
, int err
)
1615 int uptodate
= err
== 0;
1616 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1617 struct extent_io_tree
*tree
;
1624 struct page
*page
= bvec
->bv_page
;
1625 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1627 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1629 end
= start
+ bvec
->bv_len
- 1;
1631 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
1636 if (--bvec
>= bio
->bi_io_vec
)
1637 prefetchw(&bvec
->bv_page
->flags
);
1638 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
1639 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
1640 end
, NULL
, uptodate
);
1645 if (!uptodate
&& tree
->ops
&&
1646 tree
->ops
->writepage_io_failed_hook
) {
1647 ret
= tree
->ops
->writepage_io_failed_hook(bio
, page
,
1650 uptodate
= (err
== 0);
1656 clear_extent_uptodate(tree
, start
, end
, NULL
, GFP_NOFS
);
1657 ClearPageUptodate(page
);
1662 end_page_writeback(page
);
1664 check_page_writeback(tree
, page
);
1665 } while (bvec
>= bio
->bi_io_vec
);
1671 * after a readpage IO is done, we need to:
1672 * clear the uptodate bits on error
1673 * set the uptodate bits if things worked
1674 * set the page up to date if all extents in the tree are uptodate
1675 * clear the lock bit in the extent tree
1676 * unlock the page if there are no other extents locked for it
1678 * Scheduling is not allowed, so the extent state tree is expected
1679 * to have one and only one object corresponding to this IO.
1681 static void end_bio_extent_readpage(struct bio
*bio
, int err
)
1683 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1684 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1685 struct bio_vec
*bvec
= bio
->bi_io_vec
;
1686 struct extent_io_tree
*tree
;
1696 struct page
*page
= bvec
->bv_page
;
1697 struct extent_state
*cached
= NULL
;
1698 struct extent_state
*state
;
1700 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1702 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1704 end
= start
+ bvec
->bv_len
- 1;
1706 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
1711 if (++bvec
<= bvec_end
)
1712 prefetchw(&bvec
->bv_page
->flags
);
1714 spin_lock(&tree
->lock
);
1715 state
= find_first_extent_bit_state(tree
, start
, EXTENT_LOCKED
);
1716 if (state
&& state
->start
== start
) {
1718 * take a reference on the state, unlock will drop
1721 cache_state(state
, &cached
);
1723 spin_unlock(&tree
->lock
);
1725 if (uptodate
&& tree
->ops
&& tree
->ops
->readpage_end_io_hook
) {
1726 ret
= tree
->ops
->readpage_end_io_hook(page
, start
, end
,
1731 if (!uptodate
&& tree
->ops
&&
1732 tree
->ops
->readpage_io_failed_hook
) {
1733 ret
= tree
->ops
->readpage_io_failed_hook(bio
, page
,
1737 test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1740 uncache_state(&cached
);
1746 set_extent_uptodate(tree
, start
, end
, &cached
,
1749 unlock_extent_cached(tree
, start
, end
, &cached
, GFP_ATOMIC
);
1753 SetPageUptodate(page
);
1755 ClearPageUptodate(page
);
1761 check_page_uptodate(tree
, page
);
1763 ClearPageUptodate(page
);
1766 check_page_locked(tree
, page
);
1768 } while (bvec
<= bvec_end
);
1774 btrfs_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
1779 bio
= bio_alloc(gfp_flags
, nr_vecs
);
1781 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
1782 while (!bio
&& (nr_vecs
/= 2))
1783 bio
= bio_alloc(gfp_flags
, nr_vecs
);
1788 bio
->bi_bdev
= bdev
;
1789 bio
->bi_sector
= first_sector
;
1794 static int submit_one_bio(int rw
, struct bio
*bio
, int mirror_num
,
1795 unsigned long bio_flags
)
1798 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1799 struct page
*page
= bvec
->bv_page
;
1800 struct extent_io_tree
*tree
= bio
->bi_private
;
1803 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) + bvec
->bv_offset
;
1805 bio
->bi_private
= NULL
;
1809 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
1810 ret
= tree
->ops
->submit_bio_hook(page
->mapping
->host
, rw
, bio
,
1811 mirror_num
, bio_flags
, start
);
1813 submit_bio(rw
, bio
);
1814 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
1820 static int submit_extent_page(int rw
, struct extent_io_tree
*tree
,
1821 struct page
*page
, sector_t sector
,
1822 size_t size
, unsigned long offset
,
1823 struct block_device
*bdev
,
1824 struct bio
**bio_ret
,
1825 unsigned long max_pages
,
1826 bio_end_io_t end_io_func
,
1828 unsigned long prev_bio_flags
,
1829 unsigned long bio_flags
)
1835 int this_compressed
= bio_flags
& EXTENT_BIO_COMPRESSED
;
1836 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
1837 size_t page_size
= min_t(size_t, size
, PAGE_CACHE_SIZE
);
1839 if (bio_ret
&& *bio_ret
) {
1842 contig
= bio
->bi_sector
== sector
;
1844 contig
= bio
->bi_sector
+ (bio
->bi_size
>> 9) ==
1847 if (prev_bio_flags
!= bio_flags
|| !contig
||
1848 (tree
->ops
&& tree
->ops
->merge_bio_hook
&&
1849 tree
->ops
->merge_bio_hook(page
, offset
, page_size
, bio
,
1851 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
1852 ret
= submit_one_bio(rw
, bio
, mirror_num
,
1859 if (this_compressed
)
1862 nr
= bio_get_nr_vecs(bdev
);
1864 bio
= btrfs_bio_alloc(bdev
, sector
, nr
, GFP_NOFS
| __GFP_HIGH
);
1868 bio_add_page(bio
, page
, page_size
, offset
);
1869 bio
->bi_end_io
= end_io_func
;
1870 bio
->bi_private
= tree
;
1875 ret
= submit_one_bio(rw
, bio
, mirror_num
, bio_flags
);
1880 void set_page_extent_mapped(struct page
*page
)
1882 if (!PagePrivate(page
)) {
1883 SetPagePrivate(page
);
1884 page_cache_get(page
);
1885 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
1889 static void set_page_extent_head(struct page
*page
