perf_counter tools: fix build warning in kerneltop.c
[linux-2.6/x86.git] / kernel / exit.c
blob7a14a2b504f520e6bd8a2c88961832c874955d12
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/init_task.h>
51 #include <trace/sched.h>
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
59 DEFINE_TRACE(sched_process_free);
60 DEFINE_TRACE(sched_process_exit);
61 DEFINE_TRACE(sched_process_wait);
63 static void exit_mm(struct task_struct * tsk);
65 static void __unhash_process(struct task_struct *p)
67 nr_threads--;
68 detach_pid(p, PIDTYPE_PID);
69 if (thread_group_leader(p)) {
70 detach_pid(p, PIDTYPE_PGID);
71 detach_pid(p, PIDTYPE_SID);
73 list_del_rcu(&p->tasks);
74 __get_cpu_var(process_counts)--;
76 list_del_rcu(&p->thread_group);
77 list_del_init(&p->sibling);
81 * This function expects the tasklist_lock write-locked.
83 static void __exit_signal(struct task_struct *tsk)
85 struct signal_struct *sig = tsk->signal;
86 struct sighand_struct *sighand;
88 BUG_ON(!sig);
89 BUG_ON(!atomic_read(&sig->count));
91 sighand = rcu_dereference(tsk->sighand);
92 spin_lock(&sighand->siglock);
94 posix_cpu_timers_exit(tsk);
95 if (atomic_dec_and_test(&sig->count))
96 posix_cpu_timers_exit_group(tsk);
97 else {
99 * If there is any task waiting for the group exit
100 * then notify it:
102 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
103 wake_up_process(sig->group_exit_task);
105 if (tsk == sig->curr_target)
106 sig->curr_target = next_thread(tsk);
108 * Accumulate here the counters for all threads but the
109 * group leader as they die, so they can be added into
110 * the process-wide totals when those are taken.
111 * The group leader stays around as a zombie as long
112 * as there are other threads. When it gets reaped,
113 * the exit.c code will add its counts into these totals.
114 * We won't ever get here for the group leader, since it
115 * will have been the last reference on the signal_struct.
117 sig->utime = cputime_add(sig->utime, task_utime(tsk));
118 sig->stime = cputime_add(sig->stime, task_stime(tsk));
119 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
120 sig->min_flt += tsk->min_flt;
121 sig->maj_flt += tsk->maj_flt;
122 sig->nvcsw += tsk->nvcsw;
123 sig->nivcsw += tsk->nivcsw;
124 sig->inblock += task_io_get_inblock(tsk);
125 sig->oublock += task_io_get_oublock(tsk);
126 task_io_accounting_add(&sig->ioac, &tsk->ioac);
127 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
128 sig = NULL; /* Marker for below. */
131 __unhash_process(tsk);
134 * Do this under ->siglock, we can race with another thread
135 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
137 flush_sigqueue(&tsk->pending);
139 tsk->signal = NULL;
140 tsk->sighand = NULL;
141 spin_unlock(&sighand->siglock);
143 __cleanup_sighand(sighand);
144 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
145 if (sig) {
146 flush_sigqueue(&sig->shared_pending);
147 taskstats_tgid_free(sig);
149 * Make sure ->signal can't go away under rq->lock,
150 * see account_group_exec_runtime().
152 task_rq_unlock_wait(tsk);
153 __cleanup_signal(sig);
157 static void delayed_put_task_struct(struct rcu_head *rhp)
159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161 #ifdef CONFIG_PERF_COUNTERS
162 WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list));
163 #endif
164 trace_sched_process_free(tsk);
165 put_task_struct(tsk);
169 void release_task(struct task_struct * p)
171 struct task_struct *leader;
172 int zap_leader;
173 repeat:
174 tracehook_prepare_release_task(p);
175 /* don't need to get the RCU readlock here - the process is dead and
176 * can't be modifying its own credentials */
177 atomic_dec(&__task_cred(p)->user->processes);
179 proc_flush_task(p);
180 write_lock_irq(&tasklist_lock);
181 tracehook_finish_release_task(p);
182 __exit_signal(p);
185 * If we are the last non-leader member of the thread
186 * group, and the leader is zombie, then notify the
187 * group leader's parent process. (if it wants notification.)
189 zap_leader = 0;
190 leader = p->group_leader;
191 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
192 BUG_ON(task_detached(leader));
193 do_notify_parent(leader, leader->exit_signal);
195 * If we were the last child thread and the leader has
196 * exited already, and the leader's parent ignores SIGCHLD,
197 * then we are the one who should release the leader.
199 * do_notify_parent() will have marked it self-reaping in
200 * that case.
202 zap_leader = task_detached(leader);
205 * This maintains the invariant that release_task()
206 * only runs on a task in EXIT_DEAD, just for sanity.
208 if (zap_leader)
209 leader->exit_state = EXIT_DEAD;
212 write_unlock_irq(&tasklist_lock);
213 release_thread(p);
214 call_rcu(&p->rcu, delayed_put_task_struct);
216 p = leader;
217 if (unlikely(zap_leader))
218 goto repeat;
222 * This checks not only the pgrp, but falls back on the pid if no
223 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
224 * without this...
226 * The caller must hold rcu lock or the tasklist lock.
228 struct pid *session_of_pgrp(struct pid *pgrp)
230 struct task_struct *p;
231 struct pid *sid = NULL;
233 p = pid_task(pgrp, PIDTYPE_PGID);
234 if (p == NULL)
235 p = pid_task(pgrp, PIDTYPE_PID);
236 if (p != NULL)
237 sid = task_session(p);
239 return sid;
243 * Determine if a process group is "orphaned", according to the POSIX
244 * definition in 2.2.2.52. Orphaned process groups are not to be affected
245 * by terminal-generated stop signals. Newly orphaned process groups are
246 * to receive a SIGHUP and a SIGCONT.
248 * "I ask you, have you ever known what it is to be an orphan?"
