md/raid5: remove setting of ->queue_lock
[linux-2.6/x86.git] / drivers / hwmon / pmbus_core.c
blobedfb92e41735df7f713a2283a12a299e764423ca
1 /*
2 * Hardware monitoring driver for PMBus devices
4 * Copyright (c) 2010, 2011 Ericsson AB.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <linux/i2c.h>
27 #include <linux/hwmon.h>
28 #include <linux/hwmon-sysfs.h>
29 #include <linux/delay.h>
30 #include <linux/i2c/pmbus.h>
31 #include "pmbus.h"
34 * Constants needed to determine number of sensors, booleans, and labels.
36 #define PMBUS_MAX_INPUT_SENSORS 11 /* 6*volt, 3*curr, 2*power */
37 #define PMBUS_VOUT_SENSORS_PER_PAGE 5 /* input, min, max, lcrit,
38 crit */
39 #define PMBUS_IOUT_SENSORS_PER_PAGE 4 /* input, min, max, crit */
40 #define PMBUS_POUT_SENSORS_PER_PAGE 4 /* input, cap, max, crit */
41 #define PMBUS_MAX_SENSORS_PER_FAN 1 /* input */
42 #define PMBUS_MAX_SENSORS_PER_TEMP 5 /* input, min, max, lcrit,
43 crit */
45 #define PMBUS_MAX_INPUT_BOOLEANS 7 /* v: min_alarm, max_alarm,
46 lcrit_alarm, crit_alarm;
47 c: alarm, crit_alarm;
48 p: crit_alarm */
49 #define PMBUS_VOUT_BOOLEANS_PER_PAGE 4 /* min_alarm, max_alarm,
50 lcrit_alarm, crit_alarm */
51 #define PMBUS_IOUT_BOOLEANS_PER_PAGE 3 /* alarm, lcrit_alarm,
52 crit_alarm */
53 #define PMBUS_POUT_BOOLEANS_PER_PAGE 2 /* alarm, crit_alarm */
54 #define PMBUS_MAX_BOOLEANS_PER_FAN 2 /* alarm, fault */
55 #define PMBUS_MAX_BOOLEANS_PER_TEMP 4 /* min_alarm, max_alarm,
56 lcrit_alarm, crit_alarm */
58 #define PMBUS_MAX_INPUT_LABELS 4 /* vin, vcap, iin, pin */
61 * status, status_vout, status_iout, status_fans, status_fan34, and status_temp
62 * are paged. status_input is unpaged.
64 #define PB_NUM_STATUS_REG (PMBUS_PAGES * 6 + 1)
67 * Index into status register array, per status register group
69 #define PB_STATUS_BASE 0
70 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
71 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
72 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
73 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
74 #define PB_STATUS_INPUT_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
75 #define PB_STATUS_TEMP_BASE (PB_STATUS_INPUT_BASE + 1)
77 struct pmbus_sensor {
78 char name[I2C_NAME_SIZE]; /* sysfs sensor name */
79 struct sensor_device_attribute attribute;
80 u8 page; /* page number */
81 u8 reg; /* register */
82 enum pmbus_sensor_classes class; /* sensor class */
83 bool update; /* runtime sensor update needed */
84 int data; /* Sensor data.
85 Negative if there was a read error */
88 struct pmbus_boolean {
89 char name[I2C_NAME_SIZE]; /* sysfs boolean name */
90 struct sensor_device_attribute attribute;
93 struct pmbus_label {
94 char name[I2C_NAME_SIZE]; /* sysfs label name */
95 struct sensor_device_attribute attribute;
96 char label[I2C_NAME_SIZE]; /* label */
99 struct pmbus_data {
100 struct device *hwmon_dev;
102 u32 flags; /* from platform data */
104 int exponent; /* linear mode: exponent for output voltages */
106 const struct pmbus_driver_info *info;
108 int max_attributes;
109 int num_attributes;
110 struct attribute **attributes;
111 struct attribute_group group;
114 * Sensors cover both sensor and limit registers.
116 int max_sensors;
117 int num_sensors;
118 struct pmbus_sensor *sensors;
120 * Booleans are used for alarms.
121 * Values are determined from status registers.
123 int max_booleans;
124 int num_booleans;
125 struct pmbus_boolean *booleans;
127 * Labels are used to map generic names (e.g., "in1")
128 * to PMBus specific names (e.g., "vin" or "vout1").
130 int max_labels;
131 int num_labels;
132 struct pmbus_label *labels;
134 struct mutex update_lock;
135 bool valid;
136 unsigned long last_updated; /* in jiffies */
139 * A single status register covers multiple attributes,
140 * so we keep them all together.
142 u8 status_bits;
143 u8 status[PB_NUM_STATUS_REG];
145 u8 currpage;
148 int pmbus_set_page(struct i2c_client *client, u8 page)
150 struct pmbus_data *data = i2c_get_clientdata(client);
151 int rv = 0;
152 int newpage;
154 if (page != data->currpage) {
155 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
156 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
157 if (newpage != page)
158 rv = -EINVAL;
159 else
160 data->currpage = page;
162 return rv;
164 EXPORT_SYMBOL_GPL(pmbus_set_page);
166 static int pmbus_write_byte(struct i2c_client *client, u8 page, u8 value)
168 int rv;
170 rv = pmbus_set_page(client, page);
171 if (rv < 0)
172 return rv;
174 return i2c_smbus_write_byte(client, value);
177 static int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg,
178 u16 word)
180 int rv;
182 rv = pmbus_set_page(client, page);
183 if (rv < 0)
184 return rv;
186 return i2c_smbus_write_word_data(client, reg, word);
189 int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
191 int rv;
193 rv = pmbus_set_page(client, page);
194 if (rv < 0)
195 return rv;
197 return i2c_smbus_read_word_data(client, reg);
199 EXPORT_SYMBOL_GPL(pmbus_read_word_data);
201 static int pmbus_read_byte_data(struct i2c_client *client, u8 page, u8 reg)
203 int rv;
205 rv = pmbus_set_page(client, page);
206 if (rv < 0)
207 return rv;
209 return i2c_smbus_read_byte_data(client, reg);
212 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
214 pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
217 void pmbus_clear_faults(struct i2c_client *client)
219 struct pmbus_data *data = i2c_get_clientdata(client);
220 int i;
222 for (i = 0; i < data->info->pages; i++)
223 pmbus_clear_fault_page(client, i);
225 EXPORT_SYMBOL_GPL(pmbus_clear_faults);
227 static int pmbus_check_status_cml(struct i2c_client *client, int page)
229 int status, status2;
231 status = pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
232 if (status < 0 || (status & PB_STATUS_CML)) {
233 status2 = pmbus_read_byte_data(client, page, PMBUS_STATUS_CML);
234 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
235 return -EINVAL;
237 return 0;
240 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
242 int rv;
243 struct pmbus_data *data = i2c_get_clientdata(client);
245 rv = pmbus_read_byte_data(client, page, reg);
246 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
