sgi-xp: isolate allocation of XPC's msgqueues to sn2 only
[linux-2.6/x86.git] / drivers / misc / sgi-xp / xpc_sn2.c
blobe5dc8c44c6fbbc363dfa0de80551e968c531d924
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
7 */
9 /*
10 * Cross Partition Communication (XPC) sn2-based functions.
12 * Architecture specific implementation of common functions.
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <asm/uncached.h>
19 #include <asm/sn/sn_sal.h>
20 #include "xpc.h"
22 static struct xpc_vars_sn2 *xpc_vars; /* >>> Add _sn2 suffix? */
23 static struct xpc_vars_part_sn2 *xpc_vars_part; /* >>> Add _sn2 suffix? */
25 /* SH_IPI_ACCESS shub register value on startup */
26 static u64 xpc_sh1_IPI_access;
27 static u64 xpc_sh2_IPI_access0;
28 static u64 xpc_sh2_IPI_access1;
29 static u64 xpc_sh2_IPI_access2;
30 static u64 xpc_sh2_IPI_access3;
33 * Change protections to allow IPI operations.
35 static void
36 xpc_allow_IPI_ops_sn2(void)
38 int node;
39 int nasid;
41 /* >>> The following should get moved into SAL. */
42 if (is_shub2()) {
43 xpc_sh2_IPI_access0 =
44 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
45 xpc_sh2_IPI_access1 =
46 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
47 xpc_sh2_IPI_access2 =
48 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
49 xpc_sh2_IPI_access3 =
50 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
52 for_each_online_node(node) {
53 nasid = cnodeid_to_nasid(node);
54 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
55 -1UL);
56 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
57 -1UL);
58 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
59 -1UL);
60 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
61 -1UL);
63 } else {
64 xpc_sh1_IPI_access =
65 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
67 for_each_online_node(node) {
68 nasid = cnodeid_to_nasid(node);
69 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
70 -1UL);
76 * Restrict protections to disallow IPI operations.
78 static void
79 xpc_disallow_IPI_ops_sn2(void)
81 int node;
82 int nasid;
84 /* >>> The following should get moved into SAL. */
85 if (is_shub2()) {
86 for_each_online_node(node) {
87 nasid = cnodeid_to_nasid(node);
88 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
89 xpc_sh2_IPI_access0);
90 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
91 xpc_sh2_IPI_access1);
92 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
93 xpc_sh2_IPI_access2);
94 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
95 xpc_sh2_IPI_access3);
97 } else {
98 for_each_online_node(node) {
99 nasid = cnodeid_to_nasid(node);
100 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
101 xpc_sh1_IPI_access);
107 * The following set of functions are used for the sending and receiving of
108 * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
109 * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
110 * is associated with channel activity (SGI_XPC_NOTIFY).
113 static u64
114 xpc_receive_IRQ_amo_sn2(struct amo *amo)
116 return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
119 static enum xp_retval
120 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
121 int vector)
123 int ret = 0;
124 unsigned long irq_flags;
126 local_irq_save(irq_flags);
128 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
129 sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
132 * We must always use the nofault function regardless of whether we
133 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
134 * didn't, we'd never know that the other partition is down and would
135 * keep sending IRQs and amos to it until the heartbeat times out.
137 ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
138 xp_nofault_PIOR_target));
140 local_irq_restore(irq_flags);
142 return ((ret == 0) ? xpSuccess : xpPioReadError);
145 static struct amo *
146 xpc_init_IRQ_amo_sn2(int index)
148 struct amo *amo = xpc_vars->amos_page + index;
150 (void)xpc_receive_IRQ_amo_sn2(amo); /* clear amo variable */
151 return amo;
155 * Functions associated with SGI_XPC_ACTIVATE IRQ.
159 * Notify the heartbeat check thread that an activate IRQ has been received.
161 static irqreturn_t
162 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
164 atomic_inc(&xpc_activate_IRQ_rcvd);
165 wake_up_interruptible(&xpc_activate_IRQ_wq);
166 return IRQ_HANDLED;
170 * Flag the appropriate amo variable and send an IRQ to the specified node.
