md/raid5: remove setting of ->queue_lock
[linux-2.6/x86.git] / drivers / firewire / sbp2.c
blob77ed589b360d7dce2d7567685fa032f96f40ed54
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
54 #include <asm/byteorder.h>
55 #include <asm/system.h>
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_device.h>
60 #include <scsi/scsi_host.h>
63 * So far only bridges from Oxford Semiconductor are known to support
64 * concurrent logins. Depending on firmware, four or two concurrent logins
65 * are possible on OXFW911 and newer Oxsemi bridges.
67 * Concurrent logins are useful together with cluster filesystems.
69 static int sbp2_param_exclusive_login = 1;
70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72 "(default = Y, use N for concurrent initiators)");
75 * Flags for firmware oddities
77 * - 128kB max transfer
78 * Limit transfer size. Necessary for some old bridges.
80 * - 36 byte inquiry
81 * When scsi_mod probes the device, let the inquiry command look like that
82 * from MS Windows.
84 * - skip mode page 8
85 * Suppress sending of mode_sense for mode page 8 if the device pretends to
86 * support the SCSI Primary Block commands instead of Reduced Block Commands.
88 * - fix capacity
89 * Tell sd_mod to correct the last sector number reported by read_capacity.
90 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
91 * Don't use this with devices which don't have this bug.
93 * - delay inquiry
94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
96 * - power condition
97 * Set the power condition field in the START STOP UNIT commands sent by
98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99 * Some disks need this to spin down or to resume properly.
101 * - override internal blacklist
102 * Instead of adding to the built-in blacklist, use only the workarounds
103 * specified in the module load parameter.
104 * Useful if a blacklist entry interfered with a non-broken device.
106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
107 #define SBP2_WORKAROUND_INQUIRY_36 0x2
108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
111 #define SBP2_INQUIRY_DELAY 12
112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
113 #define SBP2_WORKAROUND_OVERRIDE 0x100
115 static int sbp2_param_workarounds;
116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123 ", set power condition in start stop unit = "
124 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126 ", or a combination)");
128 /* I don't know why the SCSI stack doesn't define something like this... */
129 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
131 static const char sbp2_driver_name[] = "sbp2";
134 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
135 * and one struct scsi_device per sbp2_logical_unit.
137 struct sbp2_logical_unit {
138 struct sbp2_target *tgt;
139 struct list_head link;
140 struct fw_address_handler address_handler;
141 struct list_head orb_list;
143 u64 command_block_agent_address;
144 u16 lun;
145 int login_id;
148 * The generation is updated once we've logged in or reconnected
149 * to the logical unit. Thus, I/O to the device will automatically
150 * fail and get retried if it happens in a window where the device
151 * is not ready, e.g. after a bus reset but before we reconnect.
153 int generation;
154 int retries;
155 struct delayed_work work;
156 bool has_sdev;
157 bool blocked;
161 * We create one struct sbp2_target per IEEE 1212 Unit Directory
162 * and one struct Scsi_Host per sbp2_target.
164 struct sbp2_target {
165 struct kref kref;
166 struct fw_unit *unit;
167 const char *bus_id;
168 struct list_head lu_list;
170 u64 management_agent_address;
171 u64 guid;
172 int directory_id;
173 int node_id;
174 int address_high;
175 unsigned int workarounds;
176 unsigned int mgt_orb_timeout;
177 unsigned int max_payload;
179 int dont_block; /* counter for each logical unit */
180 int blocked; /* ditto */
183 static struct fw_device *target_device(struct sbp2_target *tgt)
185 return fw_parent_device(tgt->unit);
188 /* Impossible login_id, to detect logout attempt before successful login */
189 #define INVALID_LOGIN_ID 0x10000
191 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
192 #define SBP2_ORB_NULL 0x80000000
193 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
194 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
197 * There is no transport protocol limit to the CDB length, but we implement
198 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
200 #define SBP2_MAX_CDB_SIZE 16
203 * The default maximum s/g segment size of a FireWire controller is
204 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
205 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
207 #define SBP2_MAX_SEG_SIZE 0xfffc
209 /* Unit directory keys */
210 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
211 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
212 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
213 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
215 /* Management orb opcodes */
216 #define SBP2_LOGIN_REQUEST 0x0
217 #define SBP2_QUERY_LOGINS_REQUEST 0x1
218 #define SBP2_RECONNECT_REQUEST 0x3
219 #define SBP2_SET_PASSWORD_REQUEST 0x4
220 #define SBP2_LOGOUT_REQUEST 0x7
221 #define SBP2_ABORT_TASK_REQUEST 0xb
222 #define SBP2_ABORT_TASK_SET 0xc
223 #define SBP2_LOGICAL_UNIT_RESET 0xe
224 #define SBP2_TARGET_RESET_REQUEST 0xf
226 /* Offsets for command block agent registers */
227 #define SBP2_AGENT_STATE 0x00
228 #define SBP2_AGENT_RESET 0x04
229 #define SBP2_ORB_POINTER 0x08
230 #define SBP2_DOORBELL 0x10
231 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
233 /* Status write response codes */
234 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
235 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
236 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
237 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
239 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
240 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
241 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
242 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
243 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
244 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
245 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
246 #define STATUS_GET_DATA(v) ((v).data)
248 struct sbp2_status {
249 u32 status;
250 u32 orb_low;
251 u8 data[24];
254 struct sbp2_pointer {
255 __be32 high;
256 __be32 low;
259 struct sbp2_orb {
260 struct fw_transaction t;
261 struct kref kref;
262 dma_addr_t request_bus;
263 int rcode;
264 struct sbp2_pointer pointer;
265 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
266 struct list_head link;
269 #define MANAGEMENT_ORB_LUN(v) ((v))
270 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
271 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
272 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
273 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
274 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
276 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
277 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
279 struct sbp2_management_orb {
280 struct sbp2_orb base;
281 struct {
282 struct sbp2_pointer password;
283 struct sbp2_pointer response;
284 __be32 misc;
285 __be32 length;
286 struct sbp2_pointer status_fifo;
287 } request;
288 __be32 response[4];
289 dma_addr_t response_bus;
290 struct completion done;
291 struct sbp2_status status;
294 struct sbp2_login_response {
295 __be32 misc;
296 struct sbp2_pointer command_block_agent;
297 __be32 reconnect_hold;
299 #define COMMAND_ORB_DATA_SIZE(v) ((v))
300 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
301 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
302 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
303 #define COMMAND_ORB_SPEED(v) ((v) << 24)
304 #define COMMAND_ORB_DIRECTION ((1) << 27)
305 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
306 #define COMMAND_ORB_NOTIFY ((1) << 31)
308 struct sbp2_command_orb {
309 struct sbp2_orb base;
310 struct {
311 struct sbp2_pointer next;
312 struct sbp2_pointer data_descriptor;
313 __be32 misc;
314 u8 command_block[SBP2_MAX_CDB_SIZE];
315 } request;
316 struct scsi_cmnd *cmd;
317 scsi_done_fn_t done;
318 struct sbp2_logical_unit *lu;
320 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
321 dma_addr_t page_table_bus;
324 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
325 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
328 * List of devices with known bugs.