247 rv = pmbus_check_status_cml(client, page);
248 pmbus_clear_fault_page(client, page);
249 return rv >= 0;
251 EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
253 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
255 int rv;
256 struct pmbus_data *data = i2c_get_clientdata(client);
258 rv = pmbus_read_word_data(client, page, reg);
259 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
260 rv = pmbus_check_status_cml(client, page);
261 pmbus_clear_fault_page(client, page);
262 return rv >= 0;
264 EXPORT_SYMBOL_GPL(pmbus_check_word_register);
266 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
268 struct pmbus_data *data = i2c_get_clientdata(client);
270 return data->info;
272 EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
274 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
276 struct pmbus_data *data = i2c_get_clientdata(client);
277 const struct pmbus_driver_info *info = data->info;
278 int status;
280 if (info->get_status) {
281 status = info->get_status(client, page, reg);
282 if (status != -ENODATA)
283 return status;
285 return pmbus_read_byte_data(client, page, reg);
288 static struct pmbus_data *pmbus_update_device(struct device *dev)
290 struct i2c_client *client = to_i2c_client(dev);
291 struct pmbus_data *data = i2c_get_clientdata(client);
292 const struct pmbus_driver_info *info = data->info;
294 mutex_lock(&data->update_lock);
295 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
296 int i;
298 for (i = 0; i < info->pages; i++)
299 data->status[PB_STATUS_BASE + i]
300 = pmbus_read_byte_data(client, i,
301 PMBUS_STATUS_BYTE);
302 for (i = 0; i < info->pages; i++) {
303 if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT))
304 continue;
305 data->status[PB_STATUS_VOUT_BASE + i]
306 = pmbus_get_status(client, i, PMBUS_STATUS_VOUT);
308 for (i = 0; i < info->pages; i++) {
309 if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT))
310 continue;
311 data->status[PB_STATUS_IOUT_BASE + i]
312 = pmbus_get_status(client, i, PMBUS_STATUS_IOUT);
314 for (i = 0; i < info->pages; i++) {
315 if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP))
316 continue;
317 data->status[PB_STATUS_TEMP_BASE + i]
318 = pmbus_get_status(client, i,
319 PMBUS_STATUS_TEMPERATURE);
321 for (i = 0; i < info->pages; i++) {
322 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12))
323 continue;
324 data->status[PB_STATUS_FAN_BASE + i]
325 = pmbus_get_status(client, i, PMBUS_STATUS_FAN_12);
328 for (i = 0; i < info->pages; i++) {
329 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34))
330 continue;
331 data->status[PB_STATUS_FAN34_BASE + i]
332 = pmbus_get_status(client, i, PMBUS_STATUS_FAN_34);
335 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
336 data->status[PB_STATUS_INPUT_BASE]
337 = pmbus_get_status(client, 0, PMBUS_STATUS_INPUT);
339 for (i = 0; i < data->num_sensors; i++) {
340 struct pmbus_sensor *sensor = &data->sensors[i];
342 if (!data->valid || sensor->update)
343 sensor->data
344 = pmbus_read_word_data(client, sensor->page,
345 sensor->reg);
347 pmbus_clear_faults(client);
348 data->last_updated = jiffies;
349 data->valid = 1;
351 mutex_unlock(&data->update_lock);
352 return data;
356 * Convert linear sensor values to milli- or micro-units
357 * depending on sensor type.
359 static int pmbus_reg2data_linear(struct pmbus_data *data,
360 struct pmbus_sensor *sensor)
362 s16 exponent;
363 s32 mantissa;
364 long val;
366 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
367 exponent = data->exponent;
368 mantissa = (u16) sensor->data;
369 } else { /* LINEAR11 */
370 exponent = (sensor->data >> 11) & 0x001f;
371 mantissa = sensor->data & 0x07ff;
373 if (exponent > 0x0f)
374 exponent |= 0xffe0; /* sign extend exponent */
375 if (mantissa > 0x03ff)
376 mantissa |= 0xfffff800; /* sign extend mantissa */
379 val = mantissa;
381 /* scale result to milli-units for all sensors except fans */
382 if (sensor->class != PSC_FAN)
383 val = val * 1000L;
385 /* scale result to micro-units for power sensors */
386 if (sensor->class == PSC_POWER)
387 val = val * 1000L;
389 if (exponent >= 0)
390 val <<= exponent;
391 else
392 val >>= -exponent;
394 return (int)val;
398 * Convert direct sensor values to milli- or micro-units
399 * depending on sensor type.
401 static int pmbus_reg2data_direct(struct pmbus_data *data,
402 struct pmbus_sensor *sensor)
404 long val = (s16) sensor->data;
405 long m, b, R;
407 m = data->info->m[sensor->class];
408 b = data->info->b[sensor->class];
409 R = data->info->R[sensor->class];
411 if (m == 0)
412 return 0;
414 /* X = 1/m * (Y * 10^-R - b) */
415 R = -R;
416 /* scale result to milli-units for everything but fans */
417 if (sensor->class != PSC_FAN) {
418 R += 3;
419 b *= 1000;
422 /* scale result to micro-units for power sensors */
423 if (sensor->class == PSC_POWER) {
424 R += 3;
425 b *= 1000;
428 while (R > 0) {
429 val *= 10;
430 R--;
432 while (R < 0) {
433 val = DIV_ROUND_CLOSEST(val, 10);
434 R++;
437 return (int)((val - b) / m);
440 static int pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
442 int val;
444 if (data->info->direct[sensor->class])
445 val = pmbus_reg2data_direct(data, sensor);
446 else
447 val = pmbus_reg2data_linear(data, sensor);
449 return val;
452 #define MAX_MANTISSA (1023 * 1000)
453 #define MIN_MANTISSA (511 * 1000)
455 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
456 enum pmbus_sensor_classes class, long val)
458 s16 exponent = 0, mantissa;
459 bool negative = false;
461 /* simple case */
462 if (val == 0)
463 return 0;
465 if (class == PSC_VOLTAGE_OUT) {
466 /* LINEAR16 does not support negative voltages */
467 if (val < 0)
468 return 0;
471 * For a static exponents, we don't have a choice
472 * but to adjust the value to it.
474 if (data->exponent < 0)
475 val <<= -data->exponent;
476 else
477 val >>= data->exponent;
478 val = DIV_ROUND_CLOSEST(val, 1000);
479 return val & 0xffff;
482 if (val < 0) {
483 negative = true;
484 val = -val;
487 /* Power is in uW. Convert to mW before converting. */
488 if (class == PSC_POWER)
489 val = DIV_ROUND_CLOSEST(val, 1000L);
492 * For simplicity, convert fan data to milli-units
493 * before calculating the exponent.