172 static void
173 xpc_send_activate_IRQ_sn2(u64 amos_page_pa, int from_nasid, int to_nasid,
174 int to_phys_cpuid)
176 int w_index = XPC_NASID_W_INDEX(from_nasid);
177 int b_index = XPC_NASID_B_INDEX(from_nasid);
178 struct amo *amos = (struct amo *)__va(amos_page_pa +
179 (XPC_ACTIVATE_IRQ_AMOS *
180 sizeof(struct amo)));
182 (void)xpc_send_IRQ_sn2(&amos[w_index], (1UL << b_index), to_nasid,
183 to_phys_cpuid, SGI_XPC_ACTIVATE);
186 static void
187 xpc_send_local_activate_IRQ_sn2(int from_nasid)
189 int w_index = XPC_NASID_W_INDEX(from_nasid);
190 int b_index = XPC_NASID_B_INDEX(from_nasid);
191 struct amo *amos = (struct amo *)__va(xpc_vars->amos_page_pa +
192 (XPC_ACTIVATE_IRQ_AMOS *
193 sizeof(struct amo)));
195 /* fake the sending and receipt of an activate IRQ from remote nasid */
196 FETCHOP_STORE_OP(TO_AMO((u64)&amos[w_index].variable), FETCHOP_OR,
197 (1UL << b_index));
198 atomic_inc(&xpc_activate_IRQ_rcvd);
199 wake_up_interruptible(&xpc_activate_IRQ_wq);
203 * Functions associated with SGI_XPC_NOTIFY IRQ.
207 * Check to see if any chctl flags were sent from the specified partition.
209 static void
210 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
212 union xpc_channel_ctl_flags chctl;
213 unsigned long irq_flags;
215 chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
216 local_chctl_amo_va);
217 if (chctl.all_flags == 0)
218 return;
220 spin_lock_irqsave(&part->chctl_lock, irq_flags);
221 part->chctl.all_flags |= chctl.all_flags;
222 spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
224 dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
225 "0x%lx\n", XPC_PARTID(part), chctl.all_flags);
227 xpc_wakeup_channel_mgr(part);
231 * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
232 * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
233 * than one partition, we use an amo structure per partition to indicate
234 * whether a partition has sent an IRQ or not. If it has, then wake up the
235 * associated kthread to handle it.
237 * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
238 * running on other partitions.
240 * Noteworthy Arguments:
242 * irq - Interrupt ReQuest number. NOT USED.
244 * dev_id - partid of IRQ's potential sender.
246 static irqreturn_t
247 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
249 short partid = (short)(u64)dev_id;
250 struct xpc_partition *part = &xpc_partitions[partid];
252 DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
254 if (xpc_part_ref(part)) {
255 xpc_check_for_sent_chctl_flags_sn2(part);
257 xpc_part_deref(part);
259 return IRQ_HANDLED;
263 * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
264 * because the write to their associated amo variable completed after the IRQ
265 * was received.
267 static void
268 xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
270 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
272 if (xpc_part_ref(part)) {
273 xpc_check_for_sent_chctl_flags_sn2(part);
275 part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
276 XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
277 add_timer(&part_sn2->dropped_notify_IRQ_timer);
278 xpc_part_deref(part);
283 * Send a notify IRQ to the remote partition that is associated with the
284 * specified channel.
286 static void
287 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
288 char *chctl_flag_string, unsigned long *irq_flags)
290 struct xpc_partition *part = &xpc_partitions[ch->partid];
291 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
292 union xpc_channel_ctl_flags chctl = { 0 };
293 enum xp_retval ret;
295 if (likely(part->act_state != XPC_P_DEACTIVATING)) {
296 chctl.flags[ch->number] = chctl_flag;
297 ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
298 chctl.all_flags,
299 part_sn2->notify_IRQ_nasid,
300 part_sn2->notify_IRQ_phys_cpuid,
301 SGI_XPC_NOTIFY);
302 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
303 chctl_flag_string, ch->partid, ch->number, ret);
304 if (unlikely(ret != xpSuccess)) {
305 if (irq_flags != NULL)
306 spin_unlock_irqrestore(&ch->lock, *irq_flags);
307 XPC_DEACTIVATE_PARTITION(part, ret);
308 if (irq_flags != NULL)
309 spin_lock_irqsave(&ch->lock, *irq_flags);
314 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
315 xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
318 * Make it look like the remote partition, which is associated with the
319 * specified channel, sent us a notify IRQ. This faked IRQ will be handled
320 * by xpc_check_for_dropped_notify_IRQ_sn2().
