4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_alloc_sem (various)
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->dcache_lock (proc_pid_lookup)
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
118 void __remove_from_page_cache(struct page
*page
)
120 struct address_space
*mapping
= page
->mapping
;
122 radix_tree_delete(&mapping
->page_tree
, page
->index
);
123 page
->mapping
= NULL
;
125 __dec_zone_page_state(page
, NR_FILE_PAGES
);
126 if (PageSwapBacked(page
))
127 __dec_zone_page_state(page
, NR_SHMEM
);
128 BUG_ON(page_mapped(page
));
131 * Some filesystems seem to re-dirty the page even after
132 * the VM has canceled the dirty bit (eg ext3 journaling).
134 * Fix it up by doing a final dirty accounting check after
135 * having removed the page entirely.
137 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
138 dec_zone_page_state(page
, NR_FILE_DIRTY
);
139 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
143 void remove_from_page_cache(struct page
*page
)
145 struct address_space
*mapping
= page
->mapping
;
147 BUG_ON(!PageLocked(page
));
149 spin_lock_irq(&mapping
->tree_lock
);
150 __remove_from_page_cache(page
);
151 spin_unlock_irq(&mapping
->tree_lock
);
152 mem_cgroup_uncharge_cache_page(page
);
154 EXPORT_SYMBOL(remove_from_page_cache
);
156 static int sync_page(void *word
)
158 struct address_space
*mapping
;
161 page
= container_of((unsigned long *)word
, struct page
, flags
);
164 * page_mapping() is being called without PG_locked held.
165 * Some knowledge of the state and use of the page is used to
166 * reduce the requirements down to a memory barrier.
167 * The danger here is of a stale page_mapping() return value
168 * indicating a struct address_space different from the one it's
169 * associated with when it is associated with one.
170 * After smp_mb(), it's either the correct page_mapping() for
171 * the page, or an old page_mapping() and the page's own
172 * page_mapping() has gone NULL.
173 * The ->sync_page() address_space operation must tolerate
174 * page_mapping() going NULL. By an amazing coincidence,
175 * this comes about because none of the users of the page
176 * in the ->sync_page() methods make essential use of the
177 * page_mapping(), merely passing the page down to the backing
178 * device's unplug functions when it's non-NULL, which in turn
179 * ignore it for all cases but swap, where only page_private(page) is
180 * of interest. When page_mapping() does go NULL, the entire
181 * call stack gracefully ignores the page and returns.
185 mapping
= page_mapping(page
);
186 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
187 mapping
->a_ops
->sync_page(page
);
192 static int sync_page_killable(void *word
)
195 return fatal_signal_pending(current
) ? -EINTR
: 0;
199 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
200 * @mapping: address space structure to write
201 * @start: offset in bytes where the range starts
202 * @end: offset in bytes where the range ends (inclusive)
203 * @sync_mode: enable synchronous operation
205 * Start writeback against all of a mapping's dirty pages that lie
206 * within the byte offsets <start, end> inclusive.
208 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
209 * opposed to a regular memory cleansing writeback. The difference between
210 * these two operations is that if a dirty page/buffer is encountered, it must
211 * be waited upon, and not just skipped over.
213 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
214 loff_t end
, int sync_mode
)
217 struct writeback_control wbc
= {
218 .sync_mode
= sync_mode
,
219 .nr_to_write
= LONG_MAX
,
220 .range_start
= start
,
224 if (!mapping_cap_writeback_dirty(mapping
))
227 ret
= do_writepages(mapping
, &wbc
);
231 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
234 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
237 int filemap_fdatawrite(struct address_space
*mapping
)
239 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
241 EXPORT_SYMBOL(filemap_fdatawrite
);
243 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
246 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
248 EXPORT_SYMBOL(filemap_fdatawrite_range
);
251 * filemap_flush - mostly a non-blocking flush
252 * @mapping: target address_space
254 * This is a mostly non-blocking flush. Not suitable for data-integrity
255 * purposes - I/O may not be started against all dirty pages.
257 int filemap_flush(struct address_space
*mapping
)
259 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
261 EXPORT_SYMBOL(filemap_flush
);
264 * filemap_fdatawait_range - wait for writeback to complete
265 * @mapping: address space structure to wait for
266 * @start_byte: offset in bytes where the range starts
267 * @end_byte: offset in bytes where the range ends (inclusive)
269 * Walk the list of under-writeback pages of the given address space
270 * in the given range and wait for all of them.
272 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
275 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
276 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
281 if (end_byte
< start_byte
)
284 pagevec_init(&pvec
, 0);
285 while ((index
<= end
) &&
286 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
287 PAGECACHE_TAG_WRITEBACK
,
288 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
291 for (i
= 0; i
< nr_pages
; i
++) {
292 struct page
*page
= pvec
.pages
[i
];
294 /* until radix tree lookup accepts end_index */
295 if (page
->index
> end
)
298 wait_on_page_writeback(page
);
302 pagevec_release(&pvec
);
306 /* Check for outstanding write errors */
307 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
309 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
314 EXPORT_SYMBOL(filemap_fdatawait_range
);
317 * filemap_fdatawait - wait for all under-writeback pages to complete
318 * @mapping: address space structure to wait for
320 * Walk the list of under-writeback pages of the given address space
321 * and wait for all of them.
323 int filemap_fdatawait(struct address_space
*mapping
)
325 loff_t i_size
= i_size_read(mapping
->host
);
330 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
332 EXPORT_SYMBOL(filemap_fdatawait
);
334 int filemap_write_and_wait(struct address_space
*mapping
)
338 if (mapping
->nrpages
) {
339 err
= filemap_fdatawrite(mapping
);
341 * Even if the above returned error, the pages may be
342 * written partially (e.g. -ENOSPC), so we wait for it.
343 * But the -EIO is special case, it may indicate the worst
344 * thing (e.g. bug) happened, so we avoid waiting for it.
347 int err2
= filemap_fdatawait(mapping
);
354 EXPORT_SYMBOL(filemap_write_and_wait
);
357 * filemap_write_and_wait_range - write out & wait on a file range
358 * @mapping: the address_space for the pages
359 * @lstart: offset in bytes where the range starts
360 * @lend: offset in bytes where the range ends (inclusive)
362 * Write out and wait upon file offsets lstart->lend, inclusive.
364 * Note that `lend' is inclusive (describes the last byte to be written) so
365 * that this function can be used to write to the very end-of-file (end = -1).
367 int filemap_write_and_wait_range(struct address_space
*mapping
,
368 loff_t lstart
, loff_t lend
)
372 if (mapping
->nrpages
) {
373 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
375 /* See comment of filemap_write_and_wait() */
377 int err2
= filemap_fdatawait_range(mapping
,
385 EXPORT_SYMBOL(filemap_write_and_wait_range
);
388 * add_to_page_cache_locked - add a locked page to the pagecache
390 * @mapping: the page's address_space
391 * @offset: page index
392 * @gfp_mask: page allocation mode
394 * This function is used to add a page to the pagecache. It must be locked.
