[netdrvr] irq handler minor cleanups in several drivers
[linux-2.6/x86.git] / drivers / net / wireless / ipw2200.c
blobbe31304dfad52ca5c7b024a93a7dc2b5e08638e9
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
33 #include "ipw2200.h"
34 #include <linux/version.h>
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99 'a', 'b', 'g', '?'
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
105 #endif
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117 QOS_TX3_CW_MIN_OFDM},
118 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119 QOS_TX3_CW_MAX_OFDM},
120 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128 QOS_TX3_CW_MIN_CCK},
129 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130 QOS_TX3_CW_MAX_CCK},
131 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134 QOS_TX3_TXOP_LIMIT_CCK}
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139 DEF_TX3_CW_MIN_OFDM},
140 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141 DEF_TX3_CW_MAX_OFDM},
142 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150 DEF_TX3_CW_MIN_CCK},
151 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152 DEF_TX3_CW_MAX_CCK},
153 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156 DEF_TX3_TXOP_LIMIT_CCK}
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
161 static int from_priority_to_tx_queue[] = {
162 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169 *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171 *qos_param);
172 #endif /* CONFIG_IPW2200_QOS */
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182 int len, int sync);
184 static void ipw_tx_queue_free(struct ipw_priv *);
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
199 static int snprint_line(char *buf, size_t count,
200 const u8 * data, u32 len, u32 ofs)
202 int out, i, j, l;
203 char c;
205 out = snprintf(buf, count, "%08X", ofs);
207 for (l = 0, i = 0; i < 2; i++) {
208 out += snprintf(buf + out, count - out, " ");
209 for (j = 0; j < 8 && l < len; j++, l++)
210 out += snprintf(buf + out, count - out, "%02X ",
211 data[(i * 8 + j)]);
212 for (; j < 8; j++)
213 out += snprintf(buf + out, count - out, " ");
216 out += snprintf(buf + out, count - out, " ");
217 for (l = 0, i = 0; i < 2; i++) {
218 out += snprintf(buf + out, count - out, " ");
219 for (j = 0; j < 8 && l < len; j++, l++) {
220 c = data[(i * 8 + j)];
221 if (!isascii(c) || !isprint(c))
222 c = '.';
224 out += snprintf(buf + out, count - out, "%c", c);
227 for (; j < 8; j++)
228 out += snprintf(buf + out, count - out, " ");
231 return out;
234 static void printk_buf(int level, const u8 * data, u32 len)
236 char line[81];
237 u32 ofs = 0;
238 if (!(ipw_debug_level & level))
239 return;
241 while (len) {
242 snprint_line(line, sizeof(line), &data[ofs],
243 min(len, 16U), ofs);
244 printk(KERN_DEBUG "%s\n", line);
245 ofs += 16;
246 len -= min(len, 16U);
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
252 size_t out = size;
253 u32 ofs = 0;
254 int total = 0;
256 while (size && len) {
257 out = snprint_line(output, size, &data[ofs],
258 min_t(size_t, len, 16U), ofs);
260 ofs += 16;
261 output += out;
262 size -= out;
263 len -= min_t(size_t, len, 16U);
264 total += out;
266 return total;
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
281 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282 __LINE__, (u32) (b), (u32) (c));
283 _ipw_write_reg8(a, b, c);
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
290 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291 __LINE__, (u32) (b), (u32) (c));
292 _ipw_write_reg16(a, b, c);
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
299 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300 __LINE__, (u32) (b), (u32) (c));
301 _ipw_write_reg32(a, b, c);
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310 _ipw_write8(ipw, ofs, val)
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
374 _ipw_read_indirect(a, b, c, d);
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
420 u32 word;
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
430 u32 value;
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437 return value;
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443 int num)
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
447 u32 i;
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
451 if (num <= 0) {
452 return;
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461 aligned_addr += 4;
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
469 /* Read the last dword (or portion) byte by byte */
470 if (unlikely(num)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480 int num)
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
484 u32 i;
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
488 if (num <= 0) {
489 return;
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498 aligned_addr += 4;
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
506 /* Write the last dword (or portion) byte by byte */
507 if (unlikely(num)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517 int num)
519 memcpy_toio((priv->hw_base + addr), buf, num);
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
536 if (priv->status & STATUS_INT_ENABLED)
537 return;
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
544 if (!(priv->status & STATUS_INT_ENABLED))
545 return;
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
552 unsigned long flags;
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
561 unsigned long flags;
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
568 static char *ipw_error_desc(u32 val)
570 switch (val) {
571 case IPW_FW_ERROR_OK:
572 return "ERROR_OK";
573 case IPW_FW_ERROR_FAIL:
574 return "ERROR_FAIL";
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
580 return "BAD_PARAM";
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
588 return "ALLOC_FAIL";
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
592 return "DMA_STATUS";
593 case IPW_FW_ERROR_DINO_ERROR:
594 return "DINO_ERROR";
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
598 return "SYSASSERT";
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
601 default:
602 return "UNKNOWN_ERROR";
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
609 u32 i;
611 if (!error) {
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
614 return;
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
624 error->elem[i].time,
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
631 error->log[i].time,
632 error->log[i].data, error->log[i].event);
635 static inline int ipw_is_init(struct ipw_priv *priv)
637 return (priv->status & STATUS_INIT) ? 1 : 0;
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
642 u32 addr, field_info, field_len, field_count, total_len;
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
648 return -EINVAL;
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654 return -EINVAL;
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
660 * TABLE 0: Direct access to a table of 32 bit values
662 * This is a very simple table with the data directly
663 * read from the table
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
669 /* boundary check */
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
673 return -EINVAL;
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
680 return -EINVAL;
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
686 *len = sizeof(u32);
687 ord <<= 2;
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689 break;
691 case IPW_ORD_TABLE_1_MASK:
693 * TABLE 1: Indirect access to a table of 32 bit values
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
697 * also a u32)
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
703 /* boundary check */
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
706 return -EINVAL;
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
713 return -EINVAL;
716 *((u32 *) val) =
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718 *len = sizeof(u32);
719 break;
721 case IPW_ORD_TABLE_2_MASK:
723 * TABLE 2: Indirect access to a table of variable sized values
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
734 /* boundary check */
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
737 return -EINVAL;
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
745 field_info =
746 ipw_read_reg32(priv,
747 priv->table2_addr + (ord << 3) +
748 sizeof(u32));
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
759 *len = total_len;
760 return -EINVAL;
763 *len = total_len;
764 if (!total_len)
765 return 0;
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
771 break;
773 default:
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
775 return -EINVAL;
779 return 0;
782 static void ipw_init_ordinals(struct ipw_priv *priv)
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
805 static u32 ipw_register_toggle(u32 reg)
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
814 return reg;
818 * LED behavior:
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
830 static void ipw_led_link_on(struct ipw_priv *priv)
832 unsigned long flags;
833 u32 led;
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838 return;
840 spin_lock_irqsave(&priv->lock, flags);
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
848 led = ipw_register_toggle(led);
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
853 priv->status |= STATUS_LED_LINK_ON;
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
858 &priv->led_link_off,
859 LD_TIME_LINK_ON);
862 spin_unlock_irqrestore(&priv->lock, flags);
865 static void ipw_bg_led_link_on(struct work_struct *work)
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
874 static void ipw_led_link_off(struct ipw_priv *priv)
876 unsigned long flags;
877 u32 led;
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882 return;
884 spin_lock_irqsave(&priv->lock, flags);
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894 IPW_DEBUG_LED("Link LED Off\n");
896 priv->status &= ~STATUS_LED_LINK_ON;
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
903 LD_TIME_LINK_OFF);
907 spin_unlock_irqrestore(&priv->lock, flags);
910 static void ipw_bg_led_link_off(struct work_struct *work)
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
921 u32 led;
923 if (priv->config & CFG_NO_LED)
924 return;
926 if (priv->status & STATUS_RF_KILL_MASK)
927 return;
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
933 led = ipw_register_toggle(led);
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
938 IPW_DEBUG_LED("Activity LED On\n");
940 priv->status |= STATUS_LED_ACT_ON;
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944 LD_TIME_ACT_ON);
945 } else {
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949 LD_TIME_ACT_ON);
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
956 unsigned long flags;
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
961 #endif /* 0 */
963 static void ipw_led_activity_off(struct ipw_priv *priv)
965 unsigned long flags;
966 u32 led;
968 if (priv->config & CFG_NO_LED)
969 return;
971 spin_lock_irqsave(&priv->lock, flags);
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
977 led = ipw_register_toggle(led);
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
982 IPW_DEBUG_LED("Activity LED Off\n");
984 priv->status &= ~STATUS_LED_ACT_ON;
987 spin_unlock_irqrestore(&priv->lock, flags);
990 static void ipw_bg_led_activity_off(struct work_struct *work)
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
999 static void ipw_led_band_on(struct ipw_priv *priv)
1001 unsigned long flags;
1002 u32 led;
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007 return;
1009 spin_lock_irqsave(&priv->lock, flags);
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020 } else {
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1026 led = ipw_register_toggle(led);
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1031 spin_unlock_irqrestore(&priv->lock, flags);
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1036 unsigned long flags;
1037 u32 led;
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041 return;
1043 spin_lock_irqsave(&priv->lock, flags);
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1049 led = ipw_register_toggle(led);
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1054 spin_unlock_irqrestore(&priv->lock, flags);
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1059 ipw_led_link_on(priv);
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1083 static void ipw_led_init(struct ipw_priv *priv)
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1111 return;
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1117 break;
1119 default:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121 priv->nic_type);
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1123 break;
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1129 else
1130 ipw_led_link_off(priv);
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1149 * See the level definitions in ipw for details.
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157 size_t count)
1159 char *p = (char *)buf;
1160 u32 val;
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163 p++;
1164 if (p[0] == 'x' || p[0] == 'X')
1165 p++;
1166 val = simple_strtoul(p, &p, 16);
1167 } else
1168 val = simple_strtoul(p, &p, 10);
1169 if (p == buf)
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1172 else
1173 ipw_debug_level = val;
1175 return strnlen(buf, count);
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1190 u32 base;
1192 if (log_len) {
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1209 if (!error) {
1210 IPW_ERROR("Memory allocation for firmware error log "
1211 "failed.\n");
1212 return NULL;
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1222 ipw_capture_event_log(priv, log_len, error->log);
1224 if (elem_len)
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1228 return error;
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1236 u32 log_size;
1237 struct ipw_event *log;
1238 u32 len = 0, i;
1240 /* not using min() because of its strict type checking */
1241 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242 sizeof(*log) * log_len : PAGE_SIZE;
1243 log = kzalloc(log_size, GFP_KERNEL);
1244 if (!log) {
1245 IPW_ERROR("Unable to allocate memory for log\n");
1246 return 0;
1248 log_len = log_size / sizeof(*log);
1249 ipw_capture_event_log(priv, log_len, log);
1251 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252 for (i = 0; i < log_len; i++)
1253 len += snprintf(buf + len, PAGE_SIZE - len,
1254 "\n%08X%08X%08X",
1255 log[i].time, log[i].event, log[i].data);
1256 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1257 kfree(log);
1258 return len;
1261 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1263 static ssize_t show_error(struct device *d,
1264 struct device_attribute *attr, char *buf)
1266 struct ipw_priv *priv = dev_get_drvdata(d);
1267 u32 len = 0, i;
1268 if (!priv->error)
1269 return 0;
1270 len += snprintf(buf + len, PAGE_SIZE - len,
1271 "%08lX%08X%08X%08X",
1272 priv->error->jiffies,
1273 priv->error->status,
1274 priv->error->config, priv->error->elem_len);
1275 for (i = 0; i < priv->error->elem_len; i++)
1276 len += snprintf(buf + len, PAGE_SIZE - len,
1277 "\n%08X%08X%08X%08X%08X%08X%08X",
1278 priv->error->elem[i].time,
1279 priv->error->elem[i].desc,
1280 priv->error->elem[i].blink1,
1281 priv->error->elem[i].blink2,
1282 priv->error->elem[i].link1,
1283 priv->error->elem[i].link2,
1284 priv->error->elem[i].data);
1286 len += snprintf(buf + len, PAGE_SIZE - len,
1287 "\n%08X", priv->error->log_len);
1288 for (i = 0; i < priv->error->log_len; i++)
1289 len += snprintf(buf + len, PAGE_SIZE - len,
1290 "\n%08X%08X%08X",
1291 priv->error->log[i].time,
1292 priv->error->log[i].event,
1293 priv->error->log[i].data);
1294 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1295 return len;
1298 static ssize_t clear_error(struct device *d,
1299 struct device_attribute *attr,
1300 const char *buf, size_t count)
1302 struct ipw_priv *priv = dev_get_drvdata(d);
1304 kfree(priv->error);
1305 priv->error = NULL;
1306 return count;
1309 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1311 static ssize_t show_cmd_log(struct device *d,
1312 struct device_attribute *attr, char *buf)
1314 struct ipw_priv *priv = dev_get_drvdata(d);
1315 u32 len = 0, i;
1316 if (!priv->cmdlog)
1317 return 0;
1318 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320 i = (i + 1) % priv->cmdlog_len) {
1321 len +=
1322 snprintf(buf + len, PAGE_SIZE - len,
1323 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325 priv->cmdlog[i].cmd.len);
1326 len +=
1327 snprintk_buf(buf + len, PAGE_SIZE - len,
1328 (u8 *) priv->cmdlog[i].cmd.param,
1329 priv->cmdlog[i].cmd.len);
1330 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1332 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1333 return len;
1336 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1338 #ifdef CONFIG_IPW2200_PROMISCUOUS
1339 static void ipw_prom_free(struct ipw_priv *priv);
1340 static int ipw_prom_alloc(struct ipw_priv *priv);
1341 static ssize_t store_rtap_iface(struct device *d,
1342 struct device_attribute *attr,
1343 const char *buf, size_t count)
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 int rc = 0;
1348 if (count < 1)
1349 return -EINVAL;
1351 switch (buf[0]) {
1352 case '0':
1353 if (!rtap_iface)
1354 return count;
1356 if (netif_running(priv->prom_net_dev)) {
1357 IPW_WARNING("Interface is up. Cannot unregister.\n");
1358 return count;
1361 ipw_prom_free(priv);
1362 rtap_iface = 0;
1363 break;
1365 case '1':
1366 if (rtap_iface)
1367 return count;
1369 rc = ipw_prom_alloc(priv);
1370 if (!rc)
1371 rtap_iface = 1;
1372 break;
1374 default:
1375 return -EINVAL;
1378 if (rc) {
1379 IPW_ERROR("Failed to register promiscuous network "
1380 "device (error %d).\n", rc);
1383 return count;
1386 static ssize_t show_rtap_iface(struct device *d,
1387 struct device_attribute *attr,
1388 char *buf)
1390 struct ipw_priv *priv = dev_get_drvdata(d);
1391 if (rtap_iface)
1392 return sprintf(buf, "%s", priv->prom_net_dev->name);
1393 else {
1394 buf[0] = '-';
1395 buf[1] = '1';
1396 buf[2] = '\0';
1397 return 3;
1401 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1402 store_rtap_iface);
1404 static ssize_t store_rtap_filter(struct device *d,
1405 struct device_attribute *attr,
1406 const char *buf, size_t count)
1408 struct ipw_priv *priv = dev_get_drvdata(d);
1410 if (!priv->prom_priv) {
1411 IPW_ERROR("Attempting to set filter without "
1412 "rtap_iface enabled.\n");
1413 return -EPERM;
1416 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1418 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419 BIT_ARG16(priv->prom_priv->filter));
1421 return count;
1424 static ssize_t show_rtap_filter(struct device *d,
1425 struct device_attribute *attr,
1426 char *buf)
1428 struct ipw_priv *priv = dev_get_drvdata(d);
1429 return sprintf(buf, "0x%04X",
1430 priv->prom_priv ? priv->prom_priv->filter : 0);
1433 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1434 store_rtap_filter);
1435 #endif
1437 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1438 char *buf)
1440 struct ipw_priv *priv = dev_get_drvdata(d);
1441 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1444 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445 const char *buf, size_t count)
1447 struct ipw_priv *priv = dev_get_drvdata(d);
1448 struct net_device *dev = priv->net_dev;
1449 char buffer[] = "00000000";
1450 unsigned long len =
1451 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1452 unsigned long val;
1453 char *p = buffer;
1455 IPW_DEBUG_INFO("enter\n");
1457 strncpy(buffer, buf, len);
1458 buffer[len] = 0;
1460 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1461 p++;
1462 if (p[0] == 'x' || p[0] == 'X')
1463 p++;
1464 val = simple_strtoul(p, &p, 16);
1465 } else
1466 val = simple_strtoul(p, &p, 10);
1467 if (p == buffer) {
1468 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469 } else {
1470 priv->ieee->scan_age = val;
1471 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1474 IPW_DEBUG_INFO("exit\n");
1475 return len;
1478 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1480 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1481 char *buf)
1483 struct ipw_priv *priv = dev_get_drvdata(d);
1484 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1487 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488 const char *buf, size_t count)
1490 struct ipw_priv *priv = dev_get_drvdata(d);
1492 IPW_DEBUG_INFO("enter\n");
1494 if (count == 0)
1495 return 0;
1497 if (*buf == 0) {
1498 IPW_DEBUG_LED("Disabling LED control.\n");
1499 priv->config |= CFG_NO_LED;
1500 ipw_led_shutdown(priv);
1501 } else {
1502 IPW_DEBUG_LED("Enabling LED control.\n");
1503 priv->config &= ~CFG_NO_LED;
1504 ipw_led_init(priv);
1507 IPW_DEBUG_INFO("exit\n");
1508 return count;
1511 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1513 static ssize_t show_status(struct device *d,
1514 struct device_attribute *attr, char *buf)
1516 struct ipw_priv *p = d->driver_data;
1517 return sprintf(buf, "0x%08x\n", (int)p->status);
1520 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1522 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1523 char *buf)
1525 struct ipw_priv *p = d->driver_data;
1526 return sprintf(buf, "0x%08x\n", (int)p->config);
1529 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1531 static ssize_t show_nic_type(struct device *d,
1532 struct device_attribute *attr, char *buf)
1534 struct ipw_priv *priv = d->driver_data;
1535 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1538 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1540 static ssize_t show_ucode_version(struct device *d,
1541 struct device_attribute *attr, char *buf)
1543 u32 len = sizeof(u32), tmp = 0;
1544 struct ipw_priv *p = d->driver_data;
1546 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547 return 0;
1549 return sprintf(buf, "0x%08x\n", tmp);
1552 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1554 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1555 char *buf)
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561 return 0;
1563 return sprintf(buf, "0x%08x\n", tmp);
1566 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1569 * Add a device attribute to view/control the delay between eeprom
1570 * operations.
1572 static ssize_t show_eeprom_delay(struct device *d,
1573 struct device_attribute *attr, char *buf)
1575 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576 return sprintf(buf, "%i\n", n);
1578 static ssize_t store_eeprom_delay(struct device *d,
1579 struct device_attribute *attr,
1580 const char *buf, size_t count)
1582 struct ipw_priv *p = d->driver_data;
1583 sscanf(buf, "%i", &p->eeprom_delay);
1584 return strnlen(buf, count);
1587 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588 show_eeprom_delay, store_eeprom_delay);
1590 static ssize_t show_command_event_reg(struct device *d,
1591 struct device_attribute *attr, char *buf)
1593 u32 reg = 0;
1594 struct ipw_priv *p = d->driver_data;
1596 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 return sprintf(buf, "0x%08x\n", reg);
1599 static ssize_t store_command_event_reg(struct device *d,
1600 struct device_attribute *attr,
1601 const char *buf, size_t count)
1603 u32 reg;
1604 struct ipw_priv *p = d->driver_data;
1606 sscanf(buf, "%x", &reg);
1607 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 return strnlen(buf, count);
1611 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612 show_command_event_reg, store_command_event_reg);
1614 static ssize_t show_mem_gpio_reg(struct device *d,
1615 struct device_attribute *attr, char *buf)
1617 u32 reg = 0;
1618 struct ipw_priv *p = d->driver_data;
1620 reg = ipw_read_reg32(p, 0x301100);
1621 return sprintf(buf, "0x%08x\n", reg);
1623 static ssize_t store_mem_gpio_reg(struct device *d,
1624 struct device_attribute *attr,
1625 const char *buf, size_t count)
1627 u32 reg;
1628 struct ipw_priv *p = d->driver_data;
1630 sscanf(buf, "%x", &reg);
1631 ipw_write_reg32(p, 0x301100, reg);
1632 return strnlen(buf, count);
1635 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636 show_mem_gpio_reg, store_mem_gpio_reg);
1638 static ssize_t show_indirect_dword(struct device *d,
1639 struct device_attribute *attr, char *buf)
1641 u32 reg = 0;
1642 struct ipw_priv *priv = d->driver_data;
1644 if (priv->status & STATUS_INDIRECT_DWORD)
1645 reg = ipw_read_reg32(priv, priv->indirect_dword);
1646 else
1647 reg = 0;
1649 return sprintf(buf, "0x%08x\n", reg);
1651 static ssize_t store_indirect_dword(struct device *d,
1652 struct device_attribute *attr,
1653 const char *buf, size_t count)
1655 struct ipw_priv *priv = d->driver_data;
1657 sscanf(buf, "%x", &priv->indirect_dword);
1658 priv->status |= STATUS_INDIRECT_DWORD;
1659 return strnlen(buf, count);
1662 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663 show_indirect_dword, store_indirect_dword);
1665 static ssize_t show_indirect_byte(struct device *d,
1666 struct device_attribute *attr, char *buf)
1668 u8 reg = 0;
1669 struct ipw_priv *priv = d->driver_data;
1671 if (priv->status & STATUS_INDIRECT_BYTE)
1672 reg = ipw_read_reg8(priv, priv->indirect_byte);
1673 else
1674 reg = 0;
1676 return sprintf(buf, "0x%02x\n", reg);
1678 static ssize_t store_indirect_byte(struct device *d,
1679 struct device_attribute *attr,
1680 const char *buf, size_t count)
1682 struct ipw_priv *priv = d->driver_data;
1684 sscanf(buf, "%x", &priv->indirect_byte);
1685 priv->status |= STATUS_INDIRECT_BYTE;
1686 return strnlen(buf, count);
1689 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690 show_indirect_byte, store_indirect_byte);
1692 static ssize_t show_direct_dword(struct device *d,
1693 struct device_attribute *attr, char *buf)
1695 u32 reg = 0;
1696 struct ipw_priv *priv = d->driver_data;
1698 if (priv->status & STATUS_DIRECT_DWORD)
1699 reg = ipw_read32(priv, priv->direct_dword);
1700 else
1701 reg = 0;
1703 return sprintf(buf, "0x%08x\n", reg);
1705 static ssize_t store_direct_dword(struct device *d,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1709 struct ipw_priv *priv = d->driver_data;
1711 sscanf(buf, "%x", &priv->direct_dword);
1712 priv->status |= STATUS_DIRECT_DWORD;
1713 return strnlen(buf, count);
1716 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717 show_direct_dword, store_direct_dword);
1719 static int rf_kill_active(struct ipw_priv *priv)
1721 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722 priv->status |= STATUS_RF_KILL_HW;
1723 else
1724 priv->status &= ~STATUS_RF_KILL_HW;
1726 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1729 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1730 char *buf)
1732 /* 0 - RF kill not enabled
1733 1 - SW based RF kill active (sysfs)
1734 2 - HW based RF kill active
1735 3 - Both HW and SW baed RF kill active */
1736 struct ipw_priv *priv = d->driver_data;
1737 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738 (rf_kill_active(priv) ? 0x2 : 0x0);
1739 return sprintf(buf, "%i\n", val);
1742 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1744 if ((disable_radio ? 1 : 0) ==
1745 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1746 return 0;
1748 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1749 disable_radio ? "OFF" : "ON");
1751 if (disable_radio) {
1752 priv->status |= STATUS_RF_KILL_SW;
1754 if (priv->workqueue) {
1755 cancel_delayed_work(&priv->request_scan);
1756 cancel_delayed_work(&priv->scan_event);
1758 queue_work(priv->workqueue, &priv->down);
1759 } else {
1760 priv->status &= ~STATUS_RF_KILL_SW;
1761 if (rf_kill_active(priv)) {
1762 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1763 "disabled by HW switch\n");
1764 /* Make sure the RF_KILL check timer is running */
1765 cancel_delayed_work(&priv->rf_kill);
1766 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1767 round_jiffies_relative(2 * HZ));
1768 } else
1769 queue_work(priv->workqueue, &priv->up);
1772 return 1;
1775 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1776 const char *buf, size_t count)
1778 struct ipw_priv *priv = d->driver_data;
1780 ipw_radio_kill_sw(priv, buf[0] == '1');
1782 return count;
1785 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1787 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1788 char *buf)
1790 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1791 int pos = 0, len = 0;
1792 if (priv->config & CFG_SPEED_SCAN) {
1793 while (priv->speed_scan[pos] != 0)
1794 len += sprintf(&buf[len], "%d ",
1795 priv->speed_scan[pos++]);
1796 return len + sprintf(&buf[len], "\n");
1799 return sprintf(buf, "0\n");
1802 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1803 const char *buf, size_t count)
1805 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1806 int channel, pos = 0;
1807 const char *p = buf;
1809 /* list of space separated channels to scan, optionally ending with 0 */
1810 while ((channel = simple_strtol(p, NULL, 0))) {
1811 if (pos == MAX_SPEED_SCAN - 1) {
1812 priv->speed_scan[pos] = 0;
1813 break;
1816 if (ieee80211_is_valid_channel(priv->ieee, channel))
1817 priv->speed_scan[pos++] = channel;
1818 else
1819 IPW_WARNING("Skipping invalid channel request: %d\n",
1820 channel);
1821 p = strchr(p, ' ');
1822 if (!p)
1823 break;
1824 while (*p == ' ' || *p == '\t')
1825 p++;
1828 if (pos == 0)
1829 priv->config &= ~CFG_SPEED_SCAN;
1830 else {
1831 priv->speed_scan_pos = 0;
1832 priv->config |= CFG_SPEED_SCAN;
1835 return count;
1838 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1839 store_speed_scan);
1841 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1842 char *buf)
1844 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1845 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1848 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1849 const char *buf, size_t count)
1851 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1852 if (buf[0] == '1')
1853 priv->config |= CFG_NET_STATS;
1854 else
1855 priv->config &= ~CFG_NET_STATS;
1857 return count;
1860 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1861 show_net_stats, store_net_stats);
1863 static ssize_t show_channels(struct device *d,
1864 struct device_attribute *attr,
1865 char *buf)
1867 struct ipw_priv *priv = dev_get_drvdata(d);
1868 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1869 int len = 0, i;
1871 len = sprintf(&buf[len],
1872 "Displaying %d channels in 2.4Ghz band "
1873 "(802.11bg):\n", geo->bg_channels);
1875 for (i = 0; i < geo->bg_channels; i++) {
1876 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1877 geo->bg[i].channel,
1878 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1879 " (radar spectrum)" : "",
1880 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1881 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1882 ? "" : ", IBSS",
1883 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1884 "passive only" : "active/passive",
1885 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1886 "B" : "B/G");
1889 len += sprintf(&buf[len],
1890 "Displaying %d channels in 5.2Ghz band "
1891 "(802.11a):\n", geo->a_channels);
1892 for (i = 0; i < geo->a_channels; i++) {
1893 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1894 geo->a[i].channel,
1895 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1896 " (radar spectrum)" : "",
1897 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1898 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1899 ? "" : ", IBSS",
1900 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1901 "passive only" : "active/passive");
1904 return len;
1907 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1909 static void notify_wx_assoc_event(struct ipw_priv *priv)
1911 union iwreq_data wrqu;
1912 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1913 if (priv->status & STATUS_ASSOCIATED)
1914 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1915 else
1916 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1917 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1920 static void ipw_irq_tasklet(struct ipw_priv *priv)
1922 u32 inta, inta_mask, handled = 0;
1923 unsigned long flags;
1924 int rc = 0;
1926 spin_lock_irqsave(&priv->irq_lock, flags);
1928 inta = ipw_read32(priv, IPW_INTA_RW);
1929 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1930 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1932 /* Add any cached INTA values that need to be handled */
1933 inta |= priv->isr_inta;
1935 spin_unlock_irqrestore(&priv->irq_lock, flags);
1937 spin_lock_irqsave(&priv->lock, flags);
1939 /* handle all the justifications for the interrupt */
1940 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1941 ipw_rx(priv);
1942 handled |= IPW_INTA_BIT_RX_TRANSFER;
1945 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1946 IPW_DEBUG_HC("Command completed.\n");
1947 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1948 priv->status &= ~STATUS_HCMD_ACTIVE;
1949 wake_up_interruptible(&priv->wait_command_queue);
1950 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1953 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1954 IPW_DEBUG_TX("TX_QUEUE_1\n");
1955 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1956 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1959 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1960 IPW_DEBUG_TX("TX_QUEUE_2\n");
1961 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1962 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1965 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1966 IPW_DEBUG_TX("TX_QUEUE_3\n");
1967 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1968 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1971 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1972 IPW_DEBUG_TX("TX_QUEUE_4\n");
1973 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1974 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1977 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1978 IPW_WARNING("STATUS_CHANGE\n");
1979 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1982 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1983 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1984 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1987 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1988 IPW_WARNING("HOST_CMD_DONE\n");
1989 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1992 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1993 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1994 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1997 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1998 IPW_WARNING("PHY_OFF_DONE\n");
1999 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2002 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2003 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2004 priv->status |= STATUS_RF_KILL_HW;
2005 wake_up_interruptible(&priv->wait_command_queue);
2006 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2007 cancel_delayed_work(&priv->request_scan);
2008 cancel_delayed_work(&priv->scan_event);
2009 schedule_work(&priv->link_down);
2010 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2011 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2014 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2015 IPW_WARNING("Firmware error detected. Restarting.\n");
2016 if (priv->error) {
2017 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2018 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2019 struct ipw_fw_error *error =
2020 ipw_alloc_error_log(priv);
2021 ipw_dump_error_log(priv, error);
2022 kfree(error);
2024 } else {
2025 priv->error = ipw_alloc_error_log(priv);
2026 if (priv->error)
2027 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2028 else
2029 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2030 "log.\n");
2031 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2032 ipw_dump_error_log(priv, priv->error);
2035 /* XXX: If hardware encryption is for WPA/WPA2,
2036 * we have to notify the supplicant. */
2037 if (priv->ieee->sec.encrypt) {
2038 priv->status &= ~STATUS_ASSOCIATED;
2039 notify_wx_assoc_event(priv);
2042 /* Keep the restart process from trying to send host
2043 * commands by clearing the INIT status bit */
2044 priv->status &= ~STATUS_INIT;
2046 /* Cancel currently queued command. */
2047 priv->status &= ~STATUS_HCMD_ACTIVE;
2048 wake_up_interruptible(&priv->wait_command_queue);
2050 queue_work(priv->workqueue, &priv->adapter_restart);
2051 handled |= IPW_INTA_BIT_FATAL_ERROR;
2054 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2055 IPW_ERROR("Parity error\n");
2056 handled |= IPW_INTA_BIT_PARITY_ERROR;
2059 if (handled != inta) {
2060 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2063 spin_unlock_irqrestore(&priv->lock, flags);
2065 /* enable all interrupts */
2066 ipw_enable_interrupts(priv);
2069 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2070 static char *get_cmd_string(u8 cmd)
2072 switch (cmd) {
2073 IPW_CMD(HOST_COMPLETE);
2074 IPW_CMD(POWER_DOWN);
2075 IPW_CMD(SYSTEM_CONFIG);
2076 IPW_CMD(MULTICAST_ADDRESS);
2077 IPW_CMD(SSID);
2078 IPW_CMD(ADAPTER_ADDRESS);
2079 IPW_CMD(PORT_TYPE);
2080 IPW_CMD(RTS_THRESHOLD);
2081 IPW_CMD(FRAG_THRESHOLD);
2082 IPW_CMD(POWER_MODE);
2083 IPW_CMD(WEP_KEY);
2084 IPW_CMD(TGI_TX_KEY);
2085 IPW_CMD(SCAN_REQUEST);
2086 IPW_CMD(SCAN_REQUEST_EXT);
2087 IPW_CMD(ASSOCIATE);
2088 IPW_CMD(SUPPORTED_RATES);
2089 IPW_CMD(SCAN_ABORT);
2090 IPW_CMD(TX_FLUSH);
2091 IPW_CMD(QOS_PARAMETERS);
2092 IPW_CMD(DINO_CONFIG);
2093 IPW_CMD(RSN_CAPABILITIES);
2094 IPW_CMD(RX_KEY);
2095 IPW_CMD(CARD_DISABLE);
2096 IPW_CMD(SEED_NUMBER);
2097 IPW_CMD(TX_POWER);
2098 IPW_CMD(COUNTRY_INFO);
2099 IPW_CMD(AIRONET_INFO);
2100 IPW_CMD(AP_TX_POWER);
2101 IPW_CMD(CCKM_INFO);
2102 IPW_CMD(CCX_VER_INFO);
2103 IPW_CMD(SET_CALIBRATION);
2104 IPW_CMD(SENSITIVITY_CALIB);
2105 IPW_CMD(RETRY_LIMIT);
2106 IPW_CMD(IPW_PRE_POWER_DOWN);
2107 IPW_CMD(VAP_BEACON_TEMPLATE);
2108 IPW_CMD(VAP_DTIM_PERIOD);
2109 IPW_CMD(EXT_SUPPORTED_RATES);
2110 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2111 IPW_CMD(VAP_QUIET_INTERVALS);
2112 IPW_CMD(VAP_CHANNEL_SWITCH);
2113 IPW_CMD(VAP_MANDATORY_CHANNELS);
2114 IPW_CMD(VAP_CELL_PWR_LIMIT);
2115 IPW_CMD(VAP_CF_PARAM_SET);
2116 IPW_CMD(VAP_SET_BEACONING_STATE);
2117 IPW_CMD(MEASUREMENT);
2118 IPW_CMD(POWER_CAPABILITY);
2119 IPW_CMD(SUPPORTED_CHANNELS);
2120 IPW_CMD(TPC_REPORT);
2121 IPW_CMD(WME_INFO);
2122 IPW_CMD(PRODUCTION_COMMAND);
2123 default:
2124 return "UNKNOWN";
2128 #define HOST_COMPLETE_TIMEOUT HZ
2130 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2132 int rc = 0;
2133 unsigned long flags;
2135 spin_lock_irqsave(&priv->lock, flags);
2136 if (priv->status & STATUS_HCMD_ACTIVE) {
2137 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2138 get_cmd_string(cmd->cmd));
2139 spin_unlock_irqrestore(&priv->lock, flags);
2140 return -EAGAIN;
2143 priv->status |= STATUS_HCMD_ACTIVE;
2145 if (priv->cmdlog) {
2146 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2147 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2148 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2149 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2150 cmd->len);
2151 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2154 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2155 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2156 priv->status);
2158 #ifndef DEBUG_CMD_WEP_KEY
2159 if (cmd->cmd == IPW_CMD_WEP_KEY)
2160 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2161 else
2162 #endif
2163 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2165 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2166 if (rc) {
2167 priv->status &= ~STATUS_HCMD_ACTIVE;
2168 IPW_ERROR("Failed to send %s: Reason %d\n",
2169 get_cmd_string(cmd->cmd), rc);
2170 spin_unlock_irqrestore(&priv->lock, flags);
2171 goto exit;
2173 spin_unlock_irqrestore(&priv->lock, flags);
2175 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2176 !(priv->
2177 status & STATUS_HCMD_ACTIVE),
2178 HOST_COMPLETE_TIMEOUT);
2179 if (rc == 0) {
2180 spin_lock_irqsave(&priv->lock, flags);
2181 if (priv->status & STATUS_HCMD_ACTIVE) {
2182 IPW_ERROR("Failed to send %s: Command timed out.\n",
2183 get_cmd_string(cmd->cmd));
2184 priv->status &= ~STATUS_HCMD_ACTIVE;
2185 spin_unlock_irqrestore(&priv->lock, flags);
2186 rc = -EIO;
2187 goto exit;
2189 spin_unlock_irqrestore(&priv->lock, flags);
2190 } else
2191 rc = 0;
2193 if (priv->status & STATUS_RF_KILL_HW) {
2194 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2195 get_cmd_string(cmd->cmd));
2196 rc = -EIO;
2197 goto exit;
2200 exit:
2201 if (priv->cmdlog) {
2202 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2203 priv->cmdlog_pos %= priv->cmdlog_len;
2205 return rc;
2208 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2210 struct host_cmd cmd = {
2211 .cmd = command,
2214 return __ipw_send_cmd(priv, &cmd);
2217 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2218 void *data)
2220 struct host_cmd cmd = {
2221 .cmd = command,
2222 .len = len,
2223 .param = data,
2226 return __ipw_send_cmd(priv, &cmd);
2229 static int ipw_send_host_complete(struct ipw_priv *priv)
2231 if (!priv) {
2232 IPW_ERROR("Invalid args\n");
2233 return -1;
2236 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2239 static int ipw_send_system_config(struct ipw_priv *priv)
2241 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2242 sizeof(priv->sys_config),
2243 &priv->sys_config);
2246 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2248 if (!priv || !ssid) {
2249 IPW_ERROR("Invalid args\n");
2250 return -1;
2253 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2254 ssid);
2257 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2259 if (!priv || !mac) {
2260 IPW_ERROR("Invalid args\n");
2261 return -1;
2264 IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
2265 priv->net_dev->name, print_mac(mac, mac));
2267 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2271 * NOTE: This must be executed from our workqueue as it results in udelay
2272 * being called which may corrupt the keyboard if executed on default
2273 * workqueue
2275 static void ipw_adapter_restart(void *adapter)
2277 struct ipw_priv *priv = adapter;
2279 if (priv->status & STATUS_RF_KILL_MASK)
2280 return;
2282 ipw_down(priv);
2284 if (priv->assoc_network &&
2285 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2286 ipw_remove_current_network(priv);
2288 if (ipw_up(priv)) {
2289 IPW_ERROR("Failed to up device\n");
2290 return;
2294 static void ipw_bg_adapter_restart(struct work_struct *work)
2296 struct ipw_priv *priv =
2297 container_of(work, struct ipw_priv, adapter_restart);
2298 mutex_lock(&priv->mutex);
2299 ipw_adapter_restart(priv);
2300 mutex_unlock(&priv->mutex);
2303 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2305 static void ipw_scan_check(void *data)
2307 struct ipw_priv *priv = data;
2308 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2309 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2310 "adapter after (%dms).\n",
2311 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2312 queue_work(priv->workqueue, &priv->adapter_restart);
2316 static void ipw_bg_scan_check(struct work_struct *work)
2318 struct ipw_priv *priv =
2319 container_of(work, struct ipw_priv, scan_check.work);
2320 mutex_lock(&priv->mutex);
2321 ipw_scan_check(priv);
2322 mutex_unlock(&priv->mutex);
2325 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2326 struct ipw_scan_request_ext *request)
2328 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2329 sizeof(*request), request);
2332 static int ipw_send_scan_abort(struct ipw_priv *priv)
2334 if (!priv) {
2335 IPW_ERROR("Invalid args\n");
2336 return -1;
2339 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2342 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2344 struct ipw_sensitivity_calib calib = {
2345 .beacon_rssi_raw = cpu_to_le16(sens),
2348 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2349 &calib);
2352 static int ipw_send_associate(struct ipw_priv *priv,
2353 struct ipw_associate *associate)
2355 struct ipw_associate tmp_associate;
2357 if (!priv || !associate) {
2358 IPW_ERROR("Invalid args\n");
2359 return -1;
2362 memcpy(&tmp_associate, associate, sizeof(*associate));
2363 tmp_associate.policy_support =
2364 cpu_to_le16(tmp_associate.policy_support);
2365 tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2366 tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2367 tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2368 tmp_associate.listen_interval =
2369 cpu_to_le16(tmp_associate.listen_interval);
2370 tmp_associate.beacon_interval =
2371 cpu_to_le16(tmp_associate.beacon_interval);
2372 tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2374 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2375 &tmp_associate);
2378 static int ipw_send_supported_rates(struct ipw_priv *priv,
2379 struct ipw_supported_rates *rates)
2381 if (!priv || !rates) {
2382 IPW_ERROR("Invalid args\n");
2383 return -1;
2386 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2387 rates);
2390 static int ipw_set_random_seed(struct ipw_priv *priv)
2392 u32 val;
2394 if (!priv) {
2395 IPW_ERROR("Invalid args\n");
2396 return -1;
2399 get_random_bytes(&val, sizeof(val));
2401 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2404 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2406 if (!priv) {
2407 IPW_ERROR("Invalid args\n");
2408 return -1;
2411 phy_off = cpu_to_le32(phy_off);
2412 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2413 &phy_off);
2416 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2418 if (!priv || !power) {
2419 IPW_ERROR("Invalid args\n");
2420 return -1;
2423 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2426 static int ipw_set_tx_power(struct ipw_priv *priv)
2428 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2429 struct ipw_tx_power tx_power;
2430 s8 max_power;
2431 int i;
2433 memset(&tx_power, 0, sizeof(tx_power));
2435 /* configure device for 'G' band */
2436 tx_power.ieee_mode = IPW_G_MODE;
2437 tx_power.num_channels = geo->bg_channels;
2438 for (i = 0; i < geo->bg_channels; i++) {
2439 max_power = geo->bg[i].max_power;
2440 tx_power.channels_tx_power[i].channel_number =
2441 geo->bg[i].channel;
2442 tx_power.channels_tx_power[i].tx_power = max_power ?