330 * The firmware_revision field, masked with 0xffff00, is the best
331 * indicator for the type of bridge chip of a device. It yields a few
332 * false positives but this did not break correctly behaving devices
333 * so far.
335 static const struct {
336 u32 firmware_revision;
337 u32 model;
338 unsigned int workarounds;
339 } sbp2_workarounds_table[] = {
340 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
341 .firmware_revision = 0x002800,
342 .model = 0x001010,
343 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
344 SBP2_WORKAROUND_MODE_SENSE_8 |
345 SBP2_WORKAROUND_POWER_CONDITION,
347 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
348 .firmware_revision = 0x002800,
349 .model = 0x000000,
350 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
352 /* Initio bridges, actually only needed for some older ones */ {
353 .firmware_revision = 0x000200,
354 .model = SBP2_ROM_VALUE_WILDCARD,
355 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
357 /* PL-3507 bridge with Prolific firmware */ {
358 .firmware_revision = 0x012800,
359 .model = SBP2_ROM_VALUE_WILDCARD,
360 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
362 /* Symbios bridge */ {
363 .firmware_revision = 0xa0b800,
364 .model = SBP2_ROM_VALUE_WILDCARD,
365 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
367 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
368 .firmware_revision = 0x002600,
369 .model = SBP2_ROM_VALUE_WILDCARD,
370 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
373 * iPod 2nd generation: needs 128k max transfer size workaround
374 * iPod 3rd generation: needs fix capacity workaround
377 .firmware_revision = 0x0a2700,
378 .model = 0x000000,
379 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
380 SBP2_WORKAROUND_FIX_CAPACITY,
382 /* iPod 4th generation */ {
383 .firmware_revision = 0x0a2700,
384 .model = 0x000021,
385 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
387 /* iPod mini */ {
388 .firmware_revision = 0x0a2700,
389 .model = 0x000022,
390 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
392 /* iPod mini */ {
393 .firmware_revision = 0x0a2700,
394 .model = 0x000023,
395 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
397 /* iPod Photo */ {
398 .firmware_revision = 0x0a2700,
399 .model = 0x00007e,
400 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
404 static void free_orb(struct kref *kref)
406 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
408 kfree(orb);
411 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
412 int tcode, int destination, int source,
413 int generation, unsigned long long offset,
414 void *payload, size_t length, void *callback_data)
416 struct sbp2_logical_unit *lu = callback_data;
417 struct sbp2_orb *orb;
418 struct sbp2_status status;
419 unsigned long flags;
421 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
422 length < 8 || length > sizeof(status)) {
423 fw_send_response(card, request, RCODE_TYPE_ERROR);
424 return;
427 status.status = be32_to_cpup(payload);
428 status.orb_low = be32_to_cpup(payload + 4);
429 memset(status.data, 0, sizeof(status.data));
430 if (length > 8)
431 memcpy(status.data, payload + 8, length - 8);
433 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
434 fw_notify("non-orb related status write, not handled\n");
435 fw_send_response(card, request, RCODE_COMPLETE);
436 return;
439 /* Lookup the orb corresponding to this status write. */
440 spin_lock_irqsave(&card->lock, flags);
441 list_for_each_entry(orb, &lu->orb_list, link) {
442 if (STATUS_GET_ORB_HIGH(status) == 0 &&
443 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
444 orb->rcode = RCODE_COMPLETE;
445 list_del(&orb->link);
446 break;
449 spin_unlock_irqrestore(&card->lock, flags);
451 if (&orb->link != &lu->orb_list) {
452 orb->callback(orb, &status);
453 kref_put(&orb->kref, free_orb); /* orb callback reference */
454 } else {
455 fw_error("status write for unknown orb\n");
458 fw_send_response(card, request, RCODE_COMPLETE);
461 static void complete_transaction(struct fw_card *card, int rcode,
462 void *payload, size_t length, void *data)
464 struct sbp2_orb *orb = data;
465 unsigned long flags;
468 * This is a little tricky. We can get the status write for
469 * the orb before we get this callback. The status write
470 * handler above will assume the orb pointer transaction was
471 * successful and set the rcode to RCODE_COMPLETE for the orb.
472 * So this callback only sets the rcode if it hasn't already
473 * been set and only does the cleanup if the transaction
474 * failed and we didn't already get a status write.