250 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
252 struct task_struct *p;
254 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
255 if ((p == ignored_task) ||
256 (p->exit_state && thread_group_empty(p)) ||
257 is_global_init(p->real_parent))
258 continue;
260 if (task_pgrp(p->real_parent) != pgrp &&
261 task_session(p->real_parent) == task_session(p))
262 return 0;
263 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265 return 1;
268 int is_current_pgrp_orphaned(void)
270 int retval;
272 read_lock(&tasklist_lock);
273 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
274 read_unlock(&tasklist_lock);
276 return retval;
279 static int has_stopped_jobs(struct pid *pgrp)
281 int retval = 0;
282 struct task_struct *p;
284 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
285 if (!task_is_stopped(p))
286 continue;
287 retval = 1;
288 break;
289 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
290 return retval;
294 * Check to see if any process groups have become orphaned as
295 * a result of our exiting, and if they have any stopped jobs,
296 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298 static void
299 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 struct pid *pgrp = task_pgrp(tsk);
302 struct task_struct *ignored_task = tsk;
304 if (!parent)
305 /* exit: our father is in a different pgrp than
306 * we are and we were the only connection outside.
308 parent = tsk->real_parent;
309 else
310 /* reparent: our child is in a different pgrp than
311 * we are, and it was the only connection outside.
313 ignored_task = NULL;
315 if (task_pgrp(parent) != pgrp &&
316 task_session(parent) == task_session(tsk) &&
317 will_become_orphaned_pgrp(pgrp, ignored_task) &&
318 has_stopped_jobs(pgrp)) {
319 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
320 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
325 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327 * If a kernel thread is launched as a result of a system call, or if
328 * it ever exits, it should generally reparent itself to kthreadd so it
329 * isn't in the way of other processes and is correctly cleaned up on exit.
331 * The various task state such as scheduling policy and priority may have
332 * been inherited from a user process, so we reset them to sane values here.
334 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336 static void reparent_to_kthreadd(void)
338 write_lock_irq(&tasklist_lock);
340 ptrace_unlink(current);
341 /* Reparent to init */
342 current->real_parent = current->parent = kthreadd_task;
343 list_move_tail(&current->sibling, &current->real_parent->children);
345 /* Set the exit signal to SIGCHLD so we signal init on exit */
346 current->exit_signal = SIGCHLD;
348 if (task_nice(current) < 0)
349 set_user_nice(current, 0);
350 /* cpus_allowed? */
351 /* rt_priority? */
352 /* signals? */
353 memcpy(current->signal->rlim, init_task.signal->rlim,
354 sizeof(current->signal->rlim));
356 atomic_inc(&init_cred.usage);
357 commit_creds(&init_cred);
358 write_unlock_irq(&tasklist_lock);
361 void __set_special_pids(struct pid *pid)
363 struct task_struct *curr = current->group_leader;
365 if (task_session(curr) != pid)
366 change_pid(curr, PIDTYPE_SID, pid);
368 if (task_pgrp(curr) != pid)
369 change_pid(curr, PIDTYPE_PGID, pid);
372 static void set_special_pids(struct pid *pid)
374 write_lock_irq(&tasklist_lock);
375 __set_special_pids(pid);
376 write_unlock_irq(&tasklist_lock);
380 * Let kernel threads use this to say that they
381 * allow a certain signal (since daemonize() will
382 * have disabled all of them by default).
384 int allow_signal(int sig)
386 if (!valid_signal(sig) || sig < 1)
387 return -EINVAL;
389 spin_lock_irq(&current->sighand->siglock);
390 sigdelset(&current->blocked, sig);
391 if (!current->mm) {
392 /* Kernel threads handle their own signals.
393 Let the signal code know it'll be handled, so
394 that they don't get converted to SIGKILL or
395 just silently dropped */
396 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398 recalc_sigpending();
399 spin_unlock_irq(&current->sighand->siglock);
400 return 0;
403 EXPORT_SYMBOL(allow_signal);
405 int disallow_signal(int sig)
407 if (!valid_signal(sig) || sig < 1)
408 return -EINVAL;
410 spin_lock_irq(&current->sighand->siglock);
411 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412 recalc_sigpending();
413 spin_unlock_irq(&current->sighand->siglock);
414 return 0;
417 EXPORT_SYMBOL(disallow_signal);
420 * Put all the gunge required to become a kernel thread without
421 * attached user resources in one place where it belongs.
424 void daemonize(const char *name, ...)
426 va_list args;
427 sigset_t blocked;
429 va_start(args, name);
430 vsnprintf(current->comm, sizeof(current->comm), name, args);
431 va_end(args);
434 * If we were started as result of loading a module, close all of the
435 * user space pages. We don't need them, and if we didn't close them
436 * they would be locked into memory.
438 exit_mm(current);
440 * We don't want to have TIF_FREEZE set if the system-wide hibernation
441 * or suspend transition begins right now.
443 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
445 if (current->nsproxy != &init_nsproxy) {
446 get_nsproxy(&init_nsproxy);
447 switch_task_namespaces(current, &init_nsproxy);
449 set_special_pids(&init_struct_pid);
450 proc_clear_tty(current);
452 /* Block and flush all signals */
453 sigfillset(&blocked);
454 sigprocmask(SIG_BLOCK, &blocked, NULL);
455 flush_signals(current);
457 /* Become as one with the init task */
459 daemonize_fs_struct();
460 exit_files(current);
461 current->files = init_task.files;
462 atomic_inc(&current->files->count);
464 reparent_to_kthreadd();
467 EXPORT_SYMBOL(daemonize);
469 static void close_files(struct files_struct * files)
471 int i, j;
472 struct fdtable *fdt;
474 j = 0;
477 * It is safe to dereference the fd table without RCU or
478 * ->file_lock because this is the last reference to the
479 * files structure.
