1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
32 #include <asm/uaccess.h>
35 char stat_string
[ETH_GSTRING_LEN
];
40 #define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
41 offsetof(struct e1000_adapter, m)
42 static const struct e1000_stats e1000_gstrings_stats
[] = {
43 { "rx_packets", E1000_STAT(stats
.gprc
) },
44 { "tx_packets", E1000_STAT(stats
.gptc
) },
45 { "rx_bytes", E1000_STAT(stats
.gorcl
) },
46 { "tx_bytes", E1000_STAT(stats
.gotcl
) },
47 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
48 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
49 { "rx_multicast", E1000_STAT(stats
.mprc
) },
50 { "tx_multicast", E1000_STAT(stats
.mptc
) },
51 { "rx_errors", E1000_STAT(stats
.rxerrc
) },
52 { "tx_errors", E1000_STAT(stats
.txerrc
) },
53 { "tx_dropped", E1000_STAT(net_stats
.tx_dropped
) },
54 { "multicast", E1000_STAT(stats
.mprc
) },
55 { "collisions", E1000_STAT(stats
.colc
) },
56 { "rx_length_errors", E1000_STAT(stats
.rlerrc
) },
57 { "rx_over_errors", E1000_STAT(net_stats
.rx_over_errors
) },
58 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
59 { "rx_frame_errors", E1000_STAT(net_stats
.rx_frame_errors
) },
60 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
61 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
62 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
63 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
64 { "tx_fifo_errors", E1000_STAT(net_stats
.tx_fifo_errors
) },
65 { "tx_heartbeat_errors", E1000_STAT(net_stats
.tx_heartbeat_errors
) },
66 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
67 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
68 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
69 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
70 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
71 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
72 { "tx_restart_queue", E1000_STAT(restart_queue
) },
73 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
74 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
75 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
76 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
77 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
78 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
79 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
80 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
81 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
82 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
83 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
84 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
85 { "rx_header_split", E1000_STAT(rx_hdr_split
) },
86 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
87 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
88 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
89 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
92 #define E1000_QUEUE_STATS_LEN 0
93 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
94 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
95 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
96 "Register test (offline)", "Eeprom test (offline)",
97 "Interrupt test (offline)", "Loopback test (offline)",
98 "Link test (on/offline)"
100 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
102 static int e1000_get_settings(struct net_device
*netdev
,
103 struct ethtool_cmd
*ecmd
)
105 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
106 struct e1000_hw
*hw
= &adapter
->hw
;
108 if (hw
->media_type
== e1000_media_type_copper
) {
110 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
111 SUPPORTED_10baseT_Full
|
112 SUPPORTED_100baseT_Half
|
113 SUPPORTED_100baseT_Full
|
114 SUPPORTED_1000baseT_Full
|
117 if (hw
->phy_type
== e1000_phy_ife
)
118 ecmd
->supported
&= ~SUPPORTED_1000baseT_Full
;
119 ecmd
->advertising
= ADVERTISED_TP
;
121 if (hw
->autoneg
== 1) {
122 ecmd
->advertising
|= ADVERTISED_Autoneg
;
123 /* the e1000 autoneg seems to match ethtool nicely */
124 ecmd
->advertising
|= hw
->autoneg_advertised
;
127 ecmd
->port
= PORT_TP
;
128 ecmd
->phy_address
= hw
->phy_addr
;
130 if (hw
->mac_type
== e1000_82543
)
131 ecmd
->transceiver
= XCVR_EXTERNAL
;
133 ecmd
->transceiver
= XCVR_INTERNAL
;
136 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
140 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
144 ecmd
->port
= PORT_FIBRE
;
146 if (hw
->mac_type
>= e1000_82545
)
147 ecmd
->transceiver
= XCVR_INTERNAL
;
149 ecmd
->transceiver
= XCVR_EXTERNAL
;
152 if (er32(STATUS
) & E1000_STATUS_LU
) {
154 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
155 &adapter
->link_duplex
);
156 ecmd
->speed
= adapter
->link_speed
;
158 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
159 * and HALF_DUPLEX != DUPLEX_HALF */
161 if (adapter
->link_duplex
== FULL_DUPLEX
)
162 ecmd
->duplex
= DUPLEX_FULL
;
164 ecmd
->duplex
= DUPLEX_HALF
;
170 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
171 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
175 static int e1000_set_settings(struct net_device
*netdev
,
176 struct ethtool_cmd
*ecmd
)
178 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
179 struct e1000_hw
*hw
= &adapter
->hw
;
181 /* When SoL/IDER sessions are active, autoneg/speed/duplex
182 * cannot be changed */
183 if (e1000_check_phy_reset_block(hw
)) {
184 DPRINTK(DRV
, ERR
, "Cannot change link characteristics "
185 "when SoL/IDER is active.\n");
189 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
192 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
194 if (hw
->media_type
== e1000_media_type_fiber
)
195 hw
->autoneg_advertised
= ADVERTISED_1000baseT_Full
|
199 hw
->autoneg_advertised
= ecmd
->advertising
|
202 ecmd
->advertising
= hw
->autoneg_advertised
;
204 if (e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
)) {
205 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
211 if (netif_running(adapter
->netdev
)) {
215 e1000_reset(adapter
);
217 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
221 static void e1000_get_pauseparam(struct net_device
*netdev
,
222 struct ethtool_pauseparam
*pause
)
224 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
225 struct e1000_hw
*hw
= &adapter
->hw
;
228 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
230 if (hw
->fc
== E1000_FC_RX_PAUSE
)
232 else if (hw
->fc
== E1000_FC_TX_PAUSE
)
234 else if (hw
->fc
== E1000_FC_FULL
) {
240 static int e1000_set_pauseparam(struct net_device
*netdev
,
241 struct ethtool_pauseparam
*pause
)
243 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
244 struct e1000_hw
*hw
= &adapter
->hw
;
247 adapter
->fc_autoneg
= pause
->autoneg
;
249 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
252 if (pause
->rx_pause
&& pause
->tx_pause
)
253 hw
->fc
= E1000_FC_FULL
;
254 else if (pause
->rx_pause
&& !pause
->tx_pause
)
255 hw
->fc
= E1000_FC_RX_PAUSE
;
256 else if (!pause
->rx_pause
&& pause
->tx_pause
)
257 hw
->fc
= E1000_FC_TX_PAUSE
;
258 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
259 hw
->fc
= E1000_FC_NONE
;
261 hw
->original_fc
= hw
->fc
;
263 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
264 if (netif_running(adapter
->netdev
)) {
268 e1000_reset(adapter
);
270 retval
= ((hw
->media_type
== e1000_media_type_fiber
) ?