495 if (class == PSC_FAN)
496 val = val * 1000;
498 /* Reduce large mantissa until it fits into 10 bit */
499 while (val >= MAX_MANTISSA && exponent < 15) {
500 exponent++;
501 val >>= 1;
503 /* Increase small mantissa to improve precision */
504 while (val < MIN_MANTISSA && exponent > -15) {
505 exponent--;
506 val <<= 1;
509 /* Convert mantissa from milli-units to units */
510 mantissa = DIV_ROUND_CLOSEST(val, 1000);
512 /* Ensure that resulting number is within range */
513 if (mantissa > 0x3ff)
514 mantissa = 0x3ff;
516 /* restore sign */
517 if (negative)
518 mantissa = -mantissa;
520 /* Convert to 5 bit exponent, 11 bit mantissa */
521 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
524 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
525 enum pmbus_sensor_classes class, long val)
527 long m, b, R;
529 m = data->info->m[class];
530 b = data->info->b[class];
531 R = data->info->R[class];
533 /* Power is in uW. Adjust R and b. */
534 if (class == PSC_POWER) {
535 R -= 3;
536 b *= 1000;
539 /* Calculate Y = (m * X + b) * 10^R */
540 if (class != PSC_FAN) {
541 R -= 3; /* Adjust R and b for data in milli-units */
542 b *= 1000;
544 val = val * m + b;
546 while (R > 0) {
547 val *= 10;
548 R--;
550 while (R < 0) {
551 val = DIV_ROUND_CLOSEST(val, 10);
552 R++;
555 return val;
558 static u16 pmbus_data2reg(struct pmbus_data *data,
559 enum pmbus_sensor_classes class, long val)
561 u16 regval;
563 if (data->info->direct[class])
564 regval = pmbus_data2reg_direct(data, class, val);
565 else
566 regval = pmbus_data2reg_linear(data, class, val);
568 return regval;
572 * Return boolean calculated from converted data.
573 * <index> defines a status register index and mask, and optionally
574 * two sensor indexes.
575 * The upper half-word references the two sensors,
576 * two sensor indices.
577 * The upper half-word references the two optional sensors,
578 * the lower half word references status register and mask.
579 * The function returns true if (status[reg] & mask) is true and,
580 * if specified, if v1 >= v2.
581 * To determine if an object exceeds upper limits, specify <v, limit>.
582 * To determine if an object exceeds lower limits, specify <limit, v>.
584 * For booleans created with pmbus_add_boolean_reg(), only the lower 16 bits of
585 * index are set. s1 and s2 (the sensor index values) are zero in this case.
586 * The function returns true if (status[reg] & mask) is true.
588 * If the boolean was created with pmbus_add_boolean_cmp(), a comparison against
589 * a specified limit has to be performed to determine the boolean result.
590 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
591 * sensor values referenced by sensor indices s1 and s2).
593 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
594 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
596 * If a negative value is stored in any of the referenced registers, this value
597 * reflects an error code which will be returned.
599 static int pmbus_get_boolean(struct pmbus_data *data, int index, int *val)
601 u8 s1 = (index >> 24) & 0xff;
602 u8 s2 = (index >> 16) & 0xff;
603 u8 reg = (index >> 8) & 0xff;
604 u8 mask = index & 0xff;
605 int status;
606 u8 regval;
608 status = data->status[reg];
609 if (status < 0)
610 return status;
612 regval = status & mask;
613 if (!s1 && !s2)
614 *val = !!regval;
615 else {
616 int v1, v2;
617 struct pmbus_sensor *sensor1, *sensor2;
619 sensor1 = &data->sensors[s1];
620 if (sensor1->data < 0)
621 return sensor1->data;
622 sensor2 = &data->sensors[s2];
623 if (sensor2->data < 0)
624 return sensor2->data;
626 v1 = pmbus_reg2data(data, sensor1);
627 v2 = pmbus_reg2data(data, sensor2);
628 *val = !!(regval && v1 >= v2);
630 return 0;
633 static ssize_t pmbus_show_boolean(struct device *dev,
634 struct device_attribute *da, char *buf)
636 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
637 struct pmbus_data *data = pmbus_update_device(dev);
638 int val;
639 int err;
641 err = pmbus_get_boolean(data, attr->index, &val);
642 if (err)
643 return err;
644 return snprintf(buf, PAGE_SIZE, "%d\n", val);
647 static ssize_t pmbus_show_sensor(struct device *dev,
648 struct device_attribute *da, char *buf)
650 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
651 struct pmbus_data *data = pmbus_update_device(dev);
652 struct pmbus_sensor *sensor;
654 sensor = &data->sensors[attr->index];
655 if (sensor->data < 0)
656 return sensor->data;
658 return snprintf(buf, PAGE_SIZE, "%d\n", pmbus_reg2data(data, sensor));
661 static ssize_t pmbus_set_sensor(struct device *dev,
662 struct device_attribute *devattr,
663 const char *buf, size_t count)
665 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
666 struct i2c_client *client = to_i2c_client(dev);
667 struct pmbus_data *data = i2c_get_clientdata(client);
668 struct pmbus_sensor *sensor = &data->sensors[attr->index];
669 ssize_t rv = count;
670 long val = 0;
671 int ret;
672 u16 regval;
674 if (strict_strtol(buf, 10, &val) < 0)
675 return -EINVAL;
677 mutex_lock(&data->update_lock);
678 regval = pmbus_data2reg(data, sensor->class, val);
679 ret = pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
680 if (ret < 0)
681 rv = ret;
682 else
683 data->sensors[attr->index].data = regval;
684 mutex_unlock(&data->update_lock);
685 return rv;
688 static ssize_t pmbus_show_label(struct device *dev,
689 struct device_attribute *da, char *buf)
691 struct i2c_client *client = to_i2c_client(dev);
692 struct pmbus_data *data = i2c_get_clientdata(client);
693 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
695 return snprintf(buf, PAGE_SIZE, "%s\n",
696 data->labels[attr->index].label);
699 #define PMBUS_ADD_ATTR(data, _name, _idx, _mode, _type, _show, _set) \
700 do { \
701 struct sensor_device_attribute *a \
702 = &data->_type##s[data->num_##_type##s].attribute; \
