md/raid5: remove setting of ->queue_lock
[linux-2.6/x86.git] / drivers / oprofile / buffer_sync.c
bloba3984f4ef192a1807ed4714d70babb6702a175d8
1 /**
2 * @file buffer_sync.c
4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf
9 * @author Robert Richter <robert.richter@amd.com>
11 * This is the core of the buffer management. Each
12 * CPU buffer is processed and entered into the
13 * global event buffer. Such processing is necessary
14 * in several circumstances, mentioned below.
16 * The processing does the job of converting the
17 * transitory EIP value into a persistent dentry/offset
18 * value that the profiler can record at its leisure.
20 * See fs/dcookies.c for a description of the dentry/offset
21 * objects.
24 #include <linux/mm.h>
25 #include <linux/workqueue.h>
26 #include <linux/notifier.h>
27 #include <linux/dcookies.h>
28 #include <linux/profile.h>
29 #include <linux/module.h>
30 #include <linux/fs.h>
31 #include <linux/oprofile.h>
32 #include <linux/sched.h>
33 #include <linux/gfp.h>
35 #include "oprofile_stats.h"
36 #include "event_buffer.h"
37 #include "cpu_buffer.h"
38 #include "buffer_sync.h"
40 static LIST_HEAD(dying_tasks);
41 static LIST_HEAD(dead_tasks);
42 static cpumask_var_t marked_cpus;
43 static DEFINE_SPINLOCK(task_mortuary);
44 static void process_task_mortuary(void);
46 /* Take ownership of the task struct and place it on the
47 * list for processing. Only after two full buffer syncs
48 * does the task eventually get freed, because by then
49 * we are sure we will not reference it again.
50 * Can be invoked from softirq via RCU callback due to
51 * call_rcu() of the task struct, hence the _irqsave.
53 static int
54 task_free_notify(struct notifier_block *self, unsigned long val, void *data)
56 unsigned long flags;
57 struct task_struct *task = data;
58 spin_lock_irqsave(&task_mortuary, flags);
59 list_add(&task->tasks, &dying_tasks);
60 spin_unlock_irqrestore(&task_mortuary, flags);
61 return NOTIFY_OK;
65 /* The task is on its way out. A sync of the buffer means we can catch
66 * any remaining samples for this task.
68 static int
69 task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
71 /* To avoid latency problems, we only process the current CPU,
72 * hoping that most samples for the task are on this CPU
74 sync_buffer(raw_smp_processor_id());
75 return 0;
79 /* The task is about to try a do_munmap(). We peek at what it's going to
80 * do, and if it's an executable region, process the samples first, so
81 * we don't lose any. This does not have to be exact, it's a QoI issue
82 * only.
84 static int
85 munmap_notify(struct notifier_block *self, unsigned long val, void *data)
87 unsigned long addr = (unsigned long)data;
88 struct mm_struct *mm = current->mm;
89 struct vm_area_struct *mpnt;
91 down_read(&mm->mmap_sem);
93 mpnt = find_vma(mm, addr);
94 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
95 up_read(&mm->mmap_sem);
96 /* To avoid latency problems, we only process the current CPU,
97 * hoping that most samples for the task are on this CPU
99 sync_buffer(raw_smp_processor_id());
100 return 0;
103 up_read(&mm->mmap_sem);
104 return 0;
108 /* We need to be told about new modules so we don't attribute to a previously
109 * loaded module, or drop the samples on the floor.