271 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
273 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
277 static u32
e1000_get_rx_csum(struct net_device
*netdev
)
279 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
280 return adapter
->rx_csum
;
283 static int e1000_set_rx_csum(struct net_device
*netdev
, u32 data
)
285 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
286 adapter
->rx_csum
= data
;
288 if (netif_running(netdev
))
289 e1000_reinit_locked(adapter
);
291 e1000_reset(adapter
);
295 static u32
e1000_get_tx_csum(struct net_device
*netdev
)
297 return (netdev
->features
& NETIF_F_HW_CSUM
) != 0;
300 static int e1000_set_tx_csum(struct net_device
*netdev
, u32 data
)
302 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
303 struct e1000_hw
*hw
= &adapter
->hw
;
305 if (hw
->mac_type
< e1000_82543
) {
312 netdev
->features
|= NETIF_F_HW_CSUM
;
314 netdev
->features
&= ~NETIF_F_HW_CSUM
;
319 static int e1000_set_tso(struct net_device
*netdev
, u32 data
)
321 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
322 struct e1000_hw
*hw
= &adapter
->hw
;
324 if ((hw
->mac_type
< e1000_82544
) ||
325 (hw
->mac_type
== e1000_82547
))
326 return data
? -EINVAL
: 0;
329 netdev
->features
|= NETIF_F_TSO
;
331 netdev
->features
&= ~NETIF_F_TSO
;
333 if (data
&& (adapter
->hw
.mac_type
> e1000_82547_rev_2
))
334 netdev
->features
|= NETIF_F_TSO6
;
336 netdev
->features
&= ~NETIF_F_TSO6
;
338 DPRINTK(PROBE
, INFO
, "TSO is %s\n", data
? "Enabled" : "Disabled");
339 adapter
->tso_force
= true;
343 static u32
e1000_get_msglevel(struct net_device
*netdev
)
345 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
346 return adapter
->msg_enable
;
349 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
351 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
352 adapter
->msg_enable
= data
;
355 static int e1000_get_regs_len(struct net_device
*netdev
)
357 #define E1000_REGS_LEN 32
358 return E1000_REGS_LEN
* sizeof(u32
);
361 static void e1000_get_regs(struct net_device
*netdev
, struct ethtool_regs
*regs
,
364 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
365 struct e1000_hw
*hw
= &adapter
->hw
;
369 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
371 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
373 regs_buff
[0] = er32(CTRL
);
374 regs_buff
[1] = er32(STATUS
);
376 regs_buff
[2] = er32(RCTL
);
377 regs_buff
[3] = er32(RDLEN
);
378 regs_buff
[4] = er32(RDH
);
379 regs_buff
[5] = er32(RDT
);
380 regs_buff
[6] = er32(RDTR
);
382 regs_buff
[7] = er32(TCTL
);
383 regs_buff
[8] = er32(TDLEN
);
384 regs_buff
[9] = er32(TDH
);
385 regs_buff
[10] = er32(TDT
);
386 regs_buff
[11] = er32(TIDV
);
388 regs_buff
[12] = hw
->phy_type
; /* PHY type (IGP=1, M88=0) */
389 if (hw
->phy_type
== e1000_phy_igp
) {
390 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
391 IGP01E1000_PHY_AGC_A
);
392 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
393 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
394 regs_buff
[13] = (u32
)phy_data
; /* cable length */
395 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
396 IGP01E1000_PHY_AGC_B
);
397 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
398 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
399 regs_buff
[14] = (u32
)phy_data
; /* cable length */
400 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
401 IGP01E1000_PHY_AGC_C
);
402 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
403 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
404 regs_buff
[15] = (u32
)phy_data
; /* cable length */
405 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
406 IGP01E1000_PHY_AGC_D
);
407 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
408 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
409 regs_buff
[16] = (u32
)phy_data
; /* cable length */
410 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
411 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
412 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
413 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
414 regs_buff
[18] = (u32
)phy_data
; /* cable polarity */
415 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
416 IGP01E1000_PHY_PCS_INIT_REG
);
417 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
418 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
419 regs_buff
[19] = (u32
)phy_data
; /* cable polarity */
420 regs_buff
[20] = 0; /* polarity correction enabled (always) */
421 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
422 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
423 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
425 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
426 regs_buff
[13] = (u32
)phy_data
; /* cable length */
427 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
428 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
429 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
430 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
431 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
432 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
433 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
434 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
435 /* phy receive errors */
436 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
437 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
439 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
440 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
441 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
442 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
443 if (hw
->mac_type
>= e1000_82540
&&
444 hw
->mac_type
< e1000_82571
&&
445 hw
->media_type
== e1000_media_type_copper
) {
446 regs_buff
[26] = er32(MANC
);
450 static int e1000_get_eeprom_len(struct net_device
*netdev
)
452 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
453 struct e1000_hw
*hw
= &adapter
->hw
;
455 return hw
->eeprom
.word_size
* 2;
458 static int e1000_get_eeprom(struct net_device
*netdev
,
459 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
461 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
462 struct e1000_hw
*hw
= &adapter
->hw
;
464 int first_word
, last_word
;
468 if (eeprom
->len
== 0)
471 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
473 first_word
= eeprom
->offset
>> 1;
474 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
476 eeprom_buff
= kmalloc(sizeof(u16
) *
477 (last_word
- first_word
+ 1), GFP_KERNEL
);
481 if (hw
->eeprom
.type
== e1000_eeprom_spi
)
482 ret_val
= e1000_read_eeprom(hw
, first_word
,
483 last_word
- first_word
+ 1,
486 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
487 ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
494 /* Device's eeprom is always little-endian, word addressable */
495 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
496 le16_to_cpus(&eeprom_buff
[i
]);
498 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
505 static int e1000_set_eeprom(struct net_device
*netdev
,
506 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