476 spin_lock_irqsave(&card->lock, flags);
478 if (orb->rcode == -1)
479 orb->rcode = rcode;
480 if (orb->rcode != RCODE_COMPLETE) {
481 list_del(&orb->link);
482 spin_unlock_irqrestore(&card->lock, flags);
484 orb->callback(orb, NULL);
485 kref_put(&orb->kref, free_orb); /* orb callback reference */
486 } else {
487 spin_unlock_irqrestore(&card->lock, flags);
490 kref_put(&orb->kref, free_orb); /* transaction callback reference */
493 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
494 int node_id, int generation, u64 offset)
496 struct fw_device *device = target_device(lu->tgt);
497 unsigned long flags;
499 orb->pointer.high = 0;
500 orb->pointer.low = cpu_to_be32(orb->request_bus);
502 spin_lock_irqsave(&device->card->lock, flags);
503 list_add_tail(&orb->link, &lu->orb_list);
504 spin_unlock_irqrestore(&device->card->lock, flags);
506 kref_get(&orb->kref); /* transaction callback reference */
507 kref_get(&orb->kref); /* orb callback reference */
509 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
510 node_id, generation, device->max_speed, offset,
511 &orb->pointer, 8, complete_transaction, orb);
514 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
516 struct fw_device *device = target_device(lu->tgt);
517 struct sbp2_orb *orb, *next;
518 struct list_head list;
519 unsigned long flags;
520 int retval = -ENOENT;
522 INIT_LIST_HEAD(&list);
523 spin_lock_irqsave(&device->card->lock, flags);
524 list_splice_init(&lu->orb_list, &list);
525 spin_unlock_irqrestore(&device->card->lock, flags);
527 list_for_each_entry_safe(orb, next, &list, link) {
528 retval = 0;
529 if (fw_cancel_transaction(device->card, &orb->t) == 0)
530 continue;
532 orb->rcode = RCODE_CANCELLED;
533 orb->callback(orb, NULL);
534 kref_put(&orb->kref, free_orb); /* orb callback reference */
537 return retval;
540 static void complete_management_orb(struct sbp2_orb *base_orb,
541 struct sbp2_status *status)
543 struct sbp2_management_orb *orb =
544 container_of(base_orb, struct sbp2_management_orb, base);
546 if (status)
547 memcpy(&orb->status, status, sizeof(*status));
548 complete(&orb->done);
551 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
552 int generation, int function,
553 int lun_or_login_id, void *response)
555 struct fw_device *device = target_device(lu->tgt);
556 struct sbp2_management_orb *orb;
557 unsigned int timeout;
558 int retval = -ENOMEM;
560 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
561 return 0;
563 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
564 if (orb == NULL)
565 return -ENOMEM;
567 kref_init(&orb->base.kref);
568 orb->response_bus =
569 dma_map_single(device->card->device, &orb->response,
570 sizeof(orb->response), DMA_FROM_DEVICE);
571 if (dma_mapping_error(device->card->device, orb->response_bus))
572 goto fail_mapping_response;
574 orb->request.response.high = 0;
575 orb->request.response.low = cpu_to_be32(orb->response_bus);
577 orb->request.misc = cpu_to_be32(
578 MANAGEMENT_ORB_NOTIFY |
579 MANAGEMENT_ORB_FUNCTION(function) |
580 MANAGEMENT_ORB_LUN(lun_or_login_id));
581 orb->request.length = cpu_to_be32(
582 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
584 orb->request.status_fifo.high =
585 cpu_to_be32(lu->address_handler.offset >> 32);
586 orb->request.status_fifo.low =
587 cpu_to_be32(lu->address_handler.offset);
589 if (function == SBP2_LOGIN_REQUEST) {
590 /* Ask for 2^2 == 4 seconds reconnect grace period */
591 orb->request.misc |= cpu_to_be32(
592 MANAGEMENT_ORB_RECONNECT(2) |
593 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
594 timeout = lu->tgt->mgt_orb_timeout;
595 } else {
596 timeout = SBP2_ORB_TIMEOUT;
599 init_completion(&orb->done);
600 orb->base.callback = complete_management_orb;
602 orb->base.request_bus =
603 dma_map_single(device->card->device, &orb->request,
604 sizeof(orb->request), DMA_TO_DEVICE);
605 if (dma_mapping_error(device->card->device, orb->base.request_bus))
606 goto fail_mapping_request;
608 sbp2_send_orb(&orb->base, lu, node_id, generation,
609 lu->tgt->management_agent_address);
611 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
613 retval = -EIO;
614 if (sbp2_cancel_orbs(lu) == 0) {
615 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
616 lu->tgt->bus_id, orb->base.rcode);
617 goto out;
620 if (orb->base.rcode != RCODE_COMPLETE) {
621 fw_error("%s: management write failed, rcode 0x%02x\n",
622 lu->tgt->bus_id, orb->base.rcode);
623 goto out;
626 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
627 STATUS_GET_SBP_STATUS(orb->status) != 0) {
628 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
629 STATUS_GET_RESPONSE(orb->status),
630 STATUS_GET_SBP_STATUS(orb->status));
631 goto out;
634 retval = 0;
635 out:
636 dma_unmap_single(device->card->device, orb->base.request_bus,
637 sizeof(orb->request), DMA_TO_DEVICE);
638 fail_mapping_request:
639 dma_unmap_single(device->card->device, orb->response_bus,
640 sizeof(orb->response), DMA_FROM_DEVICE);
641 fail_mapping_response:
642 if (response)
643 memcpy(response, orb->response, sizeof(orb->response));
644 kref_put(&orb->base.kref, free_orb);
646 return retval;
649 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
651 struct fw_device *device = target_device(lu->tgt);
652 __be32 d = 0;
654 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
655 lu->tgt->node_id, lu->generation, device->max_speed,
656 lu->command_block_agent_address + SBP2_AGENT_RESET,
657 &d, 4);
660 static void complete_agent_reset_write_no_wait(struct fw_card *card,
661 int rcode, void *payload, size_t length, void *data)
663 kfree(data);
666 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
668 struct fw_device *device = target_device(lu->tgt);
669 struct fw_transaction *t;
670 static __be32 d;
672 t = kmalloc(sizeof(*t), GFP_ATOMIC);
673 if (t == NULL)
674 return;
676 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
677 lu->tgt->node_id, lu->generation, device->max_speed,
678 lu->command_block_agent_address + SBP2_AGENT_RESET,
679 &d, 4, complete_agent_reset_write_no_wait, t);
682 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
685 * We may access dont_block without taking card->lock here:
686 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
687 * are currently serialized against each other.