, unsigned long len
)
1891 WARN_ON(!PagePrivate(page
));
1892 set_page_private(page
, EXTENT_PAGE_PRIVATE_FIRST_PAGE
| len
<< 2);
1896 * basic readpage implementation. Locked extent state structs are inserted
1897 * into the tree that are removed when the IO is done (by the end_io
1900 static int __extent_read_full_page(struct extent_io_tree
*tree
,
1902 get_extent_t
*get_extent
,
1903 struct bio
**bio
, int mirror_num
,
1904 unsigned long *bio_flags
)
1906 struct inode
*inode
= page
->mapping
->host
;
1907 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1908 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
1912 u64 last_byte
= i_size_read(inode
);
1916 struct extent_map
*em
;
1917 struct block_device
*bdev
;
1918 struct btrfs_ordered_extent
*ordered
;
1921 size_t pg_offset
= 0;
1923 size_t disk_io_size
;
1924 size_t blocksize
= inode
->i_sb
->s_blocksize
;
1925 unsigned long this_bio_flag
= 0;
1927 set_page_extent_mapped(page
);
1929 if (!PageUptodate(page
)) {
1930 if (cleancache_get_page(page
) == 0) {
1931 BUG_ON(blocksize
!= PAGE_SIZE
);
1938 lock_extent(tree
, start
, end
, GFP_NOFS
);
1939 ordered
= btrfs_lookup_ordered_extent(inode
, start
);
1942 unlock_extent(tree
, start
, end
, GFP_NOFS
);
1943 btrfs_start_ordered_extent(inode
, ordered
, 1);
1944 btrfs_put_ordered_extent(ordered
);
1947 if (page
->index
== last_byte
>> PAGE_CACHE_SHIFT
) {
1949 size_t zero_offset
= last_byte
& (PAGE_CACHE_SIZE
- 1);
1952 iosize
= PAGE_CACHE_SIZE
- zero_offset
;
1953 userpage
= kmap_atomic(page
, KM_USER0
);
1954 memset(userpage
+ zero_offset
, 0, iosize
);
1955 flush_dcache_page(page
);
1956 kunmap_atomic(userpage
, KM_USER0
);
1959 while (cur
<= end
) {
1960 if (cur
>= last_byte
) {
1962 struct extent_state
*cached
= NULL
;
1964 iosize
= PAGE_CACHE_SIZE
- pg_offset
;
1965 userpage
= kmap_atomic(page
, KM_USER0
);
1966 memset(userpage
+ pg_offset
, 0, iosize
);
1967 flush_dcache_page(page
);
1968 kunmap_atomic(userpage
, KM_USER0
);
1969 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
1971 unlock_extent_cached(tree
, cur
, cur
+ iosize
- 1,
1975 em
= get_extent(inode
, page
, pg_offset
, cur
,
1977 if (IS_ERR_OR_NULL(em
)) {
1979 unlock_extent(tree
, cur
, end
, GFP_NOFS
);
1982 extent_offset
= cur
- em
->start
;
1983 BUG_ON(extent_map_end(em
) <= cur
);
1986 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1987 this_bio_flag
= EXTENT_BIO_COMPRESSED
;
1988 extent_set_compress_type(&this_bio_flag
,
1992 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
1993 cur_end
= min(extent_map_end(em
) - 1, end
);
1994 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
1995 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
1996 disk_io_size
= em
->block_len
;
1997 sector
= em
->block_start
>> 9;
1999 sector
= (em
->block_start
+ extent_offset
) >> 9;
2000 disk_io_size
= iosize
;
2003 block_start
= em
->block_start
;
2004 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2005 block_start
= EXTENT_MAP_HOLE
;
2006 free_extent_map(em
);
2009 /* we've found a hole, just zero and go on */
2010 if (block_start
== EXTENT_MAP_HOLE
) {
2012 struct extent_state
*cached
= NULL
;
2014 userpage
= kmap_atomic(page
, KM_USER0
);
2015 memset(userpage
+ pg_offset
, 0, iosize
);
2016 flush_dcache_page(page
);
2017 kunmap_atomic(userpage
, KM_USER0
);
2019 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2021 unlock_extent_cached(tree
, cur
, cur
+ iosize
- 1,
2024 pg_offset
+= iosize
;
2027 /* the get_extent function already copied into the page */
2028 if (test_range_bit(tree
, cur
, cur_end
,
2029 EXTENT_UPTODATE
, 1, NULL
)) {
2030 check_page_uptodate(tree
, page
);
2031 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2033 pg_offset
+= iosize
;
2036 /* we have an inline extent but it didn't get marked up
2037 * to date. Error out
2039 if (block_start
== EXTENT_MAP_INLINE
) {
2041 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2043 pg_offset
+= iosize
;
2048 if (tree
->ops
&& tree
->ops
->readpage_io_hook
) {
2049 ret
= tree
->ops
->readpage_io_hook(page
, cur
,
2053 unsigned long pnr
= (last_byte
>> PAGE_CACHE_SHIFT
) + 1;
2055 ret
= submit_extent_page(READ
, tree
, page
,
2056 sector
, disk_io_size
, pg_offset
,
2058 end_bio_extent_readpage
, mirror_num
,
2062 *bio_flags
= this_bio_flag
;
2067 pg_offset
+= iosize
;
2071 if (!PageError(page
))
2072 SetPageUptodate(page
);
2078 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
2079 get_extent_t
*get_extent
)
2081 struct bio
*bio
= NULL
;
2082 unsigned long bio_flags
= 0;
2085 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, 0,
2088 ret
= submit_one_bio(READ
, bio
, 0, bio_flags
);
2092 static noinline
void update_nr_written(struct page
*page
,
2093 struct writeback_control
*wbc
,
2094 unsigned long nr_written
)
2096 wbc
->nr_to_write
-= nr_written
;
2097 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 &&
2098 wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
))
2099 page
->mapping
->writeback_index
= page
->index
+ nr_written
;
2103 * the writepage semantics are similar to regular writepage. extent
2104 * records are inserted to lock ranges in the tree, and as dirty areas
2105 * are found, they are marked writeback. Then the lock bits are removed
2106 * and the end_io handler clears the writeback ranges
2108 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
2111 struct inode
*inode
= page
->mapping
->host
;
2112 struct extent_page_data
*epd
= data
;
2113 struct extent_io_tree
*tree
= epd
->tree
;
2114 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2116 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2120 u64 last_byte