508 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
509 struct e1000_hw
*hw
= &adapter
->hw
;
512 int max_len
, first_word
, last_word
, ret_val
= 0;
515 if (eeprom
->len
== 0)
518 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
521 max_len
= hw
->eeprom
.word_size
* 2;
523 first_word
= eeprom
->offset
>> 1;
524 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
525 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
529 ptr
= (void *)eeprom_buff
;
531 if (eeprom
->offset
& 1) {
532 /* need read/modify/write of first changed EEPROM word */
533 /* only the second byte of the word is being modified */
534 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
538 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
539 /* need read/modify/write of last changed EEPROM word */
540 /* only the first byte of the word is being modified */
541 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
542 &eeprom_buff
[last_word
- first_word
]);
545 /* Device's eeprom is always little-endian, word addressable */
546 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
547 le16_to_cpus(&eeprom_buff
[i
]);
549 memcpy(ptr
, bytes
, eeprom
->len
);
551 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
552 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
554 ret_val
= e1000_write_eeprom(hw
, first_word
,
555 last_word
- first_word
+ 1, eeprom_buff
);
557 /* Update the checksum over the first part of the EEPROM if needed
558 * and flush shadow RAM for 82573 conrollers */
559 if ((ret_val
== 0) && ((first_word
<= EEPROM_CHECKSUM_REG
) ||
560 (hw
->mac_type
== e1000_82573
)))
561 e1000_update_eeprom_checksum(hw
);
567 static void e1000_get_drvinfo(struct net_device
*netdev
,
568 struct ethtool_drvinfo
*drvinfo
)
570 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
571 struct e1000_hw
*hw
= &adapter
->hw
;
572 char firmware_version
[32];
575 strncpy(drvinfo
->driver
, e1000_driver_name
, 32);
576 strncpy(drvinfo
->version
, e1000_driver_version
, 32);
578 /* EEPROM image version # is reported as firmware version # for
579 * 8257{1|2|3} controllers */
580 e1000_read_eeprom(hw
, 5, 1, &eeprom_data
);
581 switch (hw
->mac_type
) {
585 case e1000_80003es2lan
:
587 sprintf(firmware_version
, "%d.%d-%d",
588 (eeprom_data
& 0xF000) >> 12,
589 (eeprom_data
& 0x0FF0) >> 4,
590 eeprom_data
& 0x000F);
593 sprintf(firmware_version
, "N/A");
596 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
597 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
598 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
599 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
602 static void e1000_get_ringparam(struct net_device
*netdev
,
603 struct ethtool_ringparam
*ring
)
605 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
606 struct e1000_hw
*hw
= &adapter
->hw
;
607 e1000_mac_type mac_type
= hw
->mac_type
;
608 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
609 struct e1000_rx_ring
*rxdr
= adapter
->rx_ring
;
611 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
613 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
615 ring
->rx_mini_max_pending
= 0;
616 ring
->rx_jumbo_max_pending
= 0;
617 ring
->rx_pending
= rxdr
->count
;
618 ring
->tx_pending
= txdr
->count
;
619 ring
->rx_mini_pending
= 0;
620 ring
->rx_jumbo_pending
= 0;
623 static int e1000_set_ringparam(struct net_device
*netdev
,
624 struct ethtool_ringparam
*ring
)
626 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
627 struct e1000_hw
*hw
= &adapter
->hw
;
628 e1000_mac_type mac_type
= hw
->mac_type
;
629 struct e1000_tx_ring
*txdr
, *tx_old
;
630 struct e1000_rx_ring
*rxdr
, *rx_old
;
633 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
636 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
639 if (netif_running(adapter
->netdev
))
642 tx_old
= adapter
->tx_ring
;
643 rx_old
= adapter
->rx_ring
;
646 txdr
= kcalloc(adapter
->num_tx_queues
, sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
650 rxdr
= kcalloc(adapter
->num_rx_queues
, sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
654 adapter
->tx_ring
= txdr
;
655 adapter
->rx_ring
= rxdr
;
657 rxdr
->count
= max(ring
->rx_pending
,(u32
)E1000_MIN_RXD
);
658 rxdr
->count
= min(rxdr
->count
,(u32
)(mac_type
< e1000_82544
?
659 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
660 rxdr
->count
= ALIGN(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
662 txdr
->count
= max(ring
->tx_pending
,(u32
)E1000_MIN_TXD
);
663 txdr
->count
= min(txdr
->count
,(u32
)(mac_type
< e1000_82544
?
664 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
665 txdr
->count
= ALIGN(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
667 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
668 txdr
[i
].count
= txdr
->count
;
669 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
670 rxdr
[i
].count
= rxdr
->count
;
672 if (netif_running(adapter
->netdev
)) {
673 /* Try to get new resources before deleting old */
674 err
= e1000_setup_all_rx_resources(adapter
);
677 err
= e1000_setup_all_tx_resources(adapter
);
681 /* save the new, restore the old in order to free it,
682 * then restore the new back again */
684 adapter
->rx_ring
= rx_old
;
685 adapter
->tx_ring
= tx_old
;
686 e1000_free_all_rx_resources(adapter
);
687 e1000_free_all_tx_resources(adapter
);
690 adapter
->rx_ring
= rxdr
;
691 adapter
->tx_ring
= txdr
;
692 err
= e1000_up(adapter
);
697 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
700 e1000_free_all_rx_resources(adapter
);
702 adapter
->rx_ring
= rx_old
;
703 adapter
->tx_ring
= tx_old
;
710 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
714 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
717 struct e1000_hw
*hw
= &adapter
->hw
;
718 static const u32 test
[] =
719 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
720 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
724 for (i
= 0; i
< ARRAY_SIZE(test
); i
++) {
725 writel(write
& test
[i
], address
);
726 read
= readl(address
);
727 if (read
!= (write
& test
[i
] & mask
)) {
728 DPRINTK(DRV
, ERR
, "pattern test reg %04X failed: "
729 "got 0x%08X expected 0x%08X\n",
730 reg
, read
, (write
& test
[i
] & mask
));
738 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
741 struct e1000_hw
*hw
= &adapter
->hw
;
742 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
745 writel(write
& mask
, address
);
746 read
= readl(address
);
747 if ((read
& mask
) != (write
& mask
)) {
748 DPRINTK(DRV
, ERR
, "set/check reg %04X test failed: "
749 "got 0x%08X expected 0x%08X\n",
750 reg
, (read
& mask
), (write
& mask
));
757 #define REG_PATTERN_TEST(reg, mask, write) \
759 if (reg_pattern_test(adapter, data, \
760 (hw->mac_type >= e1000_82543) \
761 ? E1000_##reg : E1000_82542_##reg, \
766 #define REG_SET_AND_CHECK(reg, mask, write) \
768 if (reg_set_and_check(adapter, data, \
769 (hw->mac_type >= e1000_82543) \
770 ? E1000_##reg : E1000_82542_##reg, \
775 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
777 u32 value
, before
, after
;
779 struct e1000_hw
*hw
= &adapter
->hw
;
781 /* The status register is Read Only, so a write should fail.