688 * And a wrong result in sbp2_conditionally_block()'s access of
689 * dont_block is rather harmless, it simply misses its first chance.
691 --lu->tgt->dont_block;
695 * Blocks lu->tgt if all of the following conditions are met:
696 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
697 * logical units have been finished (indicated by dont_block == 0).
698 * - lu->generation is stale.
700 * Note, scsi_block_requests() must be called while holding card->lock,
701 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
702 * unblock the target.
704 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
706 struct sbp2_target *tgt = lu->tgt;
707 struct fw_card *card = target_device(tgt)->card;
708 struct Scsi_Host *shost =
709 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
710 unsigned long flags;
712 spin_lock_irqsave(&card->lock, flags);
713 if (!tgt->dont_block && !lu->blocked &&
714 lu->generation != card->generation) {
715 lu->blocked = true;
716 if (++tgt->blocked == 1)
717 scsi_block_requests(shost);
719 spin_unlock_irqrestore(&card->lock, flags);
723 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
724 * Note, it is harmless to run scsi_unblock_requests() outside the
725 * card->lock protected section. On the other hand, running it inside
726 * the section might clash with shost->host_lock.
728 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
730 struct sbp2_target *tgt = lu->tgt;
731 struct fw_card *card = target_device(tgt)->card;
732 struct Scsi_Host *shost =
733 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
734 unsigned long flags;
735 bool unblock = false;
737 spin_lock_irqsave(&card->lock, flags);
738 if (lu->blocked && lu->generation == card->generation) {
739 lu->blocked = false;
740 unblock = --tgt->blocked == 0;
742 spin_unlock_irqrestore(&card->lock, flags);
744 if (unblock)
745 scsi_unblock_requests(shost);
749 * Prevents future blocking of tgt and unblocks it.
750 * Note, it is harmless to run scsi_unblock_requests() outside the
751 * card->lock protected section. On the other hand, running it inside
752 * the section might clash with shost->host_lock.
754 static void sbp2_unblock(struct sbp2_target *tgt)
756 struct fw_card *card = target_device(tgt)->card;
757 struct Scsi_Host *shost =
758 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
759 unsigned long flags;
761 spin_lock_irqsave(&card->lock, flags);
762 ++tgt->dont_block;
763 spin_unlock_irqrestore(&card->lock, flags);
765 scsi_unblock_requests(shost);
768 static int sbp2_lun2int(u16 lun)
770 struct scsi_lun eight_bytes_lun;
772 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
773 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
774 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
776 return scsilun_to_int(&eight_bytes_lun);
779 static void sbp2_release_target(struct kref *kref)
781 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
782 struct sbp2_logical_unit *lu, *next;
783 struct Scsi_Host *shost =
784 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
785 struct scsi_device *sdev;
786 struct fw_device *device = target_device(tgt);
788 /* prevent deadlocks */
789 sbp2_unblock(tgt);
791 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
792 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
793 if (sdev) {
794 scsi_remove_device(sdev);
795 scsi_device_put(sdev);
797 if (lu->login_id != INVALID_LOGIN_ID) {
798 int generation, node_id;
800 * tgt->node_id may be obsolete here if we failed
801 * during initial login or after a bus reset where
802 * the topology changed.
804 generation = device->generation;
805 smp_rmb(); /* node_id vs. generation */
806 node_id = device->node_id;
807 sbp2_send_management_orb(lu, node_id, generation,
808 SBP2_LOGOUT_REQUEST,
809 lu->login_id, NULL);
811 fw_core_remove_address_handler(&lu->address_handler);
812 list_del(&lu->link);
813 kfree(lu);
815 scsi_remove_host(shost);
816 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
818 fw_unit_put(tgt->unit);
819 scsi_host_put(shost);
820 fw_device_put(device);
823 static void sbp2_target_get(struct sbp2_target *tgt)
825 kref_get(&tgt->kref);
828 static void sbp2_target_put(struct sbp2_target *tgt)
830 kref_put(&tgt->kref, sbp2_release_target);
833 static struct workqueue_struct *sbp2_wq;
836 * Always get the target's kref when scheduling work on one its units.
837 * Each workqueue job is responsible to call sbp2_target_put() upon return.
839 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
841 sbp2_target_get(lu->tgt);
842 if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
843 sbp2_target_put(lu->tgt);
847 * Write retransmit retry values into the BUSY_TIMEOUT register.
848 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
849 * default retry_limit value is 0 (i.e. never retry transmission). We write a
850 * saner value after logging into the device.
851 * - The dual-phase retry protocol is optional to implement, and if not
852 * supported, writes to the dual-phase portion of the register will be
853 * ignored. We try to write the original 1394-1995 default here.