= i_size_read(inode
);
2124 struct extent_state
*cached_state
= NULL
;
2125 struct extent_map
*em
;
2126 struct block_device
*bdev
;
2129 size_t pg_offset
= 0;
2131 loff_t i_size
= i_size_read(inode
);
2132 unsigned long end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2138 unsigned long nr_written
= 0;
2140 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2141 write_flags
= WRITE_SYNC
;
2143 write_flags
= WRITE
;
2145 trace___extent_writepage(page
, inode
, wbc
);
2147 WARN_ON(!PageLocked(page
));
2148 pg_offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
2149 if (page
->index
> end_index
||
2150 (page
->index
== end_index
&& !pg_offset
)) {
2151 page
->mapping
->a_ops
->invalidatepage(page
, 0);
2156 if (page
->index
== end_index
) {
2159 userpage
= kmap_atomic(page
, KM_USER0
);
2160 memset(userpage
+ pg_offset
, 0,
2161 PAGE_CACHE_SIZE
- pg_offset
);
2162 kunmap_atomic(userpage
, KM_USER0
);
2163 flush_dcache_page(page
);
2167 set_page_extent_mapped(page
);
2169 delalloc_start
= start
;
2172 if (!epd
->extent_locked
) {
2173 u64 delalloc_to_write
= 0;
2175 * make sure the wbc mapping index is at least updated
2178 update_nr_written(page
, wbc
, 0);
2180 while (delalloc_end
< page_end
) {
2181 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
2186 if (nr_delalloc
== 0) {
2187 delalloc_start
= delalloc_end
+ 1;
2190 tree
->ops
->fill_delalloc(inode
, page
, delalloc_start
,
2191 delalloc_end
, &page_started
,
2194 * delalloc_end is already one less than the total
2195 * length, so we don't subtract one from
2198 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
2201 delalloc_start
= delalloc_end
+ 1;
2203 if (wbc
->nr_to_write
< delalloc_to_write
) {
2206 if (delalloc_to_write
< thresh
* 2)
2207 thresh
= delalloc_to_write
;
2208 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
2212 /* did the fill delalloc function already unlock and start
2218 * we've unlocked the page, so we can't update
2219 * the mapping's writeback index, just update
2222 wbc
->nr_to_write
-= nr_written
;
2226 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
2227 ret
= tree
->ops
->writepage_start_hook(page
, start
,
2229 if (ret
== -EAGAIN
) {
2230 redirty_page_for_writepage(wbc
, page
);
2231 update_nr_written(page
, wbc
, nr_written
);
2239 * we don't want to touch the inode after unlocking the page,
2240 * so we update the mapping writeback index now
2242 update_nr_written(page
, wbc
, nr_written
+ 1);
2245 if (last_byte
<= start
) {
2246 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2247 tree
->ops
->writepage_end_io_hook(page
, start
,
2252 blocksize
= inode
->i_sb
->s_blocksize
;
2254 while (cur
<= end
) {
2255 if (cur
>= last_byte
) {
2256 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2257 tree
->ops
->writepage_end_io_hook(page
, cur
,
2261 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
2263 if (IS_ERR_OR_NULL(em
)) {
2268 extent_offset
= cur
- em
->start
;
2269 BUG_ON(extent_map_end(em
) <= cur
);
2271 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2272 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
2273 sector
= (em
->block_start
+ extent_offset
) >> 9;
2275 block_start
= em
->block_start
;
2276 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
2277 free_extent_map(em
);
2281 * compressed and inline extents are written through other
2284 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
2285 block_start
== EXTENT_MAP_INLINE
) {
2287 * end_io notification does not happen here for
2288 * compressed extents
2290 if (!compressed
&& tree
->ops
&&
2291 tree
->ops
->writepage_end_io_hook
)
2292 tree
->ops
->writepage_end_io_hook(page
, cur
,
2295 else if (compressed
) {
2296 /* we don't want to end_page_writeback on
2297 * a compressed extent. this happens
2304 pg_offset
+= iosize
;
2307 /* leave this out until we have a page_mkwrite call */
2308 if (0 && !test_range_bit(tree
, cur
, cur
+ iosize
- 1,
2309 EXTENT_DIRTY
, 0, NULL
)) {
2311 pg_offset
+= iosize
;
2315 if (tree
->ops
&& tree
->ops
->writepage_io_hook
) {
2316 ret
= tree
->ops
->writepage_io_hook(page
, cur
,
2324 unsigned long max_nr
= end_index
+ 1;
2326 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
2327 if (!PageWriteback(page
)) {
2328 printk(KERN_ERR
"btrfs warning page %lu not "
2329 "writeback, cur %llu end %llu\n",
2330 page
->index
, (unsigned long long)cur
,
2331 (unsigned long long)end
);
2334 ret
= submit_extent_page(write_flags
, tree
, page
,
2335 sector
, iosize
, pg_offset
,
2336 bdev
, &epd
->bio
, max_nr
,
2337 end_bio_extent_writepage
,
2343 pg_offset
+= iosize
;
2348 /* make sure the mapping tag for page dirty gets cleared */
2349 set_page_writeback(page
);
2350 end_page_writeback(page
);
2356 /* drop our reference on any cached states */
2357 free_extent_state(cached_state
);
2362 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2363 * @mapping: address space structure to write
2364 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2365 * @writepage: function called for each page
2366 * @data: data passed to writepage function
2368 * If a page is already under I/O, write_cache_pages() skips it, even
2369 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2370 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2371 * and msync() need to guarantee that all the data which was dirty at the time
2372 * the call was made get new I/O started against them. If wbc->sync_mode is
2373 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2374 * existing IO to complete.