2443 min(max_power, priv->tx_power) : priv->tx_power;
2445 if (ipw_send_tx_power(priv, &tx_power))
2446 return -EIO;
2448 /* configure device to also handle 'B' band */
2449 tx_power.ieee_mode = IPW_B_MODE;
2450 if (ipw_send_tx_power(priv, &tx_power))
2451 return -EIO;
2453 /* configure device to also handle 'A' band */
2454 if (priv->ieee->abg_true) {
2455 tx_power.ieee_mode = IPW_A_MODE;
2456 tx_power.num_channels = geo->a_channels;
2457 for (i = 0; i < tx_power.num_channels; i++) {
2458 max_power = geo->a[i].max_power;
2459 tx_power.channels_tx_power[i].channel_number =
2460 geo->a[i].channel;
2461 tx_power.channels_tx_power[i].tx_power = max_power ?
2462 min(max_power, priv->tx_power) : priv->tx_power;
2464 if (ipw_send_tx_power(priv, &tx_power))
2465 return -EIO;
2467 return 0;
2470 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2472 struct ipw_rts_threshold rts_threshold = {
2473 .rts_threshold = cpu_to_le16(rts),
2476 if (!priv) {
2477 IPW_ERROR("Invalid args\n");
2478 return -1;
2481 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2482 sizeof(rts_threshold), &rts_threshold);
2485 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2487 struct ipw_frag_threshold frag_threshold = {
2488 .frag_threshold = cpu_to_le16(frag),
2491 if (!priv) {
2492 IPW_ERROR("Invalid args\n");
2493 return -1;
2496 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2497 sizeof(frag_threshold), &frag_threshold);
2500 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2502 u32 param;
2504 if (!priv) {
2505 IPW_ERROR("Invalid args\n");
2506 return -1;
2509 /* If on battery, set to 3, if AC set to CAM, else user
2510 * level */
2511 switch (mode) {
2512 case IPW_POWER_BATTERY:
2513 param = IPW_POWER_INDEX_3;
2514 break;
2515 case IPW_POWER_AC:
2516 param = IPW_POWER_MODE_CAM;
2517 break;
2518 default:
2519 param = mode;
2520 break;
2523 param = cpu_to_le32(param);
2524 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2525 &param);
2528 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2530 struct ipw_retry_limit retry_limit = {
2531 .short_retry_limit = slimit,
2532 .long_retry_limit = llimit
2535 if (!priv) {
2536 IPW_ERROR("Invalid args\n");
2537 return -1;
2540 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2541 &retry_limit);
2545 * The IPW device contains a Microwire compatible EEPROM that stores
2546 * various data like the MAC address. Usually the firmware has exclusive
2547 * access to the eeprom, but during device initialization (before the
2548 * device driver has sent the HostComplete command to the firmware) the
2549 * device driver has read access to the EEPROM by way of indirect addressing
2550 * through a couple of memory mapped registers.
2552 * The following is a simplified implementation for pulling data out of the
2553 * the eeprom, along with some helper functions to find information in
2554 * the per device private data's copy of the eeprom.
2556 * NOTE: To better understand how these functions work (i.e what is a chip
2557 * select and why do have to keep driving the eeprom clock?), read
2558 * just about any data sheet for a Microwire compatible EEPROM.
2561 /* write a 32 bit value into the indirect accessor register */
2562 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2564 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2566 /* the eeprom requires some time to complete the operation */
2567 udelay(p->eeprom_delay);
2569 return;
2572 /* perform a chip select operation */
2573 static void eeprom_cs(struct ipw_priv *priv)
2575 eeprom_write_reg(priv, 0);
2576 eeprom_write_reg(priv, EEPROM_BIT_CS);
2577 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2578 eeprom_write_reg(priv, EEPROM_BIT_CS);
2581 /* perform a chip select operation */
2582 static void eeprom_disable_cs(struct ipw_priv *priv)
2584 eeprom_write_reg(priv, EEPROM_BIT_CS);
2585 eeprom_write_reg(priv, 0);
2586 eeprom_write_reg(priv, EEPROM_BIT_SK);
2589 /* push a single bit down to the eeprom */
2590 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2592 int d = (bit ? EEPROM_BIT_DI : 0);
2593 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2594 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2597 /* push an opcode followed by an address down to the eeprom */
2598 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2600 int i;
2602 eeprom_cs(priv);
2603 eeprom_write_bit(priv, 1);
2604 eeprom_write_bit(priv, op & 2);
2605 eeprom_write_bit(priv, op & 1);
2606 for (i = 7; i >= 0; i--) {
2607 eeprom_write_bit(priv, addr & (1 << i));
2611 /* pull 16 bits off the eeprom, one bit at a time */
2612 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2614 int i;
2615 u16 r = 0;
2617 /* Send READ Opcode */
2618 eeprom_op(priv, EEPROM_CMD_READ, addr);
2620 /* Send dummy bit */
2621 eeprom_write_reg(priv, EEPROM_BIT_CS);
2623 /* Read the byte off the eeprom one bit at a time */
2624 for (i = 0; i < 16; i++) {
2625 u32 data = 0;
2626 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2627 eeprom_write_reg(priv, EEPROM_BIT_CS);
2628 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2629 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2632 /* Send another dummy bit */
2633 eeprom_write_reg(priv, 0);
2634 eeprom_disable_cs(priv);
2636 return r;
2639 /* helper function for pulling the mac address out of the private */
2640 /* data's copy of the eeprom data */
2641 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2643 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2647 * Either the device driver (i.e. the host) or the firmware can
2648 * load eeprom data into the designated region in SRAM. If neither
2649 * happens then the FW will shutdown with a fatal error.
2651 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2652 * bit needs region of shared SRAM needs to be non-zero.
2654 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2656 int i;
2657 u16 *eeprom = (u16 *) priv->eeprom;
2659 IPW_DEBUG_TRACE(">>\n");
2661 /* read entire contents of eeprom into private buffer */
2662 for (i = 0; i < 128; i++)
2663 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2666 If the data looks correct, then copy it to our private
2667 copy. Otherwise let the firmware know to perform the operation
2668 on its own.
2670 if (priv->eeprom[EEPROM_VERSION] != 0) {
2671 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2673 /* write the eeprom data to sram */
2674 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2675 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2677 /* Do not load eeprom data on fatal error or suspend */
2678 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2679 } else {
2680 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2682 /* Load eeprom data on fatal error or suspend */
2683 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2686 IPW_DEBUG_TRACE("<<\n");
2689 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2691 count >>= 2;
2692 if (!count)
2693 return;
2694 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2695 while (count--)
2696 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2699 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2701 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2702 CB_NUMBER_OF_ELEMENTS_SMALL *
2703 sizeof(struct command_block));
2706 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2707 { /* start dma engine but no transfers yet */
2709 IPW_DEBUG_FW(">> : \n");
2711 /* Start the dma */
2712 ipw_fw_dma_reset_command_blocks(priv);
2714 /* Write CB base address */
2715 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2717 IPW_DEBUG_FW("<< : \n");
2718 return 0;
2721 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2723 u32 control = 0;
2725 IPW_DEBUG_FW(">> :\n");
2727 /* set the Stop and Abort bit */
2728 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2729 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2730 priv->sram_desc.last_cb_index = 0;
2732 IPW_DEBUG_FW("<< \n");
2735 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2736 struct command_block *cb)
2738 u32 address =
2739 IPW_SHARED_SRAM_DMA_CONTROL +
2740 (sizeof(struct command_block) * index);
2741 IPW_DEBUG_FW(">> :\n");
2743 ipw_write_indirect(priv, address, (u8 *) cb,
2744 (int)sizeof(struct command_block));
2746 IPW_DEBUG_FW("<< :\n");
2747 return 0;
2751 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2753 u32 control = 0;
2754 u32 index = 0;
2756 IPW_DEBUG_FW(">> :\n");
2758 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2759 ipw_fw_dma_write_command_block(priv, index,
2760 &priv->sram_desc.cb_list[index]);
2762 /* Enable the DMA in the CSR register */
2763 ipw_clear_bit(priv, IPW_RESET_REG,
2764 IPW_RESET_REG_MASTER_DISABLED |
2765 IPW_RESET_REG_STOP_MASTER);
2767 /* Set the Start bit. */
2768 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2769 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2771 IPW_DEBUG_FW("<< :\n");
2772 return 0;
2775 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2777 u32 address;
2778 u32 register_value = 0;
2779 u32 cb_fields_address = 0;
2781 IPW_DEBUG_FW(">> :\n");
2782 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2783 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2785 /* Read the DMA Controlor register */
2786 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2787 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2789 /* Print the CB values */
2790 cb_fields_address = address;
2791 register_value = ipw_read_reg32(priv, cb_fields_address);
2792 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2794 cb_fields_address += sizeof(u32);
2795 register_value = ipw_read_reg32(priv, cb_fields_address);
2796 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2798 cb_fields_address += sizeof(u32);
2799 register_value = ipw_read_reg32(priv, cb_fields_address);
2800 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2801 register_value);
2803 cb_fields_address += sizeof(u32);
2804 register_value = ipw_read_reg32(priv, cb_fields_address);
2805 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2807 IPW_DEBUG_FW(">> :\n");
2810 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2812 u32 current_cb_address = 0;
2813 u32 current_cb_index = 0;
2815 IPW_DEBUG_FW("<< :\n");
2816 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2818 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2819 sizeof(struct command_block);
2821 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2822 current_cb_index, current_cb_address);
2824 IPW_DEBUG_FW(">> :\n");
2825 return current_cb_index;
2829 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2830 u32 src_address,
2831 u32 dest_address,
2832 u32 length,
2833 int interrupt_enabled, int is_last)
2836 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2837 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2838 CB_DEST_SIZE_LONG;
2839 struct command_block *cb;
2840 u32 last_cb_element = 0;
2842 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2843 src_address, dest_address, length);
2845 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2846 return -1;
2848 last_cb_element = priv->sram_desc.last_cb_index;
2849 cb = &priv->sram_desc.cb_list[last_cb_element];
2850 priv->sram_desc.last_cb_index++;
2852 /* Calculate the new CB control word */
2853 if (interrupt_enabled)
2854 control |= CB_INT_ENABLED;
2856 if (is_last)
2857 control |= CB_LAST_VALID;
2859 control |= length;
2861 /* Calculate the CB Element's checksum value */
2862 cb->status = control ^ src_address ^ dest_address;
2864 /* Copy the Source and Destination addresses */
2865 cb->dest_addr = dest_address;
2866 cb->source_addr = src_address;
2868 /* Copy the Control Word last */
2869 cb->control = control;
2871 return 0;
2874 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2875 u32 src_phys, u32 dest_address, u32 length)
2877 u32 bytes_left = length;
2878 u32 src_offset = 0;
2879 u32 dest_offset = 0;
2880 int status = 0;
2881 IPW_DEBUG_FW(">> \n");
2882 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2883 src_phys, dest_address, length);
2884 while (bytes_left > CB_MAX_LENGTH) {
2885 status = ipw_fw_dma_add_command_block(priv,
2886 src_phys + src_offset,
2887 dest_address +
2888 dest_offset,
2889 CB_MAX_LENGTH, 0, 0);
2890 if (status) {
2891 IPW_DEBUG_FW_INFO(": Failed\n");
2892 return -1;
2893 } else
2894 IPW_DEBUG_FW_INFO(": Added new cb\n");
2896 src_offset += CB_MAX_LENGTH;
2897 dest_offset += CB_MAX_LENGTH;
2898 bytes_left -= CB_MAX_LENGTH;
2901 /* add the buffer tail */
2902 if (bytes_left > 0) {
2903 status =
2904 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2905 dest_address + dest_offset,
2906 bytes_left, 0, 0);
2907 if (status) {
2908 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2909 return -1;
2910 } else
2911 IPW_DEBUG_FW_INFO
2912 (": Adding new cb - the buffer tail\n");
2915 IPW_DEBUG_FW("<< \n");
2916 return 0;
2919 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2921 u32 current_index = 0, previous_index;
2922 u32 watchdog = 0;
2924 IPW_DEBUG_FW(">> : \n");
2926 current_index = ipw_fw_dma_command_block_index(priv);
2927 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2928 (int)priv->sram_desc.last_cb_index);
2930 while (current_index < priv->sram_desc.last_cb_index) {
2931 udelay(50);
2932 previous_index = current_index;
2933 current_index = ipw_fw_dma_command_block_index(priv);
2935 if (previous_index < current_index) {
2936 watchdog = 0;
2937 continue;
2939 if (++watchdog > 400) {
2940 IPW_DEBUG_FW_INFO("Timeout\n");
2941 ipw_fw_dma_dump_command_block(priv);
2942 ipw_fw_dma_abort(priv);
2943 return -1;
2947 ipw_fw_dma_abort(priv);
2949 /*Disable the DMA in the CSR register */
2950 ipw_set_bit(priv, IPW_RESET_REG,
2951 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2953 IPW_DEBUG_FW("<< dmaWaitSync \n");
2954 return 0;
2957 static void ipw_remove_current_network(struct ipw_priv *priv)
2959 struct list_head *element, *safe;
2960 struct ieee80211_network *network = NULL;
2961 unsigned long flags;
2963 spin_lock_irqsave(&priv->ieee->lock, flags);
2964 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2965 network = list_entry(element, struct ieee80211_network, list);
2966 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2967 list_del(element);
2968 list_add_tail(&network->list,
2969 &priv->ieee->network_free_list);
2972 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2976 * Check that card is still alive.
2977 * Reads debug register from domain0.
2978 * If card is present, pre-defined value should
2979 * be found there.
2981 * @param priv
2982 * @return 1 if card is present, 0 otherwise
2984 static inline int ipw_alive(struct ipw_priv *priv)
2986 return ipw_read32(priv, 0x90) == 0xd55555d5;
2989 /* timeout in msec, attempted in 10-msec quanta */
2990 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2991 int timeout)
2993 int i = 0;
2995 do {
2996 if ((ipw_read32(priv, addr) & mask) == mask)
2997 return i;
2998 mdelay(10);
2999 i += 10;
3000 } while (i < timeout);
3002 return -ETIME;
3005 /* These functions load the firmware and micro code for the operation of
3006 * the ipw hardware. It assumes the buffer has all the bits for the
3007 * image and the caller is handling the memory allocation and clean up.
3010 static int ipw_stop_master(struct ipw_priv *priv)
3012 int rc;
3014 IPW_DEBUG_TRACE(">> \n");
3015 /* stop master. typical delay - 0 */
3016 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3018 /* timeout is in msec, polled in 10-msec quanta */
3019 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3020 IPW_RESET_REG_MASTER_DISABLED, 100);
3021 if (rc < 0) {
3022 IPW_ERROR("wait for stop master failed after 100ms\n");
3023 return -1;
3026 IPW_DEBUG_INFO("stop master %dms\n", rc);
3028 return rc;
3031 static void ipw_arc_release(struct ipw_priv *priv)
3033 IPW_DEBUG_TRACE(">> \n");
3034 mdelay(5);
3036 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3038 /* no one knows timing, for safety add some delay */
3039 mdelay(5);
3042 struct fw_chunk {
3043 u32 address;
3044 u32 length;
3047 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3049 int rc = 0, i, addr;
3050 u8 cr = 0;
3051 u16 *image;
3053 image = (u16 *) data;
3055 IPW_DEBUG_TRACE(">> \n");
3057 rc = ipw_stop_master(priv);
3059 if (rc < 0)
3060 return rc;
3062 for (addr = IPW_SHARED_LOWER_BOUND;
3063 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3064 ipw_write32(priv, addr, 0);
3067 /* no ucode (yet) */
3068 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3069 /* destroy DMA queues */
3070 /* reset sequence */
3072 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3073 ipw_arc_release(priv);
3074 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3075 mdelay(1);
3077 /* reset PHY */
3078 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3079 mdelay(1);
3081 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3082 mdelay(1);
3084 /* enable ucode store */
3085 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3086 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3087 mdelay(1);
3089 /* write ucode */
3091 * @bug
3092 * Do NOT set indirect address register once and then
3093 * store data to indirect data register in the loop.
3094 * It seems very reasonable, but in this case DINO do not
3095 * accept ucode. It is essential to set address each time.
3097 /* load new ipw uCode */
3098 for (i = 0; i < len / 2; i++)
3099 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3100 cpu_to_le16(image[i]));
3102 /* enable DINO */
3103 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3104 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3106 /* this is where the igx / win driver deveates from the VAP driver. */
3108 /* wait for alive response */
3109 for (i = 0; i < 100; i++) {
3110 /* poll for incoming data */
3111 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3112 if (cr & DINO_RXFIFO_DATA)
3113 break;
3114 mdelay(1);
3117 if (cr & DINO_RXFIFO_DATA) {
3118 /* alive_command_responce size is NOT multiple of 4 */
3119 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3121 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3122 response_buffer[i] =
3123 le32_to_cpu(ipw_read_reg32(priv,
3124 IPW_BASEBAND_RX_FIFO_READ));
3125 memcpy(&priv->dino_alive, response_buffer,
3126 sizeof(priv->dino_alive));
3127 if (priv->dino_alive.alive_command == 1
3128 && priv->dino_alive.ucode_valid == 1) {
3129 rc = 0;
3130 IPW_DEBUG_INFO
3131 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3132 "of %02d/%02d/%02d %02d:%02d\n",
3133 priv->dino_alive.software_revision,
3134 priv->dino_alive.software_revision,
3135 priv->dino_alive.device_identifier,
3136 priv->dino_alive.device_identifier,
3137 priv->dino_alive.time_stamp[0],
3138 priv->dino_alive.time_stamp[1],
3139 priv->dino_alive.time_stamp[2],
3140 priv->dino_alive.time_stamp[3],
3141 priv->dino_alive.time_stamp[4]);
3142 } else {
3143 IPW_DEBUG_INFO("Microcode is not alive\n");
3144 rc = -EINVAL;
3146 } else {
3147 IPW_DEBUG_INFO("No alive response from DINO\n");
3148 rc = -ETIME;
3151 /* disable DINO, otherwise for some reason
3152 firmware have problem getting alive resp. */
3153 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3155 return rc;
3158 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3160 int rc = -1;
3161 int offset = 0;
3162 struct fw_chunk *chunk;
3163 dma_addr_t shared_phys;
3164 u8 *shared_virt;
3166 IPW_DEBUG_TRACE("<< : \n");
3167 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3169 if (!shared_virt)
3170 return -ENOMEM;
3172 memmove(shared_virt, data, len);
3174 /* Start the Dma */
3175 rc = ipw_fw_dma_enable(priv);
3177 if (priv->sram_desc.last_cb_index > 0) {
3178 /* the DMA is already ready this would be a bug. */
3179 BUG();
3180 goto out;
3183 do {
3184 chunk = (struct fw_chunk *)(data + offset);
3185 offset += sizeof(struct fw_chunk);
3186 /* build DMA packet and queue up for sending */
3187 /* dma to chunk->address, the chunk->length bytes from data +
3188 * offeset*/
3189 /* Dma loading */
3190 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3191 le32_to_cpu(chunk->address),
3192 le32_to_cpu(chunk->length));
3193 if (rc) {
3194 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3195 goto out;
3198 offset += le32_to_cpu(chunk->length);
3199 } while (offset < len);
3201 /* Run the DMA and wait for the answer */
3202 rc = ipw_fw_dma_kick(priv);
3203 if (rc) {
3204 IPW_ERROR("dmaKick Failed\n");
3205 goto out;
3208 rc = ipw_fw_dma_wait(priv);
3209 if (rc) {
3210 IPW_ERROR("dmaWaitSync Failed\n");
3211 goto out;
3213 out:
3214 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3215 return rc;
3218 /* stop nic */
3219 static int ipw_stop_nic(struct ipw_priv *priv)
3221 int rc = 0;
3223 /* stop */
3224 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3226 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3227 IPW_RESET_REG_MASTER_DISABLED, 500);
3228 if (rc < 0) {
3229 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3230 return rc;
3233 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3235 return rc;
3238 static void ipw_start_nic(struct ipw_priv *priv)
3240 IPW_DEBUG_TRACE(">>\n");
3242 /* prvHwStartNic release ARC */
3243 ipw_clear_bit(priv, IPW_RESET_REG,
3244 IPW_RESET_REG_MASTER_DISABLED |
3245 IPW_RESET_REG_STOP_MASTER |
3246 CBD_RESET_REG_PRINCETON_RESET);
3248 /* enable power management */
3249 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3250 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3252 IPW_DEBUG_TRACE("<<\n");
3255 static int ipw_init_nic(struct ipw_priv *priv)
3257 int rc;
3259 IPW_DEBUG_TRACE(">>\n");
3260 /* reset */
3261 /*prvHwInitNic */
3262 /* set "initialization complete" bit to move adapter to D0 state */
3263 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3265 /* low-level PLL activation */
3266 ipw_write32(priv, IPW_READ_INT_REGISTER,
3267 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3269 /* wait for clock stabilization */
3270 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3271 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3272 if (rc < 0)
3273 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3275 /* assert SW reset */
3276 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3278 udelay(10);
3280 /* set "initialization complete" bit to move adapter to D0 state */
3281 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3283 IPW_DEBUG_TRACE(">>\n");
3284 return 0;
3287 /* Call this function from process context, it will sleep in request_firmware.
3288 * Probe is an ok place to call this from.
3290 static int ipw_reset_nic(struct ipw_priv *priv)
3292 int rc = 0;
3293 unsigned long flags;
3295 IPW_DEBUG_TRACE(">>\n");
3297 rc = ipw_init_nic(priv);
3299 spin_lock_irqsave(&priv->lock, flags);
3300 /* Clear the 'host command active' bit... */
3301 priv->status &= ~STATUS_HCMD_ACTIVE;
3302 wake_up_interruptible(&priv->wait_command_queue);
3303 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3304 wake_up_interruptible(&priv->wait_state);
3305 spin_unlock_irqrestore(&priv->lock, flags);
3307 IPW_DEBUG_TRACE("<<\n");
3308 return rc;
3312 struct ipw_fw {
3313 __le32 ver;
3314 __le32 boot_size;
3315 __le32 ucode_size;
3316 __le32 fw_size;
3317 u8 data[0];
3320 static int ipw_get_fw(struct ipw_priv *priv,
3321 const struct firmware **raw, const char *name)
3323 struct ipw_fw *fw;
3324 int rc;
3326 /* ask firmware_class module to get the boot firmware off disk */
3327 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3328 if (rc < 0) {
3329 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3330 return rc;
3333 if ((*raw)->size < sizeof(*fw)) {
3334 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3335 return -EINVAL;
3338 fw = (void *)(*raw)->data;
3340 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3341 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3342 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3343 name, (*raw)->size);
3344 return -EINVAL;
3347 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3348 name,
3349 le32_to_cpu(fw->ver) >> 16,
3350 le32_to_cpu(fw->ver) & 0xff,
3351 (*raw)->size - sizeof(*fw));
3352 return 0;
3355 #define IPW_RX_BUF_SIZE (3000)
3357 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3358 struct ipw_rx_queue *rxq)
3360 unsigned long flags;
3361 int i;
3363 spin_lock_irqsave(&rxq->lock, flags);
3365 INIT_LIST_HEAD(&rxq->rx_free);
3366 INIT_LIST_HEAD(&rxq->rx_used);
3368 /* Fill the rx_used queue with _all_ of the Rx buffers */
3369 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3370 /* In the reset function, these buffers may have been allocated
3371 * to an SKB, so we need to unmap and free potential storage */
3372 if (rxq->pool[i].skb != NULL) {
3373 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3374 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3375 dev_kfree_skb(rxq->pool[i].skb);
3376 rxq->pool[i].skb = NULL;
3378 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3381 /* Set us so that we have processed and used all buffers, but have
3382 * not restocked the Rx queue with fresh buffers */
3383 rxq->read = rxq->write = 0;
3384 rxq->processed = RX_QUEUE_SIZE - 1;
3385 rxq->free_count = 0;
3386 spin_unlock_irqrestore(&rxq->lock, flags);
3389 #ifdef CONFIG_PM
3390 static int fw_loaded = 0;
3391 static const struct firmware *raw = NULL;
3393 static void free_firmware(void)
3395 if (fw_loaded) {
3396 release_firmware(raw);
3397 raw = NULL;
3398 fw_loaded = 0;
3401 #else
3402 #define free_firmware() do {} while (0)
3403 #endif
3405 static int ipw_load(struct ipw_priv *priv)
3407 #ifndef CONFIG_PM
3408 const struct firmware *raw = NULL;
3409 #endif
3410 struct ipw_fw *fw;
3411 u8 *boot_img, *ucode_img, *fw_img;
3412 u8 *name = NULL;
3413 int rc = 0, retries = 3;
3415 switch (priv->ieee->iw_mode) {
3416 case IW_MODE_ADHOC:
3417 name = "ipw2200-ibss.fw";
3418 break;
3419 #ifdef CONFIG_IPW2200_MONITOR
3420 case IW_MODE_MONITOR:
3421 name = "ipw2200-sniffer.fw";
3422 break;
3423 #endif
3424 case IW_MODE_INFRA:
3425 name = "ipw2200-bss.fw";
3426 break;
3429 if (!name) {
3430 rc = -EINVAL;
3431 goto error;
3434 #ifdef CONFIG_PM
3435 if (!fw_loaded) {
3436 #endif
3437 rc = ipw_get_fw(priv, &raw, name);
3438 if (rc < 0)
3439 goto error;
3440 #ifdef CONFIG_PM
3442 #endif
3444 fw = (void *)raw->data;
3445 boot_img = &fw->data[0];
3446 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3447 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3448 le32_to_cpu(fw->ucode_size)];
3450 if (rc < 0)
3451 goto error;
3453 if (!priv->rxq)
3454 priv->rxq = ipw_rx_queue_alloc(priv);
3455 else
3456 ipw_rx_queue_reset(priv, priv->rxq);
3457 if (!priv->rxq) {
3458 IPW_ERROR("Unable to initialize Rx queue\n");
3459 goto error;
3462 retry:
3463 /* Ensure interrupts are disabled */
3464 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3465 priv->status &= ~STATUS_INT_ENABLED;
3467 /* ack pending interrupts */
3468 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3470 ipw_stop_nic(priv);
3472 rc = ipw_reset_nic(priv);
3473 if (rc < 0) {
3474 IPW_ERROR("Unable to reset NIC\n");
3475 goto error;
3478 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3479 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3481 /* DMA the initial boot firmware into the device */
3482 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3483 if (rc < 0) {
3484 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3485 goto error;
3488 /* kick start the device */
3489 ipw_start_nic(priv);
3491 /* wait for the device to finish its initial startup sequence */
3492 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3493 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3494 if (rc < 0) {
3495 IPW_ERROR("device failed to boot initial fw image\n");
3496 goto error;
3498 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3500 /* ack fw init done interrupt */
3501 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3503 /* DMA the ucode into the device */
3504 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3505 if (rc < 0) {
3506 IPW_ERROR("Unable to load ucode: %d\n", rc);
3507 goto error;
3510 /* stop nic */
3511 ipw_stop_nic(priv);
3513 /* DMA bss firmware into the device */
3514 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3515 if (rc < 0) {
3516 IPW_ERROR("Unable to load firmware: %d\n", rc);
3517 goto error;
3519 #ifdef CONFIG_PM
3520 fw_loaded = 1;
3521 #endif
3523 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3525 rc = ipw_queue_reset(priv);
3526 if (rc < 0) {
3527 IPW_ERROR("Unable to initialize queues\n");
3528 goto error;
3531 /* Ensure interrupts are disabled */
3532 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3533 /* ack pending interrupts */
3534 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3536 /* kick start the device */
3537 ipw_start_nic(priv);
3539 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3540 if (retries > 0) {
3541 IPW_WARNING("Parity error. Retrying init.\n");
3542 retries--;
3543 goto retry;
3546 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3547 rc = -EIO;
3548 goto error;
3551 /* wait for the device */
3552 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3553 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3554 if (rc < 0) {
3555 IPW_ERROR("device failed to start within 500ms\n");
3556 goto error;
3558 IPW_DEBUG_INFO("device response after %dms\n", rc);
3560 /* ack fw init done interrupt */
3561 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3563 /* read eeprom data and initialize the eeprom region of sram */
3564 priv->eeprom_delay = 1;
3565 ipw_eeprom_init_sram(priv);
3567 /* enable interrupts */
3568 ipw_enable_interrupts(priv);
3570 /* Ensure our queue has valid packets */
3571 ipw_rx_queue_replenish(priv);
3573 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3575 /* ack pending interrupts */
3576 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3578 #ifndef CONFIG_PM
3579 release_firmware(raw);
3580 #endif
3581 return 0;
3583 error:
3584 if (priv->rxq) {
3585 ipw_rx_queue_free(priv, priv->rxq);
3586 priv->rxq = NULL;
3588 ipw_tx_queue_free(priv);
3589 if (raw)
3590 release_firmware(raw);
3591 #ifdef CONFIG_PM
3592 fw_loaded = 0;
3593 raw = NULL;
3594 #endif
3596 return rc;
3600 * DMA services
3602 * Theory of operation
3604 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3605 * 2 empty entries always kept in the buffer to protect from overflow.
3607 * For Tx queue, there are low mark and high mark limits. If, after queuing
3608 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3609 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3610 * Tx queue resumed.
3612 * The IPW operates with six queues, one receive queue in the device's
3613 * sram, one transmit queue for sending commands to the device firmware,
3614 * and four transmit queues for data.
3616 * The four transmit queues allow for performing quality of service (qos)
3617 * transmissions as per the 802.11 protocol. Currently Linux does not
3618 * provide a mechanism to the user for utilizing prioritized queues, so
3619 * we only utilize the first data transmit queue (queue1).
3623 * Driver allocates buffers of this size for Rx
3626 static inline int ipw_queue_space(const struct clx2_queue *q)
3628 int s = q->last_used - q->first_empty;
3629 if (s <= 0)
3630 s += q->n_bd;
3631 s -= 2; /* keep some reserve to not confuse empty and full situations */
3632 if (s < 0)
3633 s = 0;
3634 return s;
3637 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3639 return (++index == n_bd) ? 0 : index;
3643 * Initialize common DMA queue structure
3645 * @param q queue to init
3646 * @param count Number of BD's to allocate. Should be power of 2
3647 * @param read_register Address for 'read' register
3648 * (not offset within BAR, full address)
3649 * @param write_register Address for 'write' register
3650 * (not offset within BAR, full address)
3651 * @param base_register Address for 'base' register
3652 * (not offset within BAR, full address)
3653 * @param size Address for 'size' register
3654 * (not offset within BAR, full address)
3656 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3657 int count, u32 read, u32 write, u32 base, u32 size)
3659 q->n_bd = count;
3661 q->low_mark = q->n_bd / 4;
3662 if (q->low_mark < 4)
3663 q->low_mark = 4;
3665 q->high_mark = q->n_bd / 8;
3666 if (q->high_mark < 2)
3667 q->high_mark = 2;
3669 q->first_empty = q->last_used = 0;
3670 q->reg_r = read;
3671 q->reg_w = write;
3673 ipw_write32(priv, base, q->dma_addr);
3674 ipw_write32(priv, size, count);
3675 ipw_write32(priv, read, 0);
3676 ipw_write32(priv, write, 0);
3678 _ipw_read32(priv, 0x90);
3681 static int ipw_queue_tx_init(struct ipw_priv *priv,
3682 struct clx2_tx_queue *q,
3683 int count, u32 read, u32 write, u32 base, u32 size)
3685 struct pci_dev *dev = priv->pci_dev;
3687 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3688 if (!q->txb) {
3689 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3690 return -ENOMEM;
3693 q->bd =
3694 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3695 if (!q->bd) {
3696 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3697 sizeof(q->bd[0]) * count);
3698 kfree(q->txb);
3699 q->txb = NULL;
3700 return -ENOMEM;
3703 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3704 return 0;
3708 * Free one TFD, those at index [txq->q.last_used].
3709 * Do NOT advance any indexes
3711 * @param dev
3712 * @param txq
3714 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3715 struct clx2_tx_queue *txq)
3717 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3718 struct pci_dev *dev = priv->pci_dev;
3719 int i;
3721 /* classify bd */
3722 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3723 /* nothing to cleanup after for host commands */
3724 return;
3726 /* sanity check */
3727 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3728 IPW_ERROR("Too many chunks: %i\n",
3729 le32_to_cpu(bd->u.data.num_chunks));
3730 /** @todo issue fatal error, it is quite serious situation */
3731 return;
3734 /* unmap chunks if any */
3735 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3736 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3737 le16_to_cpu(bd->u.data.chunk_len[i]),
3738 PCI_DMA_TODEVICE);
3739 if (txq->txb[txq->q.last_used]) {
3740 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3741 txq->txb[txq->q.last_used] = NULL;
3747 * Deallocate DMA queue.
3749 * Empty queue by removing and destroying all BD's.
3750 * Free all buffers.