111 static int
112 module_load_notify(struct notifier_block *self, unsigned long val, void *data)
114 #ifdef CONFIG_MODULES
115 if (val != MODULE_STATE_COMING)
116 return 0;
118 /* FIXME: should we process all CPU buffers ? */
119 mutex_lock(&buffer_mutex);
120 add_event_entry(ESCAPE_CODE);
121 add_event_entry(MODULE_LOADED_CODE);
122 mutex_unlock(&buffer_mutex);
123 #endif
124 return 0;
128 static struct notifier_block task_free_nb = {
129 .notifier_call = task_free_notify,
132 static struct notifier_block task_exit_nb = {
133 .notifier_call = task_exit_notify,
136 static struct notifier_block munmap_nb = {
137 .notifier_call = munmap_notify,
140 static struct notifier_block module_load_nb = {
141 .notifier_call = module_load_notify,
144 int sync_start(void)
146 int err;
148 if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
149 return -ENOMEM;
151 mutex_lock(&buffer_mutex);
153 err = task_handoff_register(&task_free_nb);
154 if (err)
155 goto out1;
156 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
157 if (err)
158 goto out2;
159 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
160 if (err)
161 goto out3;
162 err = register_module_notifier(&module_load_nb);
163 if (err)
164 goto out4;
166 start_cpu_work();
168 out:
169 mutex_unlock(&buffer_mutex);
170 return err;
171 out4:
172 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
173 out3:
174 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
175 out2:
176 task_handoff_unregister(&task_free_nb);
177 out1:
178 free_cpumask_var(marked_cpus);
179 goto out;
183 void sync_stop(void)
185 /* flush buffers */
186 mutex_lock(&buffer_mutex);
187 end_cpu_work();
188 unregister_module_notifier(&module_load_nb);
189 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
190 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
191 task_handoff_unregister(&task_free_nb);
192 mutex_unlock(&buffer_mutex);
193 flush_cpu_work();
195 /* make sure we don't leak task structs */
196 process_task_mortuary();
197 process_task_mortuary();
199 free_cpumask_var(marked_cpus);
203 /* Optimisation. We can manage without taking the dcookie sem
204 * because we cannot reach this code without at least one
205 * dcookie user still being registered (namely, the reader
206 * of the event buffer). */
207 static inline unsigned long fast_get_dcookie(struct path *path)
209 unsigned long cookie;
211 if (path->dentry->d_flags & DCACHE_COOKIE)
212 return (unsigned long)path->dentry;
213 get_dcookie(path, &cookie);
214 return cookie;
218 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
219 * which corresponds loosely to "application name". This is
220 * not strictly necessary but allows oprofile to associate
221 * shared-library samples with particular applications
223 static unsigned long get_exec_dcookie(struct mm_struct *mm)
225 unsigned long cookie = NO_COOKIE;
226 struct vm_area_struct *vma;
228 if (!mm)
229 goto out;
231 for (vma = mm->mmap; vma; vma = vma->vm_next) {
232 if (!vma->vm_file)
233 continue;
234 if (!(vma->vm_flags & VM_EXECUTABLE))
235 continue;
236 cookie = fast_get_dcookie(&vma->vm_file->f_path);
237 break;
240 out:
241 return cookie;
245 /* Convert the EIP value of a sample into a persistent dentry/offset
246 * pair that can then be added to the global event buffer. We make
247 * sure to do this lookup before a mm->mmap modification happens so
248 * we don't lose track.