481 fdt = files_fdtable(files);
482 for (;;) {
483 unsigned long set;
484 i = j * __NFDBITS;
485 if (i >= fdt->max_fds)
486 break;
487 set = fdt->open_fds->fds_bits[j++];
488 while (set) {
489 if (set & 1) {
490 struct file * file = xchg(&fdt->fd[i], NULL);
491 if (file) {
492 filp_close(file, files);
493 cond_resched();
496 i++;
497 set >>= 1;
502 struct files_struct *get_files_struct(struct task_struct *task)
504 struct files_struct *files;
506 task_lock(task);
507 files = task->files;
508 if (files)
509 atomic_inc(&files->count);
510 task_unlock(task);
512 return files;
515 void put_files_struct(struct files_struct *files)
517 struct fdtable *fdt;
519 if (atomic_dec_and_test(&files->count)) {
520 close_files(files);
522 * Free the fd and fdset arrays if we expanded them.
523 * If the fdtable was embedded, pass files for freeing
524 * at the end of the RCU grace period. Otherwise,
525 * you can free files immediately.
527 fdt = files_fdtable(files);
528 if (fdt != &files->fdtab)
529 kmem_cache_free(files_cachep, files);
530 free_fdtable(fdt);
534 void reset_files_struct(struct files_struct *files)
536 struct task_struct *tsk = current;
537 struct files_struct *old;
539 old = tsk->files;
540 task_lock(tsk);
541 tsk->files = files;
542 task_unlock(tsk);
543 put_files_struct(old);
546 void exit_files(struct task_struct *tsk)
548 struct files_struct * files = tsk->files;
550 if (files) {
551 task_lock(tsk);
552 tsk->files = NULL;
553 task_unlock(tsk);
554 put_files_struct(files);
558 #ifdef CONFIG_MM_OWNER
560 * Task p is exiting and it owned mm, lets find a new owner for it
562 static inline int
563 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
566 * If there are other users of the mm and the owner (us) is exiting
567 * we need to find a new owner to take on the responsibility.
569 if (atomic_read(&mm->mm_users) <= 1)
570 return 0;
571 if (mm->owner != p)
572 return 0;
573 return 1;
576 void mm_update_next_owner(struct mm_struct *mm)
578 struct task_struct *c, *g, *p = current;
580 retry:
581 if (!mm_need_new_owner(mm, p))
582 return;
584 read_lock(&tasklist_lock);
586 * Search in the children
588 list_for_each_entry(c, &p->children, sibling) {
589 if (c->mm == mm)
590 goto assign_new_owner;
594 * Search in the siblings
596 list_for_each_entry(c, &p->parent->children, sibling) {
597 if (c->mm == mm)
598 goto assign_new_owner;
602 * Search through everything else. We should not get
603 * here often
605 do_each_thread(g, c) {
606 if (c->mm == mm)
607 goto assign_new_owner;
608 } while_each_thread(g, c);
610 read_unlock(&tasklist_lock);
612 * We found no owner yet mm_users > 1: this implies that we are
613 * most likely racing with swapoff (try_to_unuse()) or /proc or
614 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
616 mm->owner = NULL;
617 return;
619 assign_new_owner:
620 BUG_ON(c == p);
621 get_task_struct(c);
623 * The task_lock protects c->mm from changing.
624 * We always want mm->owner->mm == mm
626 task_lock(c);
628 * Delay read_unlock() till we have the task_lock()
629 * to ensure that c does not slip away underneath us
631 read_unlock(&tasklist_lock);
632 if (c->mm != mm) {
633 task_unlock(c);
634 put_task_struct(c);
635 goto retry;
637 mm->owner = c;
638 task_unlock(c);
639 put_task_struct(c);
641 #endif /* CONFIG_MM_OWNER */
644 * Turn us into a lazy TLB process if we
645 * aren't already..
647 static void exit_mm(struct task_struct * tsk)
649 struct mm_struct *mm = tsk->mm;
650 struct core_state *core_state;
652 mm_release(tsk, mm);
653 if (!mm)
654 return;
656 * Serialize with any possible pending coredump.
657 * We must hold mmap_sem around checking core_state
658 * and clearing tsk->mm. The core-inducing thread
659 * will increment ->nr_threads for each thread in the
660 * group with ->mm != NULL.
662 down_read(&mm->mmap_sem);
663 core_state = mm->core_state;
664 if (core_state) {
665 struct core_thread self;
666 up_read(&mm->mmap_sem);
668 self.task = tsk;
669 self.next = xchg(&core_state->dumper.next, &self);
671 * Implies mb(), the result of xchg() must be visible
672 * to core_state->dumper.
674 if (atomic_dec_and_test(&core_state->nr_threads))
675 complete(&core_state->startup);
677 for (;;) {
678 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
679 if (!self.task) /* see coredump_finish() */
680 break;
681 schedule();
683 __set_task_state(tsk, TASK_RUNNING);
684 down_read(&mm->mmap_sem);
686 atomic_inc(&mm->mm_count);
687 BUG_ON(mm != tsk->active_mm);
688 /* more a memory barrier than a real lock */
689 task_lock(tsk);
690 tsk->mm = NULL;
691 up_read(&mm->mmap_sem);
692 enter_lazy_tlb(mm, current);
693 /* We don't want this task to be frozen prematurely */
694 clear_freeze_flag(tsk);
695 task_unlock(tsk);
696 mm_update_next_owner(mm);
697 mmput(mm);
701 * When we die, we re-parent all our children.
702 * Try to give them to another thread in our thread
703 * group, and if no such member exists, give it to
704 * the child reaper process (ie "init") in our pid
705 * space.