2376 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
2377 struct address_space
*mapping
,
2378 struct writeback_control
*wbc
,
2379 writepage_t writepage
, void *data
,
2380 void (*flush_fn
)(void *))
2384 int nr_to_write_done
= 0;
2385 struct pagevec pvec
;
2388 pgoff_t end
; /* Inclusive */
2392 pagevec_init(&pvec
, 0);
2393 if (wbc
->range_cyclic
) {
2394 index
= mapping
->writeback_index
; /* Start from prev offset */
2397 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2398 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2401 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2402 tag
= PAGECACHE_TAG_TOWRITE
;
2404 tag
= PAGECACHE_TAG_DIRTY
;
2406 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2407 tag_pages_for_writeback(mapping
, index
, end
);
2408 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
2409 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2410 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
2414 for (i
= 0; i
< nr_pages
; i
++) {
2415 struct page
*page
= pvec
.pages
[i
];
2418 * At this point we hold neither mapping->tree_lock nor
2419 * lock on the page itself: the page may be truncated or
2420 * invalidated (changing page->mapping to NULL), or even
2421 * swizzled back from swapper_space to tmpfs file
2424 if (tree
->ops
&& tree
->ops
->write_cache_pages_lock_hook
)
2425 tree
->ops
->write_cache_pages_lock_hook(page
);
2429 if (unlikely(page
->mapping
!= mapping
)) {
2434 if (!wbc
->range_cyclic
&& page
->index
> end
) {
2440 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
2441 if (PageWriteback(page
))
2443 wait_on_page_writeback(page
);
2446 if (PageWriteback(page
) ||
2447 !clear_page_dirty_for_io(page
)) {
2452 ret
= (*writepage
)(page
, wbc
, data
);
2454 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
2462 * the filesystem may choose to bump up nr_to_write.
2463 * We have to make sure to honor the new nr_to_write
2466 nr_to_write_done
= wbc
->nr_to_write
<= 0;
2468 pagevec_release(&pvec
);
2471 if (!scanned
&& !done
) {
2473 * We hit the last page and there is more work to be done: wrap
2474 * back to the start of the file
2483 static void flush_epd_write_bio(struct extent_page_data
*epd
)
2487 submit_one_bio(WRITE_SYNC
, epd
->bio
, 0, 0);
2489 submit_one_bio(WRITE
, epd
->bio
, 0, 0);
2494 static noinline
void flush_write_bio(void *data
)
2496 struct extent_page_data
*epd
= data
;
2497 flush_epd_write_bio(epd
);
2500 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
2501 get_extent_t
*get_extent
,
2502 struct writeback_control
*wbc
)
2505 struct extent_page_data epd
= {
2508 .get_extent
= get_extent
,
2510 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
2513 ret
= __extent_writepage(page
, wbc
, &epd
);
2515 flush_epd_write_bio(&epd
);
2519 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
2520 u64 start
, u64 end
, get_extent_t
*get_extent
,
2524 struct address_space
*mapping
= inode
->i_mapping
;
2526 unsigned long nr_pages
= (end
- start
+ PAGE_CACHE_SIZE
) >>
2529 struct extent_page_data epd
= {
2532 .get_extent
= get_extent
,
2534 .sync_io
= mode
== WB_SYNC_ALL
,
2536 struct writeback_control wbc_writepages
= {
2538 .nr_to_write
= nr_pages
* 2,
2539 .range_start
= start
,
2540 .range_end
= end
+ 1,
2543 while (start
<= end
) {
2544 page
= find_get_page(mapping
, start
>> PAGE_CACHE_SHIFT
);
2545 if (clear_page_dirty_for_io(page
))
2546 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
2548 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2549 tree
->ops
->writepage_end_io_hook(page
, start
,
2550 start
+ PAGE_CACHE_SIZE
- 1,
2554 page_cache_release(page
);
2555 start
+= PAGE_CACHE_SIZE
;
2558 flush_epd_write_bio(&epd
);
2562 int extent_writepages(struct extent_io_tree
*tree
,
2563 struct address_space
*mapping
,
2564 get_extent_t
*get_extent
,
2565 struct writeback_control
*wbc
)
2568 struct extent_page_data epd
= {
2571 .get_extent
= get_extent
,
2573 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
2576 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
2577 __extent_writepage
, &epd
,
2579 flush_epd_write_bio(&epd
);
2583 int extent_readpages(struct extent_io_tree
*tree
,
2584 struct address_space
*mapping
,
2585 struct list_head
*pages
, unsigned nr_pages
,
2586 get_extent_t get_extent
)
2588 struct bio
*bio
= NULL
;
2590 unsigned long bio_flags
= 0;
2592 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
2593 struct page
*page
= list_entry(pages
->prev
, struct page
, lru
);
2595 prefetchw(&page
->flags
);
2596 list_del(&page
->lru
);
2597 if (!add_to_page_cache_lru(page
, mapping
,
2598 page
->index
, GFP_NOFS
)) {
2599 __extent_read_full_page(tree
, page
, get_extent
,
2600 &bio
, 0, &bio_flags
);
2602 page_cache_release(page
);
2604 BUG_ON(!list_empty(pages
));
2606 submit_one_bio(READ
, bio
, 0, bio_flags
);
2611 * basic invalidatepage code, this waits on any locked or writeback
2612 * ranges corresponding to the page, and then deletes any extent state
2613 * records from the tree
2615 int extent_invalidatepage(struct extent_io_tree
*tree
,
2616 struct page
*page
, unsigned long offset
)
2618 struct extent_state
*cached_state
= NULL
;
2619 u64 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
2620 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2621 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
2623 start
+= (offset
+ blocksize
- 1) & ~(blocksize
- 1);
2627 lock_extent_bits(tree
, start
, end
, 0, &cached_state
, GFP_NOFS
);
2628 wait_on_page_writeback(page
);
2629 clear_extent_bit(tree
, start
, end
,
2630 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
2631 EXTENT_DO_ACCOUNTING
,
2632 1, 1, &cached_state
, GFP_NOFS
);
2637 * a helper for releasepage, this tests for areas of the page that
2638 * are locked or under IO and drops the related state bits if it is safe
2641 int try_release_extent_state(struct extent_map_tree
*map
,
2642 struct extent_io_tree
*tree
, struct page
*page
,
2645 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2646 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2649 if (test_range_bit(tree
, start
, end
,
2650 EXTENT_IOBITS
, 0, NULL
))
2653 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
2656 * at this point we can safely clear everything except the
2657 * locked bit and the nodatasum bit
2659 ret
= clear_extent_bit(tree
, start
, end
,
2660 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
2663 /* if clear_extent_bit failed for enomem reasons,
2664 * we can't allow the release to continue.