3752 * @param dev
3753 * @param q
3755 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3757 struct clx2_queue *q = &txq->q;
3758 struct pci_dev *dev = priv->pci_dev;
3760 if (q->n_bd == 0)
3761 return;
3763 /* first, empty all BD's */
3764 for (; q->first_empty != q->last_used;
3765 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3766 ipw_queue_tx_free_tfd(priv, txq);
3769 /* free buffers belonging to queue itself */
3770 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3771 q->dma_addr);
3772 kfree(txq->txb);
3774 /* 0 fill whole structure */
3775 memset(txq, 0, sizeof(*txq));
3779 * Destroy all DMA queues and structures
3781 * @param priv
3783 static void ipw_tx_queue_free(struct ipw_priv *priv)
3785 /* Tx CMD queue */
3786 ipw_queue_tx_free(priv, &priv->txq_cmd);
3788 /* Tx queues */
3789 ipw_queue_tx_free(priv, &priv->txq[0]);
3790 ipw_queue_tx_free(priv, &priv->txq[1]);
3791 ipw_queue_tx_free(priv, &priv->txq[2]);
3792 ipw_queue_tx_free(priv, &priv->txq[3]);
3795 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3797 /* First 3 bytes are manufacturer */
3798 bssid[0] = priv->mac_addr[0];
3799 bssid[1] = priv->mac_addr[1];
3800 bssid[2] = priv->mac_addr[2];
3802 /* Last bytes are random */
3803 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3805 bssid[0] &= 0xfe; /* clear multicast bit */
3806 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3809 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3811 struct ipw_station_entry entry;
3812 int i;
3813 DECLARE_MAC_BUF(mac);
3815 for (i = 0; i < priv->num_stations; i++) {
3816 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3817 /* Another node is active in network */
3818 priv->missed_adhoc_beacons = 0;
3819 if (!(priv->config & CFG_STATIC_CHANNEL))
3820 /* when other nodes drop out, we drop out */
3821 priv->config &= ~CFG_ADHOC_PERSIST;
3823 return i;
3827 if (i == MAX_STATIONS)
3828 return IPW_INVALID_STATION;
3830 IPW_DEBUG_SCAN("Adding AdHoc station: %s\n", print_mac(mac, bssid));
3832 entry.reserved = 0;
3833 entry.support_mode = 0;
3834 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3835 memcpy(priv->stations[i], bssid, ETH_ALEN);
3836 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3837 &entry, sizeof(entry));
3838 priv->num_stations++;
3840 return i;
3843 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3845 int i;
3847 for (i = 0; i < priv->num_stations; i++)
3848 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3849 return i;
3851 return IPW_INVALID_STATION;
3854 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3856 int err;
3857 DECLARE_MAC_BUF(mac);
3859 if (priv->status & STATUS_ASSOCIATING) {
3860 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3861 queue_work(priv->workqueue, &priv->disassociate);
3862 return;
3865 if (!(priv->status & STATUS_ASSOCIATED)) {
3866 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3867 return;
3870 IPW_DEBUG_ASSOC("Disassocation attempt from %s "
3871 "on channel %d.\n",
3872 print_mac(mac, priv->assoc_request.bssid),
3873 priv->assoc_request.channel);
3875 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3876 priv->status |= STATUS_DISASSOCIATING;
3878 if (quiet)
3879 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3880 else
3881 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3883 err = ipw_send_associate(priv, &priv->assoc_request);
3884 if (err) {
3885 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3886 "failed.\n");
3887 return;
3892 static int ipw_disassociate(void *data)
3894 struct ipw_priv *priv = data;
3895 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3896 return 0;
3897 ipw_send_disassociate(data, 0);
3898 return 1;
3901 static void ipw_bg_disassociate(struct work_struct *work)
3903 struct ipw_priv *priv =
3904 container_of(work, struct ipw_priv, disassociate);
3905 mutex_lock(&priv->mutex);
3906 ipw_disassociate(priv);
3907 mutex_unlock(&priv->mutex);
3910 static void ipw_system_config(struct work_struct *work)
3912 struct ipw_priv *priv =
3913 container_of(work, struct ipw_priv, system_config);
3915 #ifdef CONFIG_IPW2200_PROMISCUOUS
3916 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3917 priv->sys_config.accept_all_data_frames = 1;
3918 priv->sys_config.accept_non_directed_frames = 1;
3919 priv->sys_config.accept_all_mgmt_bcpr = 1;
3920 priv->sys_config.accept_all_mgmt_frames = 1;
3922 #endif
3924 ipw_send_system_config(priv);
3927 struct ipw_status_code {
3928 u16 status;
3929 const char *reason;
3932 static const struct ipw_status_code ipw_status_codes[] = {
3933 {0x00, "Successful"},
3934 {0x01, "Unspecified failure"},
3935 {0x0A, "Cannot support all requested capabilities in the "
3936 "Capability information field"},
3937 {0x0B, "Reassociation denied due to inability to confirm that "
3938 "association exists"},
3939 {0x0C, "Association denied due to reason outside the scope of this "
3940 "standard"},
3941 {0x0D,
3942 "Responding station does not support the specified authentication "
3943 "algorithm"},
3944 {0x0E,
3945 "Received an Authentication frame with authentication sequence "
3946 "transaction sequence number out of expected sequence"},
3947 {0x0F, "Authentication rejected because of challenge failure"},
3948 {0x10, "Authentication rejected due to timeout waiting for next "
3949 "frame in sequence"},
3950 {0x11, "Association denied because AP is unable to handle additional "
3951 "associated stations"},
3952 {0x12,
3953 "Association denied due to requesting station not supporting all "
3954 "of the datarates in the BSSBasicServiceSet Parameter"},
3955 {0x13,
3956 "Association denied due to requesting station not supporting "
3957 "short preamble operation"},
3958 {0x14,
3959 "Association denied due to requesting station not supporting "
3960 "PBCC encoding"},
3961 {0x15,
3962 "Association denied due to requesting station not supporting "
3963 "channel agility"},
3964 {0x19,
3965 "Association denied due to requesting station not supporting "
3966 "short slot operation"},
3967 {0x1A,
3968 "Association denied due to requesting station not supporting "
3969 "DSSS-OFDM operation"},
3970 {0x28, "Invalid Information Element"},
3971 {0x29, "Group Cipher is not valid"},
3972 {0x2A, "Pairwise Cipher is not valid"},
3973 {0x2B, "AKMP is not valid"},
3974 {0x2C, "Unsupported RSN IE version"},
3975 {0x2D, "Invalid RSN IE Capabilities"},
3976 {0x2E, "Cipher suite is rejected per security policy"},
3979 static const char *ipw_get_status_code(u16 status)
3981 int i;
3982 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3983 if (ipw_status_codes[i].status == (status & 0xff))
3984 return ipw_status_codes[i].reason;
3985 return "Unknown status value.";
3988 static void inline average_init(struct average *avg)
3990 memset(avg, 0, sizeof(*avg));
3993 #define DEPTH_RSSI 8
3994 #define DEPTH_NOISE 16
3995 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3997 return ((depth-1)*prev_avg + val)/depth;
4000 static void average_add(struct average *avg, s16 val)
4002 avg->sum -= avg->entries[avg->pos];
4003 avg->sum += val;
4004 avg->entries[avg->pos++] = val;
4005 if (unlikely(avg->pos == AVG_ENTRIES)) {
4006 avg->init = 1;
4007 avg->pos = 0;
4011 static s16 average_value(struct average *avg)
4013 if (!unlikely(avg->init)) {
4014 if (avg->pos)
4015 return avg->sum / avg->pos;
4016 return 0;
4019 return avg->sum / AVG_ENTRIES;
4022 static void ipw_reset_stats(struct ipw_priv *priv)
4024 u32 len = sizeof(u32);
4026 priv->quality = 0;
4028 average_init(&priv->average_missed_beacons);
4029 priv->exp_avg_rssi = -60;
4030 priv->exp_avg_noise = -85 + 0x100;
4032 priv->last_rate = 0;
4033 priv->last_missed_beacons = 0;
4034 priv->last_rx_packets = 0;
4035 priv->last_tx_packets = 0;
4036 priv->last_tx_failures = 0;
4038 /* Firmware managed, reset only when NIC is restarted, so we have to
4039 * normalize on the current value */
4040 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4041 &priv->last_rx_err, &len);
4042 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4043 &priv->last_tx_failures, &len);
4045 /* Driver managed, reset with each association */
4046 priv->missed_adhoc_beacons = 0;
4047 priv->missed_beacons = 0;
4048 priv->tx_packets = 0;
4049 priv->rx_packets = 0;
4053 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4055 u32 i = 0x80000000;
4056 u32 mask = priv->rates_mask;
4057 /* If currently associated in B mode, restrict the maximum
4058 * rate match to B rates */
4059 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4060 mask &= IEEE80211_CCK_RATES_MASK;
4062 /* TODO: Verify that the rate is supported by the current rates
4063 * list. */
4065 while (i && !(mask & i))
4066 i >>= 1;
4067 switch (i) {
4068 case IEEE80211_CCK_RATE_1MB_MASK:
4069 return 1000000;
4070 case IEEE80211_CCK_RATE_2MB_MASK:
4071 return 2000000;
4072 case IEEE80211_CCK_RATE_5MB_MASK:
4073 return 5500000;
4074 case IEEE80211_OFDM_RATE_6MB_MASK:
4075 return 6000000;
4076 case IEEE80211_OFDM_RATE_9MB_MASK:
4077 return 9000000;
4078 case IEEE80211_CCK_RATE_11MB_MASK:
4079 return 11000000;
4080 case IEEE80211_OFDM_RATE_12MB_MASK:
4081 return 12000000;
4082 case IEEE80211_OFDM_RATE_18MB_MASK:
4083 return 18000000;
4084 case IEEE80211_OFDM_RATE_24MB_MASK:
4085 return 24000000;
4086 case IEEE80211_OFDM_RATE_36MB_MASK:
4087 return 36000000;
4088 case IEEE80211_OFDM_RATE_48MB_MASK:
4089 return 48000000;
4090 case IEEE80211_OFDM_RATE_54MB_MASK:
4091 return 54000000;
4094 if (priv->ieee->mode == IEEE_B)
4095 return 11000000;
4096 else
4097 return 54000000;
4100 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4102 u32 rate, len = sizeof(rate);
4103 int err;
4105 if (!(priv->status & STATUS_ASSOCIATED))
4106 return 0;
4108 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4109 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4110 &len);
4111 if (err) {
4112 IPW_DEBUG_INFO("failed querying ordinals.\n");
4113 return 0;
4115 } else
4116 return ipw_get_max_rate(priv);
4118 switch (rate) {
4119 case IPW_TX_RATE_1MB:
4120 return 1000000;
4121 case IPW_TX_RATE_2MB:
4122 return 2000000;
4123 case IPW_TX_RATE_5MB:
4124 return 5500000;
4125 case IPW_TX_RATE_6MB:
4126 return 6000000;
4127 case IPW_TX_RATE_9MB:
4128 return 9000000;
4129 case IPW_TX_RATE_11MB:
4130 return 11000000;
4131 case IPW_TX_RATE_12MB:
4132 return 12000000;
4133 case IPW_TX_RATE_18MB:
4134 return 18000000;
4135 case IPW_TX_RATE_24MB:
4136 return 24000000;
4137 case IPW_TX_RATE_36MB:
4138 return 36000000;
4139 case IPW_TX_RATE_48MB:
4140 return 48000000;
4141 case IPW_TX_RATE_54MB:
4142 return 54000000;
4145 return 0;
4148 #define IPW_STATS_INTERVAL (2 * HZ)
4149 static void ipw_gather_stats(struct ipw_priv *priv)
4151 u32 rx_err, rx_err_delta, rx_packets_delta;
4152 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4153 u32 missed_beacons_percent, missed_beacons_delta;
4154 u32 quality = 0;
4155 u32 len = sizeof(u32);
4156 s16 rssi;
4157 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4158 rate_quality;
4159 u32 max_rate;
4161 if (!(priv->status & STATUS_ASSOCIATED)) {
4162 priv->quality = 0;
4163 return;
4166 /* Update the statistics */
4167 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4168 &priv->missed_beacons, &len);
4169 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4170 priv->last_missed_beacons = priv->missed_beacons;
4171 if (priv->assoc_request.beacon_interval) {
4172 missed_beacons_percent = missed_beacons_delta *
4173 (HZ * priv->assoc_request.beacon_interval) /
4174 (IPW_STATS_INTERVAL * 10);
4175 } else {
4176 missed_beacons_percent = 0;
4178 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4180 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4181 rx_err_delta = rx_err - priv->last_rx_err;
4182 priv->last_rx_err = rx_err;
4184 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4185 tx_failures_delta = tx_failures - priv->last_tx_failures;
4186 priv->last_tx_failures = tx_failures;
4188 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4189 priv->last_rx_packets = priv->rx_packets;
4191 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4192 priv->last_tx_packets = priv->tx_packets;
4194 /* Calculate quality based on the following:
4196 * Missed beacon: 100% = 0, 0% = 70% missed
4197 * Rate: 60% = 1Mbs, 100% = Max
4198 * Rx and Tx errors represent a straight % of total Rx/Tx
4199 * RSSI: 100% = > -50, 0% = < -80
4200 * Rx errors: 100% = 0, 0% = 50% missed
4202 * The lowest computed quality is used.
4205 #define BEACON_THRESHOLD 5
4206 beacon_quality = 100 - missed_beacons_percent;
4207 if (beacon_quality < BEACON_THRESHOLD)
4208 beacon_quality = 0;
4209 else
4210 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4211 (100 - BEACON_THRESHOLD);
4212 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4213 beacon_quality, missed_beacons_percent);
4215 priv->last_rate = ipw_get_current_rate(priv);
4216 max_rate = ipw_get_max_rate(priv);
4217 rate_quality = priv->last_rate * 40 / max_rate + 60;
4218 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4219 rate_quality, priv->last_rate / 1000000);
4221 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4222 rx_quality = 100 - (rx_err_delta * 100) /
4223 (rx_packets_delta + rx_err_delta);
4224 else
4225 rx_quality = 100;
4226 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4227 rx_quality, rx_err_delta, rx_packets_delta);
4229 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4230 tx_quality = 100 - (tx_failures_delta * 100) /
4231 (tx_packets_delta + tx_failures_delta);
4232 else
4233 tx_quality = 100;
4234 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4235 tx_quality, tx_failures_delta, tx_packets_delta);
4237 rssi = priv->exp_avg_rssi;
4238 signal_quality =
4239 (100 *
4240 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4241 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4242 (priv->ieee->perfect_rssi - rssi) *
4243 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4244 62 * (priv->ieee->perfect_rssi - rssi))) /
4245 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4246 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4247 if (signal_quality > 100)
4248 signal_quality = 100;
4249 else if (signal_quality < 1)
4250 signal_quality = 0;
4252 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4253 signal_quality, rssi);
4255 quality = min(beacon_quality,
4256 min(rate_quality,
4257 min(tx_quality, min(rx_quality, signal_quality))));
4258 if (quality == beacon_quality)
4259 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4260 quality);
4261 if (quality == rate_quality)
4262 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4263 quality);
4264 if (quality == tx_quality)
4265 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4266 quality);
4267 if (quality == rx_quality)
4268 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4269 quality);
4270 if (quality == signal_quality)
4271 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4272 quality);
4274 priv->quality = quality;
4276 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4277 IPW_STATS_INTERVAL);
4280 static void ipw_bg_gather_stats(struct work_struct *work)
4282 struct ipw_priv *priv =
4283 container_of(work, struct ipw_priv, gather_stats.work);
4284 mutex_lock(&priv->mutex);
4285 ipw_gather_stats(priv);
4286 mutex_unlock(&priv->mutex);
4289 /* Missed beacon behavior:
4290 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4291 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4292 * Above disassociate threshold, give up and stop scanning.
4293 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4294 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4295 int missed_count)
4297 priv->notif_missed_beacons = missed_count;
4299 if (missed_count > priv->disassociate_threshold &&
4300 priv->status & STATUS_ASSOCIATED) {
4301 /* If associated and we've hit the missed
4302 * beacon threshold, disassociate, turn
4303 * off roaming, and abort any active scans */
4304 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4305 IPW_DL_STATE | IPW_DL_ASSOC,
4306 "Missed beacon: %d - disassociate\n", missed_count);
4307 priv->status &= ~STATUS_ROAMING;
4308 if (priv->status & STATUS_SCANNING) {
4309 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4310 IPW_DL_STATE,
4311 "Aborting scan with missed beacon.\n");
4312 queue_work(priv->workqueue, &priv->abort_scan);
4315 queue_work(priv->workqueue, &priv->disassociate);
4316 return;
4319 if (priv->status & STATUS_ROAMING) {
4320 /* If we are currently roaming, then just
4321 * print a debug statement... */
4322 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4323 "Missed beacon: %d - roam in progress\n",
4324 missed_count);
4325 return;
4328 if (roaming &&
4329 (missed_count > priv->roaming_threshold &&
4330 missed_count <= priv->disassociate_threshold)) {
4331 /* If we are not already roaming, set the ROAM
4332 * bit in the status and kick off a scan.
4333 * This can happen several times before we reach
4334 * disassociate_threshold. */
4335 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4336 "Missed beacon: %d - initiate "
4337 "roaming\n", missed_count);
4338 if (!(priv->status & STATUS_ROAMING)) {
4339 priv->status |= STATUS_ROAMING;
4340 if (!(priv->status & STATUS_SCANNING))
4341 queue_delayed_work(priv->workqueue,
4342 &priv->request_scan, 0);
4344 return;
4347 if (priv->status & STATUS_SCANNING) {
4348 /* Stop scan to keep fw from getting
4349 * stuck (only if we aren't roaming --
4350 * otherwise we'll never scan more than 2 or 3
4351 * channels..) */
4352 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4353 "Aborting scan with missed beacon.\n");
4354 queue_work(priv->workqueue, &priv->abort_scan);
4357 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4360 static void ipw_scan_event(struct work_struct *work)
4362 union iwreq_data wrqu;
4364 struct ipw_priv *priv =
4365 container_of(work, struct ipw_priv, scan_event.work);
4367 wrqu.data.length = 0;
4368 wrqu.data.flags = 0;
4369 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4372 static void handle_scan_event(struct ipw_priv *priv)
4374 /* Only userspace-requested scan completion events go out immediately */
4375 if (!priv->user_requested_scan) {
4376 if (!delayed_work_pending(&priv->scan_event))
4377 queue_delayed_work(priv->workqueue, &priv->scan_event,
4378 round_jiffies_relative(msecs_to_jiffies(4000)));
4379 } else {
4380 union iwreq_data wrqu;
4382 priv->user_requested_scan = 0;
4383 cancel_delayed_work(&priv->scan_event);
4385 wrqu.data.length = 0;
4386 wrqu.data.flags = 0;
4387 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4392 * Handle host notification packet.
4393 * Called from interrupt routine
4395 static void ipw_rx_notification(struct ipw_priv *priv,
4396 struct ipw_rx_notification *notif)
4398 DECLARE_MAC_BUF(mac);
4399 notif->size = le16_to_cpu(notif->size);
4401 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4403 switch (notif->subtype) {
4404 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4405 struct notif_association *assoc = &notif->u.assoc;
4407 switch (assoc->state) {
4408 case CMAS_ASSOCIATED:{
4409 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4410 IPW_DL_ASSOC,
4411 "associated: '%s' %s"
4412 " \n",
4413 escape_essid(priv->essid,
4414 priv->essid_len),
4415 print_mac(mac, priv->bssid));
4417 switch (priv->ieee->iw_mode) {
4418 case IW_MODE_INFRA:
4419 memcpy(priv->ieee->bssid,
4420 priv->bssid, ETH_ALEN);
4421 break;
4423 case IW_MODE_ADHOC:
4424 memcpy(priv->ieee->bssid,
4425 priv->bssid, ETH_ALEN);
4427 /* clear out the station table */
4428 priv->num_stations = 0;
4430 IPW_DEBUG_ASSOC
4431 ("queueing adhoc check\n");
4432 queue_delayed_work(priv->
4433 workqueue,
4434 &priv->
4435 adhoc_check,
4436 priv->
4437 assoc_request.
4438 beacon_interval);
4439 break;
4442 priv->status &= ~STATUS_ASSOCIATING;
4443 priv->status |= STATUS_ASSOCIATED;
4444 queue_work(priv->workqueue,
4445 &priv->system_config);
4447 #ifdef CONFIG_IPW2200_QOS
4448 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4449 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4450 if ((priv->status & STATUS_AUTH) &&
4451 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4452 == IEEE80211_STYPE_ASSOC_RESP)) {
4453 if ((sizeof
4454 (struct
4455 ieee80211_assoc_response)
4456 <= notif->size)
4457 && (notif->size <= 2314)) {
4458 struct
4459 ieee80211_rx_stats
4460 stats = {
4461 .len =
4462 notif->
4463 size - 1,
4466 IPW_DEBUG_QOS
4467 ("QoS Associate "
4468 "size %d\n",
4469 notif->size);
4470 ieee80211_rx_mgt(priv->
4471 ieee,
4472 (struct
4473 ieee80211_hdr_4addr
4475 &notif->u.raw, &stats);
4478 #endif
4480 schedule_work(&priv->link_up);
4482 break;
4485 case CMAS_AUTHENTICATED:{
4486 if (priv->
4487 status & (STATUS_ASSOCIATED |
4488 STATUS_AUTH)) {
4489 struct notif_authenticate *auth
4490 = &notif->u.auth;
4491 IPW_DEBUG(IPW_DL_NOTIF |
4492 IPW_DL_STATE |
4493 IPW_DL_ASSOC,
4494 "deauthenticated: '%s' "
4495 "%s"
4496 ": (0x%04X) - %s \n",
4497 escape_essid(priv->
4498 essid,
4499 priv->
4500 essid_len),
4501 print_mac(mac, priv->bssid),
4502 ntohs(auth->status),
4503 ipw_get_status_code
4504 (ntohs
4505 (auth->status)));
4507 priv->status &=
4508 ~(STATUS_ASSOCIATING |
4509 STATUS_AUTH |
4510 STATUS_ASSOCIATED);
4512 schedule_work(&priv->link_down);
4513 break;
4516 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4517 IPW_DL_ASSOC,
4518 "authenticated: '%s' %s"
4519 "\n",
4520 escape_essid(priv->essid,
4521 priv->essid_len),
4522 print_mac(mac, priv->bssid));
4523 break;
4526 case CMAS_INIT:{
4527 if (priv->status & STATUS_AUTH) {
4528 struct
4529 ieee80211_assoc_response
4530 *resp;
4531 resp =
4532 (struct
4533 ieee80211_assoc_response
4534 *)&notif->u.raw;
4535 IPW_DEBUG(IPW_DL_NOTIF |
4536 IPW_DL_STATE |
4537 IPW_DL_ASSOC,
4538 "association failed (0x%04X): %s\n",
4539 ntohs(resp->status),
4540 ipw_get_status_code
4541 (ntohs
4542 (resp->status)));
4545 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4546 IPW_DL_ASSOC,
4547 "disassociated: '%s' %s"
4548 " \n",
4549 escape_essid(priv->essid,
4550 priv->essid_len),
4551 print_mac(mac, priv->bssid));
4553 priv->status &=
4554 ~(STATUS_DISASSOCIATING |
4555 STATUS_ASSOCIATING |
4556 STATUS_ASSOCIATED | STATUS_AUTH);
4557 if (priv->assoc_network
4558 && (priv->assoc_network->
4559 capability &
4560 WLAN_CAPABILITY_IBSS))
4561 ipw_remove_current_network
4562 (priv);
4564 schedule_work(&priv->link_down);
4566 break;
4569 case CMAS_RX_ASSOC_RESP:
4570 break;
4572 default:
4573 IPW_ERROR("assoc: unknown (%d)\n",
4574 assoc->state);
4575 break;
4578 break;
4581 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4582 struct notif_authenticate *auth = &notif->u.auth;
4583 switch (auth->state) {
4584 case CMAS_AUTHENTICATED:
4585 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4586 "authenticated: '%s' %s \n",
4587 escape_essid(priv->essid,
4588 priv->essid_len),
4589 print_mac(mac, priv->bssid));
4590 priv->status |= STATUS_AUTH;
4591 break;
4593 case CMAS_INIT:
4594 if (priv->status & STATUS_AUTH) {
4595 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4596 IPW_DL_ASSOC,
4597 "authentication failed (0x%04X): %s\n",
4598 ntohs(auth->status),
4599 ipw_get_status_code(ntohs
4600 (auth->
4601 status)));
4603 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4604 IPW_DL_ASSOC,
4605 "deauthenticated: '%s' %s\n",
4606 escape_essid(priv->essid,
4607 priv->essid_len),
4608 print_mac(mac, priv->bssid));
4610 priv->status &= ~(STATUS_ASSOCIATING |
4611 STATUS_AUTH |
4612 STATUS_ASSOCIATED);
4614 schedule_work(&priv->link_down);
4615 break;
4617 case CMAS_TX_AUTH_SEQ_1:
4618 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4619 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4620 break;
4621 case CMAS_RX_AUTH_SEQ_2:
4622 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4623 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4624 break;
4625 case CMAS_AUTH_SEQ_1_PASS:
4626 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4627 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4628 break;
4629 case CMAS_AUTH_SEQ_1_FAIL:
4630 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4632 break;
4633 case CMAS_TX_AUTH_SEQ_3:
4634 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4636 break;
4637 case CMAS_RX_AUTH_SEQ_4:
4638 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4640 break;
4641 case CMAS_AUTH_SEQ_2_PASS:
4642 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4644 break;
4645 case CMAS_AUTH_SEQ_2_FAIL:
4646 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4648 break;
4649 case CMAS_TX_ASSOC:
4650 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651 IPW_DL_ASSOC, "TX_ASSOC\n");
4652 break;
4653 case CMAS_RX_ASSOC_RESP:
4654 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4657 break;
4658 case CMAS_ASSOCIATED:
4659 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4660 IPW_DL_ASSOC, "ASSOCIATED\n");
4661 break;
4662 default:
4663 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4664 auth->state);
4665 break;
4667 break;
4670 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4671 struct notif_channel_result *x =
4672 &notif->u.channel_result;
4674 if (notif->size == sizeof(*x)) {
4675 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4676 x->channel_num);
4677 } else {
4678 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4679 "(should be %zd)\n",
4680 notif->size, sizeof(*x));
4682 break;
4685 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4686 struct notif_scan_complete *x = &notif->u.scan_complete;
4687 if (notif->size == sizeof(*x)) {
4688 IPW_DEBUG_SCAN
4689 ("Scan completed: type %d, %d channels, "
4690 "%d status\n", x->scan_type,
4691 x->num_channels, x->status);
4692 } else {
4693 IPW_ERROR("Scan completed of wrong size %d "
4694 "(should be %zd)\n",
4695 notif->size, sizeof(*x));
4698 priv->status &=
4699 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4701 wake_up_interruptible(&priv->wait_state);
4702 cancel_delayed_work(&priv->scan_check);
4704 if (priv->status & STATUS_EXIT_PENDING)
4705 break;
4707 priv->ieee->scans++;
4709 #ifdef CONFIG_IPW2200_MONITOR
4710 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4711 priv->status |= STATUS_SCAN_FORCED;
4712 queue_delayed_work(priv->workqueue,
4713 &priv->request_scan, 0);
4714 break;
4716 priv->status &= ~STATUS_SCAN_FORCED;
4717 #endif /* CONFIG_IPW2200_MONITOR */
4719 if (!(priv->status & (STATUS_ASSOCIATED |
4720 STATUS_ASSOCIATING |
4721 STATUS_ROAMING |
4722 STATUS_DISASSOCIATING)))
4723 queue_work(priv->workqueue, &priv->associate);
4724 else if (priv->status & STATUS_ROAMING) {
4725 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4726 /* If a scan completed and we are in roam mode, then
4727 * the scan that completed was the one requested as a
4728 * result of entering roam... so, schedule the
4729 * roam work */
4730 queue_work(priv->workqueue,
4731 &priv->roam);
4732 else
4733 /* Don't schedule if we aborted the scan */
4734 priv->status &= ~STATUS_ROAMING;
4735 } else if (priv->status & STATUS_SCAN_PENDING)
4736 queue_delayed_work(priv->workqueue,
4737 &priv->request_scan, 0);
4738 else if (priv->config & CFG_BACKGROUND_SCAN
4739 && priv->status & STATUS_ASSOCIATED)
4740 queue_delayed_work(priv->workqueue,
4741 &priv->request_scan,
4742 round_jiffies_relative(HZ));
4744 /* Send an empty event to user space.
4745 * We don't send the received data on the event because
4746 * it would require us to do complex transcoding, and
4747 * we want to minimise the work done in the irq handler
4748 * Use a request to extract the data.
4749 * Also, we generate this even for any scan, regardless
4750 * on how the scan was initiated. User space can just
4751 * sync on periodic scan to get fresh data...
4752 * Jean II */
4753 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4754 handle_scan_event(priv);
4755 break;
4758 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4759 struct notif_frag_length *x = &notif->u.frag_len;
4761 if (notif->size == sizeof(*x))
4762 IPW_ERROR("Frag length: %d\n",
4763 le16_to_cpu(x->frag_length));
4764 else
4765 IPW_ERROR("Frag length of wrong size %d "
4766 "(should be %zd)\n",
4767 notif->size, sizeof(*x));
4768 break;
4771 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4772 struct notif_link_deterioration *x =
4773 &notif->u.link_deterioration;
4775 if (notif->size == sizeof(*x)) {
4776 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4777 "link deterioration: type %d, cnt %d\n",
4778 x->silence_notification_type,
4779 x->silence_count);
4780 memcpy(&priv->last_link_deterioration, x,
4781 sizeof(*x));
4782 } else {
4783 IPW_ERROR("Link Deterioration of wrong size %d "
4784 "(should be %zd)\n",
4785 notif->size, sizeof(*x));
4787 break;
4790 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4791 IPW_ERROR("Dino config\n");
4792 if (priv->hcmd
4793 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4794 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4796 break;
4799 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4800 struct notif_beacon_state *x = &notif->u.beacon_state;
4801 if (notif->size != sizeof(*x)) {
4802 IPW_ERROR
4803 ("Beacon state of wrong size %d (should "
4804 "be %zd)\n", notif->size, sizeof(*x));
4805 break;
4808 if (le32_to_cpu(x->state) ==
4809 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4810 ipw_handle_missed_beacon(priv,
4811 le32_to_cpu(x->
4812 number));
4814 break;
4817 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4818 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4819 if (notif->size == sizeof(*x)) {
4820 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4821 "0x%02x station %d\n",
4822 x->key_state, x->security_type,
4823 x->station_index);
4824 break;
4827 IPW_ERROR
4828 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4829 notif->size, sizeof(*x));
4830 break;
4833 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4834 struct notif_calibration *x = &notif->u.calibration;
4836 if (notif->size == sizeof(*x)) {
4837 memcpy(&priv->calib, x, sizeof(*x));
4838 IPW_DEBUG_INFO("TODO: Calibration\n");
4839 break;
4842 IPW_ERROR
4843 ("Calibration of wrong size %d (should be %zd)\n",
4844 notif->size, sizeof(*x));
4845 break;
4848 case HOST_NOTIFICATION_NOISE_STATS:{
4849 if (notif->size == sizeof(u32)) {
4850 priv->exp_avg_noise =
4851 exponential_average(priv->exp_avg_noise,
4852 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4853 DEPTH_NOISE);
4854 break;
4857 IPW_ERROR
4858 ("Noise stat is wrong size %d (should be %zd)\n",
4859 notif->size, sizeof(u32));
4860 break;
4863 default:
4864 IPW_DEBUG_NOTIF("Unknown notification: "
4865 "subtype=%d,flags=0x%2x,size=%d\n",
4866 notif->subtype, notif->flags, notif->size);
4871 * Destroys all DMA structures and initialise them again
4873 * @param priv
4874 * @return error code
4876 static int ipw_queue_reset(struct ipw_priv *priv)
4878 int rc = 0;
4879 /** @todo customize queue sizes */
4880 int nTx = 64, nTxCmd = 8;
4881 ipw_tx_queue_free(priv);
4882 /* Tx CMD queue */
4883 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4884 IPW_TX_CMD_QUEUE_READ_INDEX,
4885 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4886 IPW_TX_CMD_QUEUE_BD_BASE,
4887 IPW_TX_CMD_QUEUE_BD_SIZE);
4888 if (rc) {
4889 IPW_ERROR("Tx Cmd queue init failed\n");
4890 goto error;
4892 /* Tx queue(s) */
4893 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4894 IPW_TX_QUEUE_0_READ_INDEX,
4895 IPW_TX_QUEUE_0_WRITE_INDEX,
4896 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4897 if (rc) {
4898 IPW_ERROR("Tx 0 queue init failed\n");
4899 goto error;
4901 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4902 IPW_TX_QUEUE_1_READ_INDEX,
4903 IPW_TX_QUEUE_1_WRITE_INDEX,
4904 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4905 if (rc) {
4906 IPW_ERROR("Tx 1 queue init failed\n");
4907 goto error;
4909 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4910 IPW_TX_QUEUE_2_READ_INDEX,
4911 IPW_TX_QUEUE_2_WRITE_INDEX,
4912 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4913 if (rc) {
4914 IPW_ERROR("Tx 2 queue init failed\n");
4915 goto error;
4917 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4918 IPW_TX_QUEUE_3_READ_INDEX,
4919 IPW_TX_QUEUE_3_WRITE_INDEX,
4920 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4921 if (rc) {
4922 IPW_ERROR("Tx 3 queue init failed\n");
4923 goto error;
4925 /* statistics */
4926 priv->rx_bufs_min = 0;
4927 priv->rx_pend_max = 0;
4928 return rc;
4930 error:
4931 ipw_tx_queue_free(priv);
4932 return rc;
4936 * Reclaim Tx queue entries no more used by NIC.
4938 * When FW advances 'R' index, all entries between old and
4939 * new 'R' index need to be reclaimed. As result, some free space
4940 * forms. If there is enough free space (> low mark), wake Tx queue.
4942 * @note Need to protect against garbage in 'R' index
4943 * @param priv
4944 * @param txq
4945 * @param qindex
4946 * @return Number of used entries remains in the queue
4948 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4949 struct clx2_tx_queue *txq, int qindex)
4951 u32 hw_tail;
4952 int used;
4953 struct clx2_queue *q = &txq->q;
4955 hw_tail = ipw_read32(priv, q->reg_r);
4956 if (hw_tail >= q->n_bd) {
4957 IPW_ERROR
4958 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4959 hw_tail, q->n_bd);
4960 goto done;
4962 for (; q->last_used != hw_tail;
4963 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4964 ipw_queue_tx_free_tfd(priv, txq);
4965 priv->tx_packets++;
4967 done:
4968 if ((ipw_queue_space(q) > q->low_mark) &&
4969 (qindex >= 0) &&
4970 (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4971 netif_wake_queue(priv->net_dev);
4972 used = q->first_empty - q->last_used;
4973 if (used < 0)
4974 used += q->n_bd;
4976 return used;
4979 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4980 int len, int sync)
4982 struct clx2_tx_queue *txq = &priv->txq_cmd;
4983 struct clx2_queue *q = &txq->q;
4984 struct tfd_frame *tfd;
4986 if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4987 IPW_ERROR("No space for Tx\n");
4988 return -EBUSY;
4991 tfd = &txq->bd[q->first_empty];
4992 txq->txb[q->first_empty] = NULL;
4994 memset(tfd, 0, sizeof(*tfd));
4995 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4996 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4997 priv->hcmd_seq++;
4998 tfd->u.cmd.index = hcmd;
4999 tfd->u.cmd.length = len;
5000 memcpy(tfd->u.cmd.payload, buf, len);
5001 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5002 ipw_write32(priv, q->reg_w, q->first_empty);
5003 _ipw_read32(priv, 0x90);
5005 return 0;
5009 * Rx theory of operation
5011 * The host allocates 32 DMA target addresses and passes the host address
5012 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5013 * 0 to 31
5015 * Rx Queue Indexes
5016 * The host/firmware share two index registers for managing the Rx buffers.
5018 * The READ index maps to the first position that the firmware may be writing
5019 * to -- the driver can read up to (but not including) this position and get
5020 * good data.
5021 * The READ index is managed by the firmware once the card is enabled.
5023 * The WRITE index maps to the last position the driver has read from -- the
5024 * position preceding WRITE is the last slot the firmware can place a packet.
5026 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5027 * WRITE = READ.
5029 * During initialization the host sets up the READ queue position to the first
5030 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5032 * When the firmware places a packet in a buffer it will advance the READ index
5033 * and fire the RX interrupt. The driver can then query the READ index and
5034 * process as many packets as possible, moving the WRITE index forward as it
5035 * resets the Rx queue buffers with new memory.
5037 * The management in the driver is as follows:
5038 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5039 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5040 * to replensish the ipw->rxq->rx_free.
5041 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5042 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5043 * 'processed' and 'read' driver indexes as well)
5044 * + A received packet is processed and handed to the kernel network stack,
5045 * detached from the ipw->rxq. The driver 'processed' index is updated.
5046 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5047 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5048 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5049 * were enough free buffers and RX_STALLED is set it is cleared.
5052 * Driver sequence:
5054 * ipw_rx_queue_alloc() Allocates rx_free
5055 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5056 * ipw_rx_queue_restock
5057 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5058 * queue, updates firmware pointers, and updates
5059 * the WRITE index. If insufficient rx_free buffers
5060 * are available, schedules ipw_rx_queue_replenish
5062 * -- enable interrupts --
5063 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5064 * READ INDEX, detaching the SKB from the pool.
5065 * Moves the packet buffer from queue to rx_used.
5066 * Calls ipw_rx_queue_restock to refill any empty
5067 * slots.
5068 * ...
5073 * If there are slots in the RX queue that need to be restocked,
5074 * and we have free pre-allocated buffers, fill the ranks as much
5075 * as we can pulling from rx_free.
5077 * This moves the 'write' index forward to catch up with 'processed', and
5078 * also updates the memory address in the firmware to reference the new
5079 * target buffer.
5081 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5083 struct ipw_rx_queue *rxq = priv->rxq;
5084 struct list_head *element;
5085 struct ipw_rx_mem_buffer *rxb;
5086 unsigned long flags;
5087 int write;
5089 spin_lock_irqsave(&rxq->lock, flags);
5090 write = rxq->write;
5091 while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5092 element = rxq->rx_free.next;
5093 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5094 list_del(element);
5096 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5097 rxb->dma_addr);
5098 rxq->queue[rxq->write] = rxb;
5099 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5100 rxq->free_count--;
5102 spin_unlock_irqrestore(&rxq->lock, flags);
5104 /* If the pre-allocated buffer pool is dropping low, schedule to
5105 * refill it */
5106 if (rxq->free_count <= RX_LOW_WATERMARK)
5107 queue_work(priv->workqueue, &priv->rx_replenish);
5109 /* If we've added more space for the firmware to place data, tell it */
5110 if (write != rxq->write)
5111 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5115 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5116 * Also restock the Rx queue via ipw_rx_queue_restock.