707 static struct task_struct *find_new_reaper(struct task_struct *father)
709 struct pid_namespace *pid_ns = task_active_pid_ns(father);
710 struct task_struct *thread;
712 thread = father;
713 while_each_thread(father, thread) {
714 if (thread->flags & PF_EXITING)
715 continue;
716 if (unlikely(pid_ns->child_reaper == father))
717 pid_ns->child_reaper = thread;
718 return thread;
721 if (unlikely(pid_ns->child_reaper == father)) {
722 write_unlock_irq(&tasklist_lock);
723 if (unlikely(pid_ns == &init_pid_ns))
724 panic("Attempted to kill init!");
726 zap_pid_ns_processes(pid_ns);
727 write_lock_irq(&tasklist_lock);
729 * We can not clear ->child_reaper or leave it alone.
730 * There may by stealth EXIT_DEAD tasks on ->children,
731 * forget_original_parent() must move them somewhere.
733 pid_ns->child_reaper = init_pid_ns.child_reaper;
736 return pid_ns->child_reaper;
740 * Any that need to be release_task'd are put on the @dead list.
742 static void reparent_thread(struct task_struct *father, struct task_struct *p,
743 struct list_head *dead)
745 if (p->pdeath_signal)
746 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
748 list_move_tail(&p->sibling, &p->real_parent->children);
750 if (task_detached(p))
751 return;
753 * If this is a threaded reparent there is no need to
754 * notify anyone anything has happened.
756 if (same_thread_group(p->real_parent, father))
757 return;
759 /* We don't want people slaying init. */
760 p->exit_signal = SIGCHLD;
762 /* If it has exited notify the new parent about this child's death. */
763 if (!p->ptrace &&
764 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
765 do_notify_parent(p, p->exit_signal);
766 if (task_detached(p)) {
767 p->exit_state = EXIT_DEAD;
768 list_move_tail(&p->sibling, dead);
772 kill_orphaned_pgrp(p, father);
775 static void forget_original_parent(struct task_struct *father)
777 struct task_struct *p, *n, *reaper;
778 LIST_HEAD(dead_children);
780 exit_ptrace(father);
782 write_lock_irq(&tasklist_lock);
783 reaper = find_new_reaper(father);
785 list_for_each_entry_safe(p, n, &father->children, sibling) {
786 p->real_parent = reaper;
787 if (p->parent == father) {
788 BUG_ON(p->ptrace);
789 p->parent = p->real_parent;
791 reparent_thread(father, p, &dead_children);
793 write_unlock_irq(&tasklist_lock);
795 BUG_ON(!list_empty(&father->children));
797 list_for_each_entry_safe(p, n, &dead_children, sibling) {
798 list_del_init(&p->sibling);
799 release_task(p);
804 * Send signals to all our closest relatives so that they know
805 * to properly mourn us..
807 static void exit_notify(struct task_struct *tsk, int group_dead)
809 int signal;
810 void *cookie;
813 * This does two things:
815 * A. Make init inherit all the child processes
816 * B. Check to see if any process groups have become orphaned
817 * as a result of our exiting, and if they have any stopped
818 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
820 forget_original_parent(tsk);
821 exit_task_namespaces(tsk);
823 write_lock_irq(&tasklist_lock);
824 if (group_dead)
825 kill_orphaned_pgrp(tsk->group_leader, NULL);
827 /* Let father know we died
829 * Thread signals are configurable, but you aren't going to use
830 * that to send signals to arbitary processes.
831 * That stops right now.
833 * If the parent exec id doesn't match the exec id we saved
834 * when we started then we know the parent has changed security
835 * domain.
837 * If our self_exec id doesn't match our parent_exec_id then
838 * we have changed execution domain as these two values started
839 * the same after a fork.
841 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
842 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
843 tsk->self_exec_id != tsk->parent_exec_id) &&
844 !capable(CAP_KILL))
845 tsk->exit_signal = SIGCHLD;
847 signal = tracehook_notify_death(tsk, &cookie, group_dead);
848 if (signal >= 0)
849 signal = do_notify_parent(tsk, signal);
851 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
853 /* mt-exec, de_thread() is waiting for us */
854 if (thread_group_leader(tsk) &&
855 tsk->signal->group_exit_task &&
856 tsk->signal->notify_count < 0)
857 wake_up_process(tsk->signal->group_exit_task);
859 write_unlock_irq(&tasklist_lock);
861 tracehook_report_death(tsk, signal, cookie, group_dead);
863 /* If the process is dead, release it - nobody will wait for it */
864 if (signal == DEATH_REAP)
865 release_task(tsk);
868 #ifdef CONFIG_DEBUG_STACK_USAGE
869 static void check_stack_usage(void)
871 static DEFINE_SPINLOCK(low_water_lock);
872 static int lowest_to_date = THREAD_SIZE;
873 unsigned long free;
875 free = stack_not_used(current);
877 if (free >= lowest_to_date)
878 return;
880 spin_lock(&low_water_lock);
881 if (free < lowest_to_date) {
882 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
883 "left\n",
884 current->comm, free);
885 lowest_to_date = free;
887 spin_unlock(&low_water_lock);
889 #else
890 static inline void check_stack_usage(void) {}
891 #endif
893 NORET_TYPE void do_exit(long code)
895 struct task_struct *tsk = current;
896 int group_dead;
898 profile_task_exit(tsk);
900 WARN_ON(atomic_read(&tsk->fs_excl));
902 if (unlikely(in_interrupt()))
903 panic("Aiee, killing interrupt handler!");
904 if (unlikely(!tsk->pid))
905 panic("Attempted to kill the idle task!");
907 tracehook_report_exit(&code);
910 * We're taking recursive faults here in do_exit. Safest is to just
911 * leave this task alone and wait for reboot.
913 if (unlikely(tsk->flags & PF_EXITING)) {
914 printk(KERN_ALERT
915 "Fixing recursive fault but reboot is needed!\n");
917 * We can do this unlocked here. The futex code uses
918 * this flag just to verify whether the pi state
919 * cleanup has been done or not. In the worst case it
920 * loops once more. We pretend that the cleanup was
921 * done as there is no way to return. Either the
922 * OWNER_DIED bit is set by now or we push the blocked
923 * task into the wait for ever nirwana as well.