703 BUG_ON(data->num_attributes >= data->max_attributes); \
704 a->dev_attr.attr.name = _name; \
705 a->dev_attr.attr.mode = _mode; \
706 a->dev_attr.show = _show; \
707 a->dev_attr.store = _set; \
708 a->index = _idx; \
709 data->attributes[data->num_attributes] = &a->dev_attr.attr; \
710 data->num_attributes++; \
711 } while (0)
713 #define PMBUS_ADD_GET_ATTR(data, _name, _type, _idx) \
714 PMBUS_ADD_ATTR(data, _name, _idx, S_IRUGO, _type, \
715 pmbus_show_##_type, NULL)
717 #define PMBUS_ADD_SET_ATTR(data, _name, _type, _idx) \
718 PMBUS_ADD_ATTR(data, _name, _idx, S_IWUSR | S_IRUGO, _type, \
719 pmbus_show_##_type, pmbus_set_##_type)
721 static void pmbus_add_boolean(struct pmbus_data *data,
722 const char *name, const char *type, int seq,
723 int idx)
725 struct pmbus_boolean *boolean;
727 BUG_ON(data->num_booleans >= data->max_booleans);
729 boolean = &data->booleans[data->num_booleans];
731 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
732 name, seq, type);
733 PMBUS_ADD_GET_ATTR(data, boolean->name, boolean, idx);
734 data->num_booleans++;
737 static void pmbus_add_boolean_reg(struct pmbus_data *data,
738 const char *name, const char *type,
739 int seq, int reg, int bit)
741 pmbus_add_boolean(data, name, type, seq, (reg << 8) | bit);
744 static void pmbus_add_boolean_cmp(struct pmbus_data *data,
745 const char *name, const char *type,
746 int seq, int i1, int i2, int reg, int mask)
748 pmbus_add_boolean(data, name, type, seq,
749 (i1 << 24) | (i2 << 16) | (reg << 8) | mask);
752 static void pmbus_add_sensor(struct pmbus_data *data,
753 const char *name, const char *type, int seq,
754 int page, int reg, enum pmbus_sensor_classes class,
755 bool update, bool readonly)
757 struct pmbus_sensor *sensor;
759 BUG_ON(data->num_sensors >= data->max_sensors);
761 sensor = &data->sensors[data->num_sensors];
762 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
763 name, seq, type);
764 sensor->page = page;
765 sensor->reg = reg;
766 sensor->class = class;
767 sensor->update = update;
768 if (readonly)
769 PMBUS_ADD_GET_ATTR(data, sensor->name, sensor,
770 data->num_sensors);
771 else
772 PMBUS_ADD_SET_ATTR(data, sensor->name, sensor,
773 data->num_sensors);
774 data->num_sensors++;
777 static void pmbus_add_label(struct pmbus_data *data,
778 const char *name, int seq,
779 const char *lstring, int index)
781 struct pmbus_label *label;
783 BUG_ON(data->num_labels >= data->max_labels);
785 label = &data->labels[data->num_labels];
786 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
787 if (!index)
788 strncpy(label->label, lstring, sizeof(label->label) - 1);
789 else
790 snprintf(label->label, sizeof(label->label), "%s%d", lstring,
791 index);
793 PMBUS_ADD_GET_ATTR(data, label->name, label, data->num_labels);
794 data->num_labels++;
797 static const int pmbus_temp_registers[] = {
798 PMBUS_READ_TEMPERATURE_1,
799 PMBUS_READ_TEMPERATURE_2,
800 PMBUS_READ_TEMPERATURE_3
803 static const int pmbus_temp_flags[] = {
804 PMBUS_HAVE_TEMP,
805 PMBUS_HAVE_TEMP2,
806 PMBUS_HAVE_TEMP3
809 static const int pmbus_fan_registers[] = {
810 PMBUS_READ_FAN_SPEED_1,
811 PMBUS_READ_FAN_SPEED_2,
812 PMBUS_READ_FAN_SPEED_3,
813 PMBUS_READ_FAN_SPEED_4
816 static const int pmbus_fan_config_registers[] = {
817 PMBUS_FAN_CONFIG_12,
818 PMBUS_FAN_CONFIG_12,
819 PMBUS_FAN_CONFIG_34,
820 PMBUS_FAN_CONFIG_34
823 static const int pmbus_fan_status_registers[] = {
824 PMBUS_STATUS_FAN_12,
825 PMBUS_STATUS_FAN_12,
826 PMBUS_STATUS_FAN_34,
827 PMBUS_STATUS_FAN_34
830 static const u32 pmbus_fan_flags[] = {
831 PMBUS_HAVE_FAN12,
832 PMBUS_HAVE_FAN12,
833 PMBUS_HAVE_FAN34,
834 PMBUS_HAVE_FAN34
837 static const u32 pmbus_fan_status_flags[] = {
838 PMBUS_HAVE_STATUS_FAN12,
839 PMBUS_HAVE_STATUS_FAN12,
840 PMBUS_HAVE_STATUS_FAN34,
841 PMBUS_HAVE_STATUS_FAN34
845 * Determine maximum number of sensors, booleans, and labels.
846 * To keep things simple, only make a rough high estimate.
848 static void pmbus_find_max_attr(struct i2c_client *client,
849 struct pmbus_data *data)
851 const struct pmbus_driver_info *info = data->info;
852 int page, max_sensors, max_booleans, max_labels;
854 max_sensors = PMBUS_MAX_INPUT_SENSORS;
855 max_booleans = PMBUS_MAX_INPUT_BOOLEANS;
856 max_labels = PMBUS_MAX_INPUT_LABELS;
858 for (page = 0; page < info->pages; page++) {
859 if (info->func[page] & PMBUS_HAVE_VOUT) {
860 max_sensors += PMBUS_VOUT_SENSORS_PER_PAGE;
861 max_booleans += PMBUS_VOUT_BOOLEANS_PER_PAGE;
862 max_labels++;
864 if (info->func[page] & PMBUS_HAVE_IOUT) {
865 max_sensors += PMBUS_IOUT_SENSORS_PER_PAGE;
866 max_booleans += PMBUS_IOUT_BOOLEANS_PER_PAGE;
867 max_labels++;
869 if (info->func[page] & PMBUS_HAVE_POUT) {
870 max_sensors += PMBUS_POUT_SENSORS_PER_PAGE;
871 max_booleans += PMBUS_POUT_BOOLEANS_PER_PAGE;
872 max_labels++;
874 if (info->func[page] & PMBUS_HAVE_FAN12) {
875 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
876 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
878 if (info->func[page] & PMBUS_HAVE_FAN34) {
879 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
880 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
882 if (info->func[page] & PMBUS_HAVE_TEMP) {
883 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
884 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
886 if (info->func[page] & PMBUS_HAVE_TEMP2) {
887 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
888 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
890 if (info->func[page] & PMBUS_HAVE_TEMP3) {
891 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
892 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
895 data->max_sensors = max_sensors;
896 data->max_booleans = max_booleans;
897 data->max_labels = max_labels;
898 data->max_attributes = max_sensors + max_booleans + max_labels;
902 * Search for attributes. Allocate sensors, booleans, and labels as needed.