2675 * a helper for releasepage. As long as there are no locked extents
2676 * in the range corresponding to the page, both state records and extent
2677 * map records are removed
2679 int try_release_extent_mapping(struct extent_map_tree
*map
,
2680 struct extent_io_tree
*tree
, struct page
*page
,
2683 struct extent_map
*em
;
2684 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2685 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2687 if ((mask
& __GFP_WAIT
) &&
2688 page
->mapping
->host
->i_size
> 16 * 1024 * 1024) {
2690 while (start
<= end
) {
2691 len
= end
- start
+ 1;
2692 write_lock(&map
->lock
);
2693 em
= lookup_extent_mapping(map
, start
, len
);
2694 if (IS_ERR_OR_NULL(em
)) {
2695 write_unlock(&map
->lock
);
2698 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
2699 em
->start
!= start
) {
2700 write_unlock(&map
->lock
);
2701 free_extent_map(em
);
2704 if (!test_range_bit(tree
, em
->start
,
2705 extent_map_end(em
) - 1,
2706 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
2708 remove_extent_mapping(map
, em
);
2709 /* once for the rb tree */
2710 free_extent_map(em
);
2712 start
= extent_map_end(em
);
2713 write_unlock(&map
->lock
);
2716 free_extent_map(em
);
2719 return try_release_extent_state(map
, tree
, page
, mask
);
2723 * helper function for fiemap, which doesn't want to see any holes.
2724 * This maps until we find something past 'last'
2726 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
2729 get_extent_t
*get_extent
)
2731 u64 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
2732 struct extent_map
*em
;
2739 len
= last
- offset
;
2742 len
= (len
+ sectorsize
- 1) & ~(sectorsize
- 1);
2743 em
= get_extent(inode
, NULL
, 0, offset
, len
, 0);
2744 if (IS_ERR_OR_NULL(em
))
2747 /* if this isn't a hole return it */
2748 if (!test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
) &&
2749 em
->block_start
!= EXTENT_MAP_HOLE
) {
2753 /* this is a hole, advance to the next extent */
2754 offset
= extent_map_end(em
);
2755 free_extent_map(em
);
2762 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
2763 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
2767 u64 max
= start
+ len
;
2771 u64 last_for_get_extent
= 0;
2773 u64 isize
= i_size_read(inode
);
2774 struct btrfs_key found_key
;
2775 struct extent_map
*em
= NULL
;
2776 struct extent_state
*cached_state
= NULL
;
2777 struct btrfs_path
*path
;
2778 struct btrfs_file_extent_item
*item
;
2783 unsigned long emflags
;
2788 path
= btrfs_alloc_path();
2791 path
->leave_spinning
= 1;
2794 * lookup the last file extent. We're not using i_size here
2795 * because there might be preallocation past i_size
2797 ret
= btrfs_lookup_file_extent(NULL
, BTRFS_I(inode
)->root
,
2798 path
, btrfs_ino(inode
), -1, 0);
2800 btrfs_free_path(path
);
2805 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2806 struct btrfs_file_extent_item
);
2807 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
2808 found_type
= btrfs_key_type(&found_key
);
2810 /* No extents, but there might be delalloc bits */
2811 if (found_key
.objectid
!= btrfs_ino(inode
) ||
2812 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
2813 /* have to trust i_size as the end */
2815 last_for_get_extent
= isize
;
2818 * remember the start of the last extent. There are a
2819 * bunch of different factors that go into the length of the
2820 * extent, so its much less complex to remember where it started
2822 last
= found_key
.offset
;
2823 last_for_get_extent
= last
+ 1;
2825 btrfs_free_path(path
);
2828 * we might have some extents allocated but more delalloc past those
2829 * extents. so, we trust isize unless the start of the last extent is
2834 last_for_get_extent
= isize
;
2837 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
, 0,
2838 &cached_state
, GFP_NOFS
);
2840 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
,
2850 u64 offset_in_extent
;
2852 /* break if the extent we found is outside the range */
2853 if (em
->start
>= max
|| extent_map_end(em
) < off
)
2857 * get_extent may return an extent that starts before our
2858 * requested range. We have to make sure the ranges
2859 * we return to fiemap always move forward and don't
2860 * overlap, so adjust the offsets here
2862 em_start
= max(em
->start
, off
);
2865 * record the offset from the start of the extent
2866 * for adjusting the disk offset below
2868 offset_in_extent
= em_start
- em
->start
;
2869 em_end
= extent_map_end(em
);
2870 em_len
= em_end
- em_start
;
2871 emflags
= em
->flags
;
2876 * bump off for our next call to get_extent
2878 off
= extent_map_end(em
);
2882 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
2884 flags
|= FIEMAP_EXTENT_LAST
;
2885 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
2886 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
2887 FIEMAP_EXTENT_NOT_ALIGNED
);
2888 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
2889 flags
|= (FIEMAP_EXTENT_DELALLOC
|
2890 FIEMAP_EXTENT_UNKNOWN
);
2892 disko
= em
->block_start
+ offset_in_extent
;
2894 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
2895 flags
|= FIEMAP_EXTENT_ENCODED
;
2897 free_extent_map(em
);
2899 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
2900 (last
== (u64
)-1 && isize
<= em_end
)) {
2901 flags
|= FIEMAP_EXTENT_LAST
;
2905 /* now scan forward to see if this is really the last extent. */
2906 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
,
2913 flags
|= FIEMAP_EXTENT_LAST
;
2916 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
2922 free_extent_map(em
);
2924 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
,
2925 &cached_state
, GFP_NOFS
);
2929 static inline struct page
*extent_buffer_page(struct extent_buffer
*eb
,
2933 struct address_space
*mapping
;
2936 return eb
->first_page
;
2937 i
+= eb
->start
>> PAGE_CACHE_SHIFT
;
2938 mapping
= eb
->first_page
->mapping
;
2943 * extent_buffer_page is only called after pinning the page
2944 * by increasing the reference count. So we know the page must
2945 * be in the radix tree.