925 tsk->flags |= PF_EXITPIDONE;
926 set_current_state(TASK_UNINTERRUPTIBLE);
927 schedule();
930 exit_signals(tsk); /* sets PF_EXITING */
932 * tsk->flags are checked in the futex code to protect against
933 * an exiting task cleaning up the robust pi futexes.
935 smp_mb();
936 spin_unlock_wait(&tsk->pi_lock);
938 if (unlikely(in_atomic()))
939 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
940 current->comm, task_pid_nr(current),
941 preempt_count());
943 acct_update_integrals(tsk);
945 group_dead = atomic_dec_and_test(&tsk->signal->live);
946 if (group_dead) {
947 hrtimer_cancel(&tsk->signal->real_timer);
948 exit_itimers(tsk->signal);
950 acct_collect(code, group_dead);
951 if (group_dead)
952 tty_audit_exit();
953 if (unlikely(tsk->audit_context))
954 audit_free(tsk);
956 tsk->exit_code = code;
957 taskstats_exit(tsk, group_dead);
959 exit_mm(tsk);
961 if (group_dead)
962 acct_process();
963 trace_sched_process_exit(tsk);
965 exit_sem(tsk);
966 exit_files(tsk);
967 exit_fs(tsk);
968 check_stack_usage();
969 exit_thread();
970 cgroup_exit(tsk, 1);
972 if (group_dead && tsk->signal->leader)
973 disassociate_ctty(1);
975 module_put(task_thread_info(tsk)->exec_domain->module);
976 if (tsk->binfmt)
977 module_put(tsk->binfmt->module);
979 proc_exit_connector(tsk);
980 exit_notify(tsk, group_dead);
981 #ifdef CONFIG_NUMA
982 mpol_put(tsk->mempolicy);
983 tsk->mempolicy = NULL;
984 #endif
985 #ifdef CONFIG_FUTEX
986 if (unlikely(!list_empty(&tsk->pi_state_list)))
987 exit_pi_state_list(tsk);
988 if (unlikely(current->pi_state_cache))
989 kfree(current->pi_state_cache);
990 #endif
992 * Make sure we are holding no locks:
994 debug_check_no_locks_held(tsk);
996 * We can do this unlocked here. The futex code uses this flag
997 * just to verify whether the pi state cleanup has been done
998 * or not. In the worst case it loops once more.
1000 tsk->flags |= PF_EXITPIDONE;
1002 if (tsk->io_context)
1003 exit_io_context();
1005 if (tsk->splice_pipe)
1006 __free_pipe_info(tsk->splice_pipe);
1008 preempt_disable();
1009 /* causes final put_task_struct in finish_task_switch(). */
1010 tsk->state = TASK_DEAD;
1011 schedule();
1012 BUG();
1013 /* Avoid "noreturn function does return". */
1014 for (;;)
1015 cpu_relax(); /* For when BUG is null */
1018 EXPORT_SYMBOL_GPL(do_exit);
1020 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1022 if (comp)
1023 complete(comp);
1025 do_exit(code);
1028 EXPORT_SYMBOL(complete_and_exit);
1030 SYSCALL_DEFINE1(exit, int, error_code)
1032 do_exit((error_code&0xff)<<8);
1036 * Take down every thread in the group. This is called by fatal signals
1037 * as well as by sys_exit_group (below).
1039 NORET_TYPE void
1040 do_group_exit(int exit_code)
1042 struct signal_struct *sig = current->signal;
1044 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1046 if (signal_group_exit(sig))
1047 exit_code = sig->group_exit_code;
1048 else if (!thread_group_empty(current)) {
1049 struct sighand_struct *const sighand = current->sighand;
1050 spin_lock_irq(&sighand->siglock);
1051 if (signal_group_exit(sig))
1052 /* Another thread got here before we took the lock. */
1053 exit_code = sig->group_exit_code;
1054 else {
1055 sig->group_exit_code = exit_code;
1056 sig->flags = SIGNAL_GROUP_EXIT;
1057 zap_other_threads(current);
1059 spin_unlock_irq(&sighand->siglock);
1062 do_exit(exit_code);
1063 /* NOTREACHED */
1067 * this kills every thread in the thread group. Note that any externally
1068 * wait4()-ing process will get the correct exit code - even if this
1069 * thread is not the thread group leader.
1071 SYSCALL_DEFINE1(exit_group, int, error_code)
1073 do_group_exit((error_code & 0xff) << 8);
1074 /* NOTREACHED */
1075 return 0;
1078 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1080 struct pid *pid = NULL;
1081 if (type == PIDTYPE_PID)
1082 pid = task->pids[type].pid;
1083 else if (type < PIDTYPE_MAX)
1084 pid = task->group_leader->pids[type].pid;
1085 return pid;
1088 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1089 struct task_struct *p)
1091 int err;
1093 if (type < PIDTYPE_MAX) {
1094 if (task_pid_type(p, type) != pid)
1095 return 0;
1098 /* Wait for all children (clone and not) if __WALL is set;
1099 * otherwise, wait for clone children *only* if __WCLONE is
1100 * set; otherwise, wait for non-clone children *only*. (Note:
1101 * A "clone" child here is one that reports to its parent
1102 * using a signal other than SIGCHLD.) */
1103 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1104 && !(options & __WALL))
1105 return 0;
1107 err = security_task_wait(p);
1108 if (err)
1109 return err;
1111 return 1;
1114 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1115 int why, int status,
1116 struct siginfo __user *infop,
1117 struct rusage __user *rusagep)
1119 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1121 put_task_struct(p);
1122 if (!retval)
1123 retval = put_user(SIGCHLD, &infop->si_signo);
1124 if (!retval)
1125 retval = put_user(0, &infop->si_errno);
1126 if (!retval)
1127 retval = put_user((short)why, &infop->si_code);
1128 if (!retval)
1129 retval = put_user(pid, &infop->si_pid);
1130 if (!retval)
1131 retval = put_user(uid, &infop->si_uid);
1132 if (!retval)
1133 retval = put_user(status, &infop->si_status);
1134 if (!retval)
1135 retval = pid;
1136 return retval;
1140 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1141 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1142 * the lock and this task is uninteresting. If we return nonzero, we have
1143 * released the lock and the system call should return.