904 static void pmbus_find_attributes(struct i2c_client *client,
905 struct pmbus_data *data)
907 const struct pmbus_driver_info *info = data->info;
908 int page, i0, i1, in_index;
911 * Input voltage sensors
913 in_index = 1;
914 if (info->func[0] & PMBUS_HAVE_VIN) {
915 bool have_alarm = false;
917 i0 = data->num_sensors;
918 pmbus_add_label(data, "in", in_index, "vin", 0);
919 pmbus_add_sensor(data, "in", "input", in_index, 0,
920 PMBUS_READ_VIN, PSC_VOLTAGE_IN, true, true);
921 if (pmbus_check_word_register(client, 0,
922 PMBUS_VIN_UV_WARN_LIMIT)) {
923 i1 = data->num_sensors;
924 pmbus_add_sensor(data, "in", "min", in_index,
925 0, PMBUS_VIN_UV_WARN_LIMIT,
926 PSC_VOLTAGE_IN, false, false);
927 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) {
928 pmbus_add_boolean_reg(data, "in", "min_alarm",
929 in_index,
930 PB_STATUS_INPUT_BASE,
931 PB_VOLTAGE_UV_WARNING);
932 have_alarm = true;
935 if (pmbus_check_word_register(client, 0,
936 PMBUS_VIN_UV_FAULT_LIMIT)) {
937 i1 = data->num_sensors;
938 pmbus_add_sensor(data, "in", "lcrit", in_index,
939 0, PMBUS_VIN_UV_FAULT_LIMIT,
940 PSC_VOLTAGE_IN, false, false);
941 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) {
942 pmbus_add_boolean_reg(data, "in", "lcrit_alarm",
943 in_index,
944 PB_STATUS_INPUT_BASE,
945 PB_VOLTAGE_UV_FAULT);
946 have_alarm = true;
949 if (pmbus_check_word_register(client, 0,
950 PMBUS_VIN_OV_WARN_LIMIT)) {
951 i1 = data->num_sensors;
952 pmbus_add_sensor(data, "in", "max", in_index,
953 0, PMBUS_VIN_OV_WARN_LIMIT,
954 PSC_VOLTAGE_IN, false, false);
955 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) {
956 pmbus_add_boolean_reg(data, "in", "max_alarm",
957 in_index,
958 PB_STATUS_INPUT_BASE,
959 PB_VOLTAGE_OV_WARNING);
960 have_alarm = true;
963 if (pmbus_check_word_register(client, 0,
964 PMBUS_VIN_OV_FAULT_LIMIT)) {
965 i1 = data->num_sensors;
966 pmbus_add_sensor(data, "in", "crit", in_index,
967 0, PMBUS_VIN_OV_FAULT_LIMIT,
968 PSC_VOLTAGE_IN, false, false);
969 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) {
970 pmbus_add_boolean_reg(data, "in", "crit_alarm",
971 in_index,
972 PB_STATUS_INPUT_BASE,
973 PB_VOLTAGE_OV_FAULT);
974 have_alarm = true;
978 * Add generic alarm attribute only if there are no individual
979 * attributes.
981 if (!have_alarm)
982 pmbus_add_boolean_reg(data, "in", "alarm",
983 in_index,
984 PB_STATUS_BASE,
985 PB_STATUS_VIN_UV);
986 in_index++;
988 if (info->func[0] & PMBUS_HAVE_VCAP) {
989 pmbus_add_label(data, "in", in_index, "vcap", 0);
990 pmbus_add_sensor(data, "in", "input", in_index, 0,
991 PMBUS_READ_VCAP, PSC_VOLTAGE_IN, true, true);
992 in_index++;
996 * Output voltage sensors
998 for (page = 0; page < info->pages; page++) {
999 bool have_alarm = false;
1001 if (!(info->func[page] & PMBUS_HAVE_VOUT))
1002 continue;
1004 i0 = data->num_sensors;
1005 pmbus_add_label(data, "in", in_index, "vout", page + 1);
1006 pmbus_add_sensor(data, "in", "input", in_index, page,
1007 PMBUS_READ_VOUT, PSC_VOLTAGE_OUT, true, true);
1008 if (pmbus_check_word_register(client, page,
1009 PMBUS_VOUT_UV_WARN_LIMIT)) {
1010 i1 = data->num_sensors;
1011 pmbus_add_sensor(data, "in", "min", in_index, page,
1012 PMBUS_VOUT_UV_WARN_LIMIT,
1013 PSC_VOLTAGE_OUT, false, false);
1014 if (info->func[page] & PMBUS_HAVE_STATUS_VOUT) {
1015 pmbus_add_boolean_reg(data, "in", "min_alarm",
1016 in_index,
1017 PB_STATUS_VOUT_BASE +
1018 page,
1019 PB_VOLTAGE_UV_WARNING);
1020 have_alarm = true;
1023 if (pmbus_check_word_register(client, page,
1024 PMBUS_VOUT_UV_FAULT_LIMIT)) {
1025 i1 = data->num_sensors;
1026 pmbus_add_sensor(data, "in", "lcrit", in_index, page,
1027 PMBUS_VOUT_UV_FAULT_LIMIT,
1028 PSC_VOLTAGE_OUT, false, false);
1029 if (info->func[page] & PMBUS_HAVE_STATUS_VOUT) {
1030 pmbus_add_boolean_reg(data, "in", "lcrit_alarm",
1031 in_index,
1032 PB_STATUS_VOUT_BASE +
1033 page,
1034 PB_VOLTAGE_UV_FAULT);
1035 have_alarm = true;
1038 if (pmbus_check_word_register(client, page,
1039 PMBUS_VOUT_OV_WARN_LIMIT)) {
1040 i1 = data->num_sensors;
1041 pmbus_add_sensor(data, "in", "max", in_index, page,
1042 PMBUS_VOUT_OV_WARN_LIMIT,
1043 PSC_VOLTAGE_OUT, false, false);
1044 if (info->func[page] & PMBUS_HAVE_STATUS_VOUT) {
1045 pmbus_add_boolean_reg(data, "in", "max_alarm",
1046 in_index,
1047 PB_STATUS_VOUT_BASE +
1048 page,
1049 PB_VOLTAGE_OV_WARNING);
1050 have_alarm = true;
1053 if (pmbus_check_word_register(client, page,
1054 PMBUS_VOUT_OV_FAULT_LIMIT)) {
1055 i1 = data->num_sensors;
1056 pmbus_add_sensor(data, "in", "crit", in_index, page,
1057 PMBUS_VOUT_OV_FAULT_LIMIT,
1058 PSC_VOLTAGE_OUT, false, false);
1059 if (info->func[page] & PMBUS_HAVE_STATUS_VOUT) {
1060 pmbus_add_boolean_reg(data, "in", "crit_alarm",
1061 in_index,
1062 PB_STATUS_VOUT_BASE +
1063 page,
1064 PB_VOLTAGE_OV_FAULT);
1065 have_alarm = true;
1069 * Add generic alarm attribute only if there are no individual
1070 * attributes.