250 static unsigned long
251 lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
253 unsigned long cookie = NO_COOKIE;
254 struct vm_area_struct *vma;
256 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
258 if (addr < vma->vm_start || addr >= vma->vm_end)
259 continue;
261 if (vma->vm_file) {
262 cookie = fast_get_dcookie(&vma->vm_file->f_path);
263 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
264 vma->vm_start;
265 } else {
266 /* must be an anonymous map */
267 *offset = addr;
270 break;
273 if (!vma)
274 cookie = INVALID_COOKIE;
276 return cookie;
279 static unsigned long last_cookie = INVALID_COOKIE;
281 static void add_cpu_switch(int i)
283 add_event_entry(ESCAPE_CODE);
284 add_event_entry(CPU_SWITCH_CODE);
285 add_event_entry(i);
286 last_cookie = INVALID_COOKIE;
289 static void add_kernel_ctx_switch(unsigned int in_kernel)
291 add_event_entry(ESCAPE_CODE);
292 if (in_kernel)
293 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
294 else
295 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
298 static void
299 add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
301 add_event_entry(ESCAPE_CODE);
302 add_event_entry(CTX_SWITCH_CODE);
303 add_event_entry(task->pid);
304 add_event_entry(cookie);
305 /* Another code for daemon back-compat */
306 add_event_entry(ESCAPE_CODE);
307 add_event_entry(CTX_TGID_CODE);
308 add_event_entry(task->tgid);
312 static void add_cookie_switch(unsigned long cookie)
314 add_event_entry(ESCAPE_CODE);
315 add_event_entry(COOKIE_SWITCH_CODE);
316 add_event_entry(cookie);
320 static void add_trace_begin(void)
322 add_event_entry(ESCAPE_CODE);
323 add_event_entry(TRACE_BEGIN_CODE);
326 static void add_data(struct op_entry *entry, struct mm_struct *mm)
328 unsigned long code, pc, val;
329 unsigned long cookie;
330 off_t offset;
332 if (!op_cpu_buffer_get_data(entry, &code))
333 return;
334 if (!op_cpu_buffer_get_data(entry, &pc))
335 return;
336 if (!op_cpu_buffer_get_size(entry))
337 return;
339 if (mm) {
340 cookie = lookup_dcookie(mm, pc, &offset);
342 if (cookie == NO_COOKIE)
343 offset = pc;
344 if (cookie == INVALID_COOKIE) {
345 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
346 offset = pc;
348 if (cookie != last_cookie) {
349 add_cookie_switch(cookie);
350 last_cookie = cookie;
352 } else
353 offset = pc;
355 add_event_entry(ESCAPE_CODE);
356 add_event_entry(code);
357 add_event_entry(offset); /* Offset from Dcookie */
359 while (op_cpu_buffer_get_data(entry, &val))
360 add_event_entry(val);
363 static inline void add_sample_entry(unsigned long offset, unsigned long event)
365 add_event_entry(offset);
366 add_event_entry(event);
371 * Add a sample to the global event buffer. If possible the
372 * sample is converted into a persistent dentry/offset pair
373 * for later lookup from userspace. Return 0 on failure.
375 static int
376 add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
378 unsigned long cookie;
379 off_t offset;
381 if (in_kernel) {
382 add_sample_entry(s->eip, s->event);
383 return 1;
386 /* add userspace sample */
388 if (!mm) {
389 atomic_inc(&oprofile_stats.sample_lost_no_mm);
390 return 0;
393 cookie = lookup_dcookie(mm, s->eip, &offset);
395 if (cookie == INVALID_COOKIE) {
396 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
397 return 0;
400 if (cookie != last_cookie) {
401 add_cookie_switch(cookie);
402 last_cookie = cookie;
405 add_sample_entry(offset, s->event);
407 return 1;
411 static void release_mm(struct mm_struct *mm)
413 if (!mm)
414 return;
415 up_read(&mm->mmap_sem);
416 mmput(mm);
420 static struct mm_struct *take_tasks_mm(struct task_struct *task)
422 struct mm_struct *mm = get_task_mm(task);
423 if (mm)
424 down_read(&mm->mmap_sem);
425 return mm;
429 static inline int is_code(unsigned long val)
431 return val == ESCAPE_CODE;
435 /* Move tasks along towards death. Any tasks on dead_tasks
436 * will definitely have no remaining references in any
437 * CPU buffers at this point, because we use two lists,
438 * and to have reached the list, it must have gone through
439 * one full sync already.