2948 p
= radix_tree_lookup(&mapping
->page_tree
, i
);
2954 static inline unsigned long num_extent_pages(u64 start
, u64 len
)
2956 return ((start
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
) -
2957 (start
>> PAGE_CACHE_SHIFT
);
2960 static struct extent_buffer
*__alloc_extent_buffer(struct extent_io_tree
*tree
,
2965 struct extent_buffer
*eb
= NULL
;
2967 unsigned long flags
;
2970 eb
= kmem_cache_zalloc(extent_buffer_cache
, mask
);
2975 rwlock_init(&eb
->lock
);
2976 atomic_set(&eb
->write_locks
, 0);
2977 atomic_set(&eb
->read_locks
, 0);
2978 atomic_set(&eb
->blocking_readers
, 0);
2979 atomic_set(&eb
->blocking_writers
, 0);
2980 atomic_set(&eb
->spinning_readers
, 0);
2981 atomic_set(&eb
->spinning_writers
, 0);
2982 init_waitqueue_head(&eb
->write_lock_wq
);
2983 init_waitqueue_head(&eb
->read_lock_wq
);
2986 spin_lock_irqsave(&leak_lock
, flags
);
2987 list_add(&eb
->leak_list
, &buffers
);
2988 spin_unlock_irqrestore(&leak_lock
, flags
);
2990 atomic_set(&eb
->refs
, 1);
2995 static void __free_extent_buffer(struct extent_buffer
*eb
)
2998 unsigned long flags
;
2999 spin_lock_irqsave(&leak_lock
, flags
);
3000 list_del(&eb
->leak_list
);
3001 spin_unlock_irqrestore(&leak_lock
, flags
);
3003 kmem_cache_free(extent_buffer_cache
, eb
);
3007 * Helper for releasing extent buffer page.
3009 static void btrfs_release_extent_buffer_page(struct extent_buffer
*eb
,
3010 unsigned long start_idx
)
3012 unsigned long index
;
3015 if (!eb
->first_page
)
3018 index
= num_extent_pages(eb
->start
, eb
->len
);
3019 if (start_idx
>= index
)
3024 page
= extent_buffer_page(eb
, index
);
3026 page_cache_release(page
);
3027 } while (index
!= start_idx
);
3031 * Helper for releasing the extent buffer.
3033 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
3035 btrfs_release_extent_buffer_page(eb
, 0);
3036 __free_extent_buffer(eb
);
3039 struct extent_buffer
*alloc_extent_buffer(struct extent_io_tree
*tree
,
3040 u64 start
, unsigned long len
,
3043 unsigned long num_pages
= num_extent_pages(start
, len
);
3045 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
3046 struct extent_buffer
*eb
;
3047 struct extent_buffer
*exists
= NULL
;
3049 struct address_space
*mapping
= tree
->mapping
;
3054 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
3055 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
3057 mark_page_accessed(eb
->first_page
);
3062 eb
= __alloc_extent_buffer(tree
, start
, len
, GFP_NOFS
);
3067 eb
->first_page
= page0
;
3070 page_cache_get(page0
);
3071 mark_page_accessed(page0
);
3072 set_page_extent_mapped(page0
);
3073 set_page_extent_head(page0
, len
);
3074 uptodate
= PageUptodate(page0
);
3078 for (; i
< num_pages
; i
++, index
++) {
3079 p
= find_or_create_page(mapping
, index
, GFP_NOFS
);
3084 set_page_extent_mapped(p
);
3085 mark_page_accessed(p
);
3088 set_page_extent_head(p
, len
);
3090 set_page_private(p
, EXTENT_PAGE_PRIVATE
);
3092 if (!PageUptodate(p
))
3096 * see below about how we avoid a nasty race with release page
3097 * and why we unlock later
3103 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3105 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
3109 spin_lock(&tree
->buffer_lock
);
3110 ret
= radix_tree_insert(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
, eb
);
3111 if (ret
== -EEXIST
) {
3112 exists
= radix_tree_lookup(&tree
->buffer
,
3113 start
>> PAGE_CACHE_SHIFT
);
3114 /* add one reference for the caller */
3115 atomic_inc(&exists
->refs
);
3116 spin_unlock(&tree
->buffer_lock
);
3117 radix_tree_preload_end();
3120 /* add one reference for the tree */
3121 atomic_inc(&eb
->refs
);
3122 spin_unlock(&tree
->buffer_lock
);
3123 radix_tree_preload_end();
3126 * there is a race where release page may have
3127 * tried to find this extent buffer in the radix
3128 * but failed. It will tell the VM it is safe to
3129 * reclaim the, and it will clear the page private bit.
3130 * We must make sure to set the page private bit properly
3131 * after the extent buffer is in the radix tree so
3132 * it doesn't get lost
3134 set_page_extent_mapped(eb
->first_page
);
3135 set_page_extent_head(eb
->first_page
, eb
->len
);
3137 unlock_page(eb
->first_page
);
3141 if (eb
->first_page
&& !page0
)
3142 unlock_page(eb
->first_page
);
3144 if (!atomic_dec_and_test(&eb
->refs
))
3146 btrfs_release_extent_buffer(eb
);
3150 struct extent_buffer
*find_extent_buffer(struct extent_io_tree
*tree
,
3151 u64 start
, unsigned long len
)
3153 struct extent_buffer
*eb
;
3156 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
3157 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
3159 mark_page_accessed(eb
->first_page
);
3167 void free_extent_buffer(struct extent_buffer
*eb
)
3172 if (!atomic_dec_and_test(&eb
->refs
))
3178 int clear_extent_buffer_dirty(struct extent_io_tree
*tree
,
3179 struct extent_buffer
*eb
)
3182 unsigned long num_pages
;
3185 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3187 for (i
= 0; i
< num_pages
; i
++) {
3188 page
= extent_buffer_page(eb
, i
);
3189 if (!PageDirty(page
))
3193 WARN_ON(!PagePrivate(page
));
3195 set_page_extent_mapped(page
);
3197 set_page_extent_head(page
, eb
->len
);
3199 clear_page_dirty_for_io(page
);
3200 spin_lock_irq(&page
->mapping
->tree_lock
);
3201 if (!PageDirty(page
)) {
3202 radix_tree_tag_clear(&page
->mapping
->page_tree
,
3204 PAGECACHE_TAG_DIRTY
);
3206 spin_unlock_irq(&page
->mapping
->tree_lock
);
3212 int set_extent_buffer_dirty(struct extent_io_tree
*tree
,
3213 struct extent_buffer
*eb
)
3216 unsigned long num_pages
;
3219 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
3220 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3221 for (i
= 0; i
< num_pages
; i
++)
3222 __set_page_dirty_nobuffers(extent_buffer_page(eb
, i
));
3226 static int __eb_straddles_pages(u64 start
, u64 len
)
3228 if (len
< PAGE_CACHE_SIZE
)
3230 if (start
& (PAGE_CACHE_SIZE
- 1))
3232 if ((start
+ len
) & (PAGE_CACHE_SIZE
- 1))
3237 static int eb_straddles_pages(struct extent_buffer
*eb
)
3239 return __eb_straddles_pages(eb
->start
, eb
->len
);