5118 * This is called as a scheduled work item (except for during intialization)
5120 static void ipw_rx_queue_replenish(void *data)
5122 struct ipw_priv *priv = data;
5123 struct ipw_rx_queue *rxq = priv->rxq;
5124 struct list_head *element;
5125 struct ipw_rx_mem_buffer *rxb;
5126 unsigned long flags;
5128 spin_lock_irqsave(&rxq->lock, flags);
5129 while (!list_empty(&rxq->rx_used)) {
5130 element = rxq->rx_used.next;
5131 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5132 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5133 if (!rxb->skb) {
5134 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5135 priv->net_dev->name);
5136 /* We don't reschedule replenish work here -- we will
5137 * call the restock method and if it still needs
5138 * more buffers it will schedule replenish */
5139 break;
5141 list_del(element);
5143 rxb->dma_addr =
5144 pci_map_single(priv->pci_dev, rxb->skb->data,
5145 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5147 list_add_tail(&rxb->list, &rxq->rx_free);
5148 rxq->free_count++;
5150 spin_unlock_irqrestore(&rxq->lock, flags);
5152 ipw_rx_queue_restock(priv);
5155 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5157 struct ipw_priv *priv =
5158 container_of(work, struct ipw_priv, rx_replenish);
5159 mutex_lock(&priv->mutex);
5160 ipw_rx_queue_replenish(priv);
5161 mutex_unlock(&priv->mutex);
5164 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5165 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5166 * This free routine walks the list of POOL entries and if SKB is set to
5167 * non NULL it is unmapped and freed
5169 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5171 int i;
5173 if (!rxq)
5174 return;
5176 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5177 if (rxq->pool[i].skb != NULL) {
5178 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5179 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5180 dev_kfree_skb(rxq->pool[i].skb);
5184 kfree(rxq);
5187 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5189 struct ipw_rx_queue *rxq;
5190 int i;
5192 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5193 if (unlikely(!rxq)) {
5194 IPW_ERROR("memory allocation failed\n");
5195 return NULL;
5197 spin_lock_init(&rxq->lock);
5198 INIT_LIST_HEAD(&rxq->rx_free);
5199 INIT_LIST_HEAD(&rxq->rx_used);
5201 /* Fill the rx_used queue with _all_ of the Rx buffers */
5202 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5203 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5205 /* Set us so that we have processed and used all buffers, but have
5206 * not restocked the Rx queue with fresh buffers */
5207 rxq->read = rxq->write = 0;
5208 rxq->processed = RX_QUEUE_SIZE - 1;
5209 rxq->free_count = 0;
5211 return rxq;
5214 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5216 rate &= ~IEEE80211_BASIC_RATE_MASK;
5217 if (ieee_mode == IEEE_A) {
5218 switch (rate) {
5219 case IEEE80211_OFDM_RATE_6MB:
5220 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5221 1 : 0;
5222 case IEEE80211_OFDM_RATE_9MB:
5223 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5224 1 : 0;
5225 case IEEE80211_OFDM_RATE_12MB:
5226 return priv->
5227 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5228 case IEEE80211_OFDM_RATE_18MB:
5229 return priv->
5230 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5231 case IEEE80211_OFDM_RATE_24MB:
5232 return priv->
5233 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5234 case IEEE80211_OFDM_RATE_36MB:
5235 return priv->
5236 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5237 case IEEE80211_OFDM_RATE_48MB:
5238 return priv->
5239 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5240 case IEEE80211_OFDM_RATE_54MB:
5241 return priv->
5242 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5243 default:
5244 return 0;
5248 /* B and G mixed */
5249 switch (rate) {
5250 case IEEE80211_CCK_RATE_1MB:
5251 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5252 case IEEE80211_CCK_RATE_2MB:
5253 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5254 case IEEE80211_CCK_RATE_5MB:
5255 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5256 case IEEE80211_CCK_RATE_11MB:
5257 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5260 /* If we are limited to B modulations, bail at this point */
5261 if (ieee_mode == IEEE_B)
5262 return 0;
5264 /* G */
5265 switch (rate) {
5266 case IEEE80211_OFDM_RATE_6MB:
5267 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5268 case IEEE80211_OFDM_RATE_9MB:
5269 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5270 case IEEE80211_OFDM_RATE_12MB:
5271 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5272 case IEEE80211_OFDM_RATE_18MB:
5273 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5274 case IEEE80211_OFDM_RATE_24MB:
5275 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5276 case IEEE80211_OFDM_RATE_36MB:
5277 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5278 case IEEE80211_OFDM_RATE_48MB:
5279 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5280 case IEEE80211_OFDM_RATE_54MB:
5281 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5284 return 0;
5287 static int ipw_compatible_rates(struct ipw_priv *priv,
5288 const struct ieee80211_network *network,
5289 struct ipw_supported_rates *rates)
5291 int num_rates, i;
5293 memset(rates, 0, sizeof(*rates));
5294 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5295 rates->num_rates = 0;
5296 for (i = 0; i < num_rates; i++) {
5297 if (!ipw_is_rate_in_mask(priv, network->mode,
5298 network->rates[i])) {
5300 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5301 IPW_DEBUG_SCAN("Adding masked mandatory "
5302 "rate %02X\n",
5303 network->rates[i]);
5304 rates->supported_rates[rates->num_rates++] =
5305 network->rates[i];
5306 continue;
5309 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5310 network->rates[i], priv->rates_mask);
5311 continue;
5314 rates->supported_rates[rates->num_rates++] = network->rates[i];
5317 num_rates = min(network->rates_ex_len,
5318 (u8) (IPW_MAX_RATES - num_rates));
5319 for (i = 0; i < num_rates; i++) {
5320 if (!ipw_is_rate_in_mask(priv, network->mode,
5321 network->rates_ex[i])) {
5322 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5323 IPW_DEBUG_SCAN("Adding masked mandatory "
5324 "rate %02X\n",
5325 network->rates_ex[i]);
5326 rates->supported_rates[rates->num_rates++] =
5327 network->rates[i];
5328 continue;
5331 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5332 network->rates_ex[i], priv->rates_mask);
5333 continue;
5336 rates->supported_rates[rates->num_rates++] =
5337 network->rates_ex[i];
5340 return 1;
5343 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5344 const struct ipw_supported_rates *src)
5346 u8 i;
5347 for (i = 0; i < src->num_rates; i++)
5348 dest->supported_rates[i] = src->supported_rates[i];
5349 dest->num_rates = src->num_rates;
5352 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5353 * mask should ever be used -- right now all callers to add the scan rates are
5354 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5355 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5356 u8 modulation, u32 rate_mask)
5358 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5359 IEEE80211_BASIC_RATE_MASK : 0;
5361 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5362 rates->supported_rates[rates->num_rates++] =
5363 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5365 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5366 rates->supported_rates[rates->num_rates++] =
5367 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5369 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5370 rates->supported_rates[rates->num_rates++] = basic_mask |
5371 IEEE80211_CCK_RATE_5MB;
5373 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5374 rates->supported_rates[rates->num_rates++] = basic_mask |
5375 IEEE80211_CCK_RATE_11MB;
5378 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5379 u8 modulation, u32 rate_mask)
5381 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5382 IEEE80211_BASIC_RATE_MASK : 0;
5384 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5385 rates->supported_rates[rates->num_rates++] = basic_mask |
5386 IEEE80211_OFDM_RATE_6MB;
5388 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5389 rates->supported_rates[rates->num_rates++] =
5390 IEEE80211_OFDM_RATE_9MB;
5392 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5393 rates->supported_rates[rates->num_rates++] = basic_mask |
5394 IEEE80211_OFDM_RATE_12MB;
5396 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5397 rates->supported_rates[rates->num_rates++] =
5398 IEEE80211_OFDM_RATE_18MB;
5400 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5401 rates->supported_rates[rates->num_rates++] = basic_mask |
5402 IEEE80211_OFDM_RATE_24MB;
5404 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5405 rates->supported_rates[rates->num_rates++] =
5406 IEEE80211_OFDM_RATE_36MB;
5408 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5409 rates->supported_rates[rates->num_rates++] =
5410 IEEE80211_OFDM_RATE_48MB;
5412 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5413 rates->supported_rates[rates->num_rates++] =
5414 IEEE80211_OFDM_RATE_54MB;
5417 struct ipw_network_match {
5418 struct ieee80211_network *network;
5419 struct ipw_supported_rates rates;
5422 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5423 struct ipw_network_match *match,
5424 struct ieee80211_network *network,
5425 int roaming)
5427 struct ipw_supported_rates rates;
5428 DECLARE_MAC_BUF(mac);
5429 DECLARE_MAC_BUF(mac2);
5431 /* Verify that this network's capability is compatible with the
5432 * current mode (AdHoc or Infrastructure) */
5433 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5434 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5435 IPW_DEBUG_MERGE("Network '%s (%s)' excluded due to "
5436 "capability mismatch.\n",
5437 escape_essid(network->ssid, network->ssid_len),
5438 print_mac(mac, network->bssid));
5439 return 0;
5442 /* If we do not have an ESSID for this AP, we can not associate with
5443 * it */
5444 if (network->flags & NETWORK_EMPTY_ESSID) {
5445 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5446 "because of hidden ESSID.\n",
5447 escape_essid(network->ssid, network->ssid_len),
5448 print_mac(mac, network->bssid));
5449 return 0;
5452 if (unlikely(roaming)) {
5453 /* If we are roaming, then ensure check if this is a valid
5454 * network to try and roam to */
5455 if ((network->ssid_len != match->network->ssid_len) ||
5456 memcmp(network->ssid, match->network->ssid,
5457 network->ssid_len)) {
5458 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5459 "because of non-network ESSID.\n",
5460 escape_essid(network->ssid,
5461 network->ssid_len),
5462 print_mac(mac, network->bssid));
5463 return 0;
5465 } else {
5466 /* If an ESSID has been configured then compare the broadcast
5467 * ESSID to ours */
5468 if ((priv->config & CFG_STATIC_ESSID) &&
5469 ((network->ssid_len != priv->essid_len) ||
5470 memcmp(network->ssid, priv->essid,
5471 min(network->ssid_len, priv->essid_len)))) {
5472 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5474 strncpy(escaped,
5475 escape_essid(network->ssid, network->ssid_len),
5476 sizeof(escaped));
5477 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5478 "because of ESSID mismatch: '%s'.\n",
5479 escaped, print_mac(mac, network->bssid),
5480 escape_essid(priv->essid,
5481 priv->essid_len));
5482 return 0;
5486 /* If the old network rate is better than this one, don't bother
5487 * testing everything else. */
5489 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5490 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5491 "current network.\n",
5492 escape_essid(match->network->ssid,
5493 match->network->ssid_len));
5494 return 0;
5495 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5496 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5497 "current network.\n",
5498 escape_essid(match->network->ssid,
5499 match->network->ssid_len));
5500 return 0;
5503 /* Now go through and see if the requested network is valid... */
5504 if (priv->ieee->scan_age != 0 &&
5505 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5506 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5507 "because of age: %ums.\n",
5508 escape_essid(network->ssid, network->ssid_len),
5509 print_mac(mac, network->bssid),
5510 jiffies_to_msecs(jiffies -
5511 network->last_scanned));
5512 return 0;
5515 if ((priv->config & CFG_STATIC_CHANNEL) &&
5516 (network->channel != priv->channel)) {
5517 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5518 "because of channel mismatch: %d != %d.\n",
5519 escape_essid(network->ssid, network->ssid_len),
5520 print_mac(mac, network->bssid),
5521 network->channel, priv->channel);
5522 return 0;
5525 /* Verify privacy compatability */
5526 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5527 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5528 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5529 "because of privacy mismatch: %s != %s.\n",
5530 escape_essid(network->ssid, network->ssid_len),
5531 print_mac(mac, network->bssid),
5532 priv->
5533 capability & CAP_PRIVACY_ON ? "on" : "off",
5534 network->
5535 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5536 "off");
5537 return 0;
5540 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5541 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5542 "because of the same BSSID match: %s"
5543 ".\n", escape_essid(network->ssid,
5544 network->ssid_len),
5545 print_mac(mac, network->bssid),
5546 print_mac(mac2, priv->bssid));
5547 return 0;
5550 /* Filter out any incompatible freq / mode combinations */
5551 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5552 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5553 "because of invalid frequency/mode "
5554 "combination.\n",
5555 escape_essid(network->ssid, network->ssid_len),
5556 print_mac(mac, network->bssid));
5557 return 0;
5560 /* Ensure that the rates supported by the driver are compatible with
5561 * this AP, including verification of basic rates (mandatory) */
5562 if (!ipw_compatible_rates(priv, network, &rates)) {
5563 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5564 "because configured rate mask excludes "
5565 "AP mandatory rate.\n",
5566 escape_essid(network->ssid, network->ssid_len),
5567 print_mac(mac, network->bssid));
5568 return 0;
5571 if (rates.num_rates == 0) {
5572 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5573 "because of no compatible rates.\n",
5574 escape_essid(network->ssid, network->ssid_len),
5575 print_mac(mac, network->bssid));
5576 return 0;
5579 /* TODO: Perform any further minimal comparititive tests. We do not
5580 * want to put too much policy logic here; intelligent scan selection
5581 * should occur within a generic IEEE 802.11 user space tool. */
5583 /* Set up 'new' AP to this network */
5584 ipw_copy_rates(&match->rates, &rates);
5585 match->network = network;
5586 IPW_DEBUG_MERGE("Network '%s (%s)' is a viable match.\n",
5587 escape_essid(network->ssid, network->ssid_len),
5588 print_mac(mac, network->bssid));
5590 return 1;
5593 static void ipw_merge_adhoc_network(struct work_struct *work)
5595 struct ipw_priv *priv =
5596 container_of(work, struct ipw_priv, merge_networks);
5597 struct ieee80211_network *network = NULL;
5598 struct ipw_network_match match = {
5599 .network = priv->assoc_network
5602 if ((priv->status & STATUS_ASSOCIATED) &&
5603 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5604 /* First pass through ROAM process -- look for a better
5605 * network */
5606 unsigned long flags;
5608 spin_lock_irqsave(&priv->ieee->lock, flags);
5609 list_for_each_entry(network, &priv->ieee->network_list, list) {
5610 if (network != priv->assoc_network)
5611 ipw_find_adhoc_network(priv, &match, network,
5614 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5616 if (match.network == priv->assoc_network) {
5617 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5618 "merge to.\n");
5619 return;
5622 mutex_lock(&priv->mutex);
5623 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5624 IPW_DEBUG_MERGE("remove network %s\n",
5625 escape_essid(priv->essid,
5626 priv->essid_len));
5627 ipw_remove_current_network(priv);
5630 ipw_disassociate(priv);
5631 priv->assoc_network = match.network;
5632 mutex_unlock(&priv->mutex);
5633 return;
5637 static int ipw_best_network(struct ipw_priv *priv,
5638 struct ipw_network_match *match,
5639 struct ieee80211_network *network, int roaming)
5641 struct ipw_supported_rates rates;
5642 DECLARE_MAC_BUF(mac);
5644 /* Verify that this network's capability is compatible with the
5645 * current mode (AdHoc or Infrastructure) */
5646 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5647 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5648 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5649 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5650 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded due to "
5651 "capability mismatch.\n",
5652 escape_essid(network->ssid, network->ssid_len),
5653 print_mac(mac, network->bssid));
5654 return 0;
5657 /* If we do not have an ESSID for this AP, we can not associate with
5658 * it */
5659 if (network->flags & NETWORK_EMPTY_ESSID) {
5660 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5661 "because of hidden ESSID.\n",
5662 escape_essid(network->ssid, network->ssid_len),
5663 print_mac(mac, network->bssid));
5664 return 0;
5667 if (unlikely(roaming)) {
5668 /* If we are roaming, then ensure check if this is a valid
5669 * network to try and roam to */
5670 if ((network->ssid_len != match->network->ssid_len) ||
5671 memcmp(network->ssid, match->network->ssid,
5672 network->ssid_len)) {
5673 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5674 "because of non-network ESSID.\n",
5675 escape_essid(network->ssid,
5676 network->ssid_len),
5677 print_mac(mac, network->bssid));
5678 return 0;
5680 } else {
5681 /* If an ESSID has been configured then compare the broadcast
5682 * ESSID to ours */
5683 if ((priv->config & CFG_STATIC_ESSID) &&
5684 ((network->ssid_len != priv->essid_len) ||
5685 memcmp(network->ssid, priv->essid,
5686 min(network->ssid_len, priv->essid_len)))) {
5687 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5688 strncpy(escaped,
5689 escape_essid(network->ssid, network->ssid_len),
5690 sizeof(escaped));
5691 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5692 "because of ESSID mismatch: '%s'.\n",
5693 escaped, print_mac(mac, network->bssid),
5694 escape_essid(priv->essid,
5695 priv->essid_len));
5696 return 0;
5700 /* If the old network rate is better than this one, don't bother
5701 * testing everything else. */
5702 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5703 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5704 strncpy(escaped,
5705 escape_essid(network->ssid, network->ssid_len),
5706 sizeof(escaped));
5707 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded because "
5708 "'%s (%s)' has a stronger signal.\n",
5709 escaped, print_mac(mac, network->bssid),
5710 escape_essid(match->network->ssid,
5711 match->network->ssid_len),
5712 print_mac(mac, match->network->bssid));
5713 return 0;
5716 /* If this network has already had an association attempt within the
5717 * last 3 seconds, do not try and associate again... */
5718 if (network->last_associate &&
5719 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5720 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5721 "because of storming (%ums since last "
5722 "assoc attempt).\n",
5723 escape_essid(network->ssid, network->ssid_len),
5724 print_mac(mac, network->bssid),
5725 jiffies_to_msecs(jiffies -
5726 network->last_associate));
5727 return 0;
5730 /* Now go through and see if the requested network is valid... */
5731 if (priv->ieee->scan_age != 0 &&
5732 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5733 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5734 "because of age: %ums.\n",
5735 escape_essid(network->ssid, network->ssid_len),
5736 print_mac(mac, network->bssid),
5737 jiffies_to_msecs(jiffies -
5738 network->last_scanned));
5739 return 0;
5742 if ((priv->config & CFG_STATIC_CHANNEL) &&
5743 (network->channel != priv->channel)) {
5744 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5745 "because of channel mismatch: %d != %d.\n",
5746 escape_essid(network->ssid, network->ssid_len),
5747 print_mac(mac, network->bssid),
5748 network->channel, priv->channel);
5749 return 0;
5752 /* Verify privacy compatability */
5753 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5754 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5755 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5756 "because of privacy mismatch: %s != %s.\n",
5757 escape_essid(network->ssid, network->ssid_len),
5758 print_mac(mac, network->bssid),
5759 priv->capability & CAP_PRIVACY_ON ? "on" :
5760 "off",
5761 network->capability &
5762 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5763 return 0;
5766 if ((priv->config & CFG_STATIC_BSSID) &&
5767 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5768 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5769 "because of BSSID mismatch: %s.\n",
5770 escape_essid(network->ssid, network->ssid_len),
5771 print_mac(mac, network->bssid), print_mac(mac, priv->bssid));
5772 return 0;
5775 /* Filter out any incompatible freq / mode combinations */
5776 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5777 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5778 "because of invalid frequency/mode "
5779 "combination.\n",
5780 escape_essid(network->ssid, network->ssid_len),
5781 print_mac(mac, network->bssid));
5782 return 0;
5785 /* Filter out invalid channel in current GEO */
5786 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5787 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5788 "because of invalid channel in current GEO\n",
5789 escape_essid(network->ssid, network->ssid_len),
5790 print_mac(mac, network->bssid));
5791 return 0;
5794 /* Ensure that the rates supported by the driver are compatible with
5795 * this AP, including verification of basic rates (mandatory) */
5796 if (!ipw_compatible_rates(priv, network, &rates)) {
5797 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5798 "because configured rate mask excludes "
5799 "AP mandatory rate.\n",
5800 escape_essid(network->ssid, network->ssid_len),
5801 print_mac(mac, network->bssid));
5802 return 0;
5805 if (rates.num_rates == 0) {
5806 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5807 "because of no compatible rates.\n",
5808 escape_essid(network->ssid, network->ssid_len),
5809 print_mac(mac, network->bssid));
5810 return 0;
5813 /* TODO: Perform any further minimal comparititive tests. We do not
5814 * want to put too much policy logic here; intelligent scan selection
5815 * should occur within a generic IEEE 802.11 user space tool. */
5817 /* Set up 'new' AP to this network */
5818 ipw_copy_rates(&match->rates, &rates);
5819 match->network = network;
5821 IPW_DEBUG_ASSOC("Network '%s (%s)' is a viable match.\n",
5822 escape_essid(network->ssid, network->ssid_len),
5823 print_mac(mac, network->bssid));
5825 return 1;
5828 static void ipw_adhoc_create(struct ipw_priv *priv,
5829 struct ieee80211_network *network)
5831 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5832 int i;
5835 * For the purposes of scanning, we can set our wireless mode
5836 * to trigger scans across combinations of bands, but when it
5837 * comes to creating a new ad-hoc network, we have tell the FW
5838 * exactly which band to use.
5840 * We also have the possibility of an invalid channel for the
5841 * chossen band. Attempting to create a new ad-hoc network
5842 * with an invalid channel for wireless mode will trigger a
5843 * FW fatal error.
5846 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5847 case IEEE80211_52GHZ_BAND:
5848 network->mode = IEEE_A;
5849 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5850 BUG_ON(i == -1);
5851 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5852 IPW_WARNING("Overriding invalid channel\n");
5853 priv->channel = geo->a[0].channel;
5855 break;
5857 case IEEE80211_24GHZ_BAND:
5858 if (priv->ieee->mode & IEEE_G)
5859 network->mode = IEEE_G;
5860 else
5861 network->mode = IEEE_B;
5862 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5863 BUG_ON(i == -1);
5864 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5865 IPW_WARNING("Overriding invalid channel\n");
5866 priv->channel = geo->bg[0].channel;
5868 break;
5870 default:
5871 IPW_WARNING("Overriding invalid channel\n");
5872 if (priv->ieee->mode & IEEE_A) {
5873 network->mode = IEEE_A;
5874 priv->channel = geo->a[0].channel;
5875 } else if (priv->ieee->mode & IEEE_G) {
5876 network->mode = IEEE_G;
5877 priv->channel = geo->bg[0].channel;
5878 } else {
5879 network->mode = IEEE_B;
5880 priv->channel = geo->bg[0].channel;
5882 break;
5885 network->channel = priv->channel;
5886 priv->config |= CFG_ADHOC_PERSIST;
5887 ipw_create_bssid(priv, network->bssid);
5888 network->ssid_len = priv->essid_len;
5889 memcpy(network->ssid, priv->essid, priv->essid_len);
5890 memset(&network->stats, 0, sizeof(network->stats));
5891 network->capability = WLAN_CAPABILITY_IBSS;
5892 if (!(priv->config & CFG_PREAMBLE_LONG))
5893 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5894 if (priv->capability & CAP_PRIVACY_ON)
5895 network->capability |= WLAN_CAPABILITY_PRIVACY;
5896 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5897 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5898 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5899 memcpy(network->rates_ex,
5900 &priv->rates.supported_rates[network->rates_len],
5901 network->rates_ex_len);
5902 network->last_scanned = 0;
5903 network->flags = 0;
5904 network->last_associate = 0;
5905 network->time_stamp[0] = 0;
5906 network->time_stamp[1] = 0;
5907 network->beacon_interval = 100; /* Default */
5908 network->listen_interval = 10; /* Default */
5909 network->atim_window = 0; /* Default */
5910 network->wpa_ie_len = 0;
5911 network->rsn_ie_len = 0;
5914 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5916 struct ipw_tgi_tx_key key;
5918 if (!(priv->ieee->sec.flags & (1 << index)))
5919 return;
5921 key.key_id = index;
5922 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5923 key.security_type = type;
5924 key.station_index = 0; /* always 0 for BSS */
5925 key.flags = 0;
5926 /* 0 for new key; previous value of counter (after fatal error) */
5927 key.tx_counter[0] = cpu_to_le32(0);
5928 key.tx_counter[1] = cpu_to_le32(0);
5930 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5933 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5935 struct ipw_wep_key key;
5936 int i;
5938 key.cmd_id = DINO_CMD_WEP_KEY;
5939 key.seq_num = 0;
5941 /* Note: AES keys cannot be set for multiple times.
5942 * Only set it at the first time. */
5943 for (i = 0; i < 4; i++) {
5944 key.key_index = i | type;
5945 if (!(priv->ieee->sec.flags & (1 << i))) {
5946 key.key_size = 0;
5947 continue;
5950 key.key_size = priv->ieee->sec.key_sizes[i];
5951 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5953 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5957 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5959 if (priv->ieee->host_encrypt)
5960 return;
5962 switch (level) {
5963 case SEC_LEVEL_3:
5964 priv->sys_config.disable_unicast_decryption = 0;
5965 priv->ieee->host_decrypt = 0;
5966 break;
5967 case SEC_LEVEL_2:
5968 priv->sys_config.disable_unicast_decryption = 1;
5969 priv->ieee->host_decrypt = 1;
5970 break;
5971 case SEC_LEVEL_1:
5972 priv->sys_config.disable_unicast_decryption = 0;
5973 priv->ieee->host_decrypt = 0;
5974 break;
5975 case SEC_LEVEL_0:
5976 priv->sys_config.disable_unicast_decryption = 1;
5977 break;
5978 default:
5979 break;
5983 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5985 if (priv->ieee->host_encrypt)
5986 return;
5988 switch (level) {
5989 case SEC_LEVEL_3:
5990 priv->sys_config.disable_multicast_decryption = 0;
5991 break;
5992 case SEC_LEVEL_2:
5993 priv->sys_config.disable_multicast_decryption = 1;
5994 break;
5995 case SEC_LEVEL_1:
5996 priv->sys_config.disable_multicast_decryption = 0;
5997 break;
5998 case SEC_LEVEL_0:
5999 priv->sys_config.disable_multicast_decryption = 1;
6000 break;
6001 default:
6002 break;
6006 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6008 switch (priv->ieee->sec.level) {
6009 case SEC_LEVEL_3:
6010 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6011 ipw_send_tgi_tx_key(priv,
6012 DCT_FLAG_EXT_SECURITY_CCM,
6013 priv->ieee->sec.active_key);
6015 if (!priv->ieee->host_mc_decrypt)
6016 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6017 break;
6018 case SEC_LEVEL_2:
6019 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6020 ipw_send_tgi_tx_key(priv,
6021 DCT_FLAG_EXT_SECURITY_TKIP,
6022 priv->ieee->sec.active_key);
6023 break;
6024 case SEC_LEVEL_1:
6025 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6026 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6027 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6028 break;
6029 case SEC_LEVEL_0:
6030 default:
6031 break;
6035 static void ipw_adhoc_check(void *data)
6037 struct ipw_priv *priv = data;
6039 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6040 !(priv->config & CFG_ADHOC_PERSIST)) {
6041 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6042 IPW_DL_STATE | IPW_DL_ASSOC,
6043 "Missed beacon: %d - disassociate\n",
6044 priv->missed_adhoc_beacons);
6045 ipw_remove_current_network(priv);
6046 ipw_disassociate(priv);
6047 return;
6050 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6051 priv->assoc_request.beacon_interval);
6054 static void ipw_bg_adhoc_check(struct work_struct *work)
6056 struct ipw_priv *priv =
6057 container_of(work, struct ipw_priv, adhoc_check.work);
6058 mutex_lock(&priv->mutex);
6059 ipw_adhoc_check(priv);
6060 mutex_unlock(&priv->mutex);
6063 static void ipw_debug_config(struct ipw_priv *priv)
6065 DECLARE_MAC_BUF(mac);
6066 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6067 "[CFG 0x%08X]\n", priv->config);
6068 if (priv->config & CFG_STATIC_CHANNEL)
6069 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6070 else
6071 IPW_DEBUG_INFO("Channel unlocked.\n");
6072 if (priv->config & CFG_STATIC_ESSID)
6073 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6074 escape_essid(priv->essid, priv->essid_len));
6075 else
6076 IPW_DEBUG_INFO("ESSID unlocked.\n");
6077 if (priv->config & CFG_STATIC_BSSID)
6078 IPW_DEBUG_INFO("BSSID locked to %s\n",
6079 print_mac(mac, priv->bssid));
6080 else
6081 IPW_DEBUG_INFO("BSSID unlocked.\n");
6082 if (priv->capability & CAP_PRIVACY_ON)
6083 IPW_DEBUG_INFO("PRIVACY on\n");
6084 else
6085 IPW_DEBUG_INFO("PRIVACY off\n");
6086 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6089 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6091 /* TODO: Verify that this works... */
6092 struct ipw_fixed_rate fr = {
6093 .tx_rates = priv->rates_mask
6095 u32 reg;
6096 u16 mask = 0;
6098 /* Identify 'current FW band' and match it with the fixed
6099 * Tx rates */
6101 switch (priv->ieee->freq_band) {
6102 case IEEE80211_52GHZ_BAND: /* A only */
6103 /* IEEE_A */
6104 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6105 /* Invalid fixed rate mask */
6106 IPW_DEBUG_WX
6107 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6108 fr.tx_rates = 0;
6109 break;
6112 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6113 break;
6115 default: /* 2.4Ghz or Mixed */
6116 /* IEEE_B */
6117 if (mode == IEEE_B) {
6118 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6119 /* Invalid fixed rate mask */
6120 IPW_DEBUG_WX
6121 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6122 fr.tx_rates = 0;
6124 break;
6127 /* IEEE_G */
6128 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6129 IEEE80211_OFDM_RATES_MASK)) {
6130 /* Invalid fixed rate mask */
6131 IPW_DEBUG_WX
6132 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6133 fr.tx_rates = 0;
6134 break;
6137 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6138 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6139 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6142 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6143 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6144 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6147 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6148 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6149 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6152 fr.tx_rates |= mask;
6153 break;
6156 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6157 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6160 static void ipw_abort_scan(struct ipw_priv *priv)
6162 int err;
6164 if (priv->status & STATUS_SCAN_ABORTING) {
6165 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6166 return;
6168 priv->status |= STATUS_SCAN_ABORTING;
6170 err = ipw_send_scan_abort(priv);
6171 if (err)
6172 IPW_DEBUG_HC("Request to abort scan failed.\n");
6175 static void ipw_add_scan_channels(struct ipw_priv *priv,
6176 struct ipw_scan_request_ext *scan,
6177 int scan_type)
6179 int channel_index = 0;
6180 const struct ieee80211_geo *geo;
6181 int i;
6183 geo = ieee80211_get_geo(priv->ieee);
6185 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6186 int start = channel_index;
6187 for (i = 0; i < geo->a_channels; i++) {
6188 if ((priv->status & STATUS_ASSOCIATED) &&
6189 geo->a[i].channel == priv->channel)
6190 continue;
6191 channel_index++;
6192 scan->channels_list[channel_index] = geo->a[i].channel;
6193 ipw_set_scan_type(scan, channel_index,
6194 geo->a[i].
6195 flags & IEEE80211_CH_PASSIVE_ONLY ?
6196 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6197 scan_type);
6200 if (start != channel_index) {
6201 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6202 (channel_index - start);
6203 channel_index++;
6207 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6208 int start = channel_index;
6209 if (priv->config & CFG_SPEED_SCAN) {
6210 int index;
6211 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6212 /* nop out the list */
6213 [0] = 0
6216 u8 channel;
6217 while (channel_index < IPW_SCAN_CHANNELS) {
6218 channel =
6219 priv->speed_scan[priv->speed_scan_pos];
6220 if (channel == 0) {
6221 priv->speed_scan_pos = 0;
6222 channel = priv->speed_scan[0];
6224 if ((priv->status & STATUS_ASSOCIATED) &&
6225 channel == priv->channel) {
6226 priv->speed_scan_pos++;
6227 continue;
6230 /* If this channel has already been
6231 * added in scan, break from loop
6232 * and this will be the first channel
6233 * in the next scan.
6235 if (channels[channel - 1] != 0)
6236 break;
6238 channels[channel - 1] = 1;
6239 priv->speed_scan_pos++;
6240 channel_index++;
6241 scan->channels_list[channel_index] = channel;
6242 index =
6243 ieee80211_channel_to_index(priv->ieee, channel);
6244 ipw_set_scan_type(scan, channel_index,
6245 geo->bg[index].
6246 flags &
6247 IEEE80211_CH_PASSIVE_ONLY ?
6248 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6249 : scan_type);
6251 } else {
6252 for (i = 0; i < geo->bg_channels; i++) {
6253 if ((priv->status & STATUS_ASSOCIATED) &&
6254 geo->bg[i].channel == priv->channel)
6255 continue;
6256 channel_index++;
6257 scan->channels_list[channel_index] =
6258 geo->bg[i].channel;
6259 ipw_set_scan_type(scan, channel_index,
6260 geo->bg[i].
6261 flags &
6262 IEEE80211_CH_PASSIVE_ONLY ?
6263 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6264 : scan_type);
6268 if (start != channel_index) {
6269 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6270 (channel_index - start);
6275 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6277 struct ipw_scan_request_ext scan;
6278 int err = 0, scan_type;
6280 if (!(priv->status & STATUS_INIT) ||
6281 (priv->status & STATUS_EXIT_PENDING))
6282 return 0;
6284 mutex_lock(&priv->mutex);
6286 if (priv->status & STATUS_SCANNING) {
6287 IPW_DEBUG_HC("Concurrent scan requested. Ignoring.\n");
6288 priv->status |= STATUS_SCAN_PENDING;
6289 goto done;
6292 if (!(priv->status & STATUS_SCAN_FORCED) &&
6293 priv->status & STATUS_SCAN_ABORTING) {
6294 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6295 priv->status |= STATUS_SCAN_PENDING;
6296 goto done;
6299 if (priv->status & STATUS_RF_KILL_MASK) {
6300 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6301 priv->status |= STATUS_SCAN_PENDING;
6302 goto done;
6305 memset(&scan, 0, sizeof(scan));
6306 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6308 if (type == IW_SCAN_TYPE_PASSIVE) {
6309 IPW_DEBUG_WX("use passive scanning\n");
6310 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6311 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6312 cpu_to_le16(120);
6313 ipw_add_scan_channels(priv, &scan, scan_type);
6314 goto send_request;
6317 /* Use active scan by default. */
6318 if (priv->config & CFG_SPEED_SCAN)
6319 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6320 cpu_to_le16(30);
6321 else
6322 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6323 cpu_to_le16(20);
6325 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6326 cpu_to_le16(20);
6328 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6330 #ifdef CONFIG_IPW2200_MONITOR
6331 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6332 u8 channel;
6333 u8 band = 0;
6335 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6336 case IEEE80211_52GHZ_BAND:
6337 band = (u8) (IPW_A_MODE << 6) | 1;
6338 channel = priv->channel;
6339 break;
6341 case IEEE80211_24GHZ_BAND:
6342 band = (u8) (IPW_B_MODE << 6) | 1;
6343 channel = priv->channel;
6344 break;
6346 default:
6347 band = (u8) (IPW_B_MODE << 6) | 1;
6348 channel = 9;
6349 break;
6352 scan.channels_list[0] = band;
6353 scan.channels_list[1] = channel;
6354 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6356 /* NOTE: The card will sit on this channel for this time
6357 * period. Scan aborts are timing sensitive and frequently
6358 * result in firmware restarts. As such, it is best to
6359 * set a small dwell_time here and just keep re-issuing
6360 * scans. Otherwise fast channel hopping will not actually
6361 * hop channels.
6363 * TODO: Move SPEED SCAN support to all modes and bands */
6364 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6365 cpu_to_le16(2000);
6366 } else {
6367 #endif /* CONFIG_IPW2200_MONITOR */
6368 /* If we are roaming, then make this a directed scan for the
6369 * current network. Otherwise, ensure that every other scan
6370 * is a fast channel hop scan */
6371 if ((priv->status & STATUS_ROAMING)
6372 || (!(priv->status & STATUS_ASSOCIATED)
6373 && (priv->config & CFG_STATIC_ESSID)
6374 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6375 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6376 if (err) {
6377 IPW_DEBUG_HC("Attempt to send SSID command "
6378 "failed.\n");
6379 goto done;
6382 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6383 } else
6384 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6386 ipw_add_scan_channels(priv, &scan, scan_type);
6387 #ifdef CONFIG_IPW2200_MONITOR
6389 #endif
6391 send_request:
6392 err = ipw_send_scan_request_ext(priv, &scan);
6393 if (err) {
6394 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6395 goto done;
6398 priv->status |= STATUS_SCANNING;
6399 priv->status &= ~STATUS_SCAN_PENDING;
6400 queue_delayed_work(priv->workqueue, &priv->scan_check,
6401 IPW_SCAN_CHECK_WATCHDOG);
6402 done:
6403 mutex_unlock(&priv->mutex);
6404 return err;
6407 static void ipw_request_passive_scan(struct work_struct *work)
6409 struct ipw_priv *priv =
6410 container_of(work, struct ipw_priv, request_passive_scan);
6411 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6414 static void ipw_request_scan(struct work_struct *work)
6416 struct ipw_priv *priv =
6417 container_of(work, struct ipw_priv, request_scan.work);
6418 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6421 static void ipw_bg_abort_scan(struct work_struct *work)
6423 struct ipw_priv *priv =
6424 container_of(work, struct ipw_priv, abort_scan);
6425 mutex_lock(&priv->mutex);
6426 ipw_abort_scan(priv);
6427 mutex_unlock(&priv->mutex);
6430 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6432 /* This is called when wpa_supplicant loads and closes the driver
6433 * interface. */
6434 priv->ieee->wpa_enabled = value;
6435 return 0;
6438 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6440 struct ieee80211_device *ieee = priv->ieee;
6441 struct ieee80211_security sec = {
6442 .flags = SEC_AUTH_MODE,
6444 int ret = 0;
6446 if (value & IW_AUTH_ALG_SHARED_KEY) {
6447 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6448 ieee->open_wep = 0;
6449 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6450 sec.auth_mode = WLAN_AUTH_OPEN;
6451 ieee->open_wep = 1;
6452 } else if (value & IW_AUTH_ALG_LEAP) {
6453 sec.auth_mode = WLAN_AUTH_LEAP;
6454 ieee->open_wep = 1;
6455 } else
6456 return -EINVAL;
6458 if (ieee->set_security)
6459 ieee->set_security(ieee->dev, &sec);
6460 else
6461 ret = -EOPNOTSUPP;
6463 return ret;
6466 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6467 int wpa_ie_len)
6469 /* make sure WPA is enabled */
6470 ipw_wpa_enable(priv, 1);
6473 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6474 char *capabilities, int length)
6476 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6478 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6479 capabilities);
6483 * WE-18 support
6486 /* SIOCSIWGENIE */
6487 static int ipw_wx_set_genie(struct net_device *dev,
6488 struct iw_request_info *info,
6489 union iwreq_data *wrqu, char *extra)
6491 struct ipw_priv *priv = ieee80211_priv(dev);
6492 struct ieee80211_device *ieee = priv->ieee;
6493 u8 *buf;
6494 int err = 0;
6496 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6497 (wrqu->data.length && extra == NULL))
6498 return -EINVAL;
6500 if (wrqu->data.length) {
6501 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6502 if (buf == NULL) {
6503 err = -ENOMEM;
6504 goto out;
6507 memcpy(buf, extra, wrqu->data.length);
6508 kfree(ieee->wpa_ie);
6509 ieee->wpa_ie = buf;
6510 ieee->wpa_ie_len = wrqu->data.length;
6511 } else {
6512 kfree(ieee->wpa_ie);
6513 ieee->wpa_ie = NULL;
6514 ieee->wpa_ie_len = 0;
6517 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6518 out:
6519 return err;
6522 /* SIOCGIWGENIE */
6523 static int ipw_wx_get_genie(struct net_device *dev,
6524 struct iw_request_info *info,
6525 union iwreq_data *wrqu, char *extra)
6527 struct ipw_priv *priv = ieee80211_priv(dev);
6528 struct ieee80211_device *ieee = priv->ieee;
6529 int err = 0;
6531 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6532 wrqu->data.length = 0;
6533 goto out;
6536 if (wrqu->data.length < ieee->wpa_ie_len) {
6537 err = -E2BIG;
6538 goto out;
6541 wrqu->data.length = ieee->wpa_ie_len;
6542 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6544 out:
6545 return err;
6548 static int wext_cipher2level(int cipher)
6550 switch (cipher) {
6551 case IW_AUTH_CIPHER_NONE:
6552 return SEC_LEVEL_0;
6553 case IW_AUTH_CIPHER_WEP40:
6554 case IW_AUTH_CIPHER_WEP104:
6555 return SEC_LEVEL_1;
6556 case IW_AUTH_CIPHER_TKIP:
6557 return SEC_LEVEL_2;
6558 case IW_AUTH_CIPHER_CCMP:
6559 return SEC_LEVEL_3;
6560 default:
6561 return -1;
6565 /* SIOCSIWAUTH */
6566 static int ipw_wx_set_auth(struct net_device *dev,
6567 struct iw_request_info *info,
6568 union iwreq_data *wrqu, char *extra)
6570 struct ipw_priv *priv = ieee80211_priv(dev);
6571 struct ieee80211_device *ieee = priv->ieee;
6572 struct iw_param *param = &wrqu->param;
6573 struct ieee80211_crypt_data *crypt;
6574 unsigned long flags;
6575 int ret = 0;
6577 switch (param->flags & IW_AUTH_INDEX) {
6578 case IW_AUTH_WPA_VERSION:
6579 break;
6580 case IW_AUTH_CIPHER_PAIRWISE:
6581 ipw_set_hw_decrypt_unicast(priv,
6582 wext_cipher2level(param->value));
6583 break;
6584 case IW_AUTH_CIPHER_GROUP:
6585 ipw_set_hw_decrypt_multicast(priv,
6586 wext_cipher2level(param->value));
6587 break;
6588 case IW_AUTH_KEY_MGMT:
6590 * ipw2200 does not use these parameters
6592 break;
6594 case IW_AUTH_TKIP_COUNTERMEASURES:
6595 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6596 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6597 break;
6599 flags = crypt->ops->get_flags(crypt->priv);
6601 if (param->value)
6602 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6603 else
6604 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6606 crypt->ops->set_flags(flags, crypt->priv);
6608 break;
6610 case IW_AUTH_DROP_UNENCRYPTED:{
6611 /* HACK:
6613 * wpa_supplicant calls set_wpa_enabled when the driver
6614 * is loaded and unloaded, regardless of if WPA is being
6615 * used. No other calls are made which can be used to
6616 * determine if encryption will be used or not prior to
6617 * association being expected. If encryption is not being
6618 * used, drop_unencrypted is set to false, else true -- we
6619 * can use this to determine if the CAP_PRIVACY_ON bit should
6620 * be set.