1145 static int wait_task_zombie(struct task_struct *p, int options,
1146 struct siginfo __user *infop,
1147 int __user *stat_addr, struct rusage __user *ru)
1149 unsigned long state;
1150 int retval, status, traced;
1151 pid_t pid = task_pid_vnr(p);
1152 uid_t uid = __task_cred(p)->uid;
1154 if (!likely(options & WEXITED))
1155 return 0;
1157 if (unlikely(options & WNOWAIT)) {
1158 int exit_code = p->exit_code;
1159 int why, status;
1161 get_task_struct(p);
1162 read_unlock(&tasklist_lock);
1163 if ((exit_code & 0x7f) == 0) {
1164 why = CLD_EXITED;
1165 status = exit_code >> 8;
1166 } else {
1167 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1168 status = exit_code & 0x7f;
1170 return wait_noreap_copyout(p, pid, uid, why,
1171 status, infop, ru);
1175 * Try to move the task's state to DEAD
1176 * only one thread is allowed to do this:
1178 state = xchg(&p->exit_state, EXIT_DEAD);
1179 if (state != EXIT_ZOMBIE) {
1180 BUG_ON(state != EXIT_DEAD);
1181 return 0;
1184 traced = ptrace_reparented(p);
1186 if (likely(!traced)) {
1187 struct signal_struct *psig;
1188 struct signal_struct *sig;
1189 struct task_cputime cputime;
1192 * The resource counters for the group leader are in its
1193 * own task_struct. Those for dead threads in the group
1194 * are in its signal_struct, as are those for the child
1195 * processes it has previously reaped. All these
1196 * accumulate in the parent's signal_struct c* fields.
1198 * We don't bother to take a lock here to protect these
1199 * p->signal fields, because they are only touched by
1200 * __exit_signal, which runs with tasklist_lock
1201 * write-locked anyway, and so is excluded here. We do
1202 * need to protect the access to p->parent->signal fields,
1203 * as other threads in the parent group can be right
1204 * here reaping other children at the same time.
1206 * We use thread_group_cputime() to get times for the thread
1207 * group, which consolidates times for all threads in the
1208 * group including the group leader.
1210 thread_group_cputime(p, &cputime);
1211 spin_lock_irq(&p->parent->sighand->siglock);
1212 psig = p->parent->signal;
1213 sig = p->signal;
1214 psig->cutime =
1215 cputime_add(psig->cutime,
1216 cputime_add(cputime.utime,
1217 sig->cutime));
1218 psig->cstime =
1219 cputime_add(psig->cstime,
1220 cputime_add(cputime.stime,
1221 sig->cstime));
1222 psig->cgtime =
1223 cputime_add(psig->cgtime,
1224 cputime_add(p->gtime,
1225 cputime_add(sig->gtime,
1226 sig->cgtime)));
1227 psig->cmin_flt +=
1228 p->min_flt + sig->min_flt + sig->cmin_flt;
1229 psig->cmaj_flt +=
1230 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1231 psig->cnvcsw +=
1232 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1233 psig->cnivcsw +=
1234 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1235 psig->cinblock +=
1236 task_io_get_inblock(p) +
1237 sig->inblock + sig->cinblock;
1238 psig->coublock +=
1239 task_io_get_oublock(p) +
1240 sig->oublock + sig->coublock;
1241 task_io_accounting_add(&psig->ioac, &p->ioac);
1242 task_io_accounting_add(&psig->ioac, &sig->ioac);
1243 spin_unlock_irq(&p->parent->sighand->siglock);
1247 * Now we are sure this task is interesting, and no other
1248 * thread can reap it because we set its state to EXIT_DEAD.
1250 read_unlock(&tasklist_lock);
1253 * Flush inherited counters to the parent - before the parent
1254 * gets woken up by child-exit notifications.
1256 perf_counter_exit_task(p);
1258 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1259 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1260 ? p->signal->group_exit_code : p->exit_code;
1261 if (!retval && stat_addr)
1262 retval = put_user(status, stat_addr);
1263 if (!retval && infop)
1264 retval = put_user(SIGCHLD, &infop->si_signo);
1265 if (!retval && infop)
1266 retval = put_user(0, &infop->si_errno);
1267 if (!retval && infop) {
1268 int why;
1270 if ((status & 0x7f) == 0) {
1271 why = CLD_EXITED;
1272 status >>= 8;
1273 } else {
1274 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1275 status &= 0x7f;
1277 retval = put_user((short)why, &infop->si_code);
1278 if (!retval)
1279 retval = put_user(status, &infop->si_status);
1281 if (!retval && infop)
1282 retval = put_user(pid, &infop->si_pid);
1283 if (!retval && infop)
1284 retval = put_user(uid, &infop->si_uid);
1285 if (!retval)
1286 retval = pid;
1288 if (traced) {
1289 write_lock_irq(&tasklist_lock);
1290 /* We dropped tasklist, ptracer could die and untrace */
1291 ptrace_unlink(p);
1293 * If this is not a detached task, notify the parent.
1294 * If it's still not detached after that, don't release
1295 * it now.
1297 if (!task_detached(p)) {
1298 do_notify_parent(p, p->exit_signal);
1299 if (!task_detached(p)) {
1300 p->exit_state = EXIT_ZOMBIE;
1301 p = NULL;
1304 write_unlock_irq(&tasklist_lock);
1306 if (p != NULL)
1307 release_task(p);
1309 return retval;
1312 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1314 if (ptrace) {
1315 if (task_is_stopped_or_traced(p))
1316 return &p->exit_code;
1317 } else {
1318 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1319 return &p->signal->group_exit_code;
1321 return NULL;
1325 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1326 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1327 * the lock and this task is uninteresting. If we return nonzero, we have
1328 * released the lock and the system call should return.