854 * - In the case of devices that are also SBP-3-compliant, all writes are
855 * ignored, as the register is read-only, but contains single-phase retry of
856 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
857 * write attempt is safe and yields more consistent behavior for all devices.
859 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
860 * and section 6.4 of the SBP-3 spec for further details.
862 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
864 struct fw_device *device = target_device(lu->tgt);
865 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
867 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
868 lu->tgt->node_id, lu->generation, device->max_speed,
869 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
872 static void sbp2_reconnect(struct work_struct *work);
874 static void sbp2_login(struct work_struct *work)
876 struct sbp2_logical_unit *lu =
877 container_of(work, struct sbp2_logical_unit, work.work);
878 struct sbp2_target *tgt = lu->tgt;
879 struct fw_device *device = target_device(tgt);
880 struct Scsi_Host *shost;
881 struct scsi_device *sdev;
882 struct sbp2_login_response response;
883 int generation, node_id, local_node_id;
885 if (fw_device_is_shutdown(device))
886 goto out;
888 generation = device->generation;
889 smp_rmb(); /* node IDs must not be older than generation */
890 node_id = device->node_id;
891 local_node_id = device->card->node_id;
893 /* If this is a re-login attempt, log out, or we might be rejected. */
894 if (lu->has_sdev)
895 sbp2_send_management_orb(lu, device->node_id, generation,
896 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
898 if (sbp2_send_management_orb(lu, node_id, generation,
899 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
900 if (lu->retries++ < 5) {
901 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
902 } else {
903 fw_error("%s: failed to login to LUN %04x\n",
904 tgt->bus_id, lu->lun);
905 /* Let any waiting I/O fail from now on. */
906 sbp2_unblock(lu->tgt);
908 goto out;
911 tgt->node_id = node_id;
912 tgt->address_high = local_node_id << 16;
913 smp_wmb(); /* node IDs must not be older than generation */
914 lu->generation = generation;
916 lu->command_block_agent_address =
917 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
918 << 32) | be32_to_cpu(response.command_block_agent.low);
919 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
921 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
922 tgt->bus_id, lu->lun, lu->retries);
924 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
925 sbp2_set_busy_timeout(lu);
927 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
928 sbp2_agent_reset(lu);
930 /* This was a re-login. */
931 if (lu->has_sdev) {
932 sbp2_cancel_orbs(lu);
933 sbp2_conditionally_unblock(lu);
934 goto out;
937 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
938 ssleep(SBP2_INQUIRY_DELAY);
940 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
941 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
943 * FIXME: We are unable to perform reconnects while in sbp2_login().
944 * Therefore __scsi_add_device() will get into trouble if a bus reset
945 * happens in parallel. It will either fail or leave us with an
946 * unusable sdev. As a workaround we check for this and retry the
947 * whole login and SCSI probing.
950 /* Reported error during __scsi_add_device() */
951 if (IS_ERR(sdev))
952 goto out_logout_login;
954 /* Unreported error during __scsi_add_device() */
955 smp_rmb(); /* get current card generation */
956 if (generation != device->card->generation) {
957 scsi_remove_device(sdev);
958 scsi_device_put(sdev);
959 goto out_logout_login;
962 /* No error during __scsi_add_device() */
963 lu->has_sdev = true;
964 scsi_device_put(sdev);
965 sbp2_allow_block(lu);
966 goto out;
968 out_logout_login:
969 smp_rmb(); /* generation may have changed */
970 generation = device->generation;
971 smp_rmb(); /* node_id must not be older than generation */
973 sbp2_send_management_orb(lu, device->node_id, generation,
974 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
976 * If a bus reset happened, sbp2_update will have requeued
977 * lu->work already. Reset the work from reconnect to login.
979 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
980 out:
981 sbp2_target_put(tgt);
984 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
986 struct sbp2_logical_unit *lu;
988 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
989 if (!lu)
990 return -ENOMEM;
992 lu->address_handler.length = 0x100;
993 lu->address_handler.address_callback = sbp2_status_write;
994 lu->address_handler.callback_data = lu;
996 if (fw_core_add_address_handler(&lu->address_handler,
997 &fw_high_memory_region) < 0) {
998 kfree(lu);
999 return -ENOMEM;
1002 lu->tgt = tgt;
1003 lu->lun = lun_entry & 0xffff;
1004 lu->login_id = INVALID_LOGIN_ID;
1005 lu->retries = 0;
1006 lu->has_sdev = false;
1007 lu->blocked = false;
1008 ++tgt->dont_block;
1009 INIT_LIST_HEAD(&lu->orb_list);
1010 INIT_DELAYED_WORK(&lu->work, sbp2_login);
1012 list_add_tail(&lu->link, &tgt->lu_list);
1013 return 0;
1016 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1017 const u32 *directory)
1019 struct fw_csr_iterator ci;
1020 int key, value;
1022 fw_csr_iterator_init(&ci, directory);
1023 while (fw_csr_iterator_next(&ci, &key, &value))
1024 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1025 sbp2_add_logical_unit(tgt, value) < 0)
1026 return -ENOMEM;
1027 return 0;
1030 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1031 u32 *model, u32 *firmware_revision)
1033 struct fw_csr_iterator ci;
1034 int key, value;
1036 fw_csr_iterator_init(&ci, directory);
1037 while (fw_csr_iterator_next(&ci, &key, &value)) {
1038 switch (key) {
1040 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1041 tgt->management_agent_address =
1042 CSR_REGISTER_BASE + 4 * value;
1043 break;
1045 case CSR_DIRECTORY_ID:
1046 tgt->directory_id = value;
1047 break;
1049 case CSR_MODEL:
1050 *model = value;
1051 break;
1053 case SBP2_CSR_FIRMWARE_REVISION:
1054 *firmware_revision = value;
1055 break;
1057 case SBP2_CSR_UNIT_CHARACTERISTICS:
1058 /* the timeout value is stored in 500ms units */
1059 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1060 break;
1062 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1063 if (sbp2_add_logical_unit(tgt, value) < 0)
1064 return -ENOMEM;
1065 break;
1067 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1068 /* Adjust for the increment in the iterator */
1069 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1070 return -ENOMEM;
1071 break;
1074 return 0;
1078 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1079 * provided in the config rom. Most devices do provide a value, which
1080 * we'll use for login management orbs, but with some sane limits.