782 * Some bits that get toggled are ignored.
784 switch (hw
->mac_type
) {
785 /* there are several bits on newer hardware that are r/w */
788 case e1000_80003es2lan
:
800 before
= er32(STATUS
);
801 value
= (er32(STATUS
) & toggle
);
802 ew32(STATUS
, toggle
);
803 after
= er32(STATUS
) & toggle
;
804 if (value
!= after
) {
805 DPRINTK(DRV
, ERR
, "failed STATUS register test got: "
806 "0x%08X expected: 0x%08X\n", after
, value
);
810 /* restore previous status */
811 ew32(STATUS
, before
);
813 if (hw
->mac_type
!= e1000_ich8lan
) {
814 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
815 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
816 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
817 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
820 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
821 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
822 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
823 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
824 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
825 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
826 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
827 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
828 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
829 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
831 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
833 before
= (hw
->mac_type
== e1000_ich8lan
?
834 0x06C3B33E : 0x06DFB3FE);
835 REG_SET_AND_CHECK(RCTL
, before
, 0x003FFFFB);
836 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
838 if (hw
->mac_type
>= e1000_82543
) {
840 REG_SET_AND_CHECK(RCTL
, before
, 0xFFFFFFFF);
841 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
842 if (hw
->mac_type
!= e1000_ich8lan
)
843 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
844 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
845 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
846 value
= (hw
->mac_type
== e1000_ich8lan
?
847 E1000_RAR_ENTRIES_ICH8LAN
: E1000_RAR_ENTRIES
);
848 for (i
= 0; i
< value
; i
++) {
849 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2), 0x8003FFFF,
855 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
856 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
857 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
858 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
862 value
= (hw
->mac_type
== e1000_ich8lan
?
863 E1000_MC_TBL_SIZE_ICH8LAN
: E1000_MC_TBL_SIZE
);
864 for (i
= 0; i
< value
; i
++)
865 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
871 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
873 struct e1000_hw
*hw
= &adapter
->hw
;
879 /* Read and add up the contents of the EEPROM */
880 for (i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
881 if ((e1000_read_eeprom(hw
, i
, 1, &temp
)) < 0) {
888 /* If Checksum is not Correct return error else test passed */
889 if ((checksum
!= (u16
)EEPROM_SUM
) && !(*data
))
895 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
897 struct net_device
*netdev
= (struct net_device
*)data
;
898 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
899 struct e1000_hw
*hw
= &adapter
->hw
;
901 adapter
->test_icr
|= er32(ICR
);
906 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
908 struct net_device
*netdev
= adapter
->netdev
;
910 bool shared_int
= true;
911 u32 irq
= adapter
->pdev
->irq
;
912 struct e1000_hw
*hw
= &adapter
->hw
;
916 /* NOTE: we don't test MSI interrupts here, yet */
917 /* Hook up test interrupt handler just for this test */
918 if (!request_irq(irq
, &e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
921 else if (request_irq(irq
, &e1000_test_intr
, IRQF_SHARED
,
922 netdev
->name
, netdev
)) {
926 DPRINTK(HW
, INFO
, "testing %s interrupt\n",
927 (shared_int
? "shared" : "unshared"));
929 /* Disable all the interrupts */
930 ew32(IMC
, 0xFFFFFFFF);
933 /* Test each interrupt */
934 for (; i
< 10; i
++) {
936 if (hw
->mac_type
== e1000_ich8lan
&& i
== 8)
939 /* Interrupt to test */
943 /* Disable the interrupt to be reported in
944 * the cause register and then force the same
945 * interrupt and see if one gets posted. If
946 * an interrupt was posted to the bus, the
949 adapter
->test_icr
= 0;
954 if (adapter
->test_icr
& mask
) {
960 /* Enable the interrupt to be reported in
961 * the cause register and then force the same
962 * interrupt and see if one gets posted. If
963 * an interrupt was not posted to the bus, the
966 adapter
->test_icr
= 0;
971 if (!(adapter
->test_icr
& mask
)) {
977 /* Disable the other interrupts to be reported in
978 * the cause register and then force the other
979 * interrupts and see if any get posted. If
980 * an interrupt was posted to the bus, the
983 adapter
->test_icr
= 0;
984 ew32(IMC
, ~mask
& 0x00007FFF);
985 ew32(ICS
, ~mask
& 0x00007FFF);
988 if (adapter
->test_icr
) {
995 /* Disable all the interrupts */
996 ew32(IMC
, 0xFFFFFFFF);
999 /* Unhook test interrupt handler */
1000 free_irq(irq
, netdev
);
1005 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
1007 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1008 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1009 struct pci_dev
*pdev
= adapter
->pdev
;
1012 if (txdr
->desc
&& txdr
->buffer_info
) {
1013 for (i
= 0; i
< txdr
->count
; i
++) {
1014 if (txdr
->buffer_info
[i
].dma
)
1015 pci_unmap_single(pdev
, txdr
->buffer_info
[i
].dma
,
1016 txdr
->buffer_info
[i
].length
,
1018 if (txdr
->buffer_info
[i
].skb
)
1019 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
1023 if (rxdr
->desc
&& rxdr
->buffer_info
) {
1024 for (i
= 0; i
< rxdr
->count
; i
++) {
1025 if (rxdr
->buffer_info
[i
].dma
)
1026 pci_unmap_single(pdev
, rxdr
->buffer_info
[i
].dma
,
1027 rxdr
->buffer_info
[i
].length
,
1028 PCI_DMA_FROMDEVICE
);
1029 if (rxdr
->buffer_info
[i
].skb
)
1030 dev_kfree_skb(rxdr
->buffer_info
[i
].skb
);
1035 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
, txdr
->dma
);
1039 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
, rxdr
->dma
);
1043 kfree(txdr
->buffer_info
);
1044 txdr
->buffer_info
= NULL
;
1045 kfree(rxdr
->buffer_info
);
1046 rxdr
->buffer_info
= NULL
;
1051 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1053 struct e1000_hw
*hw
= &adapter
->hw
;
1054 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1055 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1056 struct pci_dev
*pdev
= adapter
->pdev
;
1060 /* Setup Tx descriptor ring and Tx buffers */
1063 txdr
->count
= E1000_DEFAULT_TXD
;
1065 txdr
->buffer_info
= kcalloc(txdr
->count
, sizeof(struct e1000_buffer
),
1067 if (!txdr
->buffer_info
) {
1072 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1073 txdr
->size
= ALIGN(txdr
->size
, 4096);
1074 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1079 memset(txdr
->desc
, 0, txdr
->size
);
1080 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
1082 ew32(TDBAL
, ((u64
)txdr
->dma
& 0x00000000FFFFFFFF));
1083 ew32(TDBAH
, ((u64
)txdr
->dma
>> 32));
1084 ew32(TDLEN
, txdr
->count
* sizeof(struct e1000_tx_desc
));
1087 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
|
1088 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1089 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1091 for (i
= 0; i
< txdr
->count
; i
++) {
1092 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
1093 struct sk_buff