6622 struct ieee80211_security sec = {
6623 .flags = SEC_ENABLED,
6624 .enabled = param->value,
6626 priv->ieee->drop_unencrypted = param->value;
6627 /* We only change SEC_LEVEL for open mode. Others
6628 * are set by ipw_wpa_set_encryption.
6630 if (!param->value) {
6631 sec.flags |= SEC_LEVEL;
6632 sec.level = SEC_LEVEL_0;
6633 } else {
6634 sec.flags |= SEC_LEVEL;
6635 sec.level = SEC_LEVEL_1;
6637 if (priv->ieee->set_security)
6638 priv->ieee->set_security(priv->ieee->dev, &sec);
6639 break;
6642 case IW_AUTH_80211_AUTH_ALG:
6643 ret = ipw_wpa_set_auth_algs(priv, param->value);
6644 break;
6646 case IW_AUTH_WPA_ENABLED:
6647 ret = ipw_wpa_enable(priv, param->value);
6648 ipw_disassociate(priv);
6649 break;
6651 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6652 ieee->ieee802_1x = param->value;
6653 break;
6655 case IW_AUTH_PRIVACY_INVOKED:
6656 ieee->privacy_invoked = param->value;
6657 break;
6659 default:
6660 return -EOPNOTSUPP;
6662 return ret;
6665 /* SIOCGIWAUTH */
6666 static int ipw_wx_get_auth(struct net_device *dev,
6667 struct iw_request_info *info,
6668 union iwreq_data *wrqu, char *extra)
6670 struct ipw_priv *priv = ieee80211_priv(dev);
6671 struct ieee80211_device *ieee = priv->ieee;
6672 struct ieee80211_crypt_data *crypt;
6673 struct iw_param *param = &wrqu->param;
6674 int ret = 0;
6676 switch (param->flags & IW_AUTH_INDEX) {
6677 case IW_AUTH_WPA_VERSION:
6678 case IW_AUTH_CIPHER_PAIRWISE:
6679 case IW_AUTH_CIPHER_GROUP:
6680 case IW_AUTH_KEY_MGMT:
6682 * wpa_supplicant will control these internally
6684 ret = -EOPNOTSUPP;
6685 break;
6687 case IW_AUTH_TKIP_COUNTERMEASURES:
6688 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6689 if (!crypt || !crypt->ops->get_flags)
6690 break;
6692 param->value = (crypt->ops->get_flags(crypt->priv) &
6693 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6695 break;
6697 case IW_AUTH_DROP_UNENCRYPTED:
6698 param->value = ieee->drop_unencrypted;
6699 break;
6701 case IW_AUTH_80211_AUTH_ALG:
6702 param->value = ieee->sec.auth_mode;
6703 break;
6705 case IW_AUTH_WPA_ENABLED:
6706 param->value = ieee->wpa_enabled;
6707 break;
6709 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6710 param->value = ieee->ieee802_1x;
6711 break;
6713 case IW_AUTH_ROAMING_CONTROL:
6714 case IW_AUTH_PRIVACY_INVOKED:
6715 param->value = ieee->privacy_invoked;
6716 break;
6718 default:
6719 return -EOPNOTSUPP;
6721 return 0;
6724 /* SIOCSIWENCODEEXT */
6725 static int ipw_wx_set_encodeext(struct net_device *dev,
6726 struct iw_request_info *info,
6727 union iwreq_data *wrqu, char *extra)
6729 struct ipw_priv *priv = ieee80211_priv(dev);
6730 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6732 if (hwcrypto) {
6733 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6734 /* IPW HW can't build TKIP MIC,
6735 host decryption still needed */
6736 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6737 priv->ieee->host_mc_decrypt = 1;
6738 else {
6739 priv->ieee->host_encrypt = 0;
6740 priv->ieee->host_encrypt_msdu = 1;
6741 priv->ieee->host_decrypt = 1;
6743 } else {
6744 priv->ieee->host_encrypt = 0;
6745 priv->ieee->host_encrypt_msdu = 0;
6746 priv->ieee->host_decrypt = 0;
6747 priv->ieee->host_mc_decrypt = 0;
6751 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6754 /* SIOCGIWENCODEEXT */
6755 static int ipw_wx_get_encodeext(struct net_device *dev,
6756 struct iw_request_info *info,
6757 union iwreq_data *wrqu, char *extra)
6759 struct ipw_priv *priv = ieee80211_priv(dev);
6760 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6763 /* SIOCSIWMLME */
6764 static int ipw_wx_set_mlme(struct net_device *dev,
6765 struct iw_request_info *info,
6766 union iwreq_data *wrqu, char *extra)
6768 struct ipw_priv *priv = ieee80211_priv(dev);
6769 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6770 u16 reason;
6772 reason = cpu_to_le16(mlme->reason_code);
6774 switch (mlme->cmd) {
6775 case IW_MLME_DEAUTH:
6776 /* silently ignore */
6777 break;
6779 case IW_MLME_DISASSOC:
6780 ipw_disassociate(priv);
6781 break;
6783 default:
6784 return -EOPNOTSUPP;
6786 return 0;
6789 #ifdef CONFIG_IPW2200_QOS
6791 /* QoS */
6793 * get the modulation type of the current network or
6794 * the card current mode
6796 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6798 u8 mode = 0;
6800 if (priv->status & STATUS_ASSOCIATED) {
6801 unsigned long flags;
6803 spin_lock_irqsave(&priv->ieee->lock, flags);
6804 mode = priv->assoc_network->mode;
6805 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6806 } else {
6807 mode = priv->ieee->mode;
6809 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6810 return mode;
6814 * Handle management frame beacon and probe response
6816 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6817 int active_network,
6818 struct ieee80211_network *network)
6820 u32 size = sizeof(struct ieee80211_qos_parameters);
6822 if (network->capability & WLAN_CAPABILITY_IBSS)
6823 network->qos_data.active = network->qos_data.supported;
6825 if (network->flags & NETWORK_HAS_QOS_MASK) {
6826 if (active_network &&
6827 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6828 network->qos_data.active = network->qos_data.supported;
6830 if ((network->qos_data.active == 1) && (active_network == 1) &&
6831 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6832 (network->qos_data.old_param_count !=
6833 network->qos_data.param_count)) {
6834 network->qos_data.old_param_count =
6835 network->qos_data.param_count;
6836 schedule_work(&priv->qos_activate);
6837 IPW_DEBUG_QOS("QoS parameters change call "
6838 "qos_activate\n");
6840 } else {
6841 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6842 memcpy(&network->qos_data.parameters,
6843 &def_parameters_CCK, size);
6844 else
6845 memcpy(&network->qos_data.parameters,
6846 &def_parameters_OFDM, size);
6848 if ((network->qos_data.active == 1) && (active_network == 1)) {
6849 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6850 schedule_work(&priv->qos_activate);
6853 network->qos_data.active = 0;
6854 network->qos_data.supported = 0;
6856 if ((priv->status & STATUS_ASSOCIATED) &&
6857 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6858 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6859 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6860 !(network->flags & NETWORK_EMPTY_ESSID))
6861 if ((network->ssid_len ==
6862 priv->assoc_network->ssid_len) &&
6863 !memcmp(network->ssid,
6864 priv->assoc_network->ssid,
6865 network->ssid_len)) {
6866 queue_work(priv->workqueue,
6867 &priv->merge_networks);
6871 return 0;
6875 * This function set up the firmware to support QoS. It sends
6876 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6878 static int ipw_qos_activate(struct ipw_priv *priv,
6879 struct ieee80211_qos_data *qos_network_data)
6881 int err;
6882 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6883 struct ieee80211_qos_parameters *active_one = NULL;
6884 u32 size = sizeof(struct ieee80211_qos_parameters);
6885 u32 burst_duration;
6886 int i;
6887 u8 type;
6889 type = ipw_qos_current_mode(priv);
6891 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6892 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6893 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6894 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6896 if (qos_network_data == NULL) {
6897 if (type == IEEE_B) {
6898 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6899 active_one = &def_parameters_CCK;
6900 } else
6901 active_one = &def_parameters_OFDM;
6903 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6904 burst_duration = ipw_qos_get_burst_duration(priv);
6905 for (i = 0; i < QOS_QUEUE_NUM; i++)
6906 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6907 (u16)burst_duration;
6908 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6909 if (type == IEEE_B) {
6910 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6911 type);
6912 if (priv->qos_data.qos_enable == 0)
6913 active_one = &def_parameters_CCK;
6914 else
6915 active_one = priv->qos_data.def_qos_parm_CCK;
6916 } else {
6917 if (priv->qos_data.qos_enable == 0)
6918 active_one = &def_parameters_OFDM;
6919 else
6920 active_one = priv->qos_data.def_qos_parm_OFDM;
6922 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6923 } else {
6924 unsigned long flags;
6925 int active;
6927 spin_lock_irqsave(&priv->ieee->lock, flags);
6928 active_one = &(qos_network_data->parameters);
6929 qos_network_data->old_param_count =
6930 qos_network_data->param_count;
6931 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6932 active = qos_network_data->supported;
6933 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6935 if (active == 0) {
6936 burst_duration = ipw_qos_get_burst_duration(priv);
6937 for (i = 0; i < QOS_QUEUE_NUM; i++)
6938 qos_parameters[QOS_PARAM_SET_ACTIVE].
6939 tx_op_limit[i] = (u16)burst_duration;
6943 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6944 for (i = 0; i < 3; i++) {
6945 int j;
6946 for (j = 0; j < QOS_QUEUE_NUM; j++) {
6947 qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
6948 qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
6949 qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
6953 err = ipw_send_qos_params_command(priv,
6954 (struct ieee80211_qos_parameters *)
6955 &(qos_parameters[0]));
6956 if (err)
6957 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6959 return err;
6963 * send IPW_CMD_WME_INFO to the firmware
6965 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6967 int ret = 0;
6968 struct ieee80211_qos_information_element qos_info;
6970 if (priv == NULL)
6971 return -1;
6973 qos_info.elementID = QOS_ELEMENT_ID;
6974 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6976 qos_info.version = QOS_VERSION_1;
6977 qos_info.ac_info = 0;
6979 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6980 qos_info.qui_type = QOS_OUI_TYPE;
6981 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6983 ret = ipw_send_qos_info_command(priv, &qos_info);
6984 if (ret != 0) {
6985 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6987 return ret;
6991 * Set the QoS parameter with the association request structure
6993 static int ipw_qos_association(struct ipw_priv *priv,
6994 struct ieee80211_network *network)
6996 int err = 0;
6997 struct ieee80211_qos_data *qos_data = NULL;
6998 struct ieee80211_qos_data ibss_data = {
6999 .supported = 1,
7000 .active = 1,
7003 switch (priv->ieee->iw_mode) {
7004 case IW_MODE_ADHOC:
7005 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7007 qos_data = &ibss_data;
7008 break;
7010 case IW_MODE_INFRA:
7011 qos_data = &network->qos_data;
7012 break;
7014 default:
7015 BUG();
7016 break;
7019 err = ipw_qos_activate(priv, qos_data);
7020 if (err) {
7021 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7022 return err;
7025 if (priv->qos_data.qos_enable && qos_data->supported) {
7026 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7027 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7028 return ipw_qos_set_info_element(priv);
7031 return 0;
7035 * handling the beaconing responses. if we get different QoS setting
7036 * off the network from the associated setting, adjust the QoS
7037 * setting
7039 static int ipw_qos_association_resp(struct ipw_priv *priv,
7040 struct ieee80211_network *network)
7042 int ret = 0;
7043 unsigned long flags;
7044 u32 size = sizeof(struct ieee80211_qos_parameters);
7045 int set_qos_param = 0;
7047 if ((priv == NULL) || (network == NULL) ||
7048 (priv->assoc_network == NULL))
7049 return ret;
7051 if (!(priv->status & STATUS_ASSOCIATED))
7052 return ret;
7054 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7055 return ret;
7057 spin_lock_irqsave(&priv->ieee->lock, flags);
7058 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7059 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7060 sizeof(struct ieee80211_qos_data));
7061 priv->assoc_network->qos_data.active = 1;
7062 if ((network->qos_data.old_param_count !=
7063 network->qos_data.param_count)) {
7064 set_qos_param = 1;
7065 network->qos_data.old_param_count =
7066 network->qos_data.param_count;
7069 } else {
7070 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7071 memcpy(&priv->assoc_network->qos_data.parameters,
7072 &def_parameters_CCK, size);
7073 else
7074 memcpy(&priv->assoc_network->qos_data.parameters,
7075 &def_parameters_OFDM, size);
7076 priv->assoc_network->qos_data.active = 0;
7077 priv->assoc_network->qos_data.supported = 0;
7078 set_qos_param = 1;
7081 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7083 if (set_qos_param == 1)
7084 schedule_work(&priv->qos_activate);
7086 return ret;
7089 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7091 u32 ret = 0;
7093 if ((priv == NULL))
7094 return 0;
7096 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7097 ret = priv->qos_data.burst_duration_CCK;
7098 else
7099 ret = priv->qos_data.burst_duration_OFDM;
7101 return ret;
7105 * Initialize the setting of QoS global
7107 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7108 int burst_enable, u32 burst_duration_CCK,
7109 u32 burst_duration_OFDM)
7111 priv->qos_data.qos_enable = enable;
7113 if (priv->qos_data.qos_enable) {
7114 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7115 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7116 IPW_DEBUG_QOS("QoS is enabled\n");
7117 } else {
7118 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7119 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7120 IPW_DEBUG_QOS("QoS is not enabled\n");
7123 priv->qos_data.burst_enable = burst_enable;
7125 if (burst_enable) {
7126 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7127 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7128 } else {
7129 priv->qos_data.burst_duration_CCK = 0;
7130 priv->qos_data.burst_duration_OFDM = 0;
7135 * map the packet priority to the right TX Queue
7137 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7139 if (priority > 7 || !priv->qos_data.qos_enable)
7140 priority = 0;
7142 return from_priority_to_tx_queue[priority] - 1;
7145 static int ipw_is_qos_active(struct net_device *dev,
7146 struct sk_buff *skb)
7148 struct ipw_priv *priv = ieee80211_priv(dev);
7149 struct ieee80211_qos_data *qos_data = NULL;
7150 int active, supported;
7151 u8 *daddr = skb->data + ETH_ALEN;
7152 int unicast = !is_multicast_ether_addr(daddr);
7154 if (!(priv->status & STATUS_ASSOCIATED))
7155 return 0;
7157 qos_data = &priv->assoc_network->qos_data;
7159 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7160 if (unicast == 0)
7161 qos_data->active = 0;
7162 else
7163 qos_data->active = qos_data->supported;
7165 active = qos_data->active;
7166 supported = qos_data->supported;
7167 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7168 "unicast %d\n",
7169 priv->qos_data.qos_enable, active, supported, unicast);
7170 if (active && priv->qos_data.qos_enable)
7171 return 1;
7173 return 0;
7177 * add QoS parameter to the TX command
7179 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7180 u16 priority,
7181 struct tfd_data *tfd)
7183 int tx_queue_id = 0;
7186 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7187 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7189 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7190 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7191 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7193 return 0;
7197 * background support to run QoS activate functionality
7199 static void ipw_bg_qos_activate(struct work_struct *work)
7201 struct ipw_priv *priv =
7202 container_of(work, struct ipw_priv, qos_activate);
7204 if (priv == NULL)
7205 return;
7207 mutex_lock(&priv->mutex);
7209 if (priv->status & STATUS_ASSOCIATED)
7210 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7212 mutex_unlock(&priv->mutex);
7215 static int ipw_handle_probe_response(struct net_device *dev,
7216 struct ieee80211_probe_response *resp,
7217 struct ieee80211_network *network)
7219 struct ipw_priv *priv = ieee80211_priv(dev);
7220 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7221 (network == priv->assoc_network));
7223 ipw_qos_handle_probe_response(priv, active_network, network);
7225 return 0;
7228 static int ipw_handle_beacon(struct net_device *dev,
7229 struct ieee80211_beacon *resp,
7230 struct ieee80211_network *network)
7232 struct ipw_priv *priv = ieee80211_priv(dev);
7233 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7234 (network == priv->assoc_network));
7236 ipw_qos_handle_probe_response(priv, active_network, network);
7238 return 0;
7241 static int ipw_handle_assoc_response(struct net_device *dev,
7242 struct ieee80211_assoc_response *resp,
7243 struct ieee80211_network *network)
7245 struct ipw_priv *priv = ieee80211_priv(dev);
7246 ipw_qos_association_resp(priv, network);
7247 return 0;
7250 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7251 *qos_param)
7253 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7254 sizeof(*qos_param) * 3, qos_param);
7257 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7258 *qos_param)
7260 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7261 qos_param);
7264 #endif /* CONFIG_IPW2200_QOS */
7266 static int ipw_associate_network(struct ipw_priv *priv,
7267 struct ieee80211_network *network,
7268 struct ipw_supported_rates *rates, int roaming)
7270 int err;
7271 DECLARE_MAC_BUF(mac);
7273 if (priv->config & CFG_FIXED_RATE)
7274 ipw_set_fixed_rate(priv, network->mode);
7276 if (!(priv->config & CFG_STATIC_ESSID)) {
7277 priv->essid_len = min(network->ssid_len,
7278 (u8) IW_ESSID_MAX_SIZE);
7279 memcpy(priv->essid, network->ssid, priv->essid_len);
7282 network->last_associate = jiffies;
7284 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7285 priv->assoc_request.channel = network->channel;
7286 priv->assoc_request.auth_key = 0;
7288 if ((priv->capability & CAP_PRIVACY_ON) &&
7289 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7290 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7291 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7293 if (priv->ieee->sec.level == SEC_LEVEL_1)
7294 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7296 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7297 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7298 priv->assoc_request.auth_type = AUTH_LEAP;
7299 else
7300 priv->assoc_request.auth_type = AUTH_OPEN;
7302 if (priv->ieee->wpa_ie_len) {
7303 priv->assoc_request.policy_support = 0x02; /* RSN active */
7304 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7305 priv->ieee->wpa_ie_len);
7309 * It is valid for our ieee device to support multiple modes, but
7310 * when it comes to associating to a given network we have to choose
7311 * just one mode.
7313 if (network->mode & priv->ieee->mode & IEEE_A)
7314 priv->assoc_request.ieee_mode = IPW_A_MODE;
7315 else if (network->mode & priv->ieee->mode & IEEE_G)
7316 priv->assoc_request.ieee_mode = IPW_G_MODE;
7317 else if (network->mode & priv->ieee->mode & IEEE_B)
7318 priv->assoc_request.ieee_mode = IPW_B_MODE;
7320 priv->assoc_request.capability = network->capability;
7321 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7322 && !(priv->config & CFG_PREAMBLE_LONG)) {
7323 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7324 } else {
7325 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7327 /* Clear the short preamble if we won't be supporting it */
7328 priv->assoc_request.capability &=
7329 ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7332 /* Clear capability bits that aren't used in Ad Hoc */
7333 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7334 priv->assoc_request.capability &=
7335 ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7337 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7338 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7339 roaming ? "Rea" : "A",
7340 escape_essid(priv->essid, priv->essid_len),
7341 network->channel,
7342 ipw_modes[priv->assoc_request.ieee_mode],
7343 rates->num_rates,
7344 (priv->assoc_request.preamble_length ==
7345 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7346 network->capability &
7347 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7348 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7349 priv->capability & CAP_PRIVACY_ON ?
7350 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7351 "(open)") : "",
7352 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7353 priv->capability & CAP_PRIVACY_ON ?
7354 '1' + priv->ieee->sec.active_key : '.',
7355 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7357 priv->assoc_request.beacon_interval = network->beacon_interval;
7358 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7359 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7360 priv->assoc_request.assoc_type = HC_IBSS_START;
7361 priv->assoc_request.assoc_tsf_msw = 0;
7362 priv->assoc_request.assoc_tsf_lsw = 0;
7363 } else {
7364 if (unlikely(roaming))
7365 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7366 else
7367 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7368 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7369 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7372 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7374 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7375 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7376 priv->assoc_request.atim_window = network->atim_window;
7377 } else {
7378 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7379 priv->assoc_request.atim_window = 0;
7382 priv->assoc_request.listen_interval = network->listen_interval;
7384 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7385 if (err) {
7386 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7387 return err;
7390 rates->ieee_mode = priv->assoc_request.ieee_mode;
7391 rates->purpose = IPW_RATE_CONNECT;
7392 ipw_send_supported_rates(priv, rates);
7394 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7395 priv->sys_config.dot11g_auto_detection = 1;
7396 else
7397 priv->sys_config.dot11g_auto_detection = 0;
7399 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7400 priv->sys_config.answer_broadcast_ssid_probe = 1;
7401 else
7402 priv->sys_config.answer_broadcast_ssid_probe = 0;
7404 err = ipw_send_system_config(priv);
7405 if (err) {
7406 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7407 return err;
7410 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7411 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7412 if (err) {
7413 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7414 return err;
7418 * If preemption is enabled, it is possible for the association
7419 * to complete before we return from ipw_send_associate. Therefore
7420 * we have to be sure and update our priviate data first.
7422 priv->channel = network->channel;
7423 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7424 priv->status |= STATUS_ASSOCIATING;
7425 priv->status &= ~STATUS_SECURITY_UPDATED;
7427 priv->assoc_network = network;
7429 #ifdef CONFIG_IPW2200_QOS
7430 ipw_qos_association(priv, network);
7431 #endif
7433 err = ipw_send_associate(priv, &priv->assoc_request);
7434 if (err) {
7435 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7436 return err;
7439 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %s \n",
7440 escape_essid(priv->essid, priv->essid_len),
7441 print_mac(mac, priv->bssid));
7443 return 0;
7446 static void ipw_roam(void *data)
7448 struct ipw_priv *priv = data;
7449 struct ieee80211_network *network = NULL;
7450 struct ipw_network_match match = {
7451 .network = priv->assoc_network
7454 /* The roaming process is as follows:
7456 * 1. Missed beacon threshold triggers the roaming process by
7457 * setting the status ROAM bit and requesting a scan.
7458 * 2. When the scan completes, it schedules the ROAM work
7459 * 3. The ROAM work looks at all of the known networks for one that
7460 * is a better network than the currently associated. If none
7461 * found, the ROAM process is over (ROAM bit cleared)
7462 * 4. If a better network is found, a disassociation request is
7463 * sent.
7464 * 5. When the disassociation completes, the roam work is again
7465 * scheduled. The second time through, the driver is no longer
7466 * associated, and the newly selected network is sent an
7467 * association request.
7468 * 6. At this point ,the roaming process is complete and the ROAM
7469 * status bit is cleared.
7472 /* If we are no longer associated, and the roaming bit is no longer
7473 * set, then we are not actively roaming, so just return */
7474 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7475 return;
7477 if (priv->status & STATUS_ASSOCIATED) {
7478 /* First pass through ROAM process -- look for a better
7479 * network */
7480 unsigned long flags;
7481 u8 rssi = priv->assoc_network->stats.rssi;
7482 priv->assoc_network->stats.rssi = -128;
7483 spin_lock_irqsave(&priv->ieee->lock, flags);
7484 list_for_each_entry(network, &priv->ieee->network_list, list) {
7485 if (network != priv->assoc_network)
7486 ipw_best_network(priv, &match, network, 1);
7488 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7489 priv->assoc_network->stats.rssi = rssi;
7491 if (match.network == priv->assoc_network) {
7492 IPW_DEBUG_ASSOC("No better APs in this network to "
7493 "roam to.\n");
7494 priv->status &= ~STATUS_ROAMING;
7495 ipw_debug_config(priv);
7496 return;
7499 ipw_send_disassociate(priv, 1);
7500 priv->assoc_network = match.network;
7502 return;
7505 /* Second pass through ROAM process -- request association */
7506 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7507 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7508 priv->status &= ~STATUS_ROAMING;
7511 static void ipw_bg_roam(struct work_struct *work)
7513 struct ipw_priv *priv =
7514 container_of(work, struct ipw_priv, roam);
7515 mutex_lock(&priv->mutex);
7516 ipw_roam(priv);
7517 mutex_unlock(&priv->mutex);
7520 static int ipw_associate(void *data)
7522 struct ipw_priv *priv = data;
7524 struct ieee80211_network *network = NULL;
7525 struct ipw_network_match match = {
7526 .network = NULL
7528 struct ipw_supported_rates *rates;
7529 struct list_head *element;
7530 unsigned long flags;
7532 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7533 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7534 return 0;
7537 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7538 IPW_DEBUG_ASSOC("Not attempting association (already in "
7539 "progress)\n");
7540 return 0;
7543 if (priv->status & STATUS_DISASSOCIATING) {
7544 IPW_DEBUG_ASSOC("Not attempting association (in "
7545 "disassociating)\n ");
7546 queue_work(priv->workqueue, &priv->associate);
7547 return 0;
7550 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7551 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7552 "initialized)\n");
7553 return 0;
7556 if (!(priv->config & CFG_ASSOCIATE) &&
7557 !(priv->config & (CFG_STATIC_ESSID |
7558 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7559 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7560 return 0;
7563 /* Protect our use of the network_list */
7564 spin_lock_irqsave(&priv->ieee->lock, flags);
7565 list_for_each_entry(network, &priv->ieee->network_list, list)
7566 ipw_best_network(priv, &match, network, 0);
7568 network = match.network;
7569 rates = &match.rates;
7571 if (network == NULL &&
7572 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7573 priv->config & CFG_ADHOC_CREATE &&
7574 priv->config & CFG_STATIC_ESSID &&
7575 priv->config & CFG_STATIC_CHANNEL &&
7576 !list_empty(&priv->ieee->network_free_list)) {
7577 element = priv->ieee->network_free_list.next;
7578 network = list_entry(element, struct ieee80211_network, list);
7579 ipw_adhoc_create(priv, network);
7580 rates = &priv->rates;
7581 list_del(element);
7582 list_add_tail(&network->list, &priv->ieee->network_list);
7584 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7586 /* If we reached the end of the list, then we don't have any valid
7587 * matching APs */
7588 if (!network) {
7589 ipw_debug_config(priv);
7591 if (!(priv->status & STATUS_SCANNING)) {
7592 if (!(priv->config & CFG_SPEED_SCAN))
7593 queue_delayed_work(priv->workqueue,
7594 &priv->request_scan,
7595 SCAN_INTERVAL);
7596 else
7597 queue_delayed_work(priv->workqueue,
7598 &priv->request_scan, 0);
7601 return 0;
7604 ipw_associate_network(priv, network, rates, 0);
7606 return 1;
7609 static void ipw_bg_associate(struct work_struct *work)
7611 struct ipw_priv *priv =
7612 container_of(work, struct ipw_priv, associate);
7613 mutex_lock(&priv->mutex);
7614 ipw_associate(priv);
7615 mutex_unlock(&priv->mutex);
7618 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7619 struct sk_buff *skb)
7621 struct ieee80211_hdr *hdr;
7622 u16 fc;
7624 hdr = (struct ieee80211_hdr *)skb->data;
7625 fc = le16_to_cpu(hdr->frame_ctl);
7626 if (!(fc & IEEE80211_FCTL_PROTECTED))
7627 return;
7629 fc &= ~IEEE80211_FCTL_PROTECTED;
7630 hdr->frame_ctl = cpu_to_le16(fc);
7631 switch (priv->ieee->sec.level) {
7632 case SEC_LEVEL_3:
7633 /* Remove CCMP HDR */
7634 memmove(skb->data + IEEE80211_3ADDR_LEN,
7635 skb->data + IEEE80211_3ADDR_LEN + 8,
7636 skb->len - IEEE80211_3ADDR_LEN - 8);
7637 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7638 break;
7639 case SEC_LEVEL_2:
7640 break;
7641 case SEC_LEVEL_1:
7642 /* Remove IV */
7643 memmove(skb->data + IEEE80211_3ADDR_LEN,
7644 skb->data + IEEE80211_3ADDR_LEN + 4,
7645 skb->len - IEEE80211_3ADDR_LEN - 4);
7646 skb_trim(skb, skb->len - 8); /* IV + ICV */
7647 break;
7648 case SEC_LEVEL_0:
7649 break;
7650 default:
7651 printk(KERN_ERR "Unknow security level %d\n",
7652 priv->ieee->sec.level);
7653 break;
7657 static void ipw_handle_data_packet(struct ipw_priv *priv,
7658 struct ipw_rx_mem_buffer *rxb,
7659 struct ieee80211_rx_stats *stats)
7661 struct ieee80211_hdr_4addr *hdr;
7662 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7664 /* We received data from the HW, so stop the watchdog */
7665 priv->net_dev->trans_start = jiffies;
7667 /* We only process data packets if the
7668 * interface is open */
7669 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7670 skb_tailroom(rxb->skb))) {
7671 priv->ieee->stats.rx_errors++;
7672 priv->wstats.discard.misc++;
7673 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7674 return;
7675 } else if (unlikely(!netif_running(priv->net_dev))) {
7676 priv->ieee->stats.rx_dropped++;
7677 priv->wstats.discard.misc++;
7678 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7679 return;
7682 /* Advance skb->data to the start of the actual payload */
7683 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7685 /* Set the size of the skb to the size of the frame */
7686 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7688 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7690 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7691 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7692 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7693 (is_multicast_ether_addr(hdr->addr1) ?
7694 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7695 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7697 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7698 priv->ieee->stats.rx_errors++;
7699 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7700 rxb->skb = NULL;
7701 __ipw_led_activity_on(priv);
7705 #ifdef CONFIG_IPW2200_RADIOTAP
7706 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7707 struct ipw_rx_mem_buffer *rxb,
7708 struct ieee80211_rx_stats *stats)
7710 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7711 struct ipw_rx_frame *frame = &pkt->u.frame;
7713 /* initial pull of some data */
7714 u16 received_channel = frame->received_channel;
7715 u8 antennaAndPhy = frame->antennaAndPhy;
7716 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7717 u16 pktrate = frame->rate;
7719 /* Magic struct that slots into the radiotap header -- no reason
7720 * to build this manually element by element, we can write it much
7721 * more efficiently than we can parse it. ORDER MATTERS HERE */
7722 struct ipw_rt_hdr *ipw_rt;
7724 short len = le16_to_cpu(pkt->u.frame.length);
7726 /* We received data from the HW, so stop the watchdog */
7727 priv->net_dev->trans_start = jiffies;
7729 /* We only process data packets if the
7730 * interface is open */
7731 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7732 skb_tailroom(rxb->skb))) {
7733 priv->ieee->stats.rx_errors++;
7734 priv->wstats.discard.misc++;
7735 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7736 return;
7737 } else if (unlikely(!netif_running(priv->net_dev))) {
7738 priv->ieee->stats.rx_dropped++;
7739 priv->wstats.discard.misc++;
7740 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7741 return;
7744 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7745 * that now */
7746 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7747 /* FIXME: Should alloc bigger skb instead */
7748 priv->ieee->stats.rx_dropped++;
7749 priv->wstats.discard.misc++;
7750 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7751 return;
7754 /* copy the frame itself */
7755 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7756 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7758 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7759 * part of our real header, saves a little time.
7761 * No longer necessary since we fill in all our data. Purge before merging
7762 * patch officially.
7763 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7764 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7767 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7769 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7770 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7771 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total header+data */
7773 /* Big bitfield of all the fields we provide in radiotap */
7774 ipw_rt->rt_hdr.it_present =
7775 ((1 << IEEE80211_RADIOTAP_TSFT) |
7776 (1 << IEEE80211_RADIOTAP_FLAGS) |
7777 (1 << IEEE80211_RADIOTAP_RATE) |
7778 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7779 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7780 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7781 (1 << IEEE80211_RADIOTAP_ANTENNA));
7783 /* Zero the flags, we'll add to them as we go */
7784 ipw_rt->rt_flags = 0;
7785 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7786 frame->parent_tsf[2] << 16 |
7787 frame->parent_tsf[1] << 8 |
7788 frame->parent_tsf[0]);
7790 /* Convert signal to DBM */
7791 ipw_rt->rt_dbmsignal = antsignal;
7792 ipw_rt->rt_dbmnoise = frame->noise;
7794 /* Convert the channel data and set the flags */
7795 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7796 if (received_channel > 14) { /* 802.11a */
7797 ipw_rt->rt_chbitmask =
7798 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7799 } else if (antennaAndPhy & 32) { /* 802.11b */
7800 ipw_rt->rt_chbitmask =
7801 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7802 } else { /* 802.11g */
7803 ipw_rt->rt_chbitmask =
7804 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7807 /* set the rate in multiples of 500k/s */
7808 switch (pktrate) {
7809 case IPW_TX_RATE_1MB:
7810 ipw_rt->rt_rate = 2;
7811 break;
7812 case IPW_TX_RATE_2MB:
7813 ipw_rt->rt_rate = 4;
7814 break;
7815 case IPW_TX_RATE_5MB:
7816 ipw_rt->rt_rate = 10;
7817 break;
7818 case IPW_TX_RATE_6MB:
7819 ipw_rt->rt_rate = 12;
7820 break;
7821 case IPW_TX_RATE_9MB:
7822 ipw_rt->rt_rate = 18;
7823 break;
7824 case IPW_TX_RATE_11MB:
7825 ipw_rt->rt_rate = 22;
7826 break;
7827 case IPW_TX_RATE_12MB:
7828 ipw_rt->rt_rate = 24;
7829 break;
7830 case IPW_TX_RATE_18MB:
7831 ipw_rt->rt_rate = 36;
7832 break;
7833 case IPW_TX_RATE_24MB:
7834 ipw_rt->rt_rate = 48;
7835 break;
7836 case IPW_TX_RATE_36MB:
7837 ipw_rt->rt_rate = 72;
7838 break;
7839 case IPW_TX_RATE_48MB:
7840 ipw_rt->rt_rate = 96;
7841 break;
7842 case IPW_TX_RATE_54MB:
7843 ipw_rt->rt_rate = 108;
7844 break;
7845 default:
7846 ipw_rt->rt_rate = 0;
7847 break;
7850 /* antenna number */
7851 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7853 /* set the preamble flag if we have it */
7854 if ((antennaAndPhy & 64))
7855 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7857 /* Set the size of the skb to the size of the frame */
7858 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7860 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7862 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7863 priv->ieee->stats.rx_errors++;
7864 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7865 rxb->skb = NULL;
7866 /* no LED during capture */
7869 #endif
7871 #ifdef CONFIG_IPW2200_PROMISCUOUS
7872 #define ieee80211_is_probe_response(fc) \
7873 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7874 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7876 #define ieee80211_is_management(fc) \
7877 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7879 #define ieee80211_is_control(fc) \
7880 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7882 #define ieee80211_is_data(fc) \
7883 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7885 #define ieee80211_is_assoc_request(fc) \
7886 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7888 #define ieee80211_is_reassoc_request(fc) \
7889 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7891 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7892 struct ipw_rx_mem_buffer *rxb,
7893 struct ieee80211_rx_stats *stats)
7895 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7896 struct ipw_rx_frame *frame = &pkt->u.frame;
7897 struct ipw_rt_hdr *ipw_rt;
7899 /* First cache any information we need before we overwrite
7900 * the information provided in the skb from the hardware */
7901 struct ieee80211_hdr *hdr;
7902 u16 channel = frame->received_channel;
7903 u8 phy_flags = frame->antennaAndPhy;
7904 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7905 s8 noise = frame->noise;
7906 u8 rate = frame->rate;
7907 short len = le16_to_cpu(pkt->u.frame.length);
7908 struct sk_buff *skb;
7909 int hdr_only = 0;
7910 u16 filter = priv->prom_priv->filter;
7912 /* If the filter is set to not include Rx frames then return */
7913 if (filter & IPW_PROM_NO_RX)
7914 return;
7916 /* We received data from the HW, so stop the watchdog */
7917 priv->prom_net_dev->trans_start = jiffies;
7919 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7920 priv->prom_priv->ieee->stats.rx_errors++;
7921 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7922 return;
7925 /* We only process data packets if the interface is open */
7926 if (unlikely(!netif_running(priv->prom_net_dev))) {
7927 priv->prom_priv->ieee->stats.rx_dropped++;
7928 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7929 return;
7932 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7933 * that now */
7934 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7935 /* FIXME: Should alloc bigger skb instead */
7936 priv->prom_priv->ieee->stats.rx_dropped++;
7937 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7938 return;
7941 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7942 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7943 if (filter & IPW_PROM_NO_MGMT)
7944 return;
7945 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7946 hdr_only = 1;
7947 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7948 if (filter & IPW_PROM_NO_CTL)
7949 return;
7950 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7951 hdr_only = 1;
7952 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7953 if (filter & IPW_PROM_NO_DATA)
7954 return;
7955 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7956 hdr_only = 1;
7959 /* Copy the SKB since this is for the promiscuous side */
7960 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7961 if (skb == NULL) {
7962 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7963 return;
7966 /* copy the frame data to write after where the radiotap header goes */
7967 ipw_rt = (void *)skb->data;
7969 if (hdr_only)
7970 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7972 memcpy(ipw_rt->payload, hdr, len);
7974 /* Zero the radiotap static buffer ... We only need to zero the bytes
7975 * NOT part of our real header, saves a little time.