395 * This function does not add the page to the LRU. The caller must do that.
397 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
398 pgoff_t offset
, gfp_t gfp_mask
)
402 VM_BUG_ON(!PageLocked(page
));
404 error
= mem_cgroup_cache_charge(page
, current
->mm
,
405 gfp_mask
& GFP_RECLAIM_MASK
);
409 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
411 page_cache_get(page
);
412 page
->mapping
= mapping
;
413 page
->index
= offset
;
415 spin_lock_irq(&mapping
->tree_lock
);
416 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
417 if (likely(!error
)) {
419 __inc_zone_page_state(page
, NR_FILE_PAGES
);
420 if (PageSwapBacked(page
))
421 __inc_zone_page_state(page
, NR_SHMEM
);
422 spin_unlock_irq(&mapping
->tree_lock
);
424 page
->mapping
= NULL
;
425 spin_unlock_irq(&mapping
->tree_lock
);
426 mem_cgroup_uncharge_cache_page(page
);
427 page_cache_release(page
);
429 radix_tree_preload_end();
431 mem_cgroup_uncharge_cache_page(page
);
435 EXPORT_SYMBOL(add_to_page_cache_locked
);
437 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
438 pgoff_t offset
, gfp_t gfp_mask
)
443 * Splice_read and readahead add shmem/tmpfs pages into the page cache
444 * before shmem_readpage has a chance to mark them as SwapBacked: they
445 * need to go on the anon lru below, and mem_cgroup_cache_charge
446 * (called in add_to_page_cache) needs to know where they're going too.
448 if (mapping_cap_swap_backed(mapping
))
449 SetPageSwapBacked(page
);
451 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
453 if (page_is_file_cache(page
))
454 lru_cache_add_file(page
);
456 lru_cache_add_anon(page
);
460 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
463 struct page
*__page_cache_alloc(gfp_t gfp
)
468 if (cpuset_do_page_mem_spread()) {
470 n
= cpuset_mem_spread_node();
471 page
= alloc_pages_exact_node(n
, gfp
, 0);
475 return alloc_pages(gfp
, 0);
477 EXPORT_SYMBOL(__page_cache_alloc
);
480 static int __sleep_on_page_lock(void *word
)
487 * In order to wait for pages to become available there must be
488 * waitqueues associated with pages. By using a hash table of
489 * waitqueues where the bucket discipline is to maintain all
490 * waiters on the same queue and wake all when any of the pages
491 * become available, and for the woken contexts to check to be
492 * sure the appropriate page became available, this saves space
493 * at a cost of "thundering herd" phenomena during rare hash
496 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
498 const struct zone
*zone
= page_zone(page
);
500 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
503 static inline void wake_up_page(struct page
*page
, int bit
)
505 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
508 void wait_on_page_bit(struct page
*page
, int bit_nr
)
510 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
512 if (test_bit(bit_nr
, &page
->flags
))
513 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
514 TASK_UNINTERRUPTIBLE
);
516 EXPORT_SYMBOL(wait_on_page_bit
);
519 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
520 * @page: Page defining the wait queue of interest
521 * @waiter: Waiter to add to the queue
523 * Add an arbitrary @waiter to the wait queue for the nominated @page.
525 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
527 wait_queue_head_t
*q
= page_waitqueue(page
);
530 spin_lock_irqsave(&q
->lock
, flags
);
531 __add_wait_queue(q
, waiter
);
532 spin_unlock_irqrestore(&q
->lock
, flags
);
534 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
537 * unlock_page - unlock a locked page
540 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
541 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
542 * mechananism between PageLocked pages and PageWriteback pages is shared.
543 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
545 * The mb is necessary to enforce ordering between the clear_bit and the read
546 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
548 void unlock_page(struct page
*page
)
550 VM_BUG_ON(!PageLocked(page
));
551 clear_bit_unlock(PG_locked
, &page
->flags
);
552 smp_mb__after_clear_bit();
553 wake_up_page(page
, PG_locked
);
555 EXPORT_SYMBOL(unlock_page
);
558 * end_page_writeback - end writeback against a page
561 void end_page_writeback(struct page
*page
)
563 if (TestClearPageReclaim(page
))
564 rotate_reclaimable_page(page
);
566 if (!test_clear_page_writeback(page
))
569 smp_mb__after_clear_bit();
570 wake_up_page(page
, PG_writeback
);
572 EXPORT_SYMBOL(end_page_writeback
);
575 * __lock_page - get a lock on the page, assuming we need to sleep to get it
576 * @page: the page to lock
578 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
579 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
580 * chances are that on the second loop, the block layer's plug list is empty,
581 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
583 void __lock_page(struct page
*page
)
585 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
587 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
588 TASK_UNINTERRUPTIBLE
);
590 EXPORT_SYMBOL(__lock_page
);
592 int __lock_page_killable(struct page
*page
)
594 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
596 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
597 sync_page_killable
, TASK_KILLABLE
);
599 EXPORT_SYMBOL_GPL(__lock_page_killable
);
602 * __lock_page_nosync - get a lock on the page, without calling sync_page()
603 * @page: the page to lock
605 * Variant of lock_page that does not require the caller to hold a reference
606 * on the page's mapping.
608 void __lock_page_nosync(struct page
*page
)
610 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
611 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
612 TASK_UNINTERRUPTIBLE
);
615 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
618 if (!(flags
& FAULT_FLAG_ALLOW_RETRY
)) {
622 up_read(&mm
->mmap_sem
);
623 wait_on_page_locked(page
);
629 * find_get_page - find and get a page reference
630 * @mapping: the address_space to search
631 * @offset: the page index
633 * Is there a pagecache struct page at the given (mapping, offset) tuple?
634 * If yes, increment its refcount and return it; if no, return NULL.
636 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
644 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
646 page
= radix_tree_deref_slot(pagep
);
647 if (unlikely(!page
|| page
== RADIX_TREE_RETRY
))
650 if (!page_cache_get_speculative(page
))
654 * Has the page moved?
655 * This is part of the lockless pagecache protocol. See
656 * include/linux/pagemap.h for details.
658 if (unlikely(page
!= *pagep
)) {
659 page_cache_release(page
);
667 EXPORT_SYMBOL(find_get_page
);
670 * find_lock_page - locate, pin and lock a pagecache page
671 * @mapping: the address_space to search
672 * @offset: the page index
674 * Locates the desired pagecache page, locks it, increments its reference
675 * count and returns its address.
677 * Returns zero if the page was not present. find_lock_page() may sleep.