1082 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1084 unsigned int timeout = tgt->mgt_orb_timeout;
1086 if (timeout > 40000)
1087 fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
1088 tgt->bus_id, timeout / 1000);
1090 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1093 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1094 u32 firmware_revision)
1096 int i;
1097 unsigned int w = sbp2_param_workarounds;
1099 if (w)
1100 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1101 "if you need the workarounds parameter for %s\n",
1102 tgt->bus_id);
1104 if (w & SBP2_WORKAROUND_OVERRIDE)
1105 goto out;
1107 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1109 if (sbp2_workarounds_table[i].firmware_revision !=
1110 (firmware_revision & 0xffffff00))
1111 continue;
1113 if (sbp2_workarounds_table[i].model != model &&
1114 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1115 continue;
1117 w |= sbp2_workarounds_table[i].workarounds;
1118 break;
1120 out:
1121 if (w)
1122 fw_notify("Workarounds for %s: 0x%x "
1123 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1124 tgt->bus_id, w, firmware_revision, model);
1125 tgt->workarounds = w;
1128 static struct scsi_host_template scsi_driver_template;
1130 static int sbp2_probe(struct device *dev)
1132 struct fw_unit *unit = fw_unit(dev);
1133 struct fw_device *device = fw_parent_device(unit);
1134 struct sbp2_target *tgt;
1135 struct sbp2_logical_unit *lu;
1136 struct Scsi_Host *shost;
1137 u32 model, firmware_revision;
1139 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1140 BUG_ON(dma_set_max_seg_size(device->card->device,
1141 SBP2_MAX_SEG_SIZE));
1143 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1144 if (shost == NULL)
1145 return -ENOMEM;
1147 tgt = (struct sbp2_target *)shost->hostdata;
1148 dev_set_drvdata(&unit->device, tgt);
1149 tgt->unit = unit;
1150 kref_init(&tgt->kref);
1151 INIT_LIST_HEAD(&tgt->lu_list);
1152 tgt->bus_id = dev_name(&unit->device);
1153 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1155 if (fw_device_enable_phys_dma(device) < 0)
1156 goto fail_shost_put;
1158 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1160 if (scsi_add_host(shost, &unit->device) < 0)
1161 goto fail_shost_put;
1163 fw_device_get(device);
1164 fw_unit_get(unit);
1166 /* implicit directory ID */
1167 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1168 + CSR_CONFIG_ROM) & 0xffffff;
1170 firmware_revision = SBP2_ROM_VALUE_MISSING;
1171 model = SBP2_ROM_VALUE_MISSING;
1173 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1174 &firmware_revision) < 0)
1175 goto fail_tgt_put;
1177 sbp2_clamp_management_orb_timeout(tgt);
1178 sbp2_init_workarounds(tgt, model, firmware_revision);
1181 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1182 * and so on up to 4096 bytes. The SBP-2 max_payload field
1183 * specifies the max payload size as 2 ^ (max_payload + 2), so
1184 * if we set this to max_speed + 7, we get the right value.
1186 tgt->max_payload = min(device->max_speed + 7, 10U);
1187 tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1189 /* Do the login in a workqueue so we can easily reschedule retries. */
1190 list_for_each_entry(lu, &tgt->lu_list, link)
1191 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1192 return 0;
1194 fail_tgt_put:
1195 sbp2_target_put(tgt);
1196 return -ENOMEM;
1198 fail_shost_put:
1199 scsi_host_put(shost);
1200 return -ENOMEM;
1203 static int sbp2_remove(struct device *dev)
1205 struct fw_unit *unit = fw_unit(dev);
1206 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1208 sbp2_target_put(tgt);
1209 return 0;
1212 static void sbp2_reconnect(struct work_struct *work)
1214 struct sbp2_logical_unit *lu =
1215 container_of(work, struct sbp2_logical_unit, work.work);
1216 struct sbp2_target *tgt = lu->tgt;
1217 struct fw_device *device = target_device(tgt);
1218 int generation, node_id, local_node_id;
1220 if (fw_device_is_shutdown(device))
1221 goto out;
1223 generation = device->generation;
1224 smp_rmb(); /* node IDs must not be older than generation */
1225 node_id = device->node_id;
1226 local_node_id = device->card->node_id;
1228 if (sbp2_send_management_orb(lu, node_id, generation,
1229 SBP2_RECONNECT_REQUEST,
1230 lu->login_id, NULL) < 0) {
1232 * If reconnect was impossible even though we are in the
1233 * current generation, fall back and try to log in again.
1235 * We could check for "Function rejected" status, but
1236 * looking at the bus generation as simpler and more general.
1238 smp_rmb(); /* get current card generation */
1239 if (generation == device->card->generation ||
1240 lu->retries++ >= 5) {
1241 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1242 lu->retries = 0;
1243 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1245 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1246 goto out;
1249 tgt->node_id = node_id;
1250 tgt->address_high = local_node_id << 16;
1251 smp_wmb(); /* node IDs must not be older than generation */
1252 lu->generation = generation;
1254 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1255 tgt->bus_id, lu->lun, lu->retries);
1257 sbp2_agent_reset(lu);
1258 sbp2_cancel_orbs(lu);
1259 sbp2_conditionally_unblock(lu);
1260 out:
1261 sbp2_target_put(tgt);
1264 static void sbp2_update(struct fw_unit *unit)
1266 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1267 struct sbp2_logical_unit *lu;
1269 fw_device_enable_phys_dma(fw_parent_device(unit));
1272 * Fw-core serializes sbp2_update() against sbp2_remove().