3242 int clear_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3243 struct extent_buffer
*eb
,
3244 struct extent_state
**cached_state
)
3248 unsigned long num_pages
;
3250 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3251 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3253 if (eb_straddles_pages(eb
)) {
3254 clear_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3255 cached_state
, GFP_NOFS
);
3257 for (i
= 0; i
< num_pages
; i
++) {
3258 page
= extent_buffer_page(eb
, i
);
3260 ClearPageUptodate(page
);
3265 int set_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3266 struct extent_buffer
*eb
)
3270 unsigned long num_pages
;
3272 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3274 if (eb_straddles_pages(eb
)) {
3275 set_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3278 for (i
= 0; i
< num_pages
; i
++) {
3279 page
= extent_buffer_page(eb
, i
);
3280 if ((i
== 0 && (eb
->start
& (PAGE_CACHE_SIZE
- 1))) ||
3281 ((i
== num_pages
- 1) &&
3282 ((eb
->start
+ eb
->len
) & (PAGE_CACHE_SIZE
- 1)))) {
3283 check_page_uptodate(tree
, page
);
3286 SetPageUptodate(page
);
3291 int extent_range_uptodate(struct extent_io_tree
*tree
,
3296 int pg_uptodate
= 1;
3298 unsigned long index
;
3300 if (__eb_straddles_pages(start
, end
- start
+ 1)) {
3301 ret
= test_range_bit(tree
, start
, end
,
3302 EXTENT_UPTODATE
, 1, NULL
);
3306 while (start
<= end
) {
3307 index
= start
>> PAGE_CACHE_SHIFT
;
3308 page
= find_get_page(tree
->mapping
, index
);
3309 uptodate
= PageUptodate(page
);
3310 page_cache_release(page
);
3315 start
+= PAGE_CACHE_SIZE
;
3320 int extent_buffer_uptodate(struct extent_io_tree
*tree
,
3321 struct extent_buffer
*eb
,
3322 struct extent_state
*cached_state
)
3325 unsigned long num_pages
;
3328 int pg_uptodate
= 1;
3330 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3333 if (eb_straddles_pages(eb
)) {
3334 ret
= test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3335 EXTENT_UPTODATE
, 1, cached_state
);
3340 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3341 for (i
= 0; i
< num_pages
; i
++) {
3342 page
= extent_buffer_page(eb
, i
);
3343 if (!PageUptodate(page
)) {
3351 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
3352 struct extent_buffer
*eb
,
3353 u64 start
, int wait
,
3354 get_extent_t
*get_extent
, int mirror_num
)
3357 unsigned long start_i
;
3361 int locked_pages
= 0;
3362 int all_uptodate
= 1;
3363 int inc_all_pages
= 0;
3364 unsigned long num_pages
;
3365 struct bio
*bio
= NULL
;
3366 unsigned long bio_flags
= 0;
3368 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3371 if (eb_straddles_pages(eb
)) {
3372 if (test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3373 EXTENT_UPTODATE
, 1, NULL
)) {
3379 WARN_ON(start
< eb
->start
);
3380 start_i
= (start
>> PAGE_CACHE_SHIFT
) -
3381 (eb
->start
>> PAGE_CACHE_SHIFT
);
3386 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3387 for (i
= start_i
; i
< num_pages
; i
++) {
3388 page
= extent_buffer_page(eb
, i
);
3390 if (!trylock_page(page
))
3396 if (!PageUptodate(page
))
3401 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3405 for (i
= start_i
; i
< num_pages
; i
++) {
3406 page
= extent_buffer_page(eb
, i
);
3408 WARN_ON(!PagePrivate(page
));
3410 set_page_extent_mapped(page
);
3412 set_page_extent_head(page
, eb
->len
);
3415 page_cache_get(page
);
3416 if (!PageUptodate(page
)) {
3419 ClearPageError(page
);
3420 err
= __extent_read_full_page(tree
, page
,
3422 mirror_num
, &bio_flags
);
3431 submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3436 for (i
= start_i
; i
< num_pages
; i
++) {
3437 page
= extent_buffer_page(eb
, i
);
3438 wait_on_page_locked(page
);
3439 if (!PageUptodate(page
))
3444 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3449 while (locked_pages
> 0) {
3450 page
= extent_buffer_page(eb
, i
);
3458 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
3459 unsigned long start
,
3466 char *dst
= (char *)dstv
;
3467 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3468 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3470 WARN_ON(start
> eb
->len
);
3471 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3473 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3476 page
= extent_buffer_page(eb
, i
);
3478 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
3479 kaddr
= page_address(page
);
3480 memcpy(dst
, kaddr
+ offset
, cur
);
3489 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
3490 unsigned long min_len
, char **map
,
3491 unsigned long *map_start
,
3492 unsigned long *map_len
)
3494 size_t offset
= start
& (PAGE_CACHE_SIZE
- 1);
3497 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3498 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3499 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
3506 offset
= start_offset
;
3510 *map_start
= ((u64
)i
<< PAGE_CACHE_SHIFT
) - start_offset
;
3513 if (start
+ min_len
> eb
->len
) {
3514 printk(KERN_ERR
"btrfs bad mapping eb start %llu len %lu, "
3515 "wanted %lu %lu\n", (unsigned long long)eb
->start
,
3516 eb
->len
, start
, min_len
);
3521 p
= extent_buffer_page(eb
, i
);
3522 kaddr
= page_address(p
);
3523 *map
= kaddr
+ offset
;
3524 *map_len
= PAGE_CACHE_SIZE
- offset
;
3528 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
3529 unsigned long start
,
3536 char *ptr
= (char *)ptrv
;
3537 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3538 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3541 WARN_ON(start
> eb
->len
);
3542 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3544 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3547 page
= extent_buffer_page(eb
, i
);
3549 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
3551 kaddr
= page_address(page
);
3552 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
3564 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
3565 unsigned long start
, unsigned long len
)
3571 char *src
= (char *)srcv
;
3572 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3573 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3575 WARN_ON(start
> eb
->len
);