1330 static int wait_task_stopped(int ptrace, struct task_struct *p,
1331 int options, struct siginfo __user *infop,
1332 int __user *stat_addr, struct rusage __user *ru)
1334 int retval, exit_code, *p_code, why;
1335 uid_t uid = 0; /* unneeded, required by compiler */
1336 pid_t pid;
1338 if (!(options & WUNTRACED))
1339 return 0;
1341 exit_code = 0;
1342 spin_lock_irq(&p->sighand->siglock);
1344 p_code = task_stopped_code(p, ptrace);
1345 if (unlikely(!p_code))
1346 goto unlock_sig;
1348 exit_code = *p_code;
1349 if (!exit_code)
1350 goto unlock_sig;
1352 if (!unlikely(options & WNOWAIT))
1353 *p_code = 0;
1355 /* don't need the RCU readlock here as we're holding a spinlock */
1356 uid = __task_cred(p)->uid;
1357 unlock_sig:
1358 spin_unlock_irq(&p->sighand->siglock);
1359 if (!exit_code)
1360 return 0;
1363 * Now we are pretty sure this task is interesting.
1364 * Make sure it doesn't get reaped out from under us while we
1365 * give up the lock and then examine it below. We don't want to
1366 * keep holding onto the tasklist_lock while we call getrusage and
1367 * possibly take page faults for user memory.
1369 get_task_struct(p);
1370 pid = task_pid_vnr(p);
1371 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1372 read_unlock(&tasklist_lock);
1374 if (unlikely(options & WNOWAIT))
1375 return wait_noreap_copyout(p, pid, uid,
1376 why, exit_code,
1377 infop, ru);
1379 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1380 if (!retval && stat_addr)
1381 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1382 if (!retval && infop)
1383 retval = put_user(SIGCHLD, &infop->si_signo);
1384 if (!retval && infop)
1385 retval = put_user(0, &infop->si_errno);
1386 if (!retval && infop)
1387 retval = put_user((short)why, &infop->si_code);
1388 if (!retval && infop)
1389 retval = put_user(exit_code, &infop->si_status);
1390 if (!retval && infop)
1391 retval = put_user(pid, &infop->si_pid);
1392 if (!retval && infop)
1393 retval = put_user(uid, &infop->si_uid);
1394 if (!retval)
1395 retval = pid;
1396 put_task_struct(p);
1398 BUG_ON(!retval);
1399 return retval;
1403 * Handle do_wait work for one task in a live, non-stopped state.
1404 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1405 * the lock and this task is uninteresting. If we return nonzero, we have
1406 * released the lock and the system call should return.
1408 static int wait_task_continued(struct task_struct *p, int options,
1409 struct siginfo __user *infop,
1410 int __user *stat_addr, struct rusage __user *ru)
1412 int retval;
1413 pid_t pid;
1414 uid_t uid;
1416 if (!unlikely(options & WCONTINUED))
1417 return 0;
1419 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1420 return 0;
1422 spin_lock_irq(&p->sighand->siglock);
1423 /* Re-check with the lock held. */
1424 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1425 spin_unlock_irq(&p->sighand->siglock);
1426 return 0;
1428 if (!unlikely(options & WNOWAIT))
1429 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1430 uid = __task_cred(p)->uid;
1431 spin_unlock_irq(&p->sighand->siglock);
1433 pid = task_pid_vnr(p);
1434 get_task_struct(p);
1435 read_unlock(&tasklist_lock);
1437 if (!infop) {
1438 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1439 put_task_struct(p);
1440 if (!retval && stat_addr)
1441 retval = put_user(0xffff, stat_addr);
1442 if (!retval)
1443 retval = pid;
1444 } else {
1445 retval = wait_noreap_copyout(p, pid, uid,
1446 CLD_CONTINUED, SIGCONT,
1447 infop, ru);
1448 BUG_ON(retval == 0);
1451 return retval;
1455 * Consider @p for a wait by @parent.
1457 * -ECHILD should be in *@notask_error before the first call.
1458 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1459 * Returns zero if the search for a child should continue;
1460 * then *@notask_error is 0 if @p is an eligible child,
1461 * or another error from security_task_wait(), or still -ECHILD.
1463 static int wait_consider_task(struct task_struct *parent, int ptrace,
1464 struct task_struct *p, int *notask_error,
1465 enum pid_type type, struct pid *pid, int options,
1466 struct siginfo __user *infop,
1467 int __user *stat_addr, struct rusage __user *ru)
1469 int ret = eligible_child(type, pid, options, p);
1470 if (!ret)
1471 return ret;
1473 if (unlikely(ret < 0)) {
1475 * If we have not yet seen any eligible child,
1476 * then let this error code replace -ECHILD.
1477 * A permission error will give the user a clue
1478 * to look for security policy problems, rather
1479 * than for mysterious wait bugs.
1481 if (*notask_error)
1482 *notask_error = ret;
1485 if (likely(!ptrace) && unlikely(p->ptrace)) {
1487 * This child is hidden by ptrace.
1488 * We aren't allowed to see it now, but eventually we will.
1490 *notask_error = 0;
1491 return 0;
1494 if (p->exit_state == EXIT_DEAD)
1495 return 0;
1498 * We don't reap group leaders with subthreads.
1500 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1501 return wait_task_zombie(p, options, infop, stat_addr, ru);
1504 * It's stopped or running now, so it might
1505 * later continue, exit, or stop again.
1507 *notask_error = 0;
1509 if (task_stopped_code(p, ptrace))
1510 return wait_task_stopped(ptrace, p, options,
1511 infop, stat_addr, ru);
1513 return wait_task_continued(p, options, infop, stat_addr, ru);
1517 * Do the work of do_wait() for one thread in the group, @tsk.