1273 * Iteration over tgt->lu_list is therefore safe here.
1275 list_for_each_entry(lu, &tgt->lu_list, link) {
1276 sbp2_conditionally_block(lu);
1277 lu->retries = 0;
1278 sbp2_queue_work(lu, 0);
1282 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1283 #define SBP2_SW_VERSION_ENTRY 0x00010483
1285 static const struct ieee1394_device_id sbp2_id_table[] = {
1287 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1288 IEEE1394_MATCH_VERSION,
1289 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1290 .version = SBP2_SW_VERSION_ENTRY,
1295 static struct fw_driver sbp2_driver = {
1296 .driver = {
1297 .owner = THIS_MODULE,
1298 .name = sbp2_driver_name,
1299 .bus = &fw_bus_type,
1300 .probe = sbp2_probe,
1301 .remove = sbp2_remove,
1303 .update = sbp2_update,
1304 .id_table = sbp2_id_table,
1307 static void sbp2_unmap_scatterlist(struct device *card_device,
1308 struct sbp2_command_orb *orb)
1310 if (scsi_sg_count(orb->cmd))
1311 dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1312 scsi_sg_count(orb->cmd),
1313 orb->cmd->sc_data_direction);
1315 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1316 dma_unmap_single(card_device, orb->page_table_bus,
1317 sizeof(orb->page_table), DMA_TO_DEVICE);
1320 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1322 int sam_status;
1324 sense_data[0] = 0x70;
1325 sense_data[1] = 0x0;
1326 sense_data[2] = sbp2_status[1];
1327 sense_data[3] = sbp2_status[4];
1328 sense_data[4] = sbp2_status[5];
1329 sense_data[5] = sbp2_status[6];
1330 sense_data[6] = sbp2_status[7];
1331 sense_data[7] = 10;
1332 sense_data[8] = sbp2_status[8];
1333 sense_data[9] = sbp2_status[9];
1334 sense_data[10] = sbp2_status[10];
1335 sense_data[11] = sbp2_status[11];
1336 sense_data[12] = sbp2_status[2];
1337 sense_data[13] = sbp2_status[3];
1338 sense_data[14] = sbp2_status[12];
1339 sense_data[15] = sbp2_status[13];
1341 sam_status = sbp2_status[0] & 0x3f;
1343 switch (sam_status) {
1344 case SAM_STAT_GOOD:
1345 case SAM_STAT_CHECK_CONDITION:
1346 case SAM_STAT_CONDITION_MET:
1347 case SAM_STAT_BUSY:
1348 case SAM_STAT_RESERVATION_CONFLICT:
1349 case SAM_STAT_COMMAND_TERMINATED:
1350 return DID_OK << 16 | sam_status;
1352 default:
1353 return DID_ERROR << 16;
1357 static void complete_command_orb(struct sbp2_orb *base_orb,
1358 struct sbp2_status *status)
1360 struct sbp2_command_orb *orb =
1361 container_of(base_orb, struct sbp2_command_orb, base);
1362 struct fw_device *device = target_device(orb->lu->tgt);
1363 int result;
1365 if (status != NULL) {
1366 if (STATUS_GET_DEAD(*status))
1367 sbp2_agent_reset_no_wait(orb->lu);
1369 switch (STATUS_GET_RESPONSE(*status)) {
1370 case SBP2_STATUS_REQUEST_COMPLETE:
1371 result = DID_OK << 16;
1372 break;
1373 case SBP2_STATUS_TRANSPORT_FAILURE:
1374 result = DID_BUS_BUSY << 16;
1375 break;
1376 case SBP2_STATUS_ILLEGAL_REQUEST:
1377 case SBP2_STATUS_VENDOR_DEPENDENT:
1378 default:
1379 result = DID_ERROR << 16;
1380 break;
1383 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1384 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1385 orb->cmd->sense_buffer);
1386 } else {
1388 * If the orb completes with status == NULL, something
1389 * went wrong, typically a bus reset happened mid-orb
1390 * or when sending the write (less likely).
1392 result = DID_BUS_BUSY << 16;
1393 sbp2_conditionally_block(orb->lu);
1396 dma_unmap_single(device->card->device, orb->base.request_bus,
1397 sizeof(orb->request), DMA_TO_DEVICE);
1398 sbp2_unmap_scatterlist(device->card->device, orb);
1400 orb->cmd->result = result;
1401 orb->done(orb->cmd);
1404 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1405 struct fw_device *device, struct sbp2_logical_unit *lu)
1407 struct scatterlist *sg = scsi_sglist(orb->cmd);
1408 int i, n;
1410 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1411 orb->cmd->sc_data_direction);
1412 if (n == 0)
1413 goto fail;
1416 * Handle the special case where there is only one element in
1417 * the scatter list by converting it to an immediate block
1418 * request. This is also a workaround for broken devices such
1419 * as the second generation iPod which doesn't support page
1420 * tables.