7977 * No longer necessary since we fill in all our data. Purge before
7978 * merging patch officially.
7979 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7980 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7983 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7984 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7985 ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt); /* total header+data */
7987 /* Set the size of the skb to the size of the frame */
7988 skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7990 /* Big bitfield of all the fields we provide in radiotap */
7991 ipw_rt->rt_hdr.it_present =
7992 ((1 << IEEE80211_RADIOTAP_TSFT) |
7993 (1 << IEEE80211_RADIOTAP_FLAGS) |
7994 (1 << IEEE80211_RADIOTAP_RATE) |
7995 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7996 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7997 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7998 (1 << IEEE80211_RADIOTAP_ANTENNA));
8000 /* Zero the flags, we'll add to them as we go */
8001 ipw_rt->rt_flags = 0;
8002 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8003 frame->parent_tsf[2] << 16 |
8004 frame->parent_tsf[1] << 8 |
8005 frame->parent_tsf[0]);
8007 /* Convert to DBM */
8008 ipw_rt->rt_dbmsignal = signal;
8009 ipw_rt->rt_dbmnoise = noise;
8011 /* Convert the channel data and set the flags */
8012 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8013 if (channel > 14) { /* 802.11a */
8014 ipw_rt->rt_chbitmask =
8015 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8016 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8017 ipw_rt->rt_chbitmask =
8018 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8019 } else { /* 802.11g */
8020 ipw_rt->rt_chbitmask =
8021 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8024 /* set the rate in multiples of 500k/s */
8025 switch (rate) {
8026 case IPW_TX_RATE_1MB:
8027 ipw_rt->rt_rate = 2;
8028 break;
8029 case IPW_TX_RATE_2MB:
8030 ipw_rt->rt_rate = 4;
8031 break;
8032 case IPW_TX_RATE_5MB:
8033 ipw_rt->rt_rate = 10;
8034 break;
8035 case IPW_TX_RATE_6MB:
8036 ipw_rt->rt_rate = 12;
8037 break;
8038 case IPW_TX_RATE_9MB:
8039 ipw_rt->rt_rate = 18;
8040 break;
8041 case IPW_TX_RATE_11MB:
8042 ipw_rt->rt_rate = 22;
8043 break;
8044 case IPW_TX_RATE_12MB:
8045 ipw_rt->rt_rate = 24;
8046 break;
8047 case IPW_TX_RATE_18MB:
8048 ipw_rt->rt_rate = 36;
8049 break;
8050 case IPW_TX_RATE_24MB:
8051 ipw_rt->rt_rate = 48;
8052 break;
8053 case IPW_TX_RATE_36MB:
8054 ipw_rt->rt_rate = 72;
8055 break;
8056 case IPW_TX_RATE_48MB:
8057 ipw_rt->rt_rate = 96;
8058 break;
8059 case IPW_TX_RATE_54MB:
8060 ipw_rt->rt_rate = 108;
8061 break;
8062 default:
8063 ipw_rt->rt_rate = 0;
8064 break;
8067 /* antenna number */
8068 ipw_rt->rt_antenna = (phy_flags & 3);
8070 /* set the preamble flag if we have it */
8071 if (phy_flags & (1 << 6))
8072 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8074 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8076 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8077 priv->prom_priv->ieee->stats.rx_errors++;
8078 dev_kfree_skb_any(skb);
8081 #endif
8083 static int is_network_packet(struct ipw_priv *priv,
8084 struct ieee80211_hdr_4addr *header)
8086 /* Filter incoming packets to determine if they are targetted toward
8087 * this network, discarding packets coming from ourselves */
8088 switch (priv->ieee->iw_mode) {
8089 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8090 /* packets from our adapter are dropped (echo) */
8091 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8092 return 0;
8094 /* {broad,multi}cast packets to our BSSID go through */
8095 if (is_multicast_ether_addr(header->addr1))
8096 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8098 /* packets to our adapter go through */
8099 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8100 ETH_ALEN);
8102 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8103 /* packets from our adapter are dropped (echo) */
8104 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8105 return 0;
8107 /* {broad,multi}cast packets to our BSS go through */
8108 if (is_multicast_ether_addr(header->addr1))
8109 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8111 /* packets to our adapter go through */
8112 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8113 ETH_ALEN);
8116 return 1;
8119 #define IPW_PACKET_RETRY_TIME HZ
8121 static int is_duplicate_packet(struct ipw_priv *priv,
8122 struct ieee80211_hdr_4addr *header)
8124 u16 sc = le16_to_cpu(header->seq_ctl);
8125 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8126 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8127 u16 *last_seq, *last_frag;
8128 unsigned long *last_time;
8130 switch (priv->ieee->iw_mode) {
8131 case IW_MODE_ADHOC:
8133 struct list_head *p;
8134 struct ipw_ibss_seq *entry = NULL;
8135 u8 *mac = header->addr2;
8136 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8138 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8139 entry =
8140 list_entry(p, struct ipw_ibss_seq, list);
8141 if (!memcmp(entry->mac, mac, ETH_ALEN))
8142 break;
8144 if (p == &priv->ibss_mac_hash[index]) {
8145 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8146 if (!entry) {
8147 IPW_ERROR
8148 ("Cannot malloc new mac entry\n");
8149 return 0;
8151 memcpy(entry->mac, mac, ETH_ALEN);
8152 entry->seq_num = seq;
8153 entry->frag_num = frag;
8154 entry->packet_time = jiffies;
8155 list_add(&entry->list,
8156 &priv->ibss_mac_hash[index]);
8157 return 0;
8159 last_seq = &entry->seq_num;
8160 last_frag = &entry->frag_num;
8161 last_time = &entry->packet_time;
8162 break;
8164 case IW_MODE_INFRA:
8165 last_seq = &priv->last_seq_num;
8166 last_frag = &priv->last_frag_num;
8167 last_time = &priv->last_packet_time;
8168 break;
8169 default:
8170 return 0;
8172 if ((*last_seq == seq) &&
8173 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8174 if (*last_frag == frag)
8175 goto drop;
8176 if (*last_frag + 1 != frag)
8177 /* out-of-order fragment */
8178 goto drop;
8179 } else
8180 *last_seq = seq;
8182 *last_frag = frag;
8183 *last_time = jiffies;
8184 return 0;
8186 drop:
8187 /* Comment this line now since we observed the card receives
8188 * duplicate packets but the FCTL_RETRY bit is not set in the
8189 * IBSS mode with fragmentation enabled.
8190 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8191 return 1;
8194 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8195 struct ipw_rx_mem_buffer *rxb,
8196 struct ieee80211_rx_stats *stats)
8198 struct sk_buff *skb = rxb->skb;
8199 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8200 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8201 (skb->data + IPW_RX_FRAME_SIZE);
8203 ieee80211_rx_mgt(priv->ieee, header, stats);
8205 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8206 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8207 IEEE80211_STYPE_PROBE_RESP) ||
8208 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8209 IEEE80211_STYPE_BEACON))) {
8210 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8211 ipw_add_station(priv, header->addr2);
8214 if (priv->config & CFG_NET_STATS) {
8215 IPW_DEBUG_HC("sending stat packet\n");
8217 /* Set the size of the skb to the size of the full
8218 * ipw header and 802.11 frame */
8219 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8220 IPW_RX_FRAME_SIZE);
8222 /* Advance past the ipw packet header to the 802.11 frame */
8223 skb_pull(skb, IPW_RX_FRAME_SIZE);
8225 /* Push the ieee80211_rx_stats before the 802.11 frame */
8226 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8228 skb->dev = priv->ieee->dev;
8230 /* Point raw at the ieee80211_stats */
8231 skb_reset_mac_header(skb);
8233 skb->pkt_type = PACKET_OTHERHOST;
8234 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8235 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8236 netif_rx(skb);
8237 rxb->skb = NULL;
8242 * Main entry function for recieving a packet with 80211 headers. This
8243 * should be called when ever the FW has notified us that there is a new
8244 * skb in the recieve queue.
8246 static void ipw_rx(struct ipw_priv *priv)
8248 struct ipw_rx_mem_buffer *rxb;
8249 struct ipw_rx_packet *pkt;
8250 struct ieee80211_hdr_4addr *header;
8251 u32 r, w, i;
8252 u8 network_packet;
8253 DECLARE_MAC_BUF(mac);
8254 DECLARE_MAC_BUF(mac2);
8255 DECLARE_MAC_BUF(mac3);
8257 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8258 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8259 i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8261 while (i != r) {
8262 rxb = priv->rxq->queue[i];
8263 if (unlikely(rxb == NULL)) {
8264 printk(KERN_CRIT "Queue not allocated!\n");
8265 break;
8267 priv->rxq->queue[i] = NULL;
8269 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8270 IPW_RX_BUF_SIZE,
8271 PCI_DMA_FROMDEVICE);
8273 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8274 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8275 pkt->header.message_type,
8276 pkt->header.rx_seq_num, pkt->header.control_bits);
8278 switch (pkt->header.message_type) {
8279 case RX_FRAME_TYPE: /* 802.11 frame */ {
8280 struct ieee80211_rx_stats stats = {
8281 .rssi = pkt->u.frame.rssi_dbm -
8282 IPW_RSSI_TO_DBM,
8283 .signal =
8284 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8285 IPW_RSSI_TO_DBM + 0x100,
8286 .noise =
8287 le16_to_cpu(pkt->u.frame.noise),
8288 .rate = pkt->u.frame.rate,
8289 .mac_time = jiffies,
8290 .received_channel =
8291 pkt->u.frame.received_channel,
8292 .freq =
8293 (pkt->u.frame.
8294 control & (1 << 0)) ?
8295 IEEE80211_24GHZ_BAND :
8296 IEEE80211_52GHZ_BAND,
8297 .len = le16_to_cpu(pkt->u.frame.length),
8300 if (stats.rssi != 0)
8301 stats.mask |= IEEE80211_STATMASK_RSSI;
8302 if (stats.signal != 0)
8303 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8304 if (stats.noise != 0)
8305 stats.mask |= IEEE80211_STATMASK_NOISE;
8306 if (stats.rate != 0)
8307 stats.mask |= IEEE80211_STATMASK_RATE;
8309 priv->rx_packets++;
8311 #ifdef CONFIG_IPW2200_PROMISCUOUS
8312 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8313 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8314 #endif
8316 #ifdef CONFIG_IPW2200_MONITOR
8317 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8318 #ifdef CONFIG_IPW2200_RADIOTAP
8320 ipw_handle_data_packet_monitor(priv,
8321 rxb,
8322 &stats);
8323 #else
8324 ipw_handle_data_packet(priv, rxb,
8325 &stats);
8326 #endif
8327 break;
8329 #endif
8331 header =
8332 (struct ieee80211_hdr_4addr *)(rxb->skb->
8333 data +
8334 IPW_RX_FRAME_SIZE);
8335 /* TODO: Check Ad-Hoc dest/source and make sure
8336 * that we are actually parsing these packets
8337 * correctly -- we should probably use the
8338 * frame control of the packet and disregard
8339 * the current iw_mode */
8341 network_packet =
8342 is_network_packet(priv, header);
8343 if (network_packet && priv->assoc_network) {
8344 priv->assoc_network->stats.rssi =
8345 stats.rssi;
8346 priv->exp_avg_rssi =
8347 exponential_average(priv->exp_avg_rssi,
8348 stats.rssi, DEPTH_RSSI);
8351 IPW_DEBUG_RX("Frame: len=%u\n",
8352 le16_to_cpu(pkt->u.frame.length));
8354 if (le16_to_cpu(pkt->u.frame.length) <
8355 ieee80211_get_hdrlen(le16_to_cpu(
8356 header->frame_ctl))) {
8357 IPW_DEBUG_DROP
8358 ("Received packet is too small. "
8359 "Dropping.\n");
8360 priv->ieee->stats.rx_errors++;
8361 priv->wstats.discard.misc++;
8362 break;
8365 switch (WLAN_FC_GET_TYPE
8366 (le16_to_cpu(header->frame_ctl))) {
8368 case IEEE80211_FTYPE_MGMT:
8369 ipw_handle_mgmt_packet(priv, rxb,
8370 &stats);
8371 break;
8373 case IEEE80211_FTYPE_CTL:
8374 break;
8376 case IEEE80211_FTYPE_DATA:
8377 if (unlikely(!network_packet ||
8378 is_duplicate_packet(priv,
8379 header)))
8381 IPW_DEBUG_DROP("Dropping: "
8382 "%s, "
8383 "%s, "
8384 "%s\n",
8385 print_mac(mac,
8386 header->
8387 addr1),
8388 print_mac(mac2,
8389 header->
8390 addr2),
8391 print_mac(mac3,
8392 header->
8393 addr3));
8394 break;
8397 ipw_handle_data_packet(priv, rxb,
8398 &stats);
8400 break;
8402 break;
8405 case RX_HOST_NOTIFICATION_TYPE:{
8406 IPW_DEBUG_RX
8407 ("Notification: subtype=%02X flags=%02X size=%d\n",
8408 pkt->u.notification.subtype,
8409 pkt->u.notification.flags,
8410 le16_to_cpu(pkt->u.notification.size));
8411 ipw_rx_notification(priv, &pkt->u.notification);
8412 break;
8415 default:
8416 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8417 pkt->header.message_type);
8418 break;
8421 /* For now we just don't re-use anything. We can tweak this
8422 * later to try and re-use notification packets and SKBs that
8423 * fail to Rx correctly */
8424 if (rxb->skb != NULL) {
8425 dev_kfree_skb_any(rxb->skb);
8426 rxb->skb = NULL;
8429 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8430 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8431 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8433 i = (i + 1) % RX_QUEUE_SIZE;
8436 /* Backtrack one entry */
8437 priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8439 ipw_rx_queue_restock(priv);
8442 #define DEFAULT_RTS_THRESHOLD 2304U
8443 #define MIN_RTS_THRESHOLD 1U
8444 #define MAX_RTS_THRESHOLD 2304U
8445 #define DEFAULT_BEACON_INTERVAL 100U
8446 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8447 #define DEFAULT_LONG_RETRY_LIMIT 4U
8450 * ipw_sw_reset
8451 * @option: options to control different reset behaviour
8452 * 0 = reset everything except the 'disable' module_param
8453 * 1 = reset everything and print out driver info (for probe only)
8454 * 2 = reset everything
8456 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8458 int band, modulation;
8459 int old_mode = priv->ieee->iw_mode;
8461 /* Initialize module parameter values here */
8462 priv->config = 0;
8464 /* We default to disabling the LED code as right now it causes
8465 * too many systems to lock up... */
8466 if (!led)
8467 priv->config |= CFG_NO_LED;
8469 if (associate)
8470 priv->config |= CFG_ASSOCIATE;
8471 else
8472 IPW_DEBUG_INFO("Auto associate disabled.\n");
8474 if (auto_create)
8475 priv->config |= CFG_ADHOC_CREATE;
8476 else
8477 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8479 priv->config &= ~CFG_STATIC_ESSID;
8480 priv->essid_len = 0;
8481 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8483 if (disable && option) {
8484 priv->status |= STATUS_RF_KILL_SW;
8485 IPW_DEBUG_INFO("Radio disabled.\n");
8488 if (channel != 0) {
8489 priv->config |= CFG_STATIC_CHANNEL;
8490 priv->channel = channel;
8491 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8492 /* TODO: Validate that provided channel is in range */
8494 #ifdef CONFIG_IPW2200_QOS
8495 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8496 burst_duration_CCK, burst_duration_OFDM);
8497 #endif /* CONFIG_IPW2200_QOS */
8499 switch (mode) {
8500 case 1:
8501 priv->ieee->iw_mode = IW_MODE_ADHOC;
8502 priv->net_dev->type = ARPHRD_ETHER;
8504 break;
8505 #ifdef CONFIG_IPW2200_MONITOR
8506 case 2:
8507 priv->ieee->iw_mode = IW_MODE_MONITOR;
8508 #ifdef CONFIG_IPW2200_RADIOTAP
8509 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8510 #else
8511 priv->net_dev->type = ARPHRD_IEEE80211;
8512 #endif
8513 break;
8514 #endif
8515 default:
8516 case 0:
8517 priv->net_dev->type = ARPHRD_ETHER;
8518 priv->ieee->iw_mode = IW_MODE_INFRA;
8519 break;
8522 if (hwcrypto) {
8523 priv->ieee->host_encrypt = 0;
8524 priv->ieee->host_encrypt_msdu = 0;
8525 priv->ieee->host_decrypt = 0;
8526 priv->ieee->host_mc_decrypt = 0;
8528 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8530 /* IPW2200/2915 is abled to do hardware fragmentation. */
8531 priv->ieee->host_open_frag = 0;
8533 if ((priv->pci_dev->device == 0x4223) ||
8534 (priv->pci_dev->device == 0x4224)) {
8535 if (option == 1)
8536 printk(KERN_INFO DRV_NAME
8537 ": Detected Intel PRO/Wireless 2915ABG Network "
8538 "Connection\n");
8539 priv->ieee->abg_true = 1;
8540 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8541 modulation = IEEE80211_OFDM_MODULATION |
8542 IEEE80211_CCK_MODULATION;
8543 priv->adapter = IPW_2915ABG;
8544 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8545 } else {
8546 if (option == 1)
8547 printk(KERN_INFO DRV_NAME
8548 ": Detected Intel PRO/Wireless 2200BG Network "
8549 "Connection\n");
8551 priv->ieee->abg_true = 0;
8552 band = IEEE80211_24GHZ_BAND;
8553 modulation = IEEE80211_OFDM_MODULATION |
8554 IEEE80211_CCK_MODULATION;
8555 priv->adapter = IPW_2200BG;
8556 priv->ieee->mode = IEEE_G | IEEE_B;
8559 priv->ieee->freq_band = band;
8560 priv->ieee->modulation = modulation;
8562 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8564 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8565 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8567 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8568 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8569 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8571 /* If power management is turned on, default to AC mode */
8572 priv->power_mode = IPW_POWER_AC;
8573 priv->tx_power = IPW_TX_POWER_DEFAULT;
8575 return old_mode == priv->ieee->iw_mode;
8579 * This file defines the Wireless Extension handlers. It does not
8580 * define any methods of hardware manipulation and relies on the
8581 * functions defined in ipw_main to provide the HW interaction.
8583 * The exception to this is the use of the ipw_get_ordinal()
8584 * function used to poll the hardware vs. making unecessary calls.
8588 static int ipw_wx_get_name(struct net_device *dev,
8589 struct iw_request_info *info,
8590 union iwreq_data *wrqu, char *extra)
8592 struct ipw_priv *priv = ieee80211_priv(dev);
8593 mutex_lock(&priv->mutex);
8594 if (priv->status & STATUS_RF_KILL_MASK)
8595 strcpy(wrqu->name, "radio off");
8596 else if (!(priv->status & STATUS_ASSOCIATED))
8597 strcpy(wrqu->name, "unassociated");
8598 else
8599 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8600 ipw_modes[priv->assoc_request.ieee_mode]);
8601 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8602 mutex_unlock(&priv->mutex);
8603 return 0;
8606 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8608 if (channel == 0) {
8609 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8610 priv->config &= ~CFG_STATIC_CHANNEL;
8611 IPW_DEBUG_ASSOC("Attempting to associate with new "
8612 "parameters.\n");
8613 ipw_associate(priv);
8614 return 0;
8617 priv->config |= CFG_STATIC_CHANNEL;
8619 if (priv->channel == channel) {
8620 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8621 channel);
8622 return 0;
8625 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8626 priv->channel = channel;
8628 #ifdef CONFIG_IPW2200_MONITOR
8629 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8630 int i;
8631 if (priv->status & STATUS_SCANNING) {
8632 IPW_DEBUG_SCAN("Scan abort triggered due to "
8633 "channel change.\n");
8634 ipw_abort_scan(priv);
8637 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8638 udelay(10);
8640 if (priv->status & STATUS_SCANNING)
8641 IPW_DEBUG_SCAN("Still scanning...\n");
8642 else
8643 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8644 1000 - i);
8646 return 0;
8648 #endif /* CONFIG_IPW2200_MONITOR */
8650 /* Network configuration changed -- force [re]association */
8651 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8652 if (!ipw_disassociate(priv))
8653 ipw_associate(priv);
8655 return 0;
8658 static int ipw_wx_set_freq(struct net_device *dev,
8659 struct iw_request_info *info,
8660 union iwreq_data *wrqu, char *extra)
8662 struct ipw_priv *priv = ieee80211_priv(dev);
8663 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8664 struct iw_freq *fwrq = &wrqu->freq;
8665 int ret = 0, i;
8666 u8 channel, flags;
8667 int band;
8669 if (fwrq->m == 0) {
8670 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8671 mutex_lock(&priv->mutex);
8672 ret = ipw_set_channel(priv, 0);
8673 mutex_unlock(&priv->mutex);
8674 return ret;
8676 /* if setting by freq convert to channel */
8677 if (fwrq->e == 1) {
8678 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8679 if (channel == 0)
8680 return -EINVAL;
8681 } else
8682 channel = fwrq->m;
8684 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8685 return -EINVAL;
8687 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8688 i = ieee80211_channel_to_index(priv->ieee, channel);
8689 if (i == -1)
8690 return -EINVAL;
8692 flags = (band == IEEE80211_24GHZ_BAND) ?
8693 geo->bg[i].flags : geo->a[i].flags;
8694 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8695 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8696 return -EINVAL;
8700 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8701 mutex_lock(&priv->mutex);
8702 ret = ipw_set_channel(priv, channel);
8703 mutex_unlock(&priv->mutex);
8704 return ret;
8707 static int ipw_wx_get_freq(struct net_device *dev,
8708 struct iw_request_info *info,
8709 union iwreq_data *wrqu, char *extra)
8711 struct ipw_priv *priv = ieee80211_priv(dev);
8713 wrqu->freq.e = 0;
8715 /* If we are associated, trying to associate, or have a statically
8716 * configured CHANNEL then return that; otherwise return ANY */
8717 mutex_lock(&priv->mutex);
8718 if (priv->config & CFG_STATIC_CHANNEL ||
8719 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8720 int i;
8722 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8723 BUG_ON(i == -1);
8724 wrqu->freq.e = 1;
8726 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8727 case IEEE80211_52GHZ_BAND:
8728 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8729 break;
8731 case IEEE80211_24GHZ_BAND:
8732 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8733 break;
8735 default:
8736 BUG();
8738 } else
8739 wrqu->freq.m = 0;
8741 mutex_unlock(&priv->mutex);
8742 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8743 return 0;
8746 static int ipw_wx_set_mode(struct net_device *dev,
8747 struct iw_request_info *info,
8748 union iwreq_data *wrqu, char *extra)
8750 struct ipw_priv *priv = ieee80211_priv(dev);
8751 int err = 0;
8753 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8755 switch (wrqu->mode) {
8756 #ifdef CONFIG_IPW2200_MONITOR
8757 case IW_MODE_MONITOR:
8758 #endif
8759 case IW_MODE_ADHOC:
8760 case IW_MODE_INFRA:
8761 break;
8762 case IW_MODE_AUTO:
8763 wrqu->mode = IW_MODE_INFRA;
8764 break;
8765 default:
8766 return -EINVAL;
8768 if (wrqu->mode == priv->ieee->iw_mode)
8769 return 0;
8771 mutex_lock(&priv->mutex);
8773 ipw_sw_reset(priv, 0);
8775 #ifdef CONFIG_IPW2200_MONITOR
8776 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8777 priv->net_dev->type = ARPHRD_ETHER;
8779 if (wrqu->mode == IW_MODE_MONITOR)
8780 #ifdef CONFIG_IPW2200_RADIOTAP
8781 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8782 #else
8783 priv->net_dev->type = ARPHRD_IEEE80211;
8784 #endif
8785 #endif /* CONFIG_IPW2200_MONITOR */
8787 /* Free the existing firmware and reset the fw_loaded
8788 * flag so ipw_load() will bring in the new firmawre */
8789 free_firmware();
8791 priv->ieee->iw_mode = wrqu->mode;
8793 queue_work(priv->workqueue, &priv->adapter_restart);
8794 mutex_unlock(&priv->mutex);
8795 return err;
8798 static int ipw_wx_get_mode(struct net_device *dev,
8799 struct iw_request_info *info,
8800 union iwreq_data *wrqu, char *extra)
8802 struct ipw_priv *priv = ieee80211_priv(dev);
8803 mutex_lock(&priv->mutex);
8804 wrqu->mode = priv->ieee->iw_mode;
8805 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8806 mutex_unlock(&priv->mutex);
8807 return 0;
8810 /* Values are in microsecond */
8811 static const s32 timeout_duration[] = {
8812 350000,
8813 250000,
8814 75000,
8815 37000,
8816 25000,
8819 static const s32 period_duration[] = {
8820 400000,
8821 700000,
8822 1000000,
8823 1000000,
8824 1000000
8827 static int ipw_wx_get_range(struct net_device *dev,
8828 struct iw_request_info *info,
8829 union iwreq_data *wrqu, char *extra)
8831 struct ipw_priv *priv = ieee80211_priv(dev);
8832 struct iw_range *range = (struct iw_range *)extra;
8833 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8834 int i = 0, j;
8836 wrqu->data.length = sizeof(*range);
8837 memset(range, 0, sizeof(*range));
8839 /* 54Mbs == ~27 Mb/s real (802.11g) */
8840 range->throughput = 27 * 1000 * 1000;
8842 range->max_qual.qual = 100;
8843 /* TODO: Find real max RSSI and stick here */
8844 range->max_qual.level = 0;
8845 range->max_qual.noise = 0;
8846 range->max_qual.updated = 7; /* Updated all three */
8848 range->avg_qual.qual = 70;
8849 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8850 range->avg_qual.level = 0; /* FIXME to real average level */
8851 range->avg_qual.noise = 0;
8852 range->avg_qual.updated = 7; /* Updated all three */
8853 mutex_lock(&priv->mutex);
8854 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8856 for (i = 0; i < range->num_bitrates; i++)
8857 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8858 500000;
8860 range->max_rts = DEFAULT_RTS_THRESHOLD;
8861 range->min_frag = MIN_FRAG_THRESHOLD;
8862 range->max_frag = MAX_FRAG_THRESHOLD;
8864 range->encoding_size[0] = 5;
8865 range->encoding_size[1] = 13;
8866 range->num_encoding_sizes = 2;
8867 range->max_encoding_tokens = WEP_KEYS;
8869 /* Set the Wireless Extension versions */
8870 range->we_version_compiled = WIRELESS_EXT;
8871 range->we_version_source = 18;
8873 i = 0;
8874 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8875 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8876 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8877 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8878 continue;
8880 range->freq[i].i = geo->bg[j].channel;
8881 range->freq[i].m = geo->bg[j].freq * 100000;
8882 range->freq[i].e = 1;
8883 i++;
8887 if (priv->ieee->mode & IEEE_A) {
8888 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8889 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8890 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8891 continue;
8893 range->freq[i].i = geo->a[j].channel;
8894 range->freq[i].m = geo->a[j].freq * 100000;
8895 range->freq[i].e = 1;
8896 i++;
8900 range->num_channels = i;
8901 range->num_frequency = i;
8903 mutex_unlock(&priv->mutex);
8905 /* Event capability (kernel + driver) */
8906 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8907 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8908 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8909 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8910 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8912 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8913 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8915 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8917 IPW_DEBUG_WX("GET Range\n");
8918 return 0;
8921 static int ipw_wx_set_wap(struct net_device *dev,
8922 struct iw_request_info *info,
8923 union iwreq_data *wrqu, char *extra)
8925 struct ipw_priv *priv = ieee80211_priv(dev);
8926 DECLARE_MAC_BUF(mac);
8928 static const unsigned char any[] = {
8929 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8931 static const unsigned char off[] = {
8932 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8935 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8936 return -EINVAL;
8937 mutex_lock(&priv->mutex);
8938 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8939 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8940 /* we disable mandatory BSSID association */
8941 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8942 priv->config &= ~CFG_STATIC_BSSID;
8943 IPW_DEBUG_ASSOC("Attempting to associate with new "
8944 "parameters.\n");
8945 ipw_associate(priv);
8946 mutex_unlock(&priv->mutex);
8947 return 0;
8950 priv->config |= CFG_STATIC_BSSID;
8951 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8952 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8953 mutex_unlock(&priv->mutex);
8954 return 0;
8957 IPW_DEBUG_WX("Setting mandatory BSSID to %s\n",
8958 print_mac(mac, wrqu->ap_addr.sa_data));
8960 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8962 /* Network configuration changed -- force [re]association */
8963 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8964 if (!ipw_disassociate(priv))
8965 ipw_associate(priv);
8967 mutex_unlock(&priv->mutex);
8968 return 0;
8971 static int ipw_wx_get_wap(struct net_device *dev,
8972 struct iw_request_info *info,
8973 union iwreq_data *wrqu, char *extra)
8975 struct ipw_priv *priv = ieee80211_priv(dev);
8976 DECLARE_MAC_BUF(mac);
8978 /* If we are associated, trying to associate, or have a statically
8979 * configured BSSID then return that; otherwise return ANY */
8980 mutex_lock(&priv->mutex);
8981 if (priv->config & CFG_STATIC_BSSID ||
8982 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8983 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8984 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8985 } else
8986 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8988 IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
8989 print_mac(mac, wrqu->ap_addr.sa_data));
8990 mutex_unlock(&priv->mutex);
8991 return 0;
8994 static int ipw_wx_set_essid(struct net_device *dev,
8995 struct iw_request_info *info,
8996 union iwreq_data *wrqu, char *extra)
8998 struct ipw_priv *priv = ieee80211_priv(dev);
8999 int length;
9001 mutex_lock(&priv->mutex);
9003 if (!wrqu->essid.flags)
9005 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9006 ipw_disassociate(priv);
9007 priv->config &= ~CFG_STATIC_ESSID;
9008 ipw_associate(priv);
9009 mutex_unlock(&priv->mutex);
9010 return 0;
9013 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9015 priv->config |= CFG_STATIC_ESSID;
9017 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9018 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9019 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9020 mutex_unlock(&priv->mutex);
9021 return 0;
9024 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
9025 length);
9027 priv->essid_len = length;
9028 memcpy(priv->essid, extra, priv->essid_len);
9030 /* Network configuration changed -- force [re]association */
9031 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9032 if (!ipw_disassociate(priv))
9033 ipw_associate(priv);
9035 mutex_unlock(&priv->mutex);
9036 return 0;
9039 static int ipw_wx_get_essid(struct net_device *dev,
9040 struct iw_request_info *info,
9041 union iwreq_data *wrqu, char *extra)
9043 struct ipw_priv *priv = ieee80211_priv(dev);
9045 /* If we are associated, trying to associate, or have a statically
9046 * configured ESSID then return that; otherwise return ANY */
9047 mutex_lock(&priv->mutex);
9048 if (priv->config & CFG_STATIC_ESSID ||
9049 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9050 IPW_DEBUG_WX("Getting essid: '%s'\n",
9051 escape_essid(priv->essid, priv->essid_len));
9052 memcpy(extra, priv->essid, priv->essid_len);
9053 wrqu->essid.length = priv->essid_len;
9054 wrqu->essid.flags = 1; /* active */
9055 } else {
9056 IPW_DEBUG_WX("Getting essid: ANY\n");
9057 wrqu->essid.length = 0;
9058 wrqu->essid.flags = 0; /* active */
9060 mutex_unlock(&priv->mutex);
9061 return 0;
9064 static int ipw_wx_set_nick(struct net_device *dev,
9065 struct iw_request_info *info,
9066 union iwreq_data *wrqu, char *extra)
9068 struct ipw_priv *priv = ieee80211_priv(dev);
9070 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9071 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9072 return -E2BIG;
9073 mutex_lock(&priv->mutex);
9074 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9075 memset(priv->nick, 0, sizeof(priv->nick));
9076 memcpy(priv->nick, extra, wrqu->data.length);
9077 IPW_DEBUG_TRACE("<<\n");
9078 mutex_unlock(&priv->mutex);
9079 return 0;
9083 static int ipw_wx_get_nick(struct net_device *dev,
9084 struct iw_request_info *info,
9085 union iwreq_data *wrqu, char *extra)
9087 struct ipw_priv *priv = ieee80211_priv(dev);
9088 IPW_DEBUG_WX("Getting nick\n");
9089 mutex_lock(&priv->mutex);
9090 wrqu->data.length = strlen(priv->nick);
9091 memcpy(extra, priv->nick, wrqu->data.length);
9092 wrqu->data.flags = 1; /* active */
9093 mutex_unlock(&priv->mutex);
9094 return 0;
9097 static int ipw_wx_set_sens(struct net_device *dev,
9098 struct iw_request_info *info,
9099 union iwreq_data *wrqu, char *extra)
9101 struct ipw_priv *priv = ieee80211_priv(dev);
9102 int err = 0;
9104 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9105 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9106 mutex_lock(&priv->mutex);
9108 if (wrqu->sens.fixed == 0)
9110 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9111 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9112 goto out;
9114 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9115 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9116 err = -EINVAL;
9117 goto out;
9120 priv->roaming_threshold = wrqu->sens.value;
9121 priv->disassociate_threshold = 3*wrqu->sens.value;
9122 out:
9123 mutex_unlock(&priv->mutex);
9124 return err;
9127 static int ipw_wx_get_sens(struct net_device *dev,
9128 struct iw_request_info *info,
9129 union iwreq_data *wrqu, char *extra)
9131 struct ipw_priv *priv = ieee80211_priv(dev);
9132 mutex_lock(&priv->mutex);
9133 wrqu->sens.fixed = 1;
9134 wrqu->sens.value = priv->roaming_threshold;
9135 mutex_unlock(&priv->mutex);
9137 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9138 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9140 return 0;
9143 static int ipw_wx_set_rate(struct net_device *dev,
9144 struct iw_request_info *info,
9145 union iwreq_data *wrqu, char *extra)
9147 /* TODO: We should use semaphores or locks for access to priv */
9148 struct ipw_priv *priv = ieee80211_priv(dev);
9149 u32 target_rate = wrqu->bitrate.value;
9150 u32 fixed, mask;
9152 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9153 /* value = X, fixed = 1 means only rate X */
9154 /* value = X, fixed = 0 means all rates lower equal X */
9156 if (target_rate == -1) {
9157 fixed = 0;
9158 mask = IEEE80211_DEFAULT_RATES_MASK;
9159 /* Now we should reassociate */
9160 goto apply;
9163 mask = 0;
9164 fixed = wrqu->bitrate.fixed;
9166 if (target_rate == 1000000 || !fixed)
9167 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9168 if (target_rate == 1000000)
9169 goto apply;
9171 if (target_rate == 2000000 || !fixed)
9172 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9173 if (target_rate == 2000000)
9174 goto apply;
9176 if (target_rate == 5500000 || !fixed)
9177 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9178 if (target_rate == 5500000)
9179 goto apply;
9181 if (target_rate == 6000000 || !fixed)
9182 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9183 if (target_rate == 6000000)
9184 goto apply;
9186 if (target_rate == 9000000 || !fixed)
9187 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9188 if (target_rate == 9000000)
9189 goto apply;
9191 if (target_rate == 11000000 || !fixed)
9192 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9193 if (target_rate == 11000000)
9194 goto apply;
9196 if (target_rate == 12000000 || !fixed)
9197 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9198 if (target_rate == 12000000)
9199 goto apply;
9201 if (target_rate == 18000000 || !fixed)
9202 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9203 if (target_rate == 18000000)
9204 goto apply;
9206 if (target_rate == 24000000 || !fixed)
9207 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9208 if (target_rate == 24000000)
9209 goto apply;
9211 if (target_rate == 36000000 || !fixed)
9212 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9213 if (target_rate == 36000000)
9214 goto apply;
9216 if (target_rate == 48000000 || !fixed)
9217 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9218 if (target_rate == 48000000)
9219 goto apply;
9221 if (target_rate == 54000000 || !fixed)
9222 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9223 if (target_rate == 54000000)
9224 goto apply;
9226 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9227 return -EINVAL;
9229 apply:
9230 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9231 mask, fixed ? "fixed" : "sub-rates");
9232 mutex_lock(&priv->mutex);
9233 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9234 priv->config &= ~CFG_FIXED_RATE;
9235 ipw_set_fixed_rate(priv, priv->ieee->mode);
9236 } else
9237 priv->config |= CFG_FIXED_RATE;
9239 if (priv->rates_mask == mask) {
9240 IPW_DEBUG_WX("Mask set to current mask.\n");
9241 mutex_unlock(&priv->mutex);
9242 return 0;
9245 priv->rates_mask = mask;
9247 /* Network configuration changed -- force [re]association */
9248 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9249 if (!ipw_disassociate(priv))
9250 ipw_associate(priv);
9252 mutex_unlock(&priv->mutex);
9253 return 0;
9256 static int ipw_wx_get_rate(struct net_device *dev,
9257 struct iw_request_info *info,
9258 union iwreq_data *wrqu, char *extra)
9260 struct ipw_priv *priv = ieee80211_priv(dev);
9261 mutex_lock(&priv->mutex);
9262 wrqu->bitrate.value = priv->last_rate;
9263 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9264 mutex_unlock(&priv->mutex);
9265 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9266 return 0;
9269 static int ipw_wx_set_rts(struct net_device *dev,
9270 struct iw_request_info *info,
9271 union iwreq_data *wrqu, char *extra)
9273 struct ipw_priv *priv = ieee80211_priv(dev);
9274 mutex_lock(&priv->mutex);
9275 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9276 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9277 else {
9278 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9279 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9280 mutex_unlock(&priv->mutex);
9281 return -EINVAL;
9283 priv->rts_threshold = wrqu->rts.value;
9286 ipw_send_rts_threshold(priv, priv->rts_threshold);
9287 mutex_unlock(&priv->mutex);
9288 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9289 return 0;
9292 static int ipw_wx_get_rts(struct net_device *dev,
9293 struct iw_request_info *info,
9294 union iwreq_data *wrqu, char *extra)
9296 struct ipw_priv *priv = ieee80211_priv(dev);
9297 mutex_lock(&priv->mutex);
9298 wrqu->rts.value = priv->rts_threshold;
9299 wrqu->rts.fixed = 0; /* no auto select */
9300 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9301 mutex_unlock(&priv->mutex);
9302 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9303 return 0;
9306 static int ipw_wx_set_txpow(struct net_device *dev,
9307 struct iw_request_info *info,
9308 union iwreq_data *wrqu, char *extra)
9310 struct ipw_priv *priv = ieee80211_priv(dev);
9311 int err = 0;
9313 mutex_lock(&priv->mutex);
9314 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9315 err = -EINPROGRESS;
9316 goto out;
9319 if (!wrqu->power.fixed)
9320 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9322 if (wrqu->power.flags != IW_TXPOW_DBM) {
9323 err = -EINVAL;
9324 goto out;
9327 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9328 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9329 err = -EINVAL;
9330 goto out;
9333 priv->tx_power = wrqu->power.value;
9334 err = ipw_set_tx_power(priv);
9335 out:
9336 mutex_unlock(&priv->mutex);
9337 return err;
9340 static int ipw_wx_get_txpow(struct net_device *dev,
9341 struct iw_request_info *info,
9342 union iwreq_data *wrqu, char *extra)
9344 struct ipw_priv *priv = ieee80211_priv(dev);
9345 mutex_lock(&priv->mutex);
9346 wrqu->power.value = priv->tx_power;
9347 wrqu->power.fixed = 1;
9348 wrqu->power.flags = IW_TXPOW_DBM;
9349 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9350 mutex_unlock(&priv->mutex);
9352 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9353 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9355 return 0;
9358 static int ipw_wx_set_frag(struct net_device *dev,
9359 struct iw_request_info *info,
9360 union iwreq_data *wrqu, char *extra)
9362 struct ipw_priv *priv = ieee80211_priv(dev);
9363 mutex_lock(&priv->mutex);
9364 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9365 priv->ieee->fts = DEFAULT_FTS;
9366 else {
9367 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9368 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9369 mutex_unlock(&priv->mutex);
9370 return -EINVAL;
9373 priv->ieee->fts = wrqu->frag.value & ~0x1;
9376 ipw_send_frag_threshold(priv, wrqu->frag.value);
9377 mutex_unlock(&priv->mutex);
9378 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9379 return 0;
9382 static int ipw_wx_get_frag(struct net_device *dev,
9383 struct iw_request_info *info,
9384 union iwreq_data *wrqu, char *extra)
9386 struct ipw_priv *priv = ieee80211_priv(dev);
9387 mutex_lock(&priv->mutex);
9388 wrqu->frag.value = priv->ieee->fts;
9389 wrqu->frag.fixed = 0; /* no auto select */
9390 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9391 mutex_unlock(&priv->mutex);
9392 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9394 return 0;
9397 static int ipw_wx_set_retry(struct net_device *dev,
9398 struct iw_request_info *info,
9399 union iwreq_data *wrqu, char *extra)
9401 struct ipw_priv *priv = ieee80211_priv(dev);
9403 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9404 return -EINVAL;
9406 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9407 return 0;
9409 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9410 return -EINVAL;
9412 mutex_lock(&priv->mutex);
9413 if (wrqu->retry.flags & IW_RETRY_SHORT)
9414 priv->short_retry_limit = (u8) wrqu->retry.value;
9415 else if (wrqu->retry.flags & IW_RETRY_LONG)
9416 priv->long_retry_limit = (u8) wrqu->retry.value;
9417 else {
9418 priv->short_retry_limit = (u8) wrqu->retry.value;
9419 priv->long_retry_limit = (u8) wrqu->retry.value;
9422 ipw_send_retry_limit(priv, priv->short_retry_limit,
9423 priv->long_retry_limit);
9424 mutex_unlock(&priv->mutex);
9425 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9426 priv->short_retry_limit, priv->long_retry_limit);
9427 return 0;
9430 static int ipw_wx_get_retry(struct net_device *dev,
9431 struct iw_request_info *info,
9432 union iwreq_data *wrqu, char *extra)
9434 struct ipw_priv *priv = ieee80211_priv(dev);
9436 mutex_lock(&priv->mutex);
9437 wrqu->retry.disabled = 0;
9439 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9440 mutex_unlock(&priv->mutex);
9441 return -EINVAL;
9444 if (wrqu->retry.flags & IW_RETRY_LONG) {
9445 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9446 wrqu->retry.value = priv->long_retry_limit;
9447 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9448 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9449 wrqu->retry.value = priv->short_retry_limit;
9450 } else {
9451 wrqu->retry.flags = IW_RETRY_LIMIT;
9452 wrqu->retry.value = priv->short_retry_limit;
9454 mutex_unlock(&priv->mutex);
9456 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9458 return 0;
9461 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9462 int essid_len)
9464 struct ipw_scan_request_ext scan;
9465 int err = 0, scan_type;
9467 if (!(priv->status & STATUS_INIT) ||
9468 (priv->status & STATUS_EXIT_PENDING))
9469 return 0;
9471 mutex_lock(&priv->mutex);
9473 if (priv->status & STATUS_RF_KILL_MASK) {
9474 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9475 priv->status |= STATUS_SCAN_PENDING;
9476 goto done;
9479 IPW_DEBUG_HC("starting request direct scan!\n");
9481 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9482 /* We should not sleep here; otherwise we will block most
9483 * of the system (for instance, we hold rtnl_lock when we
9484 * get here).