679 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
684 page
= find_get_page(mapping
, offset
);
687 /* Has the page been truncated? */
688 if (unlikely(page
->mapping
!= mapping
)) {
690 page_cache_release(page
);
693 VM_BUG_ON(page
->index
!= offset
);
697 EXPORT_SYMBOL(find_lock_page
);
700 * find_or_create_page - locate or add a pagecache page
701 * @mapping: the page's address_space
702 * @index: the page's index into the mapping
703 * @gfp_mask: page allocation mode
705 * Locates a page in the pagecache. If the page is not present, a new page
706 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
707 * LRU list. The returned page is locked and has its reference count
710 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
713 * find_or_create_page() returns the desired page's address, or zero on
716 struct page
*find_or_create_page(struct address_space
*mapping
,
717 pgoff_t index
, gfp_t gfp_mask
)
722 page
= find_lock_page(mapping
, index
);
724 page
= __page_cache_alloc(gfp_mask
);
728 * We want a regular kernel memory (not highmem or DMA etc)
729 * allocation for the radix tree nodes, but we need to honour
730 * the context-specific requirements the caller has asked for.
731 * GFP_RECLAIM_MASK collects those requirements.
733 err
= add_to_page_cache_lru(page
, mapping
, index
,
734 (gfp_mask
& GFP_RECLAIM_MASK
));
736 page_cache_release(page
);
744 EXPORT_SYMBOL(find_or_create_page
);
747 * find_get_pages - gang pagecache lookup
748 * @mapping: The address_space to search
749 * @start: The starting page index
750 * @nr_pages: The maximum number of pages
751 * @pages: Where the resulting pages are placed
753 * find_get_pages() will search for and return a group of up to
754 * @nr_pages pages in the mapping. The pages are placed at @pages.
755 * find_get_pages() takes a reference against the returned pages.
757 * The search returns a group of mapping-contiguous pages with ascending
758 * indexes. There may be holes in the indices due to not-present pages.
760 * find_get_pages() returns the number of pages which were found.
762 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
763 unsigned int nr_pages
, struct page
**pages
)
767 unsigned int nr_found
;
771 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
772 (void ***)pages
, start
, nr_pages
);
774 for (i
= 0; i
< nr_found
; i
++) {
777 page
= radix_tree_deref_slot((void **)pages
[i
]);
781 * this can only trigger if nr_found == 1, making livelock
784 if (unlikely(page
== RADIX_TREE_RETRY
))
787 if (!page_cache_get_speculative(page
))
790 /* Has the page moved? */
791 if (unlikely(page
!= *((void **)pages
[i
]))) {
792 page_cache_release(page
);
804 * find_get_pages_contig - gang contiguous pagecache lookup
805 * @mapping: The address_space to search
806 * @index: The starting page index
807 * @nr_pages: The maximum number of pages
808 * @pages: Where the resulting pages are placed
810 * find_get_pages_contig() works exactly like find_get_pages(), except
811 * that the returned number of pages are guaranteed to be contiguous.
813 * find_get_pages_contig() returns the number of pages which were found.
815 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
816 unsigned int nr_pages
, struct page
**pages
)
820 unsigned int nr_found
;
824 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
825 (void ***)pages
, index
, nr_pages
);
827 for (i
= 0; i
< nr_found
; i
++) {
830 page
= radix_tree_deref_slot((void **)pages
[i
]);
834 * this can only trigger if nr_found == 1, making livelock
837 if (unlikely(page
== RADIX_TREE_RETRY
))
840 if (page
->mapping
== NULL
|| page
->index
!= index
)
843 if (!page_cache_get_speculative(page
))
846 /* Has the page moved? */
847 if (unlikely(page
!= *((void **)pages
[i
]))) {
848 page_cache_release(page
);
859 EXPORT_SYMBOL(find_get_pages_contig
);
862 * find_get_pages_tag - find and return pages that match @tag
863 * @mapping: the address_space to search
864 * @index: the starting page index
865 * @tag: the tag index
866 * @nr_pages: the maximum number of pages
867 * @pages: where the resulting pages are placed
869 * Like find_get_pages, except we only return pages which are tagged with
870 * @tag. We update @index to index the next page for the traversal.
872 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
873 int tag
, unsigned int nr_pages
, struct page
**pages
)
877 unsigned int nr_found
;
881 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
882 (void ***)pages
, *index
, nr_pages
, tag
);
884 for (i
= 0; i
< nr_found
; i
++) {
887 page
= radix_tree_deref_slot((void **)pages
[i
]);
891 * this can only trigger if nr_found == 1, making livelock
894 if (unlikely(page
== RADIX_TREE_RETRY
))
897 if (!page_cache_get_speculative(page
))
900 /* Has the page moved? */
901 if (unlikely(page
!= *((void **)pages
[i
]))) {
902 page_cache_release(page
);
912 *index
= pages
[ret
- 1]->index
+ 1;
916 EXPORT_SYMBOL(find_get_pages_tag
);
919 * grab_cache_page_nowait - returns locked page at given index in given cache
920 * @mapping: target address_space
921 * @index: the page index
923 * Same as grab_cache_page(), but do not wait if the page is unavailable.
924 * This is intended for speculative data generators, where the data can
925 * be regenerated if the page couldn't be grabbed. This routine should
926 * be safe to call while holding the lock for another page.
928 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
929 * and deadlock against the caller's locked page.
932 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
934 struct page
*page
= find_get_page(mapping
, index
);
937 if (trylock_page(page
))
939 page_cache_release(page
);
942 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
943 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
944 page_cache_release(page
);
949 EXPORT_SYMBOL(grab_cache_page_nowait
);
952 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
953 * a _large_ part of the i/o request. Imagine the worst scenario:
955 * ---R__________________________________________B__________
956 * ^ reading here ^ bad block(assume 4k)
958 * read(R) => miss => readahead(R...B) => media error => frustrating retries
959 * => failing the whole request => read(R) => read(R+1) =>
960 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
961 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
962 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
964 * It is going insane. Fix it by quickly scaling down the readahead size.
966 static void shrink_readahead_size_eio(struct file
*filp
,
967 struct file_ra_state
*ra
)
973 * do_generic_file_read - generic file read routine
974 * @filp: the file to read
975 * @ppos: current file position
976 * @desc: read_descriptor
977 * @actor: read method
979 * This is a generic file read routine, and uses the
980 * mapping->a_ops->readpage() function for the actual low-level stuff.
982 * This is really ugly. But the goto's actually try to clarify some
983 * of the logic when it comes to error handling etc.