1422 if (n == 1) {
1423 orb->request.data_descriptor.high =
1424 cpu_to_be32(lu->tgt->address_high);
1425 orb->request.data_descriptor.low =
1426 cpu_to_be32(sg_dma_address(sg));
1427 orb->request.misc |=
1428 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1429 return 0;
1432 for_each_sg(sg, sg, n, i) {
1433 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1434 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1437 orb->page_table_bus =
1438 dma_map_single(device->card->device, orb->page_table,
1439 sizeof(orb->page_table), DMA_TO_DEVICE);
1440 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1441 goto fail_page_table;
1444 * The data_descriptor pointer is the one case where we need
1445 * to fill in the node ID part of the address. All other
1446 * pointers assume that the data referenced reside on the
1447 * initiator (i.e. us), but data_descriptor can refer to data
1448 * on other nodes so we need to put our ID in descriptor.high.
1450 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1451 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1452 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1453 COMMAND_ORB_DATA_SIZE(n));
1455 return 0;
1457 fail_page_table:
1458 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1459 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1460 fail:
1461 return -ENOMEM;
1464 /* SCSI stack integration */
1466 static int sbp2_scsi_queuecommand_lck(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1468 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1469 struct fw_device *device = target_device(lu->tgt);
1470 struct sbp2_command_orb *orb;
1471 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1474 * Bidirectional commands are not yet implemented, and unknown
1475 * transfer direction not handled.
1477 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1478 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1479 cmd->result = DID_ERROR << 16;
1480 done(cmd);
1481 return 0;
1484 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1485 if (orb == NULL) {
1486 fw_notify("failed to alloc orb\n");
1487 return SCSI_MLQUEUE_HOST_BUSY;
1490 /* Initialize rcode to something not RCODE_COMPLETE. */
1491 orb->base.rcode = -1;
1492 kref_init(&orb->base.kref);
1494 orb->lu = lu;
1495 orb->done = done;
1496 orb->cmd = cmd;
1498 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1499 orb->request.misc = cpu_to_be32(
1500 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1501 COMMAND_ORB_SPEED(device->max_speed) |
1502 COMMAND_ORB_NOTIFY);
1504 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1505 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1507 generation = device->generation;
1508 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1510 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1511 goto out;
1513 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1515 orb->base.callback = complete_command_orb;
1516 orb->base.request_bus =
1517 dma_map_single(device->card->device, &orb->request,
1518 sizeof(orb->request), DMA_TO_DEVICE);
1519 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1520 sbp2_unmap_scatterlist(device->card->device, orb);
1521 goto out;
1524 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1525 lu->command_block_agent_address + SBP2_ORB_POINTER);
1526 retval = 0;
1527 out:
1528 kref_put(&orb->base.kref, free_orb);
1529 return retval;
1532 static DEF_SCSI_QCMD(sbp2_scsi_queuecommand)
1534 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1536 struct sbp2_logical_unit *lu = sdev->hostdata;
1538 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1539 if (!lu)
1540 return -ENOSYS;
1542 sdev->allow_restart = 1;
1544 /* SBP-2 requires quadlet alignment of the data buffers. */
1545 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1547 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1548 sdev->inquiry_len = 36;
1550 return 0;
1553 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1555 struct sbp2_logical_unit *lu = sdev->hostdata;
1557 sdev->use_10_for_rw = 1;
1559 if (sbp2_param_exclusive_login)
1560 sdev->manage_start_stop = 1;
1562 if (sdev->type == TYPE_ROM)
1563 sdev->use_10_for_ms = 1;
1565 if (sdev->type == TYPE_DISK &&
1566 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1567 sdev->skip_ms_page_8 = 1;
1569 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1570 sdev->fix_capacity = 1;
1572 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1573 sdev->start_stop_pwr_cond = 1;
1575 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1576 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1578 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1580 return 0;
1584 * Called by scsi stack when something has really gone wrong. Usually
1585 * called when a command has timed-out for some reason.
1587 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1589 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1591 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1592 sbp2_agent_reset(lu);
1593 sbp2_cancel_orbs(lu);
1595 return SUCCESS;
1599 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1600 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1602 * This is the concatenation of target port identifier and logical unit
1603 * identifier as per SAM-2...SAM-4 annex A.
1605 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1606 struct device_attribute *attr, char *buf)
1608 struct scsi_device *sdev = to_scsi_device(dev);
1609 struct sbp2_logical_unit *lu;
1611 if (!sdev)
1612 return 0;
1614 lu = sdev->hostdata;
1616 return sprintf(buf, "%016llx:%06x:%04x\n",
1617 (unsigned long long)lu->tgt->guid,
1618 lu->tgt->directory_id, lu->lun);
1621 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1623 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1624 &dev_attr_ieee1394_id,
1625 NULL
1628 static struct scsi_host_template scsi_driver_template = {
1629 .module = THIS_MODULE,
1630 .name = "SBP-2 IEEE-1394",
1631 .proc_name = sbp2_driver_name,
1632 .queuecommand = sbp2_scsi_queuecommand,
1633 .slave_alloc = sbp2_scsi_slave_alloc,
1634 .slave_configure = sbp2_scsi_slave_configure,
1635 .eh_abort_handler = sbp2_scsi_abort,
1636 .this_id = -1,
1637 .sg_tablesize = SG_ALL,
1638 .use_clustering = ENABLE_CLUSTERING,
1639 .cmd_per_lun = 1,
1640 .can_queue = 1,
1641 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1644 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1645 MODULE_DESCRIPTION("SCSI over IEEE1394");
1646 MODULE_LICENSE("GPL");
1647 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1649 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1650 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1651 MODULE_ALIAS("sbp2");
1652 #endif
1654 static int __init sbp2_init(void)
1656 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1657 if (!sbp2_wq)
1658 return -ENOMEM;
1660 return driver_register(&sbp2_driver.driver);
1663 static void __exit sbp2_cleanup(void)
1665 driver_unregister(&sbp2_driver.driver);
1666 destroy_workqueue(sbp2_wq);
1669 module_init(sbp2_init);
1670 module_exit(sbp2_cleanup);