322 static void
323 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
324 char *chctl_flag_string)
326 struct xpc_partition *part = &xpc_partitions[ch->partid];
327 union xpc_channel_ctl_flags chctl = { 0 };
329 chctl.flags[ch->number] = chctl_flag;
330 FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
331 variable), FETCHOP_OR, chctl.all_flags);
332 dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
333 chctl_flag_string, ch->partid, ch->number);
336 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
337 xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
339 static void
340 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
341 unsigned long *irq_flags)
343 struct xpc_openclose_args *args = ch->local_openclose_args;
345 args->reason = ch->reason;
346 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
349 static void
350 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
352 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
355 static void
356 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
358 struct xpc_openclose_args *args = ch->local_openclose_args;
360 args->msg_size = ch->msg_size;
361 args->local_nentries = ch->local_nentries;
362 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
365 static void
366 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
368 struct xpc_openclose_args *args = ch->local_openclose_args;
370 args->remote_nentries = ch->remote_nentries;
371 args->local_nentries = ch->local_nentries;
372 args->local_msgqueue_pa = __pa(ch->local_msgqueue);
373 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
376 static void
377 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
379 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
382 static void
383 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
385 XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
389 * This next set of functions are used to keep track of when a partition is
390 * potentially engaged in accessing memory belonging to another partition.
393 static void
394 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
396 unsigned long irq_flags;
397 struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
398 (XPC_ENGAGED_PARTITIONS_AMO *
399 sizeof(struct amo)));
401 local_irq_save(irq_flags);
403 /* set bit corresponding to our partid in remote partition's amo */
404 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
405 (1UL << sn_partition_id));
407 * We must always use the nofault function regardless of whether we
408 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
409 * didn't, we'd never know that the other partition is down and would
410 * keep sending IRQs and amos to it until the heartbeat times out.
412 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
413 variable),
414 xp_nofault_PIOR_target));
416 local_irq_restore(irq_flags);
419 static void
420 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
422 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
423 unsigned long irq_flags;
424 struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
425 (XPC_ENGAGED_PARTITIONS_AMO *
426 sizeof(struct amo)));
428 local_irq_save(irq_flags);
430 /* clear bit corresponding to our partid in remote partition's amo */
431 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
432 ~(1UL << sn_partition_id));
434 * We must always use the nofault function regardless of whether we
435 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
436 * didn't, we'd never know that the other partition is down and would
437 * keep sending IRQs and amos to it until the heartbeat times out.
439 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
440 variable),
441 xp_nofault_PIOR_target));
443 local_irq_restore(irq_flags);
446 * Send activate IRQ to get other side to see that we've cleared our
447 * bit in their engaged partitions amo.
449 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
450 cnodeid_to_nasid(0),
451 part_sn2->activate_IRQ_nasid,
452 part_sn2->activate_IRQ_phys_cpuid);
455 static int
456 xpc_partition_engaged_sn2(short partid)
458 struct amo *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
460 /* our partition's amo variable ANDed with partid mask */
461 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
462 (1UL << partid)) != 0;
465 static int
466 xpc_any_partition_engaged_sn2(void)
468 struct amo *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
470 /* our partition's amo variable */
471 return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
474 static void
475 xpc_assume_partition_disengaged_sn2(short partid)
477 struct amo *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
479 /* clear bit(s) based on partid mask in our partition's amo */
480 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
481 ~(1UL << partid));
484 /* original protection values for each node */
485 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
488 * Change protections to allow amo operations on non-Shub 1.1 systems.
490 static enum xp_retval
491 xpc_allow_amo_ops_sn2(struct amo *amos_page)
493 u64 nasid_array = 0;
494 int ret;
497 * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
498 * collides with memory operations. On those systems we call
499 * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
501 if (!enable_shub_wars_1_1()) {
502 ret = sn_change_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE,
503 SN_MEMPROT_ACCESS_CLASS_1,
504 &nasid_array);
505 if (ret != 0)
506 return xpSalError;
508 return xpSuccess;
512 * Change protections to allow amo operations on Shub 1.1 systems.