985 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
986 read_descriptor_t
*desc
, read_actor_t actor
)
988 struct address_space
*mapping
= filp
->f_mapping
;
989 struct inode
*inode
= mapping
->host
;
990 struct file_ra_state
*ra
= &filp
->f_ra
;
994 unsigned long offset
; /* offset into pagecache page */
995 unsigned int prev_offset
;
998 index
= *ppos
>> PAGE_CACHE_SHIFT
;
999 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1000 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1001 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1002 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1008 unsigned long nr
, ret
;
1012 page
= find_get_page(mapping
, index
);
1014 page_cache_sync_readahead(mapping
,
1016 index
, last_index
- index
);
1017 page
= find_get_page(mapping
, index
);
1018 if (unlikely(page
== NULL
))
1019 goto no_cached_page
;
1021 if (PageReadahead(page
)) {
1022 page_cache_async_readahead(mapping
,
1024 index
, last_index
- index
);
1026 if (!PageUptodate(page
)) {
1027 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1028 !mapping
->a_ops
->is_partially_uptodate
)
1029 goto page_not_up_to_date
;
1030 if (!trylock_page(page
))
1031 goto page_not_up_to_date
;
1032 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1034 goto page_not_up_to_date_locked
;
1039 * i_size must be checked after we know the page is Uptodate.
1041 * Checking i_size after the check allows us to calculate
1042 * the correct value for "nr", which means the zero-filled
1043 * part of the page is not copied back to userspace (unless
1044 * another truncate extends the file - this is desired though).
1047 isize
= i_size_read(inode
);
1048 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1049 if (unlikely(!isize
|| index
> end_index
)) {
1050 page_cache_release(page
);
1054 /* nr is the maximum number of bytes to copy from this page */
1055 nr
= PAGE_CACHE_SIZE
;
1056 if (index
== end_index
) {
1057 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1059 page_cache_release(page
);
1065 /* If users can be writing to this page using arbitrary
1066 * virtual addresses, take care about potential aliasing
1067 * before reading the page on the kernel side.
1069 if (mapping_writably_mapped(mapping
))
1070 flush_dcache_page(page
);
1073 * When a sequential read accesses a page several times,
1074 * only mark it as accessed the first time.
1076 if (prev_index
!= index
|| offset
!= prev_offset
)
1077 mark_page_accessed(page
);
1081 * Ok, we have the page, and it's up-to-date, so
1082 * now we can copy it to user space...
1084 * The actor routine returns how many bytes were actually used..
1085 * NOTE! This may not be the same as how much of a user buffer
1086 * we filled up (we may be padding etc), so we can only update
1087 * "pos" here (the actor routine has to update the user buffer
1088 * pointers and the remaining count).
1090 ret
= actor(desc
, page
, offset
, nr
);
1092 index
+= offset
>> PAGE_CACHE_SHIFT
;
1093 offset
&= ~PAGE_CACHE_MASK
;
1094 prev_offset
= offset
;
1096 page_cache_release(page
);
1097 if (ret
== nr
&& desc
->count
)
1101 page_not_up_to_date
:
1102 /* Get exclusive access to the page ... */
1103 error
= lock_page_killable(page
);
1104 if (unlikely(error
))
1105 goto readpage_error
;
1107 page_not_up_to_date_locked
:
1108 /* Did it get truncated before we got the lock? */
1109 if (!page
->mapping
) {
1111 page_cache_release(page
);
1115 /* Did somebody else fill it already? */
1116 if (PageUptodate(page
)) {
1123 * A previous I/O error may have been due to temporary
1124 * failures, eg. multipath errors.
1125 * PG_error will be set again if readpage fails.
1127 ClearPageError(page
);
1128 /* Start the actual read. The read will unlock the page. */
1129 error
= mapping
->a_ops
->readpage(filp
, page
);
1131 if (unlikely(error
)) {
1132 if (error
== AOP_TRUNCATED_PAGE
) {
1133 page_cache_release(page
);
1136 goto readpage_error
;
1139 if (!PageUptodate(page
)) {
1140 error
= lock_page_killable(page
);
1141 if (unlikely(error
))
1142 goto readpage_error
;
1143 if (!PageUptodate(page
)) {
1144 if (page
->mapping
== NULL
) {
1146 * invalidate_mapping_pages got it
1149 page_cache_release(page
);
1153 shrink_readahead_size_eio(filp
, ra
);
1155 goto readpage_error
;
1163 /* UHHUH! A synchronous read error occurred. Report it */
1164 desc
->error
= error
;
1165 page_cache_release(page
);
1170 * Ok, it wasn't cached, so we need to create a new
1173 page
= page_cache_alloc_cold(mapping
);
1175 desc
->error
= -ENOMEM
;
1178 error
= add_to_page_cache_lru(page
, mapping
,
1181 page_cache_release(page
);
1182 if (error
== -EEXIST
)
1184 desc
->error
= error
;
1191 ra
->prev_pos
= prev_index
;
1192 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1193 ra
->prev_pos
|= prev_offset
;
1195 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1196 file_accessed(filp
);
1199 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1200 unsigned long offset
, unsigned long size
)
1203 unsigned long left
, count
= desc
->count
;
1209 * Faults on the destination of a read are common, so do it before
1212 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1213 kaddr
= kmap_atomic(page
, KM_USER0
);
1214 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1215 kaddr
+ offset
, size
);
1216 kunmap_atomic(kaddr
, KM_USER0
);
1221 /* Do it the slow way */
1223 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1228 desc
->error
= -EFAULT
;
1231 desc
->count
= count
- size
;
1232 desc
->written
+= size
;
1233 desc
->arg
.buf
+= size
;
1238 * Performs necessary checks before doing a write
1239 * @iov: io vector request
1240 * @nr_segs: number of segments in the iovec
1241 * @count: number of bytes to write
1242 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1244 * Adjust number of segments and amount of bytes to write (nr_segs should be
1245 * properly initialized first). Returns appropriate error code that caller
1246 * should return or zero in case that write should be allowed.
1248 int generic_segment_checks(const struct iovec
*iov
,
1249 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1253 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1254 const struct iovec
*iv
= &iov
[seg
];
1257 * If any segment has a negative length, or the cumulative
1258 * length ever wraps negative then return -EINVAL.
1261 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1263 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1268 cnt
-= iv
->iov_len
; /* This segment is no good */
1274 EXPORT_SYMBOL(generic_segment_checks
);
1277 * generic_file_aio_read - generic filesystem read routine
1278 * @iocb: kernel I/O control block
1279 * @iov: io vector request
1280 * @nr_segs: number of segments in the iovec
1281 * @pos: current file position
1283 * This is the "read()" routine for all filesystems
1284 * that can use the page cache directly.