*skb
;
1094 unsigned int size
= 1024;
1096 skb
= alloc_skb(size
, GFP_KERNEL
);
1102 txdr
->buffer_info
[i
].skb
= skb
;
1103 txdr
->buffer_info
[i
].length
= skb
->len
;
1104 txdr
->buffer_info
[i
].dma
=
1105 pci_map_single(pdev
, skb
->data
, skb
->len
,
1107 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
1108 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1109 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1110 E1000_TXD_CMD_IFCS
|
1112 tx_desc
->upper
.data
= 0;
1115 /* Setup Rx descriptor ring and Rx buffers */
1118 rxdr
->count
= E1000_DEFAULT_RXD
;
1120 rxdr
->buffer_info
= kcalloc(rxdr
->count
, sizeof(struct e1000_buffer
),
1122 if (!rxdr
->buffer_info
) {
1127 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
1128 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1133 memset(rxdr
->desc
, 0, rxdr
->size
);
1134 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
1137 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1138 ew32(RDBAL
, ((u64
)rxdr
->dma
& 0xFFFFFFFF));
1139 ew32(RDBAH
, ((u64
)rxdr
->dma
>> 32));
1140 ew32(RDLEN
, rxdr
->size
);
1143 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1144 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1145 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1148 for (i
= 0; i
< rxdr
->count
; i
++) {
1149 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1150 struct sk_buff
*skb
;
1152 skb
= alloc_skb(E1000_RXBUFFER_2048
+ NET_IP_ALIGN
, GFP_KERNEL
);
1157 skb_reserve(skb
, NET_IP_ALIGN
);
1158 rxdr
->buffer_info
[i
].skb
= skb
;
1159 rxdr
->buffer_info
[i
].length
= E1000_RXBUFFER_2048
;
1160 rxdr
->buffer_info
[i
].dma
=
1161 pci_map_single(pdev
, skb
->data
, E1000_RXBUFFER_2048
,
1162 PCI_DMA_FROMDEVICE
);
1163 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1164 memset(skb
->data
, 0x00, skb
->len
);
1170 e1000_free_desc_rings(adapter
);
1174 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1176 struct e1000_hw
*hw
= &adapter
->hw
;
1178 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1179 e1000_write_phy_reg(hw
, 29, 0x001F);
1180 e1000_write_phy_reg(hw
, 30, 0x8FFC);
1181 e1000_write_phy_reg(hw
, 29, 0x001A);
1182 e1000_write_phy_reg(hw
, 30, 0x8FF0);
1185 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1187 struct e1000_hw
*hw
= &adapter
->hw
;
1190 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1191 * Extended PHY Specific Control Register to 25MHz clock. This
1192 * value defaults back to a 2.5MHz clock when the PHY is reset.
1194 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1195 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1196 e1000_write_phy_reg(hw
,
1197 M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1199 /* In addition, because of the s/w reset above, we need to enable
1200 * CRS on TX. This must be set for both full and half duplex
1203 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1204 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1205 e1000_write_phy_reg(hw
,
1206 M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1209 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1211 struct e1000_hw
*hw
= &adapter
->hw
;
1215 /* Setup the Device Control Register for PHY loopback test. */
1217 ctrl_reg
= er32(CTRL
);
1218 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1219 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1220 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1221 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1222 E1000_CTRL_FD
); /* Force Duplex to FULL */
1224 ew32(CTRL
, ctrl_reg
);
1226 /* Read the PHY Specific Control Register (0x10) */
1227 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1229 /* Clear Auto-Crossover bits in PHY Specific Control Register
1232 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1233 e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1235 /* Perform software reset on the PHY */
1236 e1000_phy_reset(hw
);
1238 /* Have to setup TX_CLK and TX_CRS after software reset */
1239 e1000_phy_reset_clk_and_crs(adapter
);
1241 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8100);
1243 /* Wait for reset to complete. */
1246 /* Have to setup TX_CLK and TX_CRS after software reset */
1247 e1000_phy_reset_clk_and_crs(adapter
);
1249 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1250 e1000_phy_disable_receiver(adapter
);
1252 /* Set the loopback bit in the PHY control register. */
1253 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1254 phy_reg
|= MII_CR_LOOPBACK
;
1255 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1257 /* Setup TX_CLK and TX_CRS one more time. */
1258 e1000_phy_reset_clk_and_crs(adapter
);
1260 /* Check Phy Configuration */
1261 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1262 if (phy_reg
!= 0x4100)
1265 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1266 if (phy_reg
!= 0x0070)
1269 e1000_read_phy_reg(hw
, 29, &phy_reg
);
1270 if (phy_reg
!= 0x001A)
1276 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1278 struct e1000_hw
*hw
= &adapter
->hw
;
1282 hw
->autoneg
= false;
1284 if (hw
->phy_type
== e1000_phy_m88
) {
1285 /* Auto-MDI/MDIX Off */
1286 e1000_write_phy_reg(hw
,
1287 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1288 /* reset to update Auto-MDI/MDIX */
1289 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x9140);
1291 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8140);
1292 } else if (hw
->phy_type
== e1000_phy_gg82563
)
1293 e1000_write_phy_reg(hw
,
1294 GG82563_PHY_KMRN_MODE_CTRL
,
1297 ctrl_reg
= er32(CTRL
);
1299 if (hw
->phy_type
== e1000_phy_ife
) {
1300 /* force 100, set loopback */
1301 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x6100);
1303 /* Now set up the MAC to the same speed/duplex as the PHY. */
1304 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1305 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1306 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1307 E1000_CTRL_SPD_100
|/* Force Speed to 100 */
1308 E1000_CTRL_FD
); /* Force Duplex to FULL */
1310 /* force 1000, set loopback */
1311 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x4140);
1313 /* Now set up the MAC to the same speed/duplex as the PHY. */
1314 ctrl_reg
= er32(CTRL
);
1315 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1316 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1317 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1318 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1319 E1000_CTRL_FD
); /* Force Duplex to FULL */
1322 if (hw
->media_type
== e1000_media_type_copper
&&
1323 hw
->phy_type
== e1000_phy_m88
)
1324 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1326 /* Set the ILOS bit on the fiber Nic is half
1327 * duplex link is detected. */
1328 stat_reg
= er32(STATUS
);
1329 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1330 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1333 ew32(CTRL
, ctrl_reg
);
1335 /* Disable the receiver on the PHY so when a cable is plugged in, the
1336 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1338 if (hw
->phy_type
== e1000_phy_m88
)
1339 e1000_phy_disable_receiver(adapter
);
1346 static int e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1348 struct e1000_hw
*hw
= &adapter
->hw
;
1352 switch (hw
->mac_type
) {
1354 if (hw
->media_type
== e1000_media_type_copper
) {
1355 /* Attempt to setup Loopback mode on Non-integrated PHY.