9486 err = -EAGAIN;
9487 goto done;
9489 memset(&scan, 0, sizeof(scan));
9491 if (priv->config & CFG_SPEED_SCAN)
9492 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9493 cpu_to_le16(30);
9494 else
9495 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9496 cpu_to_le16(20);
9498 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9499 cpu_to_le16(20);
9500 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9501 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9503 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9505 err = ipw_send_ssid(priv, essid, essid_len);
9506 if (err) {
9507 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9508 goto done;
9510 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9512 ipw_add_scan_channels(priv, &scan, scan_type);
9514 err = ipw_send_scan_request_ext(priv, &scan);
9515 if (err) {
9516 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9517 goto done;
9520 priv->status |= STATUS_SCANNING;
9522 done:
9523 mutex_unlock(&priv->mutex);
9524 return err;
9527 static int ipw_wx_set_scan(struct net_device *dev,
9528 struct iw_request_info *info,
9529 union iwreq_data *wrqu, char *extra)
9531 struct ipw_priv *priv = ieee80211_priv(dev);
9532 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9534 mutex_lock(&priv->mutex);
9535 priv->user_requested_scan = 1;
9536 mutex_unlock(&priv->mutex);
9538 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9539 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9540 ipw_request_direct_scan(priv, req->essid,
9541 req->essid_len);
9542 return 0;
9544 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9545 queue_work(priv->workqueue,
9546 &priv->request_passive_scan);
9547 return 0;
9551 IPW_DEBUG_WX("Start scan\n");
9553 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9555 return 0;
9558 static int ipw_wx_get_scan(struct net_device *dev,
9559 struct iw_request_info *info,
9560 union iwreq_data *wrqu, char *extra)
9562 struct ipw_priv *priv = ieee80211_priv(dev);
9563 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9566 static int ipw_wx_set_encode(struct net_device *dev,
9567 struct iw_request_info *info,
9568 union iwreq_data *wrqu, char *key)
9570 struct ipw_priv *priv = ieee80211_priv(dev);
9571 int ret;
9572 u32 cap = priv->capability;
9574 mutex_lock(&priv->mutex);
9575 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9577 /* In IBSS mode, we need to notify the firmware to update
9578 * the beacon info after we changed the capability. */
9579 if (cap != priv->capability &&
9580 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9581 priv->status & STATUS_ASSOCIATED)
9582 ipw_disassociate(priv);
9584 mutex_unlock(&priv->mutex);
9585 return ret;
9588 static int ipw_wx_get_encode(struct net_device *dev,
9589 struct iw_request_info *info,
9590 union iwreq_data *wrqu, char *key)
9592 struct ipw_priv *priv = ieee80211_priv(dev);
9593 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9596 static int ipw_wx_set_power(struct net_device *dev,
9597 struct iw_request_info *info,
9598 union iwreq_data *wrqu, char *extra)
9600 struct ipw_priv *priv = ieee80211_priv(dev);
9601 int err;
9602 mutex_lock(&priv->mutex);
9603 if (wrqu->power.disabled) {
9604 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9605 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9606 if (err) {
9607 IPW_DEBUG_WX("failed setting power mode.\n");
9608 mutex_unlock(&priv->mutex);
9609 return err;
9611 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9612 mutex_unlock(&priv->mutex);
9613 return 0;
9616 switch (wrqu->power.flags & IW_POWER_MODE) {
9617 case IW_POWER_ON: /* If not specified */
9618 case IW_POWER_MODE: /* If set all mask */
9619 case IW_POWER_ALL_R: /* If explicitly state all */
9620 break;
9621 default: /* Otherwise we don't support it */
9622 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9623 wrqu->power.flags);
9624 mutex_unlock(&priv->mutex);
9625 return -EOPNOTSUPP;
9628 /* If the user hasn't specified a power management mode yet, default
9629 * to BATTERY */
9630 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9631 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9632 else
9633 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9635 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9636 if (err) {
9637 IPW_DEBUG_WX("failed setting power mode.\n");
9638 mutex_unlock(&priv->mutex);
9639 return err;
9642 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9643 mutex_unlock(&priv->mutex);
9644 return 0;
9647 static int ipw_wx_get_power(struct net_device *dev,
9648 struct iw_request_info *info,
9649 union iwreq_data *wrqu, char *extra)
9651 struct ipw_priv *priv = ieee80211_priv(dev);
9652 mutex_lock(&priv->mutex);
9653 if (!(priv->power_mode & IPW_POWER_ENABLED))
9654 wrqu->power.disabled = 1;
9655 else
9656 wrqu->power.disabled = 0;
9658 mutex_unlock(&priv->mutex);
9659 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9661 return 0;
9664 static int ipw_wx_set_powermode(struct net_device *dev,
9665 struct iw_request_info *info,
9666 union iwreq_data *wrqu, char *extra)
9668 struct ipw_priv *priv = ieee80211_priv(dev);
9669 int mode = *(int *)extra;
9670 int err;
9672 mutex_lock(&priv->mutex);
9673 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9674 mode = IPW_POWER_AC;
9676 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9677 err = ipw_send_power_mode(priv, mode);
9678 if (err) {
9679 IPW_DEBUG_WX("failed setting power mode.\n");
9680 mutex_unlock(&priv->mutex);
9681 return err;
9683 priv->power_mode = IPW_POWER_ENABLED | mode;
9685 mutex_unlock(&priv->mutex);
9686 return 0;
9689 #define MAX_WX_STRING 80
9690 static int ipw_wx_get_powermode(struct net_device *dev,
9691 struct iw_request_info *info,
9692 union iwreq_data *wrqu, char *extra)
9694 struct ipw_priv *priv = ieee80211_priv(dev);
9695 int level = IPW_POWER_LEVEL(priv->power_mode);
9696 char *p = extra;
9698 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9700 switch (level) {
9701 case IPW_POWER_AC:
9702 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9703 break;
9704 case IPW_POWER_BATTERY:
9705 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9706 break;
9707 default:
9708 p += snprintf(p, MAX_WX_STRING - (p - extra),
9709 "(Timeout %dms, Period %dms)",
9710 timeout_duration[level - 1] / 1000,
9711 period_duration[level - 1] / 1000);
9714 if (!(priv->power_mode & IPW_POWER_ENABLED))
9715 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9717 wrqu->data.length = p - extra + 1;
9719 return 0;
9722 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9723 struct iw_request_info *info,
9724 union iwreq_data *wrqu, char *extra)
9726 struct ipw_priv *priv = ieee80211_priv(dev);
9727 int mode = *(int *)extra;
9728 u8 band = 0, modulation = 0;
9730 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9731 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9732 return -EINVAL;
9734 mutex_lock(&priv->mutex);
9735 if (priv->adapter == IPW_2915ABG) {
9736 priv->ieee->abg_true = 1;
9737 if (mode & IEEE_A) {
9738 band |= IEEE80211_52GHZ_BAND;
9739 modulation |= IEEE80211_OFDM_MODULATION;
9740 } else
9741 priv->ieee->abg_true = 0;
9742 } else {
9743 if (mode & IEEE_A) {
9744 IPW_WARNING("Attempt to set 2200BG into "
9745 "802.11a mode\n");
9746 mutex_unlock(&priv->mutex);
9747 return -EINVAL;
9750 priv->ieee->abg_true = 0;
9753 if (mode & IEEE_B) {
9754 band |= IEEE80211_24GHZ_BAND;
9755 modulation |= IEEE80211_CCK_MODULATION;
9756 } else
9757 priv->ieee->abg_true = 0;
9759 if (mode & IEEE_G) {
9760 band |= IEEE80211_24GHZ_BAND;
9761 modulation |= IEEE80211_OFDM_MODULATION;
9762 } else
9763 priv->ieee->abg_true = 0;
9765 priv->ieee->mode = mode;
9766 priv->ieee->freq_band = band;
9767 priv->ieee->modulation = modulation;
9768 init_supported_rates(priv, &priv->rates);
9770 /* Network configuration changed -- force [re]association */
9771 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9772 if (!ipw_disassociate(priv)) {
9773 ipw_send_supported_rates(priv, &priv->rates);
9774 ipw_associate(priv);
9777 /* Update the band LEDs */
9778 ipw_led_band_on(priv);
9780 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9781 mode & IEEE_A ? 'a' : '.',
9782 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9783 mutex_unlock(&priv->mutex);
9784 return 0;
9787 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9788 struct iw_request_info *info,
9789 union iwreq_data *wrqu, char *extra)
9791 struct ipw_priv *priv = ieee80211_priv(dev);
9792 mutex_lock(&priv->mutex);
9793 switch (priv->ieee->mode) {
9794 case IEEE_A:
9795 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9796 break;
9797 case IEEE_B:
9798 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9799 break;
9800 case IEEE_A | IEEE_B:
9801 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9802 break;
9803 case IEEE_G:
9804 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9805 break;
9806 case IEEE_A | IEEE_G:
9807 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9808 break;
9809 case IEEE_B | IEEE_G:
9810 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9811 break;
9812 case IEEE_A | IEEE_B | IEEE_G:
9813 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9814 break;
9815 default:
9816 strncpy(extra, "unknown", MAX_WX_STRING);
9817 break;
9820 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9822 wrqu->data.length = strlen(extra) + 1;
9823 mutex_unlock(&priv->mutex);
9825 return 0;
9828 static int ipw_wx_set_preamble(struct net_device *dev,
9829 struct iw_request_info *info,
9830 union iwreq_data *wrqu, char *extra)
9832 struct ipw_priv *priv = ieee80211_priv(dev);
9833 int mode = *(int *)extra;
9834 mutex_lock(&priv->mutex);
9835 /* Switching from SHORT -> LONG requires a disassociation */
9836 if (mode == 1) {
9837 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9838 priv->config |= CFG_PREAMBLE_LONG;
9840 /* Network configuration changed -- force [re]association */
9841 IPW_DEBUG_ASSOC
9842 ("[re]association triggered due to preamble change.\n");
9843 if (!ipw_disassociate(priv))
9844 ipw_associate(priv);
9846 goto done;
9849 if (mode == 0) {
9850 priv->config &= ~CFG_PREAMBLE_LONG;
9851 goto done;
9853 mutex_unlock(&priv->mutex);
9854 return -EINVAL;
9856 done:
9857 mutex_unlock(&priv->mutex);
9858 return 0;
9861 static int ipw_wx_get_preamble(struct net_device *dev,
9862 struct iw_request_info *info,
9863 union iwreq_data *wrqu, char *extra)
9865 struct ipw_priv *priv = ieee80211_priv(dev);
9866 mutex_lock(&priv->mutex);
9867 if (priv->config & CFG_PREAMBLE_LONG)
9868 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9869 else
9870 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9871 mutex_unlock(&priv->mutex);
9872 return 0;
9875 #ifdef CONFIG_IPW2200_MONITOR
9876 static int ipw_wx_set_monitor(struct net_device *dev,
9877 struct iw_request_info *info,
9878 union iwreq_data *wrqu, char *extra)
9880 struct ipw_priv *priv = ieee80211_priv(dev);
9881 int *parms = (int *)extra;
9882 int enable = (parms[0] > 0);
9883 mutex_lock(&priv->mutex);
9884 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9885 if (enable) {
9886 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9887 #ifdef CONFIG_IPW2200_RADIOTAP
9888 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9889 #else
9890 priv->net_dev->type = ARPHRD_IEEE80211;
9891 #endif
9892 queue_work(priv->workqueue, &priv->adapter_restart);
9895 ipw_set_channel(priv, parms[1]);
9896 } else {
9897 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9898 mutex_unlock(&priv->mutex);
9899 return 0;
9901 priv->net_dev->type = ARPHRD_ETHER;
9902 queue_work(priv->workqueue, &priv->adapter_restart);
9904 mutex_unlock(&priv->mutex);
9905 return 0;
9908 #endif /* CONFIG_IPW2200_MONITOR */
9910 static int ipw_wx_reset(struct net_device *dev,
9911 struct iw_request_info *info,
9912 union iwreq_data *wrqu, char *extra)
9914 struct ipw_priv *priv = ieee80211_priv(dev);
9915 IPW_DEBUG_WX("RESET\n");
9916 queue_work(priv->workqueue, &priv->adapter_restart);
9917 return 0;
9920 static int ipw_wx_sw_reset(struct net_device *dev,
9921 struct iw_request_info *info,
9922 union iwreq_data *wrqu, char *extra)
9924 struct ipw_priv *priv = ieee80211_priv(dev);
9925 union iwreq_data wrqu_sec = {
9926 .encoding = {
9927 .flags = IW_ENCODE_DISABLED,
9930 int ret;
9932 IPW_DEBUG_WX("SW_RESET\n");
9934 mutex_lock(&priv->mutex);
9936 ret = ipw_sw_reset(priv, 2);
9937 if (!ret) {
9938 free_firmware();
9939 ipw_adapter_restart(priv);
9942 /* The SW reset bit might have been toggled on by the 'disable'
9943 * module parameter, so take appropriate action */
9944 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9946 mutex_unlock(&priv->mutex);
9947 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9948 mutex_lock(&priv->mutex);
9950 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9951 /* Configuration likely changed -- force [re]association */
9952 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9953 "reset.\n");
9954 if (!ipw_disassociate(priv))
9955 ipw_associate(priv);
9958 mutex_unlock(&priv->mutex);
9960 return 0;
9963 /* Rebase the WE IOCTLs to zero for the handler array */
9964 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9965 static iw_handler ipw_wx_handlers[] = {
9966 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9967 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9968 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9969 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9970 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9971 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9972 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9973 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9974 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9975 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9976 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9977 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9978 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9979 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9980 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9981 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9982 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9983 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9984 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9985 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9986 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9987 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9988 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9989 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9990 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9991 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9992 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9993 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9994 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9995 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9996 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9997 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9998 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9999 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
10000 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
10001 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10002 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10003 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10004 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10005 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10006 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10009 enum {
10010 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10011 IPW_PRIV_GET_POWER,
10012 IPW_PRIV_SET_MODE,
10013 IPW_PRIV_GET_MODE,
10014 IPW_PRIV_SET_PREAMBLE,
10015 IPW_PRIV_GET_PREAMBLE,
10016 IPW_PRIV_RESET,
10017 IPW_PRIV_SW_RESET,
10018 #ifdef CONFIG_IPW2200_MONITOR
10019 IPW_PRIV_SET_MONITOR,
10020 #endif
10023 static struct iw_priv_args ipw_priv_args[] = {
10025 .cmd = IPW_PRIV_SET_POWER,
10026 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10027 .name = "set_power"},
10029 .cmd = IPW_PRIV_GET_POWER,
10030 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10031 .name = "get_power"},
10033 .cmd = IPW_PRIV_SET_MODE,
10034 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10035 .name = "set_mode"},
10037 .cmd = IPW_PRIV_GET_MODE,
10038 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10039 .name = "get_mode"},
10041 .cmd = IPW_PRIV_SET_PREAMBLE,
10042 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10043 .name = "set_preamble"},
10045 .cmd = IPW_PRIV_GET_PREAMBLE,
10046 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10047 .name = "get_preamble"},
10049 IPW_PRIV_RESET,
10050 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10052 IPW_PRIV_SW_RESET,
10053 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10054 #ifdef CONFIG_IPW2200_MONITOR
10056 IPW_PRIV_SET_MONITOR,
10057 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10058 #endif /* CONFIG_IPW2200_MONITOR */
10061 static iw_handler ipw_priv_handler[] = {
10062 ipw_wx_set_powermode,
10063 ipw_wx_get_powermode,
10064 ipw_wx_set_wireless_mode,
10065 ipw_wx_get_wireless_mode,
10066 ipw_wx_set_preamble,
10067 ipw_wx_get_preamble,
10068 ipw_wx_reset,
10069 ipw_wx_sw_reset,
10070 #ifdef CONFIG_IPW2200_MONITOR
10071 ipw_wx_set_monitor,
10072 #endif
10075 static struct iw_handler_def ipw_wx_handler_def = {
10076 .standard = ipw_wx_handlers,
10077 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10078 .num_private = ARRAY_SIZE(ipw_priv_handler),
10079 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10080 .private = ipw_priv_handler,
10081 .private_args = ipw_priv_args,
10082 .get_wireless_stats = ipw_get_wireless_stats,
10086 * Get wireless statistics.
10087 * Called by /proc/net/wireless
10088 * Also called by SIOCGIWSTATS
10090 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10092 struct ipw_priv *priv = ieee80211_priv(dev);
10093 struct iw_statistics *wstats;
10095 wstats = &priv->wstats;
10097 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10098 * netdev->get_wireless_stats seems to be called before fw is
10099 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10100 * and associated; if not associcated, the values are all meaningless
10101 * anyway, so set them all to NULL and INVALID */
10102 if (!(priv->status & STATUS_ASSOCIATED)) {
10103 wstats->miss.beacon = 0;
10104 wstats->discard.retries = 0;
10105 wstats->qual.qual = 0;
10106 wstats->qual.level = 0;
10107 wstats->qual.noise = 0;
10108 wstats->qual.updated = 7;
10109 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10110 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10111 return wstats;
10114 wstats->qual.qual = priv->quality;
10115 wstats->qual.level = priv->exp_avg_rssi;
10116 wstats->qual.noise = priv->exp_avg_noise;
10117 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10118 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10120 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10121 wstats->discard.retries = priv->last_tx_failures;
10122 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10124 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10125 goto fail_get_ordinal;
10126 wstats->discard.retries += tx_retry; */
10128 return wstats;
10131 /* net device stuff */
10133 static void init_sys_config(struct ipw_sys_config *sys_config)
10135 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10136 sys_config->bt_coexistence = 0;
10137 sys_config->answer_broadcast_ssid_probe = 0;
10138 sys_config->accept_all_data_frames = 0;
10139 sys_config->accept_non_directed_frames = 1;
10140 sys_config->exclude_unicast_unencrypted = 0;
10141 sys_config->disable_unicast_decryption = 1;
10142 sys_config->exclude_multicast_unencrypted = 0;
10143 sys_config->disable_multicast_decryption = 1;
10144 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10145 antenna = CFG_SYS_ANTENNA_BOTH;
10146 sys_config->antenna_diversity = antenna;
10147 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10148 sys_config->dot11g_auto_detection = 0;
10149 sys_config->enable_cts_to_self = 0;
10150 sys_config->bt_coexist_collision_thr = 0;
10151 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10152 sys_config->silence_threshold = 0x1e;
10155 static int ipw_net_open(struct net_device *dev)
10157 struct ipw_priv *priv = ieee80211_priv(dev);
10158 IPW_DEBUG_INFO("dev->open\n");
10159 /* we should be verifying the device is ready to be opened */
10160 mutex_lock(&priv->mutex);
10161 if (!(priv->status & STATUS_RF_KILL_MASK) &&
10162 (priv->status & STATUS_ASSOCIATED))
10163 netif_start_queue(dev);
10164 mutex_unlock(&priv->mutex);
10165 return 0;
10168 static int ipw_net_stop(struct net_device *dev)
10170 IPW_DEBUG_INFO("dev->close\n");
10171 netif_stop_queue(dev);
10172 return 0;
10176 todo:
10178 modify to send one tfd per fragment instead of using chunking. otherwise
10179 we need to heavily modify the ieee80211_skb_to_txb.
10182 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10183 int pri)
10185 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10186 txb->fragments[0]->data;
10187 int i = 0;
10188 struct tfd_frame *tfd;
10189 #ifdef CONFIG_IPW2200_QOS
10190 int tx_id = ipw_get_tx_queue_number(priv, pri);
10191 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10192 #else
10193 struct clx2_tx_queue *txq = &priv->txq[0];
10194 #endif
10195 struct clx2_queue *q = &txq->q;
10196 u8 id, hdr_len, unicast;
10197 u16 remaining_bytes;
10198 int fc;
10199 DECLARE_MAC_BUF(mac);
10201 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10202 switch (priv->ieee->iw_mode) {
10203 case IW_MODE_ADHOC:
10204 unicast = !is_multicast_ether_addr(hdr->addr1);
10205 id = ipw_find_station(priv, hdr->addr1);
10206 if (id == IPW_INVALID_STATION) {
10207 id = ipw_add_station(priv, hdr->addr1);
10208 if (id == IPW_INVALID_STATION) {
10209 IPW_WARNING("Attempt to send data to "
10210 "invalid cell: %s\n",
10211 print_mac(mac, hdr->addr1));
10212 goto drop;
10215 break;
10217 case IW_MODE_INFRA:
10218 default:
10219 unicast = !is_multicast_ether_addr(hdr->addr3);
10220 id = 0;
10221 break;
10224 tfd = &txq->bd[q->first_empty];
10225 txq->txb[q->first_empty] = txb;
10226 memset(tfd, 0, sizeof(*tfd));
10227 tfd->u.data.station_number = id;
10229 tfd->control_flags.message_type = TX_FRAME_TYPE;
10230 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10232 tfd->u.data.cmd_id = DINO_CMD_TX;
10233 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10234 remaining_bytes = txb->payload_size;
10236 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10237 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10238 else
10239 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10241 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10242 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10244 fc = le16_to_cpu(hdr->frame_ctl);
10245 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10247 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10249 if (likely(unicast))
10250 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10252 if (txb->encrypted && !priv->ieee->host_encrypt) {
10253 switch (priv->ieee->sec.level) {
10254 case SEC_LEVEL_3:
10255 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10256 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10257 /* XXX: ACK flag must be set for CCMP even if it
10258 * is a multicast/broadcast packet, because CCMP
10259 * group communication encrypted by GTK is
10260 * actually done by the AP. */
10261 if (!unicast)
10262 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10264 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10265 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10266 tfd->u.data.key_index = 0;
10267 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10268 break;
10269 case SEC_LEVEL_2:
10270 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10271 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10272 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10273 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10274 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10275 break;
10276 case SEC_LEVEL_1:
10277 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10278 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10279 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10280 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10282 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10283 else
10284 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10285 break;
10286 case SEC_LEVEL_0:
10287 break;
10288 default:
10289 printk(KERN_ERR "Unknow security level %d\n",
10290 priv->ieee->sec.level);
10291 break;
10293 } else
10294 /* No hardware encryption */
10295 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10297 #ifdef CONFIG_IPW2200_QOS
10298 if (fc & IEEE80211_STYPE_QOS_DATA)
10299 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10300 #endif /* CONFIG_IPW2200_QOS */
10302 /* payload */
10303 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10304 txb->nr_frags));
10305 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10306 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10307 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10308 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10309 i, le32_to_cpu(tfd->u.data.num_chunks),
10310 txb->fragments[i]->len - hdr_len);
10311 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10312 i, tfd->u.data.num_chunks,
10313 txb->fragments[i]->len - hdr_len);
10314 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10315 txb->fragments[i]->len - hdr_len);
10317 tfd->u.data.chunk_ptr[i] =
10318 cpu_to_le32(pci_map_single
10319 (priv->pci_dev,
10320 txb->fragments[i]->data + hdr_len,
10321 txb->fragments[i]->len - hdr_len,
10322 PCI_DMA_TODEVICE));
10323 tfd->u.data.chunk_len[i] =
10324 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10327 if (i != txb->nr_frags) {
10328 struct sk_buff *skb;
10329 u16 remaining_bytes = 0;
10330 int j;
10332 for (j = i; j < txb->nr_frags; j++)
10333 remaining_bytes += txb->fragments[j]->len - hdr_len;
10335 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10336 remaining_bytes);
10337 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10338 if (skb != NULL) {
10339 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10340 for (j = i; j < txb->nr_frags; j++) {
10341 int size = txb->fragments[j]->len - hdr_len;
10343 printk(KERN_INFO "Adding frag %d %d...\n",
10344 j, size);
10345 memcpy(skb_put(skb, size),
10346 txb->fragments[j]->data + hdr_len, size);
10348 dev_kfree_skb_any(txb->fragments[i]);
10349 txb->fragments[i] = skb;
10350 tfd->u.data.chunk_ptr[i] =
10351 cpu_to_le32(pci_map_single
10352 (priv->pci_dev, skb->data,
10353 tfd->u.data.chunk_len[i],
10354 PCI_DMA_TODEVICE));
10356 tfd->u.data.num_chunks =
10357 cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10362 /* kick DMA */
10363 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10364 ipw_write32(priv, q->reg_w, q->first_empty);
10366 if (ipw_queue_space(q) < q->high_mark)
10367 netif_stop_queue(priv->net_dev);
10369 return NETDEV_TX_OK;
10371 drop:
10372 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10373 ieee80211_txb_free(txb);
10374 return NETDEV_TX_OK;
10377 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10379 struct ipw_priv *priv = ieee80211_priv(dev);
10380 #ifdef CONFIG_IPW2200_QOS
10381 int tx_id = ipw_get_tx_queue_number(priv, pri);
10382 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10383 #else
10384 struct clx2_tx_queue *txq = &priv->txq[0];
10385 #endif /* CONFIG_IPW2200_QOS */
10387 if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10388 return 1;
10390 return 0;
10393 #ifdef CONFIG_IPW2200_PROMISCUOUS
10394 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10395 struct ieee80211_txb *txb)
10397 struct ieee80211_rx_stats dummystats;
10398 struct ieee80211_hdr *hdr;
10399 u8 n;
10400 u16 filter = priv->prom_priv->filter;
10401 int hdr_only = 0;
10403 if (filter & IPW_PROM_NO_TX)
10404 return;
10406 memset(&dummystats, 0, sizeof(dummystats));
10408 /* Filtering of fragment chains is done agains the first fragment */
10409 hdr = (void *)txb->fragments[0]->data;
10410 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10411 if (filter & IPW_PROM_NO_MGMT)
10412 return;
10413 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10414 hdr_only = 1;
10415 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10416 if (filter & IPW_PROM_NO_CTL)
10417 return;
10418 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10419 hdr_only = 1;
10420 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10421 if (filter & IPW_PROM_NO_DATA)
10422 return;
10423 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10424 hdr_only = 1;
10427 for(n=0; n<txb->nr_frags; ++n) {
10428 struct sk_buff *src = txb->fragments[n];
10429 struct sk_buff *dst;
10430 struct ieee80211_radiotap_header *rt_hdr;
10431 int len;
10433 if (hdr_only) {
10434 hdr = (void *)src->data;
10435 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10436 } else
10437 len = src->len;
10439 dst = alloc_skb(
10440 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10441 if (!dst) continue;
10443 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10445 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10446 rt_hdr->it_pad = 0;
10447 rt_hdr->it_present = 0; /* after all, it's just an idea */
10448 rt_hdr->it_present |= (1 << IEEE80211_RADIOTAP_CHANNEL);
10450 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10451 ieee80211chan2mhz(priv->channel));
10452 if (priv->channel > 14) /* 802.11a */
10453 *(u16*)skb_put(dst, sizeof(u16)) =
10454 cpu_to_le16(IEEE80211_CHAN_OFDM |
10455 IEEE80211_CHAN_5GHZ);
10456 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10457 *(u16*)skb_put(dst, sizeof(u16)) =
10458 cpu_to_le16(IEEE80211_CHAN_CCK |
10459 IEEE80211_CHAN_2GHZ);
10460 else /* 802.11g */
10461 *(u16*)skb_put(dst, sizeof(u16)) =
10462 cpu_to_le16(IEEE80211_CHAN_OFDM |
10463 IEEE80211_CHAN_2GHZ);
10465 rt_hdr->it_len = dst->len;
10467 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10469 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10470 dev_kfree_skb_any(dst);
10473 #endif
10475 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10476 struct net_device *dev, int pri)
10478 struct ipw_priv *priv = ieee80211_priv(dev);
10479 unsigned long flags;
10480 int ret;
10482 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10483 spin_lock_irqsave(&priv->lock, flags);
10485 if (!(priv->status & STATUS_ASSOCIATED)) {
10486 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10487 priv->ieee->stats.tx_carrier_errors++;
10488 netif_stop_queue(dev);
10489 goto fail_unlock;
10492 #ifdef CONFIG_IPW2200_PROMISCUOUS
10493 if (rtap_iface && netif_running(priv->prom_net_dev))
10494 ipw_handle_promiscuous_tx(priv, txb);
10495 #endif
10497 ret = ipw_tx_skb(priv, txb, pri);
10498 if (ret == NETDEV_TX_OK)
10499 __ipw_led_activity_on(priv);
10500 spin_unlock_irqrestore(&priv->lock, flags);
10502 return ret;
10504 fail_unlock:
10505 spin_unlock_irqrestore(&priv->lock, flags);
10506 return 1;
10509 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10511 struct ipw_priv *priv = ieee80211_priv(dev);
10513 priv->ieee->stats.tx_packets = priv->tx_packets;
10514 priv->ieee->stats.rx_packets = priv->rx_packets;
10515 return &priv->ieee->stats;
10518 static void ipw_net_set_multicast_list(struct net_device *dev)
10523 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10525 struct ipw_priv *priv = ieee80211_priv(dev);
10526 struct sockaddr *addr = p;
10527 DECLARE_MAC_BUF(mac);
10529 if (!is_valid_ether_addr(addr->sa_data))
10530 return -EADDRNOTAVAIL;
10531 mutex_lock(&priv->mutex);
10532 priv->config |= CFG_CUSTOM_MAC;
10533 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10534 printk(KERN_INFO "%s: Setting MAC to %s\n",
10535 priv->net_dev->name, print_mac(mac, priv->mac_addr));
10536 queue_work(priv->workqueue, &priv->adapter_restart);
10537 mutex_unlock(&priv->mutex);
10538 return 0;
10541 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10542 struct ethtool_drvinfo *info)
10544 struct ipw_priv *p = ieee80211_priv(dev);
10545 char vers[64];
10546 char date[32];
10547 u32 len;
10549 strcpy(info->driver, DRV_NAME);
10550 strcpy(info->version, DRV_VERSION);
10552 len = sizeof(vers);
10553 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10554 len = sizeof(date);
10555 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10557 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10558 vers, date);
10559 strcpy(info->bus_info, pci_name(p->pci_dev));
10560 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10563 static u32 ipw_ethtool_get_link(struct net_device *dev)
10565 struct ipw_priv *priv = ieee80211_priv(dev);
10566 return (priv->status & STATUS_ASSOCIATED) != 0;
10569 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10571 return IPW_EEPROM_IMAGE_SIZE;
10574 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10575 struct ethtool_eeprom *eeprom, u8 * bytes)
10577 struct ipw_priv *p = ieee80211_priv(dev);
10579 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10580 return -EINVAL;
10581 mutex_lock(&p->mutex);
10582 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10583 mutex_unlock(&p->mutex);
10584 return 0;
10587 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10588 struct ethtool_eeprom *eeprom, u8 * bytes)
10590 struct ipw_priv *p = ieee80211_priv(dev);
10591 int i;
10593 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10594 return -EINVAL;
10595 mutex_lock(&p->mutex);
10596 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10597 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10598 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10599 mutex_unlock(&p->mutex);
10600 return 0;
10603 static const struct ethtool_ops ipw_ethtool_ops = {
10604 .get_link = ipw_ethtool_get_link,
10605 .get_drvinfo = ipw_ethtool_get_drvinfo,
10606 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10607 .get_eeprom = ipw_ethtool_get_eeprom,
10608 .set_eeprom = ipw_ethtool_set_eeprom,
10611 static irqreturn_t ipw_isr(int irq, void *data)
10613 struct ipw_priv *priv = data;
10614 u32 inta, inta_mask;
10616 if (!priv)
10617 return IRQ_NONE;
10619 spin_lock(&priv->irq_lock);
10621 if (!(priv->status & STATUS_INT_ENABLED)) {
10622 /* IRQ is disabled */
10623 goto none;
10626 inta = ipw_read32(priv, IPW_INTA_RW);
10627 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10629 if (inta == 0xFFFFFFFF) {
10630 /* Hardware disappeared */
10631 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10632 goto none;
10635 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10636 /* Shared interrupt */
10637 goto none;
10640 /* tell the device to stop sending interrupts */
10641 __ipw_disable_interrupts(priv);
10643 /* ack current interrupts */
10644 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10645 ipw_write32(priv, IPW_INTA_RW, inta);
10647 /* Cache INTA value for our tasklet */
10648 priv->isr_inta = inta;
10650 tasklet_schedule(&priv->irq_tasklet);
10652 spin_unlock(&priv->irq_lock);
10654 return IRQ_HANDLED;
10655 none:
10656 spin_unlock(&priv->irq_lock);
10657 return IRQ_NONE;
10660 static void ipw_rf_kill(void *adapter)
10662 struct ipw_priv *priv = adapter;
10663 unsigned long flags;
10665 spin_lock_irqsave(&priv->lock, flags);
10667 if (rf_kill_active(priv)) {
10668 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10669 if (priv->workqueue)
10670 queue_delayed_work(priv->workqueue,
10671 &priv->rf_kill, 2 * HZ);
10672 goto exit_unlock;
10675 /* RF Kill is now disabled, so bring the device back up */
10677 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10678 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10679 "device\n");
10681 /* we can not do an adapter restart while inside an irq lock */
10682 queue_work(priv->workqueue, &priv->adapter_restart);
10683 } else
10684 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10685 "enabled\n");
10687 exit_unlock:
10688 spin_unlock_irqrestore(&priv->lock, flags);
10691 static void ipw_bg_rf_kill(struct work_struct *work)
10693 struct ipw_priv *priv =
10694 container_of(work, struct ipw_priv, rf_kill.work);
10695 mutex_lock(&priv->mutex);
10696 ipw_rf_kill(priv);
10697 mutex_unlock(&priv->mutex);
10700 static void ipw_link_up(struct ipw_priv *priv)
10702 priv->last_seq_num = -1;
10703 priv->last_frag_num = -1;
10704 priv->last_packet_time = 0;
10706 netif_carrier_on(priv->net_dev);
10707 if (netif_queue_stopped(priv->net_dev)) {
10708 IPW_DEBUG_NOTIF("waking queue\n");
10709 netif_wake_queue(priv->net_dev);
10710 } else {
10711 IPW_DEBUG_NOTIF("starting queue\n");
10712 netif_start_queue(priv->net_dev);
10715 cancel_delayed_work(&priv->request_scan);
10716 cancel_delayed_work(&priv->scan_event);
10717 ipw_reset_stats(priv);
10718 /* Ensure the rate is updated immediately */
10719 priv->last_rate = ipw_get_current_rate(priv);
10720 ipw_gather_stats(priv);
10721 ipw_led_link_up(priv);
10722 notify_wx_assoc_event(priv);
10724 if (priv->config & CFG_BACKGROUND_SCAN)
10725 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10728 static void ipw_bg_link_up(struct work_struct *work)
10730 struct ipw_priv *priv =
10731 container_of(work, struct ipw_priv, link_up);
10732 mutex_lock(&priv->mutex);
10733 ipw_link_up(priv);
10734 mutex_unlock(&priv->mutex);
10737 static void ipw_link_down(struct ipw_priv *priv)
10739 ipw_led_link_down(priv);
10740 netif_carrier_off(priv->net_dev);
10741 netif_stop_queue(priv->net_dev);
10742 notify_wx_assoc_event(priv);
10744 /* Cancel any queued work ... */
10745 cancel_delayed_work(&priv->request_scan);
10746 cancel_delayed_work(&priv->adhoc_check);
10747 cancel_delayed_work(&priv->gather_stats);
10749 ipw_reset_stats(priv);
10751 if (!(priv->status & STATUS_EXIT_PENDING)) {
10752 /* Queue up another scan... */
10753 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10754 } else
10755 cancel_delayed_work(&priv->scan_event);
10758 static void ipw_bg_link_down(struct work_struct *work)
10760 struct ipw_priv *priv =
10761 container_of(work, struct ipw_priv, link_down);
10762 mutex_lock(&priv->mutex);
10763 ipw_link_down(priv);
10764 mutex_unlock(&priv->mutex);
10767 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10769 int ret = 0;
10771 priv->workqueue = create_workqueue(DRV_NAME);
10772 init_waitqueue_head(&priv->wait_command_queue);
10773 init_waitqueue_head(&priv->wait_state);
10775 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10776 INIT_WORK(&priv->associate, ipw_bg_associate);