1287 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1288 unsigned long nr_segs
, loff_t pos
)
1290 struct file
*filp
= iocb
->ki_filp
;
1292 unsigned long seg
= 0;
1294 loff_t
*ppos
= &iocb
->ki_pos
;
1297 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1301 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1302 if (filp
->f_flags
& O_DIRECT
) {
1304 struct address_space
*mapping
;
1305 struct inode
*inode
;
1307 mapping
= filp
->f_mapping
;
1308 inode
= mapping
->host
;
1310 goto out
; /* skip atime */
1311 size
= i_size_read(inode
);
1313 retval
= filemap_write_and_wait_range(mapping
, pos
,
1314 pos
+ iov_length(iov
, nr_segs
) - 1);
1316 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1320 *ppos
= pos
+ retval
;
1325 * Btrfs can have a short DIO read if we encounter
1326 * compressed extents, so if there was an error, or if
1327 * we've already read everything we wanted to, or if
1328 * there was a short read because we hit EOF, go ahead
1329 * and return. Otherwise fallthrough to buffered io for
1330 * the rest of the read.
1332 if (retval
< 0 || !count
|| *ppos
>= size
) {
1333 file_accessed(filp
);
1340 for (seg
= 0; seg
< nr_segs
; seg
++) {
1341 read_descriptor_t desc
;
1345 * If we did a short DIO read we need to skip the section of the
1346 * iov that we've already read data into.
1349 if (count
> iov
[seg
].iov_len
) {
1350 count
-= iov
[seg
].iov_len
;
1358 desc
.arg
.buf
= iov
[seg
].iov_base
+ offset
;
1359 desc
.count
= iov
[seg
].iov_len
- offset
;
1360 if (desc
.count
== 0)
1363 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1364 retval
+= desc
.written
;
1366 retval
= retval
?: desc
.error
;
1375 EXPORT_SYMBOL(generic_file_aio_read
);
1378 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1379 pgoff_t index
, unsigned long nr
)
1381 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1384 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1388 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1396 if (file
->f_mode
& FMODE_READ
) {
1397 struct address_space
*mapping
= file
->f_mapping
;
1398 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1399 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1400 unsigned long len
= end
- start
+ 1;
1401 ret
= do_readahead(mapping
, file
, start
, len
);
1407 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1408 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1410 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1412 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1417 * page_cache_read - adds requested page to the page cache if not already there
1418 * @file: file to read
1419 * @offset: page index
1421 * This adds the requested page to the page cache if it isn't already there,
1422 * and schedules an I/O to read in its contents from disk.
1424 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1426 struct address_space
*mapping
= file
->f_mapping
;
1431 page
= page_cache_alloc_cold(mapping
);
1435 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1437 ret
= mapping
->a_ops
->readpage(file
, page
);
1438 else if (ret
== -EEXIST
)
1439 ret
= 0; /* losing race to add is OK */
1441 page_cache_release(page
);
1443 } while (ret
== AOP_TRUNCATED_PAGE
);
1448 #define MMAP_LOTSAMISS (100)
1451 * Synchronous readahead happens when we don't even find
1452 * a page in the page cache at all.
1454 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1455 struct file_ra_state
*ra
,
1459 unsigned long ra_pages
;
1460 struct address_space
*mapping
= file
->f_mapping
;
1462 /* If we don't want any read-ahead, don't bother */
1463 if (VM_RandomReadHint(vma
))
1466 if (VM_SequentialReadHint(vma
) ||
1467 offset
- 1 == (ra
->prev_pos
>> PAGE_CACHE_SHIFT
)) {
1468 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1473 if (ra
->mmap_miss
< INT_MAX
)
1477 * Do we miss much more than hit in this file? If so,
1478 * stop bothering with read-ahead. It will only hurt.
1480 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1486 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1488 ra
->start
= max_t(long, 0, offset
- ra_pages
/2);
1489 ra
->size
= ra_pages
;
1491 ra_submit(ra
, mapping
, file
);
1496 * Asynchronous readahead happens when we find the page and PG_readahead,
1497 * so we want to possibly extend the readahead further..
1499 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1500 struct file_ra_state
*ra
,
1505 struct address_space
*mapping
= file
->f_mapping
;
1507 /* If we don't want any read-ahead, don't bother */
1508 if (VM_RandomReadHint(vma
))
1510 if (ra
->mmap_miss
> 0)
1512 if (PageReadahead(page
))
1513 page_cache_async_readahead(mapping
, ra
, file
,
1514 page
, offset
, ra
->ra_pages
);
1518 * filemap_fault - read in file data for page fault handling
1519 * @vma: vma in which the fault was taken
1520 * @vmf: struct vm_fault containing details of the fault
1522 * filemap_fault() is invoked via the vma operations vector for a
1523 * mapped memory region to read in file data during a page fault.
1525 * The goto's are kind of ugly, but this streamlines the normal case of having
1526 * it in the page cache, and handles the special cases reasonably without
1527 * having a lot of duplicated code.
1529 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1532 struct file
*file
= vma
->vm_file
;
1533 struct address_space
*mapping
= file
->f_mapping
;
1534 struct file_ra_state
*ra
= &file
->f_ra
;
1535 struct inode
*inode
= mapping
->host
;
1536 pgoff_t offset
= vmf
->pgoff
;
1541 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1543 return VM_FAULT_SIGBUS
;
1546 * Do we have something in the page cache already?
1548 page
= find_get_page(mapping
, offset
);
1551 * We found the page, so try async readahead before
1552 * waiting for the lock.
1554 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1556 /* No page in the page cache at all */
1557 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1558 count_vm_event(PGMAJFAULT
);
1559 ret
= VM_FAULT_MAJOR
;
1561 page
= find_get_page(mapping
, offset
);
1563 goto no_cached_page
;
1566 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
))
1567 return ret
| VM_FAULT_RETRY
;
1569 /* Did it get truncated? */
1570 if (unlikely(page
->mapping
!= mapping
)) {
1575 VM_BUG_ON(page
->index
!= offset
);
1578 * We have a locked page in the page cache, now we need to check
1579 * that it's up-to-date. If not, it is going to be due to an error.
1581 if (unlikely(!PageUptodate(page
)))
1582 goto page_not_uptodate
;
1585 * Found the page and have a reference on it.
1586 * We must recheck i_size under page lock.
1588 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1589 if (unlikely(offset
>= size
)) {
1591 page_cache_release(page
);
1592 return VM_FAULT_SIGBUS
;
1595 ra
->prev_pos
= (loff_t
)offset
<< PAGE_CACHE_SHIFT
;
1597 return ret
| VM_FAULT_LOCKED
;
1601 * We're only likely to ever get here if MADV_RANDOM is in
1604 error
= page_cache_read(file
, offset
);
1607 * The page we want has now been added to the page cache.
1608 * In the unlikely event that someone removed it in the
1609 * meantime, we'll just come back here and read it again.