441 static void process_task_mortuary(void)
443 unsigned long flags;
444 LIST_HEAD(local_dead_tasks);
445 struct task_struct *task;
446 struct task_struct *ttask;
448 spin_lock_irqsave(&task_mortuary, flags);
450 list_splice_init(&dead_tasks, &local_dead_tasks);
451 list_splice_init(&dying_tasks, &dead_tasks);
453 spin_unlock_irqrestore(&task_mortuary, flags);
455 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
456 list_del(&task->tasks);
457 free_task(task);
462 static void mark_done(int cpu)
464 int i;
466 cpumask_set_cpu(cpu, marked_cpus);
468 for_each_online_cpu(i) {
469 if (!cpumask_test_cpu(i, marked_cpus))
470 return;
473 /* All CPUs have been processed at least once,
474 * we can process the mortuary once
476 process_task_mortuary();
478 cpumask_clear(marked_cpus);
482 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
483 * traversal, the code switch to sb_sample_start at first kernel enter/exit
484 * switch so we need a fifth state and some special handling in sync_buffer()
486 typedef enum {
487 sb_bt_ignore = -2,
488 sb_buffer_start,
489 sb_bt_start,
490 sb_sample_start,
491 } sync_buffer_state;
493 /* Sync one of the CPU's buffers into the global event buffer.
494 * Here we need to go through each batch of samples punctuated
495 * by context switch notes, taking the task's mmap_sem and doing
496 * lookup in task->mm->mmap to convert EIP into dcookie/offset
497 * value.
499 void sync_buffer(int cpu)
501 struct mm_struct *mm = NULL;
502 struct mm_struct *oldmm;
503 unsigned long val;
504 struct task_struct *new;
505 unsigned long cookie = 0;
506 int in_kernel = 1;
507 sync_buffer_state state = sb_buffer_start;
508 unsigned int i;
509 unsigned long available;
510 unsigned long flags;
511 struct op_entry entry;
512 struct op_sample *sample;
514 mutex_lock(&buffer_mutex);
516 add_cpu_switch(cpu);
518 op_cpu_buffer_reset(cpu);
519 available = op_cpu_buffer_entries(cpu);
521 for (i = 0; i < available; ++i) {
522 sample = op_cpu_buffer_read_entry(&entry, cpu);
523 if (!sample)
524 break;
526 if (is_code(sample->eip)) {
527 flags = sample->event;
528 if (flags & TRACE_BEGIN) {
529 state = sb_bt_start;
530 add_trace_begin();
532 if (flags & KERNEL_CTX_SWITCH) {
533 /* kernel/userspace switch */
534 in_kernel = flags & IS_KERNEL;
535 if (state == sb_buffer_start)
536 state = sb_sample_start;
537 add_kernel_ctx_switch(flags & IS_KERNEL);
539 if (flags & USER_CTX_SWITCH
540 && op_cpu_buffer_get_data(&entry, &val)) {
541 /* userspace context switch */
542 new = (struct task_struct *)val;
543 oldmm = mm;
544 release_mm(oldmm);
545 mm = take_tasks_mm(new);
546 if (mm != oldmm)
547 cookie = get_exec_dcookie(mm);
548 add_user_ctx_switch(new, cookie);
550 if (op_cpu_buffer_get_size(&entry))
551 add_data(&entry, mm);
552 continue;
555 if (state < sb_bt_start)
556 /* ignore sample */
557 continue;
559 if (add_sample(mm, sample, in_kernel))
560 continue;
562 /* ignore backtraces if failed to add a sample */
563 if (state == sb_bt_start) {
564 state = sb_bt_ignore;
565 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
568 release_mm(mm);
570 mark_done(cpu);
572 mutex_unlock(&buffer_mutex);
575 /* The function can be used to add a buffer worth of data directly to
576 * the kernel buffer. The buffer is assumed to be a circular buffer.
577 * Take the entries from index start and end at index end, wrapping
578 * at max_entries.
580 void oprofile_put_buff(unsigned long *buf, unsigned int start,
581 unsigned int stop, unsigned int max)
583 int i;
585 i = start;
587 mutex_lock(&buffer_mutex);
588 while (i != stop) {
589 add_event_entry(buf[i++]);
591 if (i >= max)
592 i = 0;
595 mutex_unlock(&buffer_mutex);