514 static void
515 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
517 int node;
518 int nasid;
520 if (!enable_shub_wars_1_1())
521 return;
523 for_each_online_node(node) {
524 nasid = cnodeid_to_nasid(node);
525 /* save current protection values */
526 xpc_prot_vec_sn2[node] =
527 (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
528 SH1_MD_DQLP_MMR_DIR_PRIVEC0));
529 /* open up everything */
530 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
531 SH1_MD_DQLP_MMR_DIR_PRIVEC0),
532 -1UL);
533 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
534 SH1_MD_DQRP_MMR_DIR_PRIVEC0),
535 -1UL);
539 static enum xp_retval
540 xpc_rsvd_page_init_sn2(struct xpc_rsvd_page *rp)
542 struct amo *amos_page;
543 int i;
544 int ret;
546 xpc_vars = XPC_RP_VARS(rp);
548 rp->sn.vars_pa = __pa(xpc_vars);
550 /* vars_part array follows immediately after vars */
551 xpc_vars_part = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
552 XPC_RP_VARS_SIZE);
555 * Before clearing xpc_vars, see if a page of amos had been previously
556 * allocated. If not we'll need to allocate one and set permissions
557 * so that cross-partition amos are allowed.
559 * The allocated amo page needs MCA reporting to remain disabled after
560 * XPC has unloaded. To make this work, we keep a copy of the pointer
561 * to this page (i.e., amos_page) in the struct xpc_vars structure,
562 * which is pointed to by the reserved page, and re-use that saved copy
563 * on subsequent loads of XPC. This amo page is never freed, and its
564 * memory protections are never restricted.
566 amos_page = xpc_vars->amos_page;
567 if (amos_page == NULL) {
568 amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
569 if (amos_page == NULL) {
570 dev_err(xpc_part, "can't allocate page of amos\n");
571 return xpNoMemory;
575 * Open up amo-R/W to cpu. This is done on Shub 1.1 systems
576 * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
578 ret = xpc_allow_amo_ops_sn2(amos_page);
579 if (ret != xpSuccess) {
580 dev_err(xpc_part, "can't allow amo operations\n");
581 uncached_free_page(__IA64_UNCACHED_OFFSET |
582 TO_PHYS((u64)amos_page), 1);
583 return ret;
587 /* clear xpc_vars */
588 memset(xpc_vars, 0, sizeof(struct xpc_vars_sn2));
590 xpc_vars->version = XPC_V_VERSION;
591 xpc_vars->activate_IRQ_nasid = cpuid_to_nasid(0);
592 xpc_vars->activate_IRQ_phys_cpuid = cpu_physical_id(0);
593 xpc_vars->vars_part_pa = __pa(xpc_vars_part);
594 xpc_vars->amos_page_pa = ia64_tpa((u64)amos_page);
595 xpc_vars->amos_page = amos_page; /* save for next load of XPC */
597 /* clear xpc_vars_part */
598 memset((u64 *)xpc_vars_part, 0, sizeof(struct xpc_vars_part_sn2) *
599 xp_max_npartitions);
601 /* initialize the activate IRQ related amo variables */
602 for (i = 0; i < xp_nasid_mask_words; i++)
603 (void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS + i);
605 /* initialize the engaged remote partitions related amo variables */
606 (void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO);
607 (void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO);
609 return xpSuccess;
612 static void
613 xpc_increment_heartbeat_sn2(void)
615 xpc_vars->heartbeat++;
618 static void
619 xpc_offline_heartbeat_sn2(void)
621 xpc_increment_heartbeat_sn2();
622 xpc_vars->heartbeat_offline = 1;
625 static void
626 xpc_online_heartbeat_sn2(void)
628 xpc_increment_heartbeat_sn2();
629 xpc_vars->heartbeat_offline = 0;
632 static void
633 xpc_heartbeat_init_sn2(void)
635 DBUG_ON(xpc_vars == NULL);
637 bitmap_zero(xpc_vars->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
638 xpc_heartbeating_to_mask = &xpc_vars->heartbeating_to_mask[0];
639 xpc_online_heartbeat_sn2();
642 static void
643 xpc_heartbeat_exit_sn2(void)
645 xpc_offline_heartbeat_sn2();
649 * At periodic intervals, scan through all active partitions and ensure
650 * their heartbeat is still active. If not, the partition is deactivated.