1519 * -ECHILD should be in *@notask_error before the first call.
1520 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1521 * Returns zero if the search for a child should continue; then
1522 * *@notask_error is 0 if there were any eligible children,
1523 * or another error from security_task_wait(), or still -ECHILD.
1525 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1526 enum pid_type type, struct pid *pid, int options,
1527 struct siginfo __user *infop, int __user *stat_addr,
1528 struct rusage __user *ru)
1530 struct task_struct *p;
1532 list_for_each_entry(p, &tsk->children, sibling) {
1534 * Do not consider detached threads.
1536 if (!task_detached(p)) {
1537 int ret = wait_consider_task(tsk, 0, p, notask_error,
1538 type, pid, options,
1539 infop, stat_addr, ru);
1540 if (ret)
1541 return ret;
1545 return 0;
1548 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1549 enum pid_type type, struct pid *pid, int options,
1550 struct siginfo __user *infop, int __user *stat_addr,
1551 struct rusage __user *ru)
1553 struct task_struct *p;
1556 * Traditionally we see ptrace'd stopped tasks regardless of options.
1558 options |= WUNTRACED;
1560 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1561 int ret = wait_consider_task(tsk, 1, p, notask_error,
1562 type, pid, options,
1563 infop, stat_addr, ru);
1564 if (ret)
1565 return ret;
1568 return 0;
1571 static long do_wait(enum pid_type type, struct pid *pid, int options,
1572 struct siginfo __user *infop, int __user *stat_addr,
1573 struct rusage __user *ru)
1575 DECLARE_WAITQUEUE(wait, current);
1576 struct task_struct *tsk;
1577 int retval;
1579 trace_sched_process_wait(pid);
1581 add_wait_queue(&current->signal->wait_chldexit,&wait);
1582 repeat:
1584 * If there is nothing that can match our critiera just get out.
1585 * We will clear @retval to zero if we see any child that might later
1586 * match our criteria, even if we are not able to reap it yet.
1588 retval = -ECHILD;
1589 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1590 goto end;
1592 current->state = TASK_INTERRUPTIBLE;
1593 read_lock(&tasklist_lock);
1594 tsk = current;
1595 do {
1596 int tsk_result = do_wait_thread(tsk, &retval,
1597 type, pid, options,
1598 infop, stat_addr, ru);
1599 if (!tsk_result)
1600 tsk_result = ptrace_do_wait(tsk, &retval,
1601 type, pid, options,
1602 infop, stat_addr, ru);
1603 if (tsk_result) {
1605 * tasklist_lock is unlocked and we have a final result.
1607 retval = tsk_result;
1608 goto end;
1611 if (options & __WNOTHREAD)
1612 break;
1613 tsk = next_thread(tsk);
1614 BUG_ON(tsk->signal != current->signal);
1615 } while (tsk != current);
1616 read_unlock(&tasklist_lock);
1618 if (!retval && !(options & WNOHANG)) {
1619 retval = -ERESTARTSYS;
1620 if (!signal_pending(current)) {
1621 schedule();
1622 goto repeat;
1626 end:
1627 current->state = TASK_RUNNING;
1628 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1629 if (infop) {
1630 if (retval > 0)
1631 retval = 0;
1632 else {
1634 * For a WNOHANG return, clear out all the fields
1635 * we would set so the user can easily tell the
1636 * difference.
1638 if (!retval)
1639 retval = put_user(0, &infop->si_signo);
1640 if (!retval)
1641 retval = put_user(0, &infop->si_errno);
1642 if (!retval)
1643 retval = put_user(0, &infop->si_code);
1644 if (!retval)
1645 retval = put_user(0, &infop->si_pid);
1646 if (!retval)
1647 retval = put_user(0, &infop->si_uid);
1648 if (!retval)
1649 retval = put_user(0, &infop->si_status);
1652 return retval;
1655 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1656 infop, int, options, struct rusage __user *, ru)
1658 struct pid *pid = NULL;
1659 enum pid_type type;
1660 long ret;
1662 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1663 return -EINVAL;
1664 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1665 return -EINVAL;
1667 switch (which) {
1668 case P_ALL:
1669 type = PIDTYPE_MAX;
1670 break;
1671 case P_PID:
1672 type = PIDTYPE_PID;
1673 if (upid <= 0)
1674 return -EINVAL;
1675 break;
1676 case P_PGID:
1677 type = PIDTYPE_PGID;
1678 if (upid <= 0)
1679 return -EINVAL;
1680 break;
1681 default:
1682 return -EINVAL;
1685 if (type < PIDTYPE_MAX)
1686 pid = find_get_pid(upid);
1687 ret = do_wait(type, pid, options, infop, NULL, ru);
1688 put_pid(pid);
1690 /* avoid REGPARM breakage on x86: */
1691 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1692 return ret;
1695 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1696 int, options, struct rusage __user *, ru)
1698 struct pid *pid = NULL;
1699 enum pid_type type;
1700 long ret;
1702 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1703 __WNOTHREAD|__WCLONE|__WALL))
1704 return -EINVAL;
1706 if (upid == -1)
1707 type = PIDTYPE_MAX;
1708 else if (upid < 0) {
1709 type = PIDTYPE_PGID;
1710 pid = find_get_pid(-upid);
1711 } else if (upid == 0) {
1712 type = PIDTYPE_PGID;
1713 pid = get_task_pid(current, PIDTYPE_PGID);
1714 } else /* upid > 0 */ {
1715 type = PIDTYPE_PID;
1716 pid = find_get_pid(upid);
1719 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1720 put_pid(pid);
1722 /* avoid REGPARM breakage on x86: */
1723 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1724 return ret;
1727 #ifdef __ARCH_WANT_SYS_WAITPID
1730 * sys_waitpid() remains for compatibility. waitpid() should be
1731 * implemented by calling sys_wait4() from libc.a.
1733 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1735 return sys_wait4(pid, stat_addr, options, NULL);
1738 #endif