1072 if (!have_alarm)
1073 pmbus_add_boolean_reg(data, "in", "alarm",
1074 in_index,
1075 PB_STATUS_BASE + page,
1076 PB_STATUS_VOUT_OV);
1077 in_index++;
1081 * Current sensors
1085 * Input current sensors
1087 in_index = 1;
1088 if (info->func[0] & PMBUS_HAVE_IIN) {
1089 i0 = data->num_sensors;
1090 pmbus_add_label(data, "curr", in_index, "iin", 0);
1091 pmbus_add_sensor(data, "curr", "input", in_index, 0,
1092 PMBUS_READ_IIN, PSC_CURRENT_IN, true, true);
1093 if (pmbus_check_word_register(client, 0,
1094 PMBUS_IIN_OC_WARN_LIMIT)) {
1095 i1 = data->num_sensors;
1096 pmbus_add_sensor(data, "curr", "max", in_index,
1097 0, PMBUS_IIN_OC_WARN_LIMIT,
1098 PSC_CURRENT_IN, false, false);
1099 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) {
1100 pmbus_add_boolean_reg(data, "curr", "max_alarm",
1101 in_index,
1102 PB_STATUS_INPUT_BASE,
1103 PB_IIN_OC_WARNING);
1106 if (pmbus_check_word_register(client, 0,
1107 PMBUS_IIN_OC_FAULT_LIMIT)) {
1108 i1 = data->num_sensors;
1109 pmbus_add_sensor(data, "curr", "crit", in_index,
1110 0, PMBUS_IIN_OC_FAULT_LIMIT,
1111 PSC_CURRENT_IN, false, false);
1112 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
1113 pmbus_add_boolean_reg(data, "curr",
1114 "crit_alarm",
1115 in_index,
1116 PB_STATUS_INPUT_BASE,
1117 PB_IIN_OC_FAULT);
1119 in_index++;
1123 * Output current sensors
1125 for (page = 0; page < info->pages; page++) {
1126 bool have_alarm = false;
1128 if (!(info->func[page] & PMBUS_HAVE_IOUT))
1129 continue;
1131 i0 = data->num_sensors;
1132 pmbus_add_label(data, "curr", in_index, "iout", page + 1);
1133 pmbus_add_sensor(data, "curr", "input", in_index, page,
1134 PMBUS_READ_IOUT, PSC_CURRENT_OUT, true, true);
1135 if (pmbus_check_word_register(client, page,
1136 PMBUS_IOUT_OC_WARN_LIMIT)) {
1137 i1 = data->num_sensors;
1138 pmbus_add_sensor(data, "curr", "max", in_index, page,
1139 PMBUS_IOUT_OC_WARN_LIMIT,
1140 PSC_CURRENT_OUT, false, false);
1141 if (info->func[page] & PMBUS_HAVE_STATUS_IOUT) {
1142 pmbus_add_boolean_reg(data, "curr", "max_alarm",
1143 in_index,
1144 PB_STATUS_IOUT_BASE +
1145 page, PB_IOUT_OC_WARNING);
1146 have_alarm = true;
1149 if (pmbus_check_word_register(client, page,
1150 PMBUS_IOUT_UC_FAULT_LIMIT)) {
1151 i1 = data->num_sensors;
1152 pmbus_add_sensor(data, "curr", "lcrit", in_index, page,
1153 PMBUS_IOUT_UC_FAULT_LIMIT,
1154 PSC_CURRENT_OUT, false, false);
1155 if (info->func[page] & PMBUS_HAVE_STATUS_IOUT) {
1156 pmbus_add_boolean_reg(data, "curr",
1157 "lcrit_alarm",
1158 in_index,
1159 PB_STATUS_IOUT_BASE +
1160 page, PB_IOUT_UC_FAULT);
1161 have_alarm = true;
1164 if (pmbus_check_word_register(client, page,
1165 PMBUS_IOUT_OC_FAULT_LIMIT)) {
1166 i1 = data->num_sensors;
1167 pmbus_add_sensor(data, "curr", "crit", in_index, page,
1168 PMBUS_IOUT_OC_FAULT_LIMIT,
1169 PSC_CURRENT_OUT, false, false);
1170 if (info->func[page] & PMBUS_HAVE_STATUS_IOUT) {
1171 pmbus_add_boolean_reg(data, "curr",
1172 "crit_alarm",
1173 in_index,
1174 PB_STATUS_IOUT_BASE +
1175 page, PB_IOUT_OC_FAULT);
1176 have_alarm = true;
1180 * Add generic alarm attribute only if there are no individual
1181 * attributes.
1183 if (!have_alarm)
1184 pmbus_add_boolean_reg(data, "curr", "alarm",
1185 in_index,
1186 PB_STATUS_BASE + page,
1187 PB_STATUS_IOUT_OC);
1188 in_index++;
1192 * Power sensors
1195 * Input Power sensors
1197 in_index = 1;
1198 if (info->func[0] & PMBUS_HAVE_PIN) {
1199 i0 = data->num_sensors;
1200 pmbus_add_label(data, "power", in_index, "pin", 0);
1201 pmbus_add_sensor(data, "power", "input", in_index,
1202 0, PMBUS_READ_PIN, PSC_POWER, true, true);
1203 if (pmbus_check_word_register(client, 0,
1204 PMBUS_PIN_OP_WARN_LIMIT)) {
1205 i1 = data->num_sensors;
1206 pmbus_add_sensor(data, "power", "max", in_index,
1207 0, PMBUS_PIN_OP_WARN_LIMIT, PSC_POWER,
1208 false, false);
1209 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
1210 pmbus_add_boolean_reg(data, "power",
1211 "alarm",
1212 in_index,
1213 PB_STATUS_INPUT_BASE,
1214 PB_PIN_OP_WARNING);
1216 in_index++;
1220 * Output Power sensors
1222 for (page = 0; page < info->pages; page++) {
1223 bool need_alarm = false;
1225 if (!(info->func[page] & PMBUS_HAVE_POUT))
1226 continue;
1228 i0 = data->num_sensors;
1229 pmbus_add_label(data, "power", in_index, "pout", page + 1);
1230 pmbus_add_sensor(data, "power", "input", in_index, page,
1231 PMBUS_READ_POUT, PSC_POWER, true, true);
1233 * Per hwmon sysfs API, power_cap is to be used to limit output
1234 * power.
1235 * We have two registers related to maximum output power,
1236 * PMBUS_POUT_MAX and PMBUS_POUT_OP_WARN_LIMIT.
1237 * PMBUS_POUT_MAX matches the powerX_cap attribute definition.
1238 * There is no attribute in the API to match
1239 * PMBUS_POUT_OP_WARN_LIMIT. We use powerX_max for now.