1356 * Some PHY registers get corrupted at random, so
1357 * attempt this 10 times.
1359 while (e1000_nonintegrated_phy_loopback(adapter
) &&
1369 case e1000_82545_rev_3
:
1371 case e1000_82546_rev_3
:
1373 case e1000_82541_rev_2
:
1375 case e1000_82547_rev_2
:
1379 case e1000_80003es2lan
:
1381 return e1000_integrated_phy_loopback(adapter
);
1385 /* Default PHY loopback work is to read the MII
1386 * control register and assert bit 14 (loopback mode).
1388 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1389 phy_reg
|= MII_CR_LOOPBACK
;
1390 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1398 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1400 struct e1000_hw
*hw
= &adapter
->hw
;
1403 if (hw
->media_type
== e1000_media_type_fiber
||
1404 hw
->media_type
== e1000_media_type_internal_serdes
) {
1405 switch (hw
->mac_type
) {
1408 case e1000_82545_rev_3
:
1409 case e1000_82546_rev_3
:
1410 return e1000_set_phy_loopback(adapter
);
1414 #define E1000_SERDES_LB_ON 0x410
1415 e1000_set_phy_loopback(adapter
);
1416 ew32(SCTL
, E1000_SERDES_LB_ON
);
1422 rctl
|= E1000_RCTL_LBM_TCVR
;
1426 } else if (hw
->media_type
== e1000_media_type_copper
)
1427 return e1000_set_phy_loopback(adapter
);
1432 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1434 struct e1000_hw
*hw
= &adapter
->hw
;
1439 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1442 switch (hw
->mac_type
) {
1445 if (hw
->media_type
== e1000_media_type_fiber
||
1446 hw
->media_type
== e1000_media_type_internal_serdes
) {
1447 #define E1000_SERDES_LB_OFF 0x400
1448 ew32(SCTL
, E1000_SERDES_LB_OFF
);
1455 case e1000_82545_rev_3
:
1456 case e1000_82546_rev_3
:
1459 if (hw
->phy_type
== e1000_phy_gg82563
)
1460 e1000_write_phy_reg(hw
,
1461 GG82563_PHY_KMRN_MODE_CTRL
,
1463 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1464 if (phy_reg
& MII_CR_LOOPBACK
) {
1465 phy_reg
&= ~MII_CR_LOOPBACK
;
1466 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1467 e1000_phy_reset(hw
);
1473 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1474 unsigned int frame_size
)
1476 memset(skb
->data
, 0xFF, frame_size
);
1478 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1479 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1480 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1483 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1484 unsigned int frame_size
)
1487 if (*(skb
->data
+ 3) == 0xFF) {
1488 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1489 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF)) {
1496 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1498 struct e1000_hw
*hw
= &adapter
->hw
;
1499 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1500 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1501 struct pci_dev
*pdev
= adapter
->pdev
;
1502 int i
, j
, k
, l
, lc
, good_cnt
, ret_val
=0;
1505 ew32(RDT
, rxdr
->count
- 1);
1507 /* Calculate the loop count based on the largest descriptor ring
1508 * The idea is to wrap the largest ring a number of times using 64
1509 * send/receive pairs during each loop
1512 if (rxdr
->count
<= txdr
->count
)
1513 lc
= ((txdr
->count
/ 64) * 2) + 1;
1515 lc
= ((rxdr
->count
/ 64) * 2) + 1;
1518 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1519 for (i
= 0; i
< 64; i
++) { /* send the packets */
1520 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
,
1522 pci_dma_sync_single_for_device(pdev
,
1523 txdr
->buffer_info
[k
].dma
,
1524 txdr
->buffer_info
[k
].length
,
1526 if (unlikely(++k
== txdr
->count
)) k
= 0;
1530 time
= jiffies
; /* set the start time for the receive */
1532 do { /* receive the sent packets */
1533 pci_dma_sync_single_for_cpu(pdev
,
1534 rxdr
->buffer_info
[l
].dma
,
1535 rxdr
->buffer_info
[l
].length
,
1536 PCI_DMA_FROMDEVICE
);
1538 ret_val
= e1000_check_lbtest_frame(
1539 rxdr
->buffer_info
[l
].skb
,
1543 if (unlikely(++l
== rxdr
->count
)) l
= 0;
1544 /* time + 20 msecs (200 msecs on 2.4) is more than
1545 * enough time to complete the receives, if it's
1546 * exceeded, break and error off
1548 } while (good_cnt
< 64 && jiffies
< (time
+ 20));
1549 if (good_cnt
!= 64) {
1550 ret_val
= 13; /* ret_val is the same as mis-compare */
1553 if (jiffies
>= (time
+ 2)) {
1554 ret_val
= 14; /* error code for time out error */
1557 } /* end loop count loop */
1561 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1563 struct e1000_hw
*hw
= &adapter
->hw
;
1565 /* PHY loopback cannot be performed if SoL/IDER
1566 * sessions are active */
1567 if (e1000_check_phy_reset_block(hw
)) {
1568 DPRINTK(DRV
, ERR
, "Cannot do PHY loopback test "
1569 "when SoL/IDER is active.\n");
1574 *data
= e1000_setup_desc_rings(adapter
);
1577 *data
= e1000_setup_loopback_test(adapter
);
1580 *data
= e1000_run_loopback_test(adapter
);
1581 e1000_loopback_cleanup(adapter
);
1584 e1000_free_desc_rings(adapter
);
1589 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1591 struct e1000_hw
*hw
= &adapter
->hw
;
1593 if (hw
->media_type
== e1000_media_type_internal_serdes
) {
1595 hw
->serdes_link_down
= true;
1597 /* On some blade server designs, link establishment
1598 * could take as long as 2-3 minutes */
1600 e1000_check_for_link(hw
);
1601 if (!hw
->serdes_link_down