1615 * An error return from page_cache_read can result if the
1616 * system is low on memory, or a problem occurs while trying
1619 if (error
== -ENOMEM
)
1620 return VM_FAULT_OOM
;
1621 return VM_FAULT_SIGBUS
;
1625 * Umm, take care of errors if the page isn't up-to-date.
1626 * Try to re-read it _once_. We do this synchronously,
1627 * because there really aren't any performance issues here
1628 * and we need to check for errors.
1630 ClearPageError(page
);
1631 error
= mapping
->a_ops
->readpage(file
, page
);
1633 wait_on_page_locked(page
);
1634 if (!PageUptodate(page
))
1637 page_cache_release(page
);
1639 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1642 /* Things didn't work out. Return zero to tell the mm layer so. */
1643 shrink_readahead_size_eio(file
, ra
);
1644 return VM_FAULT_SIGBUS
;
1646 EXPORT_SYMBOL(filemap_fault
);
1648 const struct vm_operations_struct generic_file_vm_ops
= {
1649 .fault
= filemap_fault
,
1652 /* This is used for a general mmap of a disk file */
1654 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1656 struct address_space
*mapping
= file
->f_mapping
;
1658 if (!mapping
->a_ops
->readpage
)
1660 file_accessed(file
);
1661 vma
->vm_ops
= &generic_file_vm_ops
;
1662 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1667 * This is for filesystems which do not implement ->writepage.
1669 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1671 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1673 return generic_file_mmap(file
, vma
);
1676 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1680 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1684 #endif /* CONFIG_MMU */
1686 EXPORT_SYMBOL(generic_file_mmap
);
1687 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1689 static struct page
*__read_cache_page(struct address_space
*mapping
,
1691 int (*filler
)(void *,struct page
*),
1698 page
= find_get_page(mapping
, index
);
1700 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
1702 return ERR_PTR(-ENOMEM
);
1703 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1704 if (unlikely(err
)) {
1705 page_cache_release(page
);
1708 /* Presumably ENOMEM for radix tree node */
1709 return ERR_PTR(err
);
1711 err
= filler(data
, page
);
1713 page_cache_release(page
);
1714 page
= ERR_PTR(err
);
1720 static struct page
*do_read_cache_page(struct address_space
*mapping
,
1722 int (*filler
)(void *,struct page
*),
1731 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
1734 if (PageUptodate(page
))
1738 if (!page
->mapping
) {
1740 page_cache_release(page
);
1743 if (PageUptodate(page
)) {
1747 err
= filler(data
, page
);
1749 page_cache_release(page
);
1750 return ERR_PTR(err
);
1753 mark_page_accessed(page
);
1758 * read_cache_page_async - read into page cache, fill it if needed
1759 * @mapping: the page's address_space
1760 * @index: the page index
1761 * @filler: function to perform the read
1762 * @data: destination for read data
1764 * Same as read_cache_page, but don't wait for page to become unlocked
1765 * after submitting it to the filler.
1767 * Read into the page cache. If a page already exists, and PageUptodate() is
1768 * not set, try to fill the page but don't wait for it to become unlocked.
1770 * If the page does not get brought uptodate, return -EIO.
1772 struct page
*read_cache_page_async(struct address_space
*mapping
,
1774 int (*filler
)(void *,struct page
*),
1777 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
1779 EXPORT_SYMBOL(read_cache_page_async
);
1781 static struct page
*wait_on_page_read(struct page
*page
)
1783 if (!IS_ERR(page
)) {
1784 wait_on_page_locked(page
);
1785 if (!PageUptodate(page
)) {
1786 page_cache_release(page
);
1787 page
= ERR_PTR(-EIO
);
1794 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1795 * @mapping: the page's address_space
1796 * @index: the page index
1797 * @gfp: the page allocator flags to use if allocating
1799 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1800 * any new page allocations done using the specified allocation flags. Note
1801 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1802 * expect to do this atomically or anything like that - but you can pass in
1803 * other page requirements.
1805 * If the page does not get brought uptodate, return -EIO.
1807 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
1811 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
1813 return wait_on_page_read(do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
));
1815 EXPORT_SYMBOL(read_cache_page_gfp
);
1818 * read_cache_page - read into page cache, fill it if needed
1819 * @mapping: the page's address_space
1820 * @index: the page index
1821 * @filler: function to perform the read
1822 * @data: destination for read data
1824 * Read into the page cache. If a page already exists, and PageUptodate() is
1825 * not set, try to fill the page then wait for it to become unlocked.
1827 * If the page does not get brought uptodate, return -EIO.
1829 struct page
*read_cache_page(struct address_space
*mapping
,
1831 int (*filler
)(void *,struct page
*),
1834 return wait_on_page_read(read_cache_page_async(mapping
, index
, filler
, data
));
1836 EXPORT_SYMBOL(read_cache_page
);
1839 * The logic we want is
1841 * if suid or (sgid and xgrp)
1844 int should_remove_suid(struct dentry
*dentry
)
1846 mode_t mode
= dentry
->d_inode
->i_mode
;
1849 /* suid always must be killed */
1850 if (unlikely(mode
& S_ISUID
))
1851 kill
= ATTR_KILL_SUID
;
1854 * sgid without any exec bits is just a mandatory locking mark; leave
1855 * it alone. If some exec bits are set, it's a real sgid; kill it.
1857 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1858 kill
|= ATTR_KILL_SGID
;
1860 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1865 EXPORT_SYMBOL(should_remove_suid
);
1867 static int __remove_suid(struct dentry
*dentry
, int kill
)
1869 struct iattr newattrs
;
1871 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1872 return notify_change(dentry
, &newattrs
);
1875 int file_remove_suid(struct file
*file
)
1877 struct dentry
*dentry
= file
->f_path
.dentry
;
1878 int killsuid
= should_remove_suid(dentry
);
1879 int killpriv
= security_inode_need_killpriv(dentry
);
1885 error
= security_inode_killpriv(dentry
);
1886 if (!error
&& killsuid
)
1887 error
= __remove_suid(dentry
, killsuid
);
1891 EXPORT_SYMBOL(file_remove_suid
);
1893 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1894 const struct iovec
*iov
, size_t base
, size_t bytes
)
1896 size_t copied
= 0, left
= 0;
1899 char __user
*buf
= iov
->iov_base
+ base
;
1900 int copy
= min(bytes
, iov
->iov_len
- base
);
1903 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
1912 return copied
- left
;
1916 * Copy as much as we can into the page and return the number of bytes which
1917 * were successfully copied. If a fault is encountered then return the number of
1918 * bytes which were copied.