652 static void
653 xpc_check_remote_hb_sn2(void)
655 struct xpc_vars_sn2 *remote_vars;
656 struct xpc_partition *part;
657 short partid;
658 enum xp_retval ret;
660 remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer;
662 for (partid = 0; partid < xp_max_npartitions; partid++) {
664 if (xpc_exiting)
665 break;
667 if (partid == sn_partition_id)
668 continue;
670 part = &xpc_partitions[partid];
672 if (part->act_state == XPC_P_INACTIVE ||
673 part->act_state == XPC_P_DEACTIVATING) {
674 continue;
677 /* pull the remote_hb cache line */
678 ret = xp_remote_memcpy(remote_vars,
679 (void *)part->sn.sn2.remote_vars_pa,
680 XPC_RP_VARS_SIZE);
681 if (ret != xpSuccess) {
682 XPC_DEACTIVATE_PARTITION(part, ret);
683 continue;
686 dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat"
687 " = %ld, heartbeat_offline = %ld, HB_mask[0] = 0x%lx\n",
688 partid, remote_vars->heartbeat, part->last_heartbeat,
689 remote_vars->heartbeat_offline,
690 remote_vars->heartbeating_to_mask[0]);
692 if (((remote_vars->heartbeat == part->last_heartbeat) &&
693 (remote_vars->heartbeat_offline == 0)) ||
694 !xpc_hb_allowed(sn_partition_id,
695 &remote_vars->heartbeating_to_mask)) {
697 XPC_DEACTIVATE_PARTITION(part, xpNoHeartbeat);
698 continue;
701 part->last_heartbeat = remote_vars->heartbeat;
706 * Get a copy of the remote partition's XPC variables from the reserved page.
708 * remote_vars points to a buffer that is cacheline aligned for BTE copies and
709 * assumed to be of size XPC_RP_VARS_SIZE.
711 static enum xp_retval
712 xpc_get_remote_vars_sn2(u64 remote_vars_pa, struct xpc_vars_sn2 *remote_vars)
714 enum xp_retval ret;
716 if (remote_vars_pa == 0)
717 return xpVarsNotSet;
719 /* pull over the cross partition variables */
720 ret = xp_remote_memcpy(remote_vars, (void *)remote_vars_pa,
721 XPC_RP_VARS_SIZE);
722 if (ret != xpSuccess)
723 return ret;
725 if (XPC_VERSION_MAJOR(remote_vars->version) !=
726 XPC_VERSION_MAJOR(XPC_V_VERSION)) {
727 return xpBadVersion;
730 return xpSuccess;
733 static void
734 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
735 u64 remote_rp_pa, int nasid)
737 xpc_send_local_activate_IRQ_sn2(nasid);
740 static void
741 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
743 xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
746 static void
747 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
749 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
750 unsigned long irq_flags;
751 struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
752 (XPC_DEACTIVATE_REQUEST_AMO *
753 sizeof(struct amo)));
755 local_irq_save(irq_flags);
757 /* set bit corresponding to our partid in remote partition's amo */
758 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
759 (1UL << sn_partition_id));
761 * We must always use the nofault function regardless of whether we
762 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
763 * didn't, we'd never know that the other partition is down and would
764 * keep sending IRQs and amos to it until the heartbeat times out.
766 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
767 variable),
768 xp_nofault_PIOR_target));
770 local_irq_restore(irq_flags);
773 * Send activate IRQ to get other side to see that we've set our
774 * bit in their deactivate request amo.
776 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
777 cnodeid_to_nasid(0),
778 part_sn2->activate_IRQ_nasid,
779 part_sn2->activate_IRQ_phys_cpuid);
782 static void
783 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
785 unsigned long irq_flags;
786 struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
787 (XPC_DEACTIVATE_REQUEST_AMO *
788 sizeof(struct amo)));
790 local_irq_save(irq_flags);
792 /* clear bit corresponding to our partid in remote partition's amo */
793 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
794 ~(1UL << sn_partition_id));
796 * We must always use the nofault function regardless of whether we
797 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
798 * didn't, we'd never know that the other partition is down and would
799 * keep sending IRQs and amos to it until the heartbeat times out.
801 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
802 variable),
803 xp_nofault_PIOR_target));
805 local_irq_restore(irq_flags);
808 static int
809 xpc_partition_deactivation_requested_sn2(short partid)
811 struct amo *amo = xpc_vars->amos_page + XPC_DEACTIVATE_REQUEST_AMO;
813 /* our partition's amo variable ANDed with partid