)
1604 } while (i
++ < 3750);
1608 e1000_check_for_link(hw
);
1609 if (hw
->autoneg
) /* if auto_neg is set wait for it */
1612 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
1619 static int e1000_get_sset_count(struct net_device
*netdev
, int sset
)
1623 return E1000_TEST_LEN
;
1625 return E1000_STATS_LEN
;
1631 static void e1000_diag_test(struct net_device
*netdev
,
1632 struct ethtool_test
*eth_test
, u64
*data
)
1634 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1635 struct e1000_hw
*hw
= &adapter
->hw
;
1636 bool if_running
= netif_running(netdev
);
1638 set_bit(__E1000_TESTING
, &adapter
->flags
);
1639 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1642 /* save speed, duplex, autoneg settings */
1643 u16 autoneg_advertised
= hw
->autoneg_advertised
;
1644 u8 forced_speed_duplex
= hw
->forced_speed_duplex
;
1645 u8 autoneg
= hw
->autoneg
;
1647 DPRINTK(HW
, INFO
, "offline testing starting\n");
1649 /* Link test performed before hardware reset so autoneg doesn't
1650 * interfere with test result */
1651 if (e1000_link_test(adapter
, &data
[4]))
1652 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1655 /* indicate we're in test mode */
1658 e1000_reset(adapter
);
1660 if (e1000_reg_test(adapter
, &data
[0]))
1661 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1663 e1000_reset(adapter
);
1664 if (e1000_eeprom_test(adapter
, &data
[1]))
1665 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1667 e1000_reset(adapter
);
1668 if (e1000_intr_test(adapter
, &data
[2]))
1669 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1671 e1000_reset(adapter
);
1672 /* make sure the phy is powered up */
1673 e1000_power_up_phy(adapter
);
1674 if (e1000_loopback_test(adapter
, &data
[3]))
1675 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1677 /* restore speed, duplex, autoneg settings */
1678 hw
->autoneg_advertised
= autoneg_advertised
;
1679 hw
->forced_speed_duplex
= forced_speed_duplex
;
1680 hw
->autoneg
= autoneg
;
1682 e1000_reset(adapter
);
1683 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1687 DPRINTK(HW
, INFO
, "online testing starting\n");
1689 if (e1000_link_test(adapter
, &data
[4]))
1690 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1692 /* Online tests aren't run; pass by default */
1698 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1700 msleep_interruptible(4 * 1000);
1703 static int e1000_wol_exclusion(struct e1000_adapter
*adapter
,
1704 struct ethtool_wolinfo
*wol
)
1706 struct e1000_hw
*hw
= &adapter
->hw
;
1707 int retval
= 1; /* fail by default */
1709 switch (hw
->device_id
) {
1710 case E1000_DEV_ID_82542
:
1711 case E1000_DEV_ID_82543GC_FIBER
:
1712 case E1000_DEV_ID_82543GC_COPPER
:
1713 case E1000_DEV_ID_82544EI_FIBER
:
1714 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1715 case E1000_DEV_ID_82545EM_FIBER
:
1716 case E1000_DEV_ID_82545EM_COPPER
:
1717 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
1718 case E1000_DEV_ID_82546GB_PCIE
:
1719 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
1720 /* these don't support WoL at all */
1723 case E1000_DEV_ID_82546EB_FIBER
:
1724 case E1000_DEV_ID_82546GB_FIBER
:
1725 case E1000_DEV_ID_82571EB_FIBER
:
1726 case E1000_DEV_ID_82571EB_SERDES
:
1727 case E1000_DEV_ID_82571EB_COPPER
:
1728 /* Wake events not supported on port B */
1729 if (er32(STATUS
) & E1000_STATUS_FUNC_1
) {
1733 /* return success for non excluded adapter ports */
1736 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
1737 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
1738 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE
:
1739 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
1740 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1741 /* quad port adapters only support WoL on port A */
1742 if (!adapter
->quad_port_a
) {
1746 /* return success for non excluded adapter ports */
1750 /* dual port cards only support WoL on port A from now on
1751 * unless it was enabled in the eeprom for port B
1752 * so exclude FUNC_1 ports from having WoL enabled */
1753 if (er32(STATUS
) & E1000_STATUS_FUNC_1
&&
1754 !adapter
->eeprom_wol
) {
1765 static void e1000_get_wol(struct net_device
*netdev
,
1766 struct ethtool_wolinfo
*wol
)
1768 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1769 struct e1000_hw
*hw
= &adapter
->hw
;
1771 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1772 WAKE_BCAST
| WAKE_MAGIC
;
1775 /* this function will set ->supported = 0 and return 1 if wol is not
1776 * supported by this hardware */
1777 if (e1000_wol_exclusion(adapter
, wol
) ||
1778 !device_can_wakeup(&adapter
->pdev
->dev
))
1781 /* apply any specific unsupported masks here */
1782 switch (hw
->device_id
) {
1783 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1784 /* KSP3 does not suppport UCAST wake-ups */
1785 wol
->supported
&= ~WAKE_UCAST
;
1787 if (adapter
->wol
& E1000_WUFC_EX
)
1788 DPRINTK(DRV
, ERR
, "Interface does not support "
1789 "directed (unicast) frame wake-up packets\n");
1795 if (adapter
->wol
& E1000_WUFC_EX
)
1796 wol
->wolopts
|= WAKE_UCAST
;
1797 if (adapter
->wol
& E1000_WUFC_MC
)
1798 wol
->wolopts
|= WAKE_MCAST
;
1799 if (adapter
->wol
& E1000_WUFC_BC
)
1800 wol