1920 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1921 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1926 BUG_ON(!in_atomic());
1927 kaddr
= kmap_atomic(page
, KM_USER0
);
1928 if (likely(i
->nr_segs
== 1)) {
1930 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1931 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
1932 copied
= bytes
- left
;
1934 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1935 i
->iov
, i
->iov_offset
, bytes
);
1937 kunmap_atomic(kaddr
, KM_USER0
);
1941 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1944 * This has the same sideeffects and return value as
1945 * iov_iter_copy_from_user_atomic().
1946 * The difference is that it attempts to resolve faults.
1947 * Page must not be locked.
1949 size_t iov_iter_copy_from_user(struct page
*page
,
1950 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1956 if (likely(i
->nr_segs
== 1)) {
1958 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1959 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
1960 copied
= bytes
- left
;
1962 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1963 i
->iov
, i
->iov_offset
, bytes
);
1968 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1970 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1972 BUG_ON(i
->count
< bytes
);
1974 if (likely(i
->nr_segs
== 1)) {
1975 i
->iov_offset
+= bytes
;
1978 const struct iovec
*iov
= i
->iov
;
1979 size_t base
= i
->iov_offset
;
1982 * The !iov->iov_len check ensures we skip over unlikely
1983 * zero-length segments (without overruning the iovec).
1985 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
1988 copy
= min(bytes
, iov
->iov_len
- base
);
1989 BUG_ON(!i
->count
|| i
->count
< copy
);
1993 if (iov
->iov_len
== base
) {
1999 i
->iov_offset
= base
;
2002 EXPORT_SYMBOL(iov_iter_advance
);
2005 * Fault in the first iovec of the given iov_iter, to a maximum length
2006 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2007 * accessed (ie. because it is an invalid address).
2009 * writev-intensive code may want this to prefault several iovecs -- that
2010 * would be possible (callers must not rely on the fact that _only_ the
2011 * first iovec will be faulted with the current implementation).
2013 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
2015 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2016 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
2017 return fault_in_pages_readable(buf
, bytes
);
2019 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
2022 * Return the count of just the current iov_iter segment.
2024 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
2026 const struct iovec
*iov
= i
->iov
;
2027 if (i
->nr_segs
== 1)
2030 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
2032 EXPORT_SYMBOL(iov_iter_single_seg_count
);
2035 * Performs necessary checks before doing a write
2037 * Can adjust writing position or amount of bytes to write.
2038 * Returns appropriate error code that caller should return or
2039 * zero in case that write should be allowed.
2041 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2043 struct inode
*inode
= file
->f_mapping
->host
;
2044 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2046 if (unlikely(*pos
< 0))
2050 /* FIXME: this is for backwards compatibility with 2.4 */
2051 if (file
->f_flags
& O_APPEND
)
2052 *pos
= i_size_read(inode
);
2054 if (limit
!= RLIM_INFINITY
) {
2055 if (*pos
>= limit
) {
2056 send_sig(SIGXFSZ
, current
, 0);
2059 if (*count
> limit
- (typeof(limit
))*pos
) {
2060 *count
= limit
- (typeof(limit
))*pos
;
2068 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2069 !(file
->f_flags
& O_LARGEFILE
))) {
2070 if (*pos
>= MAX_NON_LFS
) {
2073 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2074 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2079 * Are we about to exceed the fs block limit ?
2081 * If we have written data it becomes a short write. If we have
2082 * exceeded without writing data we send a signal and return EFBIG.
2083 * Linus frestrict idea will clean these up nicely..
2085 if (likely(!isblk
)) {
2086 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2087 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2090 /* zero-length writes at ->s_maxbytes are OK */
2093 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2094 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2098 if (bdev_read_only(I_BDEV(inode
)))
2100 isize
= i_size_read(inode
);
2101 if (*pos
>= isize
) {
2102 if (*count
|| *pos
> isize
)
2106 if (*pos
+ *count
> isize
)
2107 *count
= isize
- *pos
;
2114 EXPORT_SYMBOL(generic_write_checks
);
2116 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2117 loff_t pos
, unsigned len
, unsigned flags
,
2118 struct page
**pagep
, void **fsdata
)
2120 const struct address_space_operations
*aops
= mapping
->a_ops
;
2122 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2125 EXPORT_SYMBOL(pagecache_write_begin
);
2127 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2128 loff_t pos
, unsigned len
, unsigned copied
,
2129 struct page
*page
, void *fsdata
)
2131 const struct address_space_operations
*aops
= mapping
->a_ops
;
2133 mark_page_accessed(page
);
2134 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2136 EXPORT_SYMBOL(pagecache_write_end
);
2139 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2140 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2141 size_t count
, size_t ocount
)
2143 struct file
*file
= iocb
->ki_filp
;
2144 struct address_space
*mapping
= file
->f_mapping
;
2145 struct inode
*inode
= mapping
->host
;
2150 if (count
!= ocount
)
2151 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2153 write_len
= iov_length(iov
, *nr_segs
);
2154 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2156 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2161 * After a write we want buffered reads to be sure to go to disk to get
2162 * the new data. We invalidate clean cached page from the region we're
2163 * about to write. We do this *before* the write so that we can return
2164 * without clobbering -EIOCBQUEUED from ->direct_IO().
2166 if (mapping
->nrpages
) {
2167 written
= invalidate_inode_pages2_range(mapping
,
2168 pos
>> PAGE_CACHE_SHIFT
, end
);
2170 * If a page can not be invalidated, return 0 to fall back
2171 * to buffered write.
2174 if (written
== -EBUSY
)
2180 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2183 * Finally, try again to invalidate clean pages which might have been
2184 * cached by non-direct readahead, or faulted in by get_user_pages()
2185 * if the source of the write was an mmap'ed region of the file
2186 * we're writing. Either one is a pretty crazy thing to do,
2187 * so we don't support it 100%. If this invalidation
2188 * fails, tough, the write still worked...
2190 if (mapping
->nrpages
) {
2191 invalidate_inode_pages2_range(mapping
,
2192 pos
>> PAGE_CACHE_SHIFT
, end
);
2197 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2198 i_size_write(inode
, pos
);
2199 mark_inode_dirty(inode
);
2206 EXPORT_SYMBOL(generic_file_direct_write
);
2209 * Find or create a page at the given pagecache position. Return the locked
2210 * page. This function is specifically for buffered writes.
2212 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2213 pgoff_t index
, unsigned flags
)
2217 gfp_t gfp_notmask
= 0;
2218 if (flags
& AOP_FLAG_NOFS
)
2219 gfp_notmask
= __GFP_FS
;
2221 page
= find_lock_page(mapping
, index
);
2225 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~gfp_notmask
);
2228 status
= add_to_page_cache_lru(page
, mapping
, index
,
2229 GFP_KERNEL
& ~gfp_notmask
);
2230 if (unlikely(status
)) {
2231 page_cache_release(page
);
2232 if (status
== -EEXIST
)
2238 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2240 static ssize_t
generic_perform_write(struct file
*file
,
2241 struct iov_iter
*i
, loff_t pos
)
2243 struct address_space
*mapping
= file
->f_mapping
;
2244 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2246 ssize_t written
= 0;
2247 unsigned int flags
= 0;
2250 * Copies from kernel address space cannot fail (NFSD is a big user).