1241 if (pmbus_check_word_register(client, page, PMBUS_POUT_MAX)) {
1242 i1 = data->num_sensors;
1243 pmbus_add_sensor(data, "power", "cap", in_index, page,
1244 PMBUS_POUT_MAX, PSC_POWER,
1245 false, false);
1246 need_alarm = true;
1248 if (pmbus_check_word_register(client, page,
1249 PMBUS_POUT_OP_WARN_LIMIT)) {
1250 i1 = data->num_sensors;
1251 pmbus_add_sensor(data, "power", "max", in_index, page,
1252 PMBUS_POUT_OP_WARN_LIMIT, PSC_POWER,
1253 false, false);
1254 need_alarm = true;
1256 if (need_alarm && (info->func[page] & PMBUS_HAVE_STATUS_IOUT))
1257 pmbus_add_boolean_reg(data, "power", "alarm",
1258 in_index,
1259 PB_STATUS_IOUT_BASE + page,
1260 PB_POUT_OP_WARNING
1261 | PB_POWER_LIMITING);
1263 if (pmbus_check_word_register(client, page,
1264 PMBUS_POUT_OP_FAULT_LIMIT)) {
1265 i1 = data->num_sensors;
1266 pmbus_add_sensor(data, "power", "crit", in_index, page,
1267 PMBUS_POUT_OP_FAULT_LIMIT, PSC_POWER,
1268 false, false);
1269 if (info->func[page] & PMBUS_HAVE_STATUS_IOUT)
1270 pmbus_add_boolean_reg(data, "power",
1271 "crit_alarm",
1272 in_index,
1273 PB_STATUS_IOUT_BASE
1274 + page,
1275 PB_POUT_OP_FAULT);
1277 in_index++;
1281 * Temperature sensors
1283 in_index = 1;
1284 for (page = 0; page < info->pages; page++) {
1285 int t;
1287 for (t = 0; t < ARRAY_SIZE(pmbus_temp_registers); t++) {
1288 bool have_alarm = false;
1291 * A PMBus chip may support any combination of
1292 * temperature registers on any page. So we can not
1293 * abort after a failure to detect a register, but have
1294 * to continue checking for all registers on all pages.
1296 if (!(info->func[page] & pmbus_temp_flags[t]))
1297 continue;
1299 if (!pmbus_check_word_register
1300 (client, page, pmbus_temp_registers[t]))
1301 continue;
1303 i0 = data->num_sensors;
1304 pmbus_add_sensor(data, "temp", "input", in_index, page,
1305 pmbus_temp_registers[t],
1306 PSC_TEMPERATURE, true, true);
1309 * PMBus provides only one status register for TEMP1-3.
1310 * Thus, we can not use the status register to determine
1311 * which of the three sensors actually caused an alarm.
1312 * Always compare current temperature against the limit
1313 * registers to determine alarm conditions for a
1314 * specific sensor.
1316 * Since there is only one set of limit registers for
1317 * up to three temperature sensors, we need to update
1318 * all limit registers after the limit was changed for
1319 * one of the sensors. This ensures that correct limits
1320 * are reported for all temperature sensors.
1322 if (pmbus_check_word_register
1323 (client, page, PMBUS_UT_WARN_LIMIT)) {
1324 i1 = data->num_sensors;
1325 pmbus_add_sensor(data, "temp", "min", in_index,
1326 page, PMBUS_UT_WARN_LIMIT,
1327 PSC_TEMPERATURE, true, false);
1328 if (info->func[page] & PMBUS_HAVE_STATUS_TEMP) {
1329 pmbus_add_boolean_cmp(data, "temp",
1330 "min_alarm", in_index, i1, i0,
1331 PB_STATUS_TEMP_BASE + page,
1332 PB_TEMP_UT_WARNING);
1333 have_alarm = true;
1336 if (pmbus_check_word_register(client, page,
1337 PMBUS_UT_FAULT_LIMIT)) {
1338 i1 = data->num_sensors;
1339 pmbus_add_sensor(data, "temp", "lcrit",
1340 in_index, page,
1341 PMBUS_UT_FAULT_LIMIT,
1342 PSC_TEMPERATURE, true, false);
1343 if (info->func[page] & PMBUS_HAVE_STATUS_TEMP) {
1344 pmbus_add_boolean_cmp(data, "temp",
1345 "lcrit_alarm", in_index, i1, i0,
1346 PB_STATUS_TEMP_BASE + page,
1347 PB_TEMP_UT_FAULT);
1348 have_alarm = true;
1351 if (pmbus_check_word_register
1352 (client, page, PMBUS_OT_WARN_LIMIT)) {
1353 i1 = data->num_sensors;
1354 pmbus_add_sensor(data, "temp", "max", in_index,
1355 page, PMBUS_OT_WARN_LIMIT,
1356 PSC_TEMPERATURE, true, false);
1357 if (info->func[page] & PMBUS_HAVE_STATUS_TEMP) {
1358 pmbus_add_boolean_cmp(data, "temp",
1359 "max_alarm", in_index, i0, i1,
1360 PB_STATUS_TEMP_BASE + page,
1361 PB_TEMP_OT_WARNING);
1362 have_alarm = true;
1365 if (pmbus_check_word_register(client, page,
1366 PMBUS_OT_FAULT_LIMIT)) {
1367 i1 = data->num_sensors;
1368 pmbus_add_sensor(data, "temp", "crit", in_index,
1369 page, PMBUS_OT_FAULT_LIMIT,
1370 PSC_TEMPERATURE, true, false);
1371 if (info->func[page] & PMBUS_HAVE_STATUS_TEMP) {
1372 pmbus_add_boolean_cmp(data, "temp",
1373 "crit_alarm", in_index, i0, i1,
1374 PB_STATUS_TEMP_BASE + page,
1375 PB_TEMP_OT_FAULT);
1376 have_alarm = true;
1380 * Last resort - we were not able to create any alarm
1381 * registers. Report alarm for all sensors using the
1382 * status register temperature alarm bit.
1384 if (!have_alarm)
1385 pmbus_add_boolean_reg(data, "temp", "alarm",
1386 in_index,
1387 PB_STATUS_BASE + page,
1388 PB_STATUS_TEMPERATURE);
1389 in_index++;
1394 * Fans
1396 in_index = 1;
1397 for (page = 0; page < info->pages; page++) {
1398 int f;
1400 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1401 int regval;
1403 if (!(info->func[page] & pmbus_fan_flags[f]))
1404 break;
1406 if (!pmbus_check_word_register(client, page,
1407 pmbus_fan_registers[f])
1408 || !pmbus_check_byte_register(client, page,
1409 pmbus_fan_config_registers[f]))
1410 break;
1413 * Skip fan if not installed.
1414 * Each fan configuration register covers multiple fans,
1415 * so we have to do some magic.
1417 regval = pmbus_read_byte_data(client, page,
1418 pmbus_fan_config_registers[f]);
1419 if (regval < 0 ||
1420 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1421 continue;
1423 i0 = data->num_sensors;
1424 pmbus_add_sensor(data, "fan", "input", in_index, page,
1425 pmbus_fan_registers[f], PSC_FAN, true,
1426 true);
1429 * Each fan status register covers multiple fans,
1430 * so we have to do some magic.
1432 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1433 pmbus_check_byte_register(client,
1434 page, pmbus_fan_status_registers[f])) {
1435 int base;
1437 if (f > 1) /* fan 3, 4 */
1438 base = PB_STATUS_FAN34_BASE + page;
1439 else
1440 base = PB_STATUS_FAN_BASE + page;
1441 pmbus_add_boolean_reg(data, "fan", "alarm",
1442 in_index, base,
1443 PB_FAN_FAN1_WARNING >> (f & 1));
1444 pmbus_add_boolean_reg(data, "fan", "fault",
1445 in_index, base,
1446 PB_FAN_FAN1_FAULT >> (f & 1));
1448 in_index++;
1454 * Identify chip parameters.