->wolopts
|= WAKE_BCAST
;
1801 if (adapter
->wol
& E1000_WUFC_MAG
)
1802 wol
->wolopts
|= WAKE_MAGIC
;
1807 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1809 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1810 struct e1000_hw
*hw
= &adapter
->hw
;
1812 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1815 if (e1000_wol_exclusion(adapter
, wol
) ||
1816 !device_can_wakeup(&adapter
->pdev
->dev
))
1817 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1819 switch (hw
->device_id
) {
1820 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1821 if (wol
->wolopts
& WAKE_UCAST
) {
1822 DPRINTK(DRV
, ERR
, "Interface does not support "
1823 "directed (unicast) frame wake-up packets\n");
1831 /* these settings will always override what we currently have */
1834 if (wol
->wolopts
& WAKE_UCAST
)
1835 adapter
->wol
|= E1000_WUFC_EX
;
1836 if (wol
->wolopts
& WAKE_MCAST
)
1837 adapter
->wol
|= E1000_WUFC_MC
;
1838 if (wol
->wolopts
& WAKE_BCAST
)
1839 adapter
->wol
|= E1000_WUFC_BC
;
1840 if (wol
->wolopts
& WAKE_MAGIC
)
1841 adapter
->wol
|= E1000_WUFC_MAG
;
1843 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1848 /* toggle LED 4 times per second = 2 "blinks" per second */
1849 #define E1000_ID_INTERVAL (HZ/4)
1851 /* bit defines for adapter->led_status */
1852 #define E1000_LED_ON 0
1854 static void e1000_led_blink_callback(unsigned long data
)
1856 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1857 struct e1000_hw
*hw
= &adapter
->hw
;
1859 if (test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1864 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1867 static int e1000_phys_id(struct net_device
*netdev
, u32 data
)
1869 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1870 struct e1000_hw
*hw
= &adapter
->hw
;
1875 if (hw
->mac_type
< e1000_82571
) {
1876 if (!adapter
->blink_timer
.function
) {
1877 init_timer(&adapter
->blink_timer
);
1878 adapter
->blink_timer
.function
= e1000_led_blink_callback
;
1879 adapter
->blink_timer
.data
= (unsigned long)adapter
;
1881 e1000_setup_led(hw
);
1882 mod_timer(&adapter
->blink_timer
, jiffies
);
1883 msleep_interruptible(data
* 1000);
1884 del_timer_sync(&adapter
->blink_timer
);
1885 } else if (hw
->phy_type
== e1000_phy_ife
) {
1886 if (!adapter
->blink_timer
.function
) {
1887 init_timer(&adapter
->blink_timer
);
1888 adapter
->blink_timer
.function
= e1000_led_blink_callback
;
1889 adapter
->blink_timer
.data
= (unsigned long)adapter
;
1891 mod_timer(&adapter
->blink_timer
, jiffies
);
1892 msleep_interruptible(data
* 1000);
1893 del_timer_sync(&adapter
->blink_timer
);
1894 e1000_write_phy_reg(&(adapter
->hw
), IFE_PHY_SPECIAL_CONTROL_LED
, 0);
1896 e1000_blink_led_start(hw
);
1897 msleep_interruptible(data
* 1000);
1901 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1902 e1000_cleanup_led(hw
);
1907 static int e1000_nway_reset(struct net_device
*netdev
)
1909 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1910 if (netif_running(netdev
))
1911 e1000_reinit_locked(adapter
);
1915 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1916 struct ethtool_stats
*stats
, u64
*data
)
1918 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1921 e1000_update_stats(adapter
);
1922 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1923 char *p
= (char *)adapter
+e1000_gstrings_stats
[i
].stat_offset
;
1924 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1925 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1927 /* BUG_ON(i != E1000_STATS_LEN); */
1930 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1936 switch (stringset
) {
1938 memcpy(data
, *e1000_gstrings_test
,
1939 sizeof(e1000_gstrings_test
));
1942 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1943 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1945 p
+= ETH_GSTRING_LEN
;
1947 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1952 static const struct ethtool_ops e1000_ethtool_ops
= {
1953 .get_settings
= e1000_get_settings
,
1954 .set_settings
= e1000_set_settings
,
1955 .get_drvinfo
= e1000_get_drvinfo
,
1956 .get_regs_len
= e1000_get_regs_len
,
1957 .get_regs
= e1000_get_regs
,
1958 .get_wol
= e1000_get_wol
,
1959 .set_wol
= e1000_set_wol
,
1960 .get_msglevel
= e1000_get_msglevel
,
1961 .set_msglevel
= e1000_set_msglevel
,
1962 .nway_reset
= e1000_nway_reset
,
1963 .get_link
= ethtool_op_get_link
,
1964 .get_eeprom_len
= e1000_get_eeprom_len
,
1965 .get_eeprom
= e1000_get_eeprom
,
1966 .set_eeprom
= e1000_set_eeprom
,
1967 .get_ringparam
= e1000_get_ringparam
,
1968 .set_ringparam
= e1000_set_ringparam
,
1969 .get_pauseparam
= e1000_get_pauseparam
,
1970 .set_pauseparam
= e1000_set_pauseparam
,
1971 .get_rx_csum
= e1000_get_rx_csum
,
1972 .set_rx_csum
= e1000_set_rx_csum
,
1973 .get_tx_csum
= e1000_get_tx_csum
,
1974 .set_tx_csum
= e1000_set_tx_csum
,
1975 .set_sg
= ethtool_op_set_sg
,
1976 .set_tso
= e1000_set_tso
,
1977 .self_test
= e1000_diag_test
,
1978 .get_strings
= e1000_get_strings
,
1979 .phys_id
= e1000_phys_id
,
1980 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1981 .get_sset_count
= e1000_get_sset_count
,
1984 void e1000_set_ethtool_ops(struct net_device
*netdev
)
1986 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);