2252 if (segment_eq(get_fs(), KERNEL_DS
))
2253 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2257 unsigned long offset
; /* Offset into pagecache page */
2258 unsigned long bytes
; /* Bytes to write to page */
2259 size_t copied
; /* Bytes copied from user */
2262 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2263 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2269 * Bring in the user page that we will copy from _first_.
2270 * Otherwise there's a nasty deadlock on copying from the
2271 * same page as we're writing to, without it being marked
2274 * Not only is this an optimisation, but it is also required
2275 * to check that the address is actually valid, when atomic
2276 * usercopies are used, below.
2278 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2283 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2285 if (unlikely(status
))
2288 if (mapping_writably_mapped(mapping
))
2289 flush_dcache_page(page
);
2291 pagefault_disable();
2292 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2294 flush_dcache_page(page
);
2296 mark_page_accessed(page
);
2297 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2299 if (unlikely(status
< 0))
2305 iov_iter_advance(i
, copied
);
2306 if (unlikely(copied
== 0)) {
2308 * If we were unable to copy any data at all, we must
2309 * fall back to a single segment length write.
2311 * If we didn't fallback here, we could livelock
2312 * because not all segments in the iov can be copied at
2313 * once without a pagefault.
2315 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2316 iov_iter_single_seg_count(i
));
2322 balance_dirty_pages_ratelimited(mapping
);
2324 } while (iov_iter_count(i
));
2326 return written
? written
: status
;
2330 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2331 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2332 size_t count
, ssize_t written
)
2334 struct file
*file
= iocb
->ki_filp
;
2338 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2339 status
= generic_perform_write(file
, &i
, pos
);
2341 if (likely(status
>= 0)) {
2343 *ppos
= pos
+ status
;
2346 return written
? written
: status
;
2348 EXPORT_SYMBOL(generic_file_buffered_write
);
2351 * __generic_file_aio_write - write data to a file
2352 * @iocb: IO state structure (file, offset, etc.)
2353 * @iov: vector with data to write
2354 * @nr_segs: number of segments in the vector
2355 * @ppos: position where to write
2357 * This function does all the work needed for actually writing data to a
2358 * file. It does all basic checks, removes SUID from the file, updates
2359 * modification times and calls proper subroutines depending on whether we
2360 * do direct IO or a standard buffered write.
2362 * It expects i_mutex to be grabbed unless we work on a block device or similar
2363 * object which does not need locking at all.
2365 * This function does *not* take care of syncing data in case of O_SYNC write.
2366 * A caller has to handle it. This is mainly due to the fact that we want to
2367 * avoid syncing under i_mutex.
2369 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2370 unsigned long nr_segs
, loff_t
*ppos
)
2372 struct file
*file
= iocb
->ki_filp
;
2373 struct address_space
* mapping
= file
->f_mapping
;
2374 size_t ocount
; /* original count */
2375 size_t count
; /* after file limit checks */
2376 struct inode
*inode
= mapping
->host
;
2382 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2389 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2391 /* We can write back this queue in page reclaim */
2392 current
->backing_dev_info
= mapping
->backing_dev_info
;
2395 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2402 err
= file_remove_suid(file
);
2406 file_update_time(file
);
2408 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2409 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2411 ssize_t written_buffered
;
2413 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2414 ppos
, count
, ocount
);
2415 if (written
< 0 || written
== count
)
2418 * direct-io write to a hole: fall through to buffered I/O
2419 * for completing the rest of the request.
2423 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2424 nr_segs
, pos
, ppos
, count
,
2427 * If generic_file_buffered_write() retuned a synchronous error
2428 * then we want to return the number of bytes which were
2429 * direct-written, or the error code if that was zero. Note
2430 * that this differs from normal direct-io semantics, which
2431 * will return -EFOO even if some bytes were written.
2433 if (written_buffered
< 0) {
2434 err
= written_buffered
;
2439 * We need to ensure that the page cache pages are written to
2440 * disk and invalidated to preserve the expected O_DIRECT
2443 endbyte
= pos
+ written_buffered
- written
- 1;
2444 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2446 written
= written_buffered
;
2447 invalidate_mapping_pages(mapping
,
2448 pos
>> PAGE_CACHE_SHIFT
,
2449 endbyte
>> PAGE_CACHE_SHIFT
);
2452 * We don't know how much we wrote, so just return
2453 * the number of bytes which were direct-written
2457 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2458 pos
, ppos
, count
, written
);
2461 current
->backing_dev_info
= NULL
;
2462 return written
? written
: err
;
2464 EXPORT_SYMBOL(__generic_file_aio_write
);
2467 * generic_file_aio_write - write data to a file
2468 * @iocb: IO state structure
2469 * @iov: vector with data to write
2470 * @nr_segs: number of segments in the vector
2471 * @pos: position in file where to write
2473 * This is a wrapper around __generic_file_aio_write() to be used by most
2474 * filesystems. It takes care of syncing the file in case of O_SYNC file
2475 * and acquires i_mutex as needed.
2477 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2478 unsigned long nr_segs
, loff_t pos
)
2480 struct file
*file
= iocb
->ki_filp
;
2481 struct inode
*inode
= file
->f_mapping
->host
;
2484 BUG_ON(iocb
->ki_pos
!= pos
);
2486 mutex_lock(&inode
->i_mutex
);
2487 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2488 mutex_unlock(&inode
->i_mutex
);
2490 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2493 err
= generic_write_sync(file
, pos
, ret
);
2494 if (err
< 0 && ret
> 0)
2499 EXPORT_SYMBOL(generic_file_aio_write
);
2502 * try_to_release_page() - release old fs-specific metadata on a page
2504 * @page: the page which the kernel is trying to free
2505 * @gfp_mask: memory allocation flags (and I/O mode)
2507 * The address_space is to try to release any data against the page
2508 * (presumably at page->private). If the release was successful, return `1'.
2509 * Otherwise return zero.
2511 * This may also be called if PG_fscache is set on a page, indicating that the
2512 * page is known to the local caching routines.
2514 * The @gfp_mask argument specifies whether I/O may be performed to release
2515 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2518 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2520 struct address_space
* const mapping
= page
->mapping
;
2522 BUG_ON(!PageLocked(page
));
2523 if (PageWriteback(page
))
2526 if (mapping
&& mapping
->a_ops
->releasepage
)
2527 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2528 return try_to_free_buffers(page
);
2531 EXPORT_SYMBOL(try_to_release_page
);