1455 * This function is called for all chips.
1457 static int pmbus_identify_common(struct i2c_client *client,
1458 struct pmbus_data *data)
1460 int vout_mode = -1, exponent;
1462 if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE))
1463 vout_mode = pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE);
1464 if (vout_mode >= 0 && vout_mode != 0xff) {
1466 * Not all chips support the VOUT_MODE command,
1467 * so a failure to read it is not an error.
1469 switch (vout_mode >> 5) {
1470 case 0: /* linear mode */
1471 if (data->info->direct[PSC_VOLTAGE_OUT])
1472 return -ENODEV;
1474 exponent = vout_mode & 0x1f;
1475 /* and sign-extend it */
1476 if (exponent & 0x10)
1477 exponent |= ~0x1f;
1478 data->exponent = exponent;
1479 break;
1480 case 2: /* direct mode */
1481 if (!data->info->direct[PSC_VOLTAGE_OUT])
1482 return -ENODEV;
1483 break;
1484 default:
1485 return -ENODEV;
1489 /* Determine maximum number of sensors, booleans, and labels */
1490 pmbus_find_max_attr(client, data);
1491 pmbus_clear_fault_page(client, 0);
1492 return 0;
1495 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1496 struct pmbus_driver_info *info)
1498 const struct pmbus_platform_data *pdata = client->dev.platform_data;
1499 struct pmbus_data *data;
1500 int ret;
1502 if (!info) {
1503 dev_err(&client->dev, "Missing chip information");
1504 return -ENODEV;
1507 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1508 | I2C_FUNC_SMBUS_BYTE_DATA
1509 | I2C_FUNC_SMBUS_WORD_DATA))
1510 return -ENODEV;
1512 data = kzalloc(sizeof(*data), GFP_KERNEL);
1513 if (!data) {
1514 dev_err(&client->dev, "No memory to allocate driver data\n");
1515 return -ENOMEM;
1518 i2c_set_clientdata(client, data);
1519 mutex_init(&data->update_lock);
1522 * Bail out if status register or PMBus revision register
1523 * does not exist.
1525 if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0
1526 || i2c_smbus_read_byte_data(client, PMBUS_REVISION) < 0) {
1527 dev_err(&client->dev,
1528 "Status or revision register not found\n");
1529 ret = -ENODEV;
1530 goto out_data;
1533 if (pdata)
1534 data->flags = pdata->flags;
1535 data->info = info;
1537 pmbus_clear_faults(client);
1539 if (info->identify) {
1540 ret = (*info->identify)(client, info);
1541 if (ret < 0) {
1542 dev_err(&client->dev, "Chip identification failed\n");
1543 goto out_data;
1547 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1548 dev_err(&client->dev, "Bad number of PMBus pages: %d\n",
1549 info->pages);
1550 ret = -EINVAL;
1551 goto out_data;
1554 * Bail out if more than one page was configured, but we can not
1555 * select the highest page. This is an indication that the wrong
1556 * chip type was selected. Better bail out now than keep
1557 * returning errors later on.
1559 if (info->pages > 1 && pmbus_set_page(client, info->pages - 1) < 0) {
1560 dev_err(&client->dev, "Failed to select page %d\n",
1561 info->pages - 1);
1562 ret = -EINVAL;
1563 goto out_data;
1566 ret = pmbus_identify_common(client, data);
1567 if (ret < 0) {
1568 dev_err(&client->dev, "Failed to identify chip capabilities\n");
1569 goto out_data;
1572 ret = -ENOMEM;
1573 data->sensors = kzalloc(sizeof(struct pmbus_sensor) * data->max_sensors,
1574 GFP_KERNEL);
1575 if (!data->sensors) {
1576 dev_err(&client->dev, "No memory to allocate sensor data\n");
1577 goto out_data;
1580 data->booleans = kzalloc(sizeof(struct pmbus_boolean)
1581 * data->max_booleans, GFP_KERNEL);
1582 if (!data->booleans) {
1583 dev_err(&client->dev, "No memory to allocate boolean data\n");
1584 goto out_sensors;
1587 data->labels = kzalloc(sizeof(struct pmbus_label) * data->max_labels,
1588 GFP_KERNEL);
1589 if (!data->labels) {
1590 dev_err(&client->dev, "No memory to allocate label data\n");
1591 goto out_booleans;
1594 data->attributes = kzalloc(sizeof(struct attribute *)
1595 * data->max_attributes, GFP_KERNEL);
1596 if (!data->attributes) {
1597 dev_err(&client->dev, "No memory to allocate attribute data\n");
1598 goto out_labels;
1601 pmbus_find_attributes(client, data);
1604 * If there are no attributes, something is wrong.
1605 * Bail out instead of trying to register nothing.
1607 if (!data->num_attributes) {
1608 dev_err(&client->dev, "No attributes found\n");
1609 ret = -ENODEV;
1610 goto out_attributes;
1613 /* Register sysfs hooks */
1614 data->group.attrs = data->attributes;
1615 ret = sysfs_create_group(&client->dev.kobj, &data->group);
1616 if (ret) {
1617 dev_err(&client->dev, "Failed to create sysfs entries\n");
1618 goto out_attributes;
1620 data->hwmon_dev = hwmon_device_register(&client->dev);
1621 if (IS_ERR(data->hwmon_dev)) {
1622 ret = PTR_ERR(data->hwmon_dev);
1623 dev_err(&client->dev, "Failed to register hwmon device\n");
1624 goto out_hwmon_device_register;
1626 return 0;
1628 out_hwmon_device_register:
1629 sysfs_remove_group(&client->dev.kobj, &data->group);
1630 out_attributes:
1631 kfree(data->attributes);
1632 out_labels:
1633 kfree(data->labels);
1634 out_booleans:
1635 kfree(data->booleans);
1636 out_sensors:
1637 kfree(data->sensors);
1638 out_data:
1639 kfree(data);
1640 return ret;
1642 EXPORT_SYMBOL_GPL(pmbus_do_probe);
1644 int pmbus_do_remove(struct i2c_client *client)
1646 struct pmbus_data *data = i2c_get_clientdata(client);
1647 hwmon_device_unregister(data->hwmon_dev);
1648 sysfs_remove_group(&client->dev.kobj, &data->group);
1649 kfree(data->attributes);
1650 kfree(data->labels);
1651 kfree(data->booleans);
1652 kfree(data->sensors);
1653 kfree(data);
1654 return 0;
1656 EXPORT_SYMBOL_GPL(pmbus_do_remove);
1658 MODULE_AUTHOR("Guenter Roeck");
1659 MODULE_DESCRIPTION("PMBus core driver");
1660 MODULE_LICENSE("GPL");