3576 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3578 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3581 page
= extent_buffer_page(eb
, i
);
3582 WARN_ON(!PageUptodate(page
));
3584 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
3585 kaddr
= page_address(page
);
3586 memcpy(kaddr
+ offset
, src
, cur
);
3595 void memset_extent_buffer(struct extent_buffer
*eb
, char c
,
3596 unsigned long start
, unsigned long len
)
3602 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3603 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3605 WARN_ON(start
> eb
->len
);
3606 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3608 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3611 page
= extent_buffer_page(eb
, i
);
3612 WARN_ON(!PageUptodate(page
));
3614 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
3615 kaddr
= page_address(page
);
3616 memset(kaddr
+ offset
, c
, cur
);
3624 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
3625 unsigned long dst_offset
, unsigned long src_offset
,
3628 u64 dst_len
= dst
->len
;
3633 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3634 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
3636 WARN_ON(src
->len
!= dst_len
);
3638 offset
= (start_offset
+ dst_offset
) &
3639 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3642 page
= extent_buffer_page(dst
, i
);
3643 WARN_ON(!PageUptodate(page
));
3645 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
- offset
));
3647 kaddr
= page_address(page
);
3648 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
3657 static void move_pages(struct page
*dst_page
, struct page
*src_page
,
3658 unsigned long dst_off
, unsigned long src_off
,
3661 char *dst_kaddr
= page_address(dst_page
);
3662 if (dst_page
== src_page
) {
3663 memmove(dst_kaddr
+ dst_off
, dst_kaddr
+ src_off
, len
);
3665 char *src_kaddr
= page_address(src_page
);
3666 char *p
= dst_kaddr
+ dst_off
+ len
;
3667 char *s
= src_kaddr
+ src_off
+ len
;
3674 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
3676 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
3677 return distance
< len
;
3680 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
3681 unsigned long dst_off
, unsigned long src_off
,
3684 char *dst_kaddr
= page_address(dst_page
);
3687 if (dst_page
!= src_page
) {
3688 src_kaddr
= page_address(src_page
);
3690 src_kaddr
= dst_kaddr
;
3691 BUG_ON(areas_overlap(src_off
, dst_off
, len
));
3694 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
3697 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
3698 unsigned long src_offset
, unsigned long len
)
3701 size_t dst_off_in_page
;
3702 size_t src_off_in_page
;
3703 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3704 unsigned long dst_i
;
3705 unsigned long src_i
;
3707 if (src_offset
+ len
> dst
->len
) {
3708 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
3709 "len %lu dst len %lu\n", src_offset
, len
, dst
->len
);
3712 if (dst_offset
+ len
> dst
->len
) {
3713 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
3714 "len %lu dst len %lu\n", dst_offset
, len
, dst
->len
);
3719 dst_off_in_page
= (start_offset
+ dst_offset
) &
3720 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3721 src_off_in_page
= (start_offset
+ src_offset
) &
3722 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3724 dst_i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
3725 src_i
= (start_offset
+ src_offset
) >> PAGE_CACHE_SHIFT
;
3727 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
-
3729 cur
= min_t(unsigned long, cur
,
3730 (unsigned long)(PAGE_CACHE_SIZE
- dst_off_in_page
));
3732 copy_pages(extent_buffer_page(dst
, dst_i
),
3733 extent_buffer_page(dst
, src_i
),
3734 dst_off_in_page
, src_off_in_page
, cur
);
3742 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
3743 unsigned long src_offset
, unsigned long len
)
3746 size_t dst_off_in_page
;
3747 size_t src_off_in_page
;
3748 unsigned long dst_end
= dst_offset
+ len
- 1;
3749 unsigned long src_end
= src_offset
+ len
- 1;
3750 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3751 unsigned long dst_i
;
3752 unsigned long src_i
;
3754 if (src_offset
+ len
> dst
->len
) {
3755 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
3756 "len %lu len %lu\n", src_offset
, len
, dst
->len
);
3759 if (dst_offset
+ len
> dst
->len
) {
3760 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
3761 "len %lu len %lu\n", dst_offset
, len
, dst
->len
);
3764 if (!areas_overlap(src_offset
, dst_offset
, len
)) {
3765 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
3769 dst_i
= (start_offset
+ dst_end
) >> PAGE_CACHE_SHIFT
;
3770 src_i
= (start_offset
+ src_end
) >> PAGE_CACHE_SHIFT
;
3772 dst_off_in_page
= (start_offset
+ dst_end
) &
3773 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3774 src_off_in_page
= (start_offset
+ src_end
) &
3775 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3777 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
3778 cur
= min(cur
, dst_off_in_page
+ 1);
3779 move_pages(extent_buffer_page(dst
, dst_i
),
3780 extent_buffer_page(dst
, src_i
),
3781 dst_off_in_page
- cur
+ 1,
3782 src_off_in_page
- cur
+ 1, cur
);
3790 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
3792 struct extent_buffer
*eb
=
3793 container_of(head
, struct extent_buffer
, rcu_head
);
3795 btrfs_release_extent_buffer(eb
);
3798 int try_release_extent_buffer(struct extent_io_tree
*tree
, struct page
*page
)
3800 u64 start
= page_offset(page
);
3801 struct extent_buffer
*eb
;
3804 spin_lock(&tree
->buffer_lock
);
3805 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
3807 spin_unlock(&tree
->buffer_lock
);
3811 if (test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3817 * set @eb->refs to 0 if it is already 1, and then release the @eb.
3820 if (atomic_cmpxchg(&eb
->refs
, 1, 0) != 1) {
3825 radix_tree_delete(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
3827 spin_unlock(&tree
->buffer_lock
);
3829 /* at this point we can safely release the extent buffer */
3830 if (atomic_read(&eb
->refs
) == 0)
3831 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);