10777 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10778 INIT_WORK(&priv->system_config, ipw_system_config);
10779 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10780 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10781 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10782 INIT_WORK(&priv->up, ipw_bg_up);
10783 INIT_WORK(&priv->down, ipw_bg_down);
10784 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10785 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10786 INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10787 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10788 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10789 INIT_WORK(&priv->roam, ipw_bg_roam);
10790 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10791 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10792 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10793 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10794 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10795 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10796 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10798 #ifdef CONFIG_IPW2200_QOS
10799 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10800 #endif /* CONFIG_IPW2200_QOS */
10802 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10803 ipw_irq_tasklet, (unsigned long)priv);
10805 return ret;
10808 static void shim__set_security(struct net_device *dev,
10809 struct ieee80211_security *sec)
10811 struct ipw_priv *priv = ieee80211_priv(dev);
10812 int i;
10813 for (i = 0; i < 4; i++) {
10814 if (sec->flags & (1 << i)) {
10815 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10816 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10817 if (sec->key_sizes[i] == 0)
10818 priv->ieee->sec.flags &= ~(1 << i);
10819 else {
10820 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10821 sec->key_sizes[i]);
10822 priv->ieee->sec.flags |= (1 << i);
10824 priv->status |= STATUS_SECURITY_UPDATED;
10825 } else if (sec->level != SEC_LEVEL_1)
10826 priv->ieee->sec.flags &= ~(1 << i);
10829 if (sec->flags & SEC_ACTIVE_KEY) {
10830 if (sec->active_key <= 3) {
10831 priv->ieee->sec.active_key = sec->active_key;
10832 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10833 } else
10834 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10835 priv->status |= STATUS_SECURITY_UPDATED;
10836 } else
10837 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10839 if ((sec->flags & SEC_AUTH_MODE) &&
10840 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10841 priv->ieee->sec.auth_mode = sec->auth_mode;
10842 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10843 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10844 priv->capability |= CAP_SHARED_KEY;
10845 else
10846 priv->capability &= ~CAP_SHARED_KEY;
10847 priv->status |= STATUS_SECURITY_UPDATED;
10850 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10851 priv->ieee->sec.flags |= SEC_ENABLED;
10852 priv->ieee->sec.enabled = sec->enabled;
10853 priv->status |= STATUS_SECURITY_UPDATED;
10854 if (sec->enabled)
10855 priv->capability |= CAP_PRIVACY_ON;
10856 else
10857 priv->capability &= ~CAP_PRIVACY_ON;
10860 if (sec->flags & SEC_ENCRYPT)
10861 priv->ieee->sec.encrypt = sec->encrypt;
10863 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10864 priv->ieee->sec.level = sec->level;
10865 priv->ieee->sec.flags |= SEC_LEVEL;
10866 priv->status |= STATUS_SECURITY_UPDATED;
10869 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10870 ipw_set_hwcrypto_keys(priv);
10872 /* To match current functionality of ipw2100 (which works well w/
10873 * various supplicants, we don't force a disassociate if the
10874 * privacy capability changes ... */
10875 #if 0
10876 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10877 (((priv->assoc_request.capability &
10878 WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10879 (!(priv->assoc_request.capability &
10880 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10881 IPW_DEBUG_ASSOC("Disassociating due to capability "
10882 "change.\n");
10883 ipw_disassociate(priv);
10885 #endif
10888 static int init_supported_rates(struct ipw_priv *priv,
10889 struct ipw_supported_rates *rates)
10891 /* TODO: Mask out rates based on priv->rates_mask */
10893 memset(rates, 0, sizeof(*rates));
10894 /* configure supported rates */
10895 switch (priv->ieee->freq_band) {
10896 case IEEE80211_52GHZ_BAND:
10897 rates->ieee_mode = IPW_A_MODE;
10898 rates->purpose = IPW_RATE_CAPABILITIES;
10899 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10900 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10901 break;
10903 default: /* Mixed or 2.4Ghz */
10904 rates->ieee_mode = IPW_G_MODE;
10905 rates->purpose = IPW_RATE_CAPABILITIES;
10906 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10907 IEEE80211_CCK_DEFAULT_RATES_MASK);
10908 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10909 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10910 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10912 break;
10915 return 0;
10918 static int ipw_config(struct ipw_priv *priv)
10920 /* This is only called from ipw_up, which resets/reloads the firmware
10921 so, we don't need to first disable the card before we configure
10922 it */
10923 if (ipw_set_tx_power(priv))
10924 goto error;
10926 /* initialize adapter address */
10927 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10928 goto error;
10930 /* set basic system config settings */
10931 init_sys_config(&priv->sys_config);
10933 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10934 * Does not support BT priority yet (don't abort or defer our Tx) */
10935 if (bt_coexist) {
10936 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10938 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10939 priv->sys_config.bt_coexistence
10940 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10941 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10942 priv->sys_config.bt_coexistence
10943 |= CFG_BT_COEXISTENCE_OOB;
10946 #ifdef CONFIG_IPW2200_PROMISCUOUS
10947 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10948 priv->sys_config.accept_all_data_frames = 1;
10949 priv->sys_config.accept_non_directed_frames = 1;
10950 priv->sys_config.accept_all_mgmt_bcpr = 1;
10951 priv->sys_config.accept_all_mgmt_frames = 1;
10953 #endif
10955 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10956 priv->sys_config.answer_broadcast_ssid_probe = 1;
10957 else
10958 priv->sys_config.answer_broadcast_ssid_probe = 0;
10960 if (ipw_send_system_config(priv))
10961 goto error;
10963 init_supported_rates(priv, &priv->rates);
10964 if (ipw_send_supported_rates(priv, &priv->rates))
10965 goto error;
10967 /* Set request-to-send threshold */
10968 if (priv->rts_threshold) {
10969 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10970 goto error;
10972 #ifdef CONFIG_IPW2200_QOS
10973 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10974 ipw_qos_activate(priv, NULL);
10975 #endif /* CONFIG_IPW2200_QOS */
10977 if (ipw_set_random_seed(priv))
10978 goto error;
10980 /* final state transition to the RUN state */
10981 if (ipw_send_host_complete(priv))
10982 goto error;
10984 priv->status |= STATUS_INIT;
10986 ipw_led_init(priv);
10987 ipw_led_radio_on(priv);
10988 priv->notif_missed_beacons = 0;
10990 /* Set hardware WEP key if it is configured. */
10991 if ((priv->capability & CAP_PRIVACY_ON) &&
10992 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10993 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10994 ipw_set_hwcrypto_keys(priv);
10996 return 0;
10998 error:
10999 return -EIO;
11003 * NOTE:
11005 * These tables have been tested in conjunction with the
11006 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11008 * Altering this values, using it on other hardware, or in geographies
11009 * not intended for resale of the above mentioned Intel adapters has
11010 * not been tested.
11012 * Remember to update the table in README.ipw2200 when changing this
11013 * table.
11016 static const struct ieee80211_geo ipw_geos[] = {
11017 { /* Restricted */
11018 "---",
11019 .bg_channels = 11,
11020 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11021 {2427, 4}, {2432, 5}, {2437, 6},
11022 {2442, 7}, {2447, 8}, {2452, 9},
11023 {2457, 10}, {2462, 11}},
11026 { /* Custom US/Canada */
11027 "ZZF",
11028 .bg_channels = 11,
11029 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11030 {2427, 4}, {2432, 5}, {2437, 6},
11031 {2442, 7}, {2447, 8}, {2452, 9},
11032 {2457, 10}, {2462, 11}},
11033 .a_channels = 8,
11034 .a = {{5180, 36},
11035 {5200, 40},
11036 {5220, 44},
11037 {5240, 48},
11038 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11039 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11040 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11041 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11044 { /* Rest of World */
11045 "ZZD",
11046 .bg_channels = 13,
11047 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11048 {2427, 4}, {2432, 5}, {2437, 6},
11049 {2442, 7}, {2447, 8}, {2452, 9},
11050 {2457, 10}, {2462, 11}, {2467, 12},
11051 {2472, 13}},
11054 { /* Custom USA & Europe & High */
11055 "ZZA",
11056 .bg_channels = 11,
11057 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11058 {2427, 4}, {2432, 5}, {2437, 6},
11059 {2442, 7}, {2447, 8}, {2452, 9},
11060 {2457, 10}, {2462, 11}},
11061 .a_channels = 13,
11062 .a = {{5180, 36},
11063 {5200, 40},
11064 {5220, 44},
11065 {5240, 48},
11066 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11067 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11068 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11069 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11070 {5745, 149},
11071 {5765, 153},
11072 {5785, 157},
11073 {5805, 161},
11074 {5825, 165}},
11077 { /* Custom NA & Europe */
11078 "ZZB",
11079 .bg_channels = 11,
11080 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11081 {2427, 4}, {2432, 5}, {2437, 6},
11082 {2442, 7}, {2447, 8}, {2452, 9},
11083 {2457, 10}, {2462, 11}},
11084 .a_channels = 13,
11085 .a = {{5180, 36},
11086 {5200, 40},
11087 {5220, 44},
11088 {5240, 48},
11089 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11090 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11091 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11092 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11093 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11094 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11095 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11096 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11097 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11100 { /* Custom Japan */
11101 "ZZC",
11102 .bg_channels = 11,
11103 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11104 {2427, 4}, {2432, 5}, {2437, 6},
11105 {2442, 7}, {2447, 8}, {2452, 9},
11106 {2457, 10}, {2462, 11}},
11107 .a_channels = 4,
11108 .a = {{5170, 34}, {5190, 38},
11109 {5210, 42}, {5230, 46}},
11112 { /* Custom */
11113 "ZZM",
11114 .bg_channels = 11,
11115 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11116 {2427, 4}, {2432, 5}, {2437, 6},
11117 {2442, 7}, {2447, 8}, {2452, 9},
11118 {2457, 10}, {2462, 11}},
11121 { /* Europe */
11122 "ZZE",
11123 .bg_channels = 13,
11124 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11125 {2427, 4}, {2432, 5}, {2437, 6},
11126 {2442, 7}, {2447, 8}, {2452, 9},
11127 {2457, 10}, {2462, 11}, {2467, 12},
11128 {2472, 13}},
11129 .a_channels = 19,
11130 .a = {{5180, 36},
11131 {5200, 40},
11132 {5220, 44},
11133 {5240, 48},
11134 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11135 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11136 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11137 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11138 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11139 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11140 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11141 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11142 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11143 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11144 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11145 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11146 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11147 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11148 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11151 { /* Custom Japan */
11152 "ZZJ",
11153 .bg_channels = 14,
11154 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11155 {2427, 4}, {2432, 5}, {2437, 6},
11156 {2442, 7}, {2447, 8}, {2452, 9},
11157 {2457, 10}, {2462, 11}, {2467, 12},
11158 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11159 .a_channels = 4,
11160 .a = {{5170, 34}, {5190, 38},
11161 {5210, 42}, {5230, 46}},
11164 { /* Rest of World */
11165 "ZZR",
11166 .bg_channels = 14,
11167 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11168 {2427, 4}, {2432, 5}, {2437, 6},
11169 {2442, 7}, {2447, 8}, {2452, 9},
11170 {2457, 10}, {2462, 11}, {2467, 12},
11171 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11172 IEEE80211_CH_PASSIVE_ONLY}},
11175 { /* High Band */
11176 "ZZH",
11177 .bg_channels = 13,
11178 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11179 {2427, 4}, {2432, 5}, {2437, 6},
11180 {2442, 7}, {2447, 8}, {2452, 9},
11181 {2457, 10}, {2462, 11},
11182 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11183 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11184 .a_channels = 4,
11185 .a = {{5745, 149}, {5765, 153},
11186 {5785, 157}, {5805, 161}},
11189 { /* Custom Europe */
11190 "ZZG",
11191 .bg_channels = 13,
11192 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11193 {2427, 4}, {2432, 5}, {2437, 6},
11194 {2442, 7}, {2447, 8}, {2452, 9},
11195 {2457, 10}, {2462, 11},
11196 {2467, 12}, {2472, 13}},
11197 .a_channels = 4,
11198 .a = {{5180, 36}, {5200, 40},
11199 {5220, 44}, {5240, 48}},
11202 { /* Europe */
11203 "ZZK",
11204 .bg_channels = 13,
11205 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11206 {2427, 4}, {2432, 5}, {2437, 6},
11207 {2442, 7}, {2447, 8}, {2452, 9},
11208 {2457, 10}, {2462, 11},
11209 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11210 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11211 .a_channels = 24,
11212 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11213 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11214 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11215 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11216 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11217 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11218 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11219 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11220 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11221 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11222 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11223 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11224 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11225 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11226 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11227 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11228 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11229 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11230 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11231 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11232 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11233 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11234 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11235 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11238 { /* Europe */
11239 "ZZL",
11240 .bg_channels = 11,
11241 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11242 {2427, 4}, {2432, 5}, {2437, 6},
11243 {2442, 7}, {2447, 8}, {2452, 9},
11244 {2457, 10}, {2462, 11}},
11245 .a_channels = 13,
11246 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11247 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11248 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11249 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11250 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11251 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11252 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11253 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11254 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11255 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11256 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11257 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11258 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11262 #define MAX_HW_RESTARTS 5
11263 static int ipw_up(struct ipw_priv *priv)
11265 int rc, i, j;
11267 if (priv->status & STATUS_EXIT_PENDING)
11268 return -EIO;
11270 if (cmdlog && !priv->cmdlog) {
11271 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11272 GFP_KERNEL);
11273 if (priv->cmdlog == NULL) {
11274 IPW_ERROR("Error allocating %d command log entries.\n",
11275 cmdlog);
11276 return -ENOMEM;
11277 } else {
11278 priv->cmdlog_len = cmdlog;
11282 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11283 /* Load the microcode, firmware, and eeprom.
11284 * Also start the clocks. */
11285 rc = ipw_load(priv);
11286 if (rc) {
11287 IPW_ERROR("Unable to load firmware: %d\n", rc);
11288 return rc;
11291 ipw_init_ordinals(priv);
11292 if (!(priv->config & CFG_CUSTOM_MAC))
11293 eeprom_parse_mac(priv, priv->mac_addr);
11294 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11296 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11297 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11298 ipw_geos[j].name, 3))
11299 break;
11301 if (j == ARRAY_SIZE(ipw_geos)) {
11302 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11303 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11304 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11305 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11306 j = 0;
11308 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11309 IPW_WARNING("Could not set geography.");
11310 return 0;
11313 if (priv->status & STATUS_RF_KILL_SW) {
11314 IPW_WARNING("Radio disabled by module parameter.\n");
11315 return 0;
11316 } else if (rf_kill_active(priv)) {
11317 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11318 "Kill switch must be turned off for "
11319 "wireless networking to work.\n");
11320 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11321 2 * HZ);
11322 return 0;
11325 rc = ipw_config(priv);
11326 if (!rc) {
11327 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11329 /* If configure to try and auto-associate, kick
11330 * off a scan. */
11331 queue_delayed_work(priv->workqueue,
11332 &priv->request_scan, 0);
11334 return 0;
11337 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11338 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11339 i, MAX_HW_RESTARTS);
11341 /* We had an error bringing up the hardware, so take it
11342 * all the way back down so we can try again */
11343 ipw_down(priv);
11346 /* tried to restart and config the device for as long as our
11347 * patience could withstand */
11348 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11350 return -EIO;
11353 static void ipw_bg_up(struct work_struct *work)
11355 struct ipw_priv *priv =
11356 container_of(work, struct ipw_priv, up);
11357 mutex_lock(&priv->mutex);
11358 ipw_up(priv);
11359 mutex_unlock(&priv->mutex);
11362 static void ipw_deinit(struct ipw_priv *priv)
11364 int i;
11366 if (priv->status & STATUS_SCANNING) {
11367 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11368 ipw_abort_scan(priv);
11371 if (priv->status & STATUS_ASSOCIATED) {
11372 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11373 ipw_disassociate(priv);
11376 ipw_led_shutdown(priv);
11378 /* Wait up to 1s for status to change to not scanning and not
11379 * associated (disassociation can take a while for a ful 802.11
11380 * exchange */
11381 for (i = 1000; i && (priv->status &
11382 (STATUS_DISASSOCIATING |
11383 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11384 udelay(10);
11386 if (priv->status & (STATUS_DISASSOCIATING |
11387 STATUS_ASSOCIATED | STATUS_SCANNING))
11388 IPW_DEBUG_INFO("Still associated or scanning...\n");
11389 else
11390 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11392 /* Attempt to disable the card */
11393 ipw_send_card_disable(priv, 0);
11395 priv->status &= ~STATUS_INIT;
11398 static void ipw_down(struct ipw_priv *priv)
11400 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11402 priv->status |= STATUS_EXIT_PENDING;
11404 if (ipw_is_init(priv))
11405 ipw_deinit(priv);
11407 /* Wipe out the EXIT_PENDING status bit if we are not actually
11408 * exiting the module */
11409 if (!exit_pending)
11410 priv->status &= ~STATUS_EXIT_PENDING;
11412 /* tell the device to stop sending interrupts */
11413 ipw_disable_interrupts(priv);
11415 /* Clear all bits but the RF Kill */
11416 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11417 netif_carrier_off(priv->net_dev);
11418 netif_stop_queue(priv->net_dev);
11420 ipw_stop_nic(priv);
11422 ipw_led_radio_off(priv);
11425 static void ipw_bg_down(struct work_struct *work)
11427 struct ipw_priv *priv =
11428 container_of(work, struct ipw_priv, down);
11429 mutex_lock(&priv->mutex);
11430 ipw_down(priv);
11431 mutex_unlock(&priv->mutex);
11434 /* Called by register_netdev() */
11435 static int ipw_net_init(struct net_device *dev)
11437 struct ipw_priv *priv = ieee80211_priv(dev);
11438 mutex_lock(&priv->mutex);
11440 if (ipw_up(priv)) {
11441 mutex_unlock(&priv->mutex);
11442 return -EIO;
11445 mutex_unlock(&priv->mutex);
11446 return 0;
11449 /* PCI driver stuff */
11450 static struct pci_device_id card_ids[] = {
11451 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11452 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11453 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11454 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11455 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11456 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11457 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11458 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11459 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11460 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11461 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11462 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11463 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11464 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11465 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11466 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11467 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11468 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11469 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11470 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11471 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11472 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11474 /* required last entry */
11475 {0,}
11478 MODULE_DEVICE_TABLE(pci, card_ids);
11480 static struct attribute *ipw_sysfs_entries[] = {
11481 &dev_attr_rf_kill.attr,
11482 &dev_attr_direct_dword.attr,
11483 &dev_attr_indirect_byte.attr,
11484 &dev_attr_indirect_dword.attr,
11485 &dev_attr_mem_gpio_reg.attr,
11486 &dev_attr_command_event_reg.attr,
11487 &dev_attr_nic_type.attr,
11488 &dev_attr_status.attr,
11489 &dev_attr_cfg.attr,
11490 &dev_attr_error.attr,
11491 &dev_attr_event_log.attr,
11492 &dev_attr_cmd_log.attr,
11493 &dev_attr_eeprom_delay.attr,
11494 &dev_attr_ucode_version.attr,
11495 &dev_attr_rtc.attr,
11496 &dev_attr_scan_age.attr,
11497 &dev_attr_led.attr,
11498 &dev_attr_speed_scan.attr,
11499 &dev_attr_net_stats.attr,
11500 &dev_attr_channels.attr,
11501 #ifdef CONFIG_IPW2200_PROMISCUOUS
11502 &dev_attr_rtap_iface.attr,
11503 &dev_attr_rtap_filter.attr,
11504 #endif
11505 NULL
11508 static struct attribute_group ipw_attribute_group = {
11509 .name = NULL, /* put in device directory */
11510 .attrs = ipw_sysfs_entries,
11513 #ifdef CONFIG_IPW2200_PROMISCUOUS
11514 static int ipw_prom_open(struct net_device *dev)
11516 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11517 struct ipw_priv *priv = prom_priv->priv;
11519 IPW_DEBUG_INFO("prom dev->open\n");
11520 netif_carrier_off(dev);
11521 netif_stop_queue(dev);
11523 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11524 priv->sys_config.accept_all_data_frames = 1;
11525 priv->sys_config.accept_non_directed_frames = 1;
11526 priv->sys_config.accept_all_mgmt_bcpr = 1;
11527 priv->sys_config.accept_all_mgmt_frames = 1;
11529 ipw_send_system_config(priv);
11532 return 0;
11535 static int ipw_prom_stop(struct net_device *dev)
11537 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11538 struct ipw_priv *priv = prom_priv->priv;
11540 IPW_DEBUG_INFO("prom dev->stop\n");
11542 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11543 priv->sys_config.accept_all_data_frames = 0;
11544 priv->sys_config.accept_non_directed_frames = 0;
11545 priv->sys_config.accept_all_mgmt_bcpr = 0;
11546 priv->sys_config.accept_all_mgmt_frames = 0;
11548 ipw_send_system_config(priv);
11551 return 0;
11554 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11556 IPW_DEBUG_INFO("prom dev->xmit\n");
11557 netif_stop_queue(dev);
11558 return -EOPNOTSUPP;
11561 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11563 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11564 return &prom_priv->ieee->stats;
11567 static int ipw_prom_alloc(struct ipw_priv *priv)
11569 int rc = 0;
11571 if (priv->prom_net_dev)
11572 return -EPERM;
11574 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11575 if (priv->prom_net_dev == NULL)
11576 return -ENOMEM;
11578 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11579 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11580 priv->prom_priv->priv = priv;
11582 strcpy(priv->prom_net_dev->name, "rtap%d");
11584 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11585 priv->prom_net_dev->open = ipw_prom_open;
11586 priv->prom_net_dev->stop = ipw_prom_stop;
11587 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11588 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11590 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11592 rc = register_netdev(priv->prom_net_dev);
11593 if (rc) {
11594 free_ieee80211(priv->prom_net_dev);
11595 priv->prom_net_dev = NULL;
11596 return rc;
11599 return 0;
11602 static void ipw_prom_free(struct ipw_priv *priv)
11604 if (!priv->prom_net_dev)
11605 return;
11607 unregister_netdev(priv->prom_net_dev);
11608 free_ieee80211(priv->prom_net_dev);
11610 priv->prom_net_dev = NULL;
11613 #endif
11616 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11617 const struct pci_device_id *ent)
11619 int err = 0;
11620 struct net_device *net_dev;
11621 void __iomem *base;
11622 u32 length, val;
11623 struct ipw_priv *priv;
11624 int i;
11626 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11627 if (net_dev == NULL) {
11628 err = -ENOMEM;
11629 goto out;
11632 priv = ieee80211_priv(net_dev);
11633 priv->ieee = netdev_priv(net_dev);
11635 priv->net_dev = net_dev;
11636 priv->pci_dev = pdev;
11637 ipw_debug_level = debug;
11638 spin_lock_init(&priv->irq_lock);
11639 spin_lock_init(&priv->lock);
11640 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11641 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11643 mutex_init(&priv->mutex);
11644 if (pci_enable_device(pdev)) {
11645 err = -ENODEV;
11646 goto out_free_ieee80211;
11649 pci_set_master(pdev);
11651 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11652 if (!err)
11653 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11654 if (err) {
11655 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11656 goto out_pci_disable_device;
11659 pci_set_drvdata(pdev, priv);
11661 err = pci_request_regions(pdev, DRV_NAME);
11662 if (err)
11663 goto out_pci_disable_device;
11665 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11666 * PCI Tx retries from interfering with C3 CPU state */
11667 pci_read_config_dword(pdev, 0x40, &val);
11668 if ((val & 0x0000ff00) != 0)
11669 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11671 length = pci_resource_len(pdev, 0);
11672 priv->hw_len = length;
11674 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11675 if (!base) {
11676 err = -ENODEV;
11677 goto out_pci_release_regions;
11680 priv->hw_base = base;
11681 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11682 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11684 err = ipw_setup_deferred_work(priv);
11685 if (err) {
11686 IPW_ERROR("Unable to setup deferred work\n");
11687 goto out_iounmap;
11690 ipw_sw_reset(priv, 1);
11692 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11693 if (err) {
11694 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11695 goto out_destroy_workqueue;
11698 SET_NETDEV_DEV(net_dev, &pdev->dev);
11700 mutex_lock(&priv->mutex);
11702 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11703 priv->ieee->set_security = shim__set_security;
11704 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11706 #ifdef CONFIG_IPW2200_QOS
11707 priv->ieee->is_qos_active = ipw_is_qos_active;
11708 priv->ieee->handle_probe_response = ipw_handle_beacon;
11709 priv->ieee->handle_beacon = ipw_handle_probe_response;
11710 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11711 #endif /* CONFIG_IPW2200_QOS */
11713 priv->ieee->perfect_rssi = -20;
11714 priv->ieee->worst_rssi = -85;
11716 net_dev->open = ipw_net_open;
11717 net_dev->stop = ipw_net_stop;
11718 net_dev->init = ipw_net_init;
11719 net_dev->get_stats = ipw_net_get_stats;
11720 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11721 net_dev->set_mac_address = ipw_net_set_mac_address;
11722 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11723 net_dev->wireless_data = &priv->wireless_data;
11724 net_dev->wireless_handlers = &ipw_wx_handler_def;
11725 net_dev->ethtool_ops = &ipw_ethtool_ops;
11726 net_dev->irq = pdev->irq;
11727 net_dev->base_addr = (unsigned long)priv->hw_base;
11728 net_dev->mem_start = pci_resource_start(pdev, 0);
11729 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11731 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11732 if (err) {
11733 IPW_ERROR("failed to create sysfs device attributes\n");
11734 mutex_unlock(&priv->mutex);
11735 goto out_release_irq;
11738 mutex_unlock(&priv->mutex);
11739 err = register_netdev(net_dev);
11740 if (err) {
11741 IPW_ERROR("failed to register network device\n");
11742 goto out_remove_sysfs;
11745 #ifdef CONFIG_IPW2200_PROMISCUOUS
11746 if (rtap_iface) {
11747 err = ipw_prom_alloc(priv);
11748 if (err) {
11749 IPW_ERROR("Failed to register promiscuous network "
11750 "device (error %d).\n", err);
11751 unregister_netdev(priv->net_dev);
11752 goto out_remove_sysfs;
11755 #endif
11757 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11758 "channels, %d 802.11a channels)\n",
11759 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11760 priv->ieee->geo.a_channels);
11762 return 0;
11764 out_remove_sysfs:
11765 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11766 out_release_irq:
11767 free_irq(pdev->irq, priv);
11768 out_destroy_workqueue:
11769 destroy_workqueue(priv->workqueue);
11770 priv->workqueue = NULL;
11771 out_iounmap:
11772 iounmap(priv->hw_base);
11773 out_pci_release_regions:
11774 pci_release_regions(pdev);
11775 out_pci_disable_device:
11776 pci_disable_device(pdev);
11777 pci_set_drvdata(pdev, NULL);
11778 out_free_ieee80211:
11779 free_ieee80211(priv->net_dev);
11780 out:
11781 return err;
11784 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11786 struct ipw_priv *priv = pci_get_drvdata(pdev);
11787 struct list_head *p, *q;
11788 int i;
11790 if (!priv)
11791 return;
11793 mutex_lock(&priv->mutex);
11795 priv->status |= STATUS_EXIT_PENDING;
11796 ipw_down(priv);
11797 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11799 mutex_unlock(&priv->mutex);
11801 unregister_netdev(priv->net_dev);
11803 if (priv->rxq) {
11804 ipw_rx_queue_free(priv, priv->rxq);
11805 priv->rxq = NULL;
11807 ipw_tx_queue_free(priv);
11809 if (priv->cmdlog) {
11810 kfree(priv->cmdlog);
11811 priv->cmdlog = NULL;
11813 /* ipw_down will ensure that there is no more pending work
11814 * in the workqueue's, so we can safely remove them now. */
11815 cancel_delayed_work(&priv->adhoc_check);
11816 cancel_delayed_work(&priv->gather_stats);
11817 cancel_delayed_work(&priv->request_scan);
11818 cancel_delayed_work(&priv->scan_event);
11819 cancel_delayed_work(&priv->rf_kill);
11820 cancel_delayed_work(&priv->scan_check);
11821 destroy_workqueue(priv->workqueue);
11822 priv->workqueue = NULL;
11824 /* Free MAC hash list for ADHOC */
11825 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11826 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11827 list_del(p);
11828 kfree(list_entry(p, struct ipw_ibss_seq, list));
11832 kfree(priv->error);
11833 priv->error = NULL;
11835 #ifdef CONFIG_IPW2200_PROMISCUOUS
11836 ipw_prom_free(priv);
11837 #endif
11839 free_irq(pdev->irq, priv);
11840 iounmap(priv->hw_base);
11841 pci_release_regions(pdev);
11842 pci_disable_device(pdev);
11843 pci_set_drvdata(pdev, NULL);
11844 free_ieee80211(priv->net_dev);
11845 free_firmware();
11848 #ifdef CONFIG_PM
11849 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11851 struct ipw_priv *priv = pci_get_drvdata(pdev);
11852 struct net_device *dev = priv->net_dev;
11854 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11856 /* Take down the device; powers it off, etc. */
11857 ipw_down(priv);
11859 /* Remove the PRESENT state of the device */
11860 netif_device_detach(dev);
11862 pci_save_state(pdev);
11863 pci_disable_device(pdev);
11864 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11866 return 0;
11869 static int ipw_pci_resume(struct pci_dev *pdev)
11871 struct ipw_priv *priv = pci_get_drvdata(pdev);
11872 struct net_device *dev = priv->net_dev;
11873 int err;
11874 u32 val;
11876 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11878 pci_set_power_state(pdev, PCI_D0);
11879 err = pci_enable_device(pdev);
11880 if (err) {
11881 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11882 dev->name);
11883 return err;
11885 pci_restore_state(pdev);
11888 * Suspend/Resume resets the PCI configuration space, so we have to
11889 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11890 * from interfering with C3 CPU state. pci_restore_state won't help
11891 * here since it only restores the first 64 bytes pci config header.
11893 pci_read_config_dword(pdev, 0x40, &val);
11894 if ((val & 0x0000ff00) != 0)
11895 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11897 /* Set the device back into the PRESENT state; this will also wake
11898 * the queue of needed */
11899 netif_device_attach(dev);
11901 /* Bring the device back up */
11902 queue_work(priv->workqueue, &priv->up);
11904 return 0;
11906 #endif
11908 static void ipw_pci_shutdown(struct pci_dev *pdev)
11910 struct ipw_priv *priv = pci_get_drvdata(pdev);
11912 /* Take down the device; powers it off, etc. */
11913 ipw_down(priv);
11915 pci_disable_device(pdev);
11918 /* driver initialization stuff */
11919 static struct pci_driver ipw_driver = {
11920 .name = DRV_NAME,
11921 .id_table = card_ids,
11922 .probe = ipw_pci_probe,
11923 .remove = __devexit_p(ipw_pci_remove),
11924 #ifdef CONFIG_PM
11925 .suspend = ipw_pci_suspend,
11926 .resume = ipw_pci_resume,
11927 #endif
11928 .shutdown = ipw_pci_shutdown,
11931 static int __init ipw_init(void)
11933 int ret;
11935 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11936 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11938 ret = pci_register_driver(&ipw_driver);
11939 if (ret) {
11940 IPW_ERROR("Unable to initialize PCI module\n");
11941 return ret;
11944 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11945 if (ret) {
11946 IPW_ERROR("Unable to create driver sysfs file\n");
11947 pci_unregister_driver(&ipw_driver);
11948 return ret;
11951 return ret;
11954 static void __exit ipw_exit(void)
11956 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11957 pci_unregister_driver(&ipw_driver);
11960 module_param(disable, int, 0444);
11961 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11963 module_param(associate, int, 0444);
11964 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11966 module_param(auto_create, int, 0444);
11967 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11969 module_param(led, int, 0444);
11970 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11972 module_param(debug, int, 0444);
11973 MODULE_PARM_DESC(debug, "debug output mask");
11975 module_param(channel, int, 0444);
11976 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11978 #ifdef CONFIG_IPW2200_PROMISCUOUS
11979 module_param(rtap_iface, int, 0444);
11980 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11981 #endif
11983 #ifdef CONFIG_IPW2200_QOS
11984 module_param(qos_enable, int, 0444);
11985 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11987 module_param(qos_burst_enable, int, 0444);
11988 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11990 module_param(qos_no_ack_mask, int, 0444);
11991 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11993 module_param(burst_duration_CCK, int, 0444);
11994 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11996 module_param(burst_duration_OFDM, int, 0444);
11997 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11998 #endif /* CONFIG_IPW2200_QOS */
12000 #ifdef CONFIG_IPW2200_MONITOR
12001 module_param(mode, int, 0444);
12002 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12003 #else
12004 module_param(mode, int, 0444);
12005 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12006 #endif
12008 module_param(bt_coexist, int, 0444);
12009 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12011 module_param(hwcrypto, int, 0444);
12012 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12014 module_param(cmdlog, int, 0444);
12015 MODULE_PARM_DESC(cmdlog,
12016 "allocate a ring buffer for logging firmware commands");
12018 module_param(roaming, int, 0444);
12019 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12021 module_param(antenna, int, 0444);
12022 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12024 module_exit(ipw_exit);
12025 module_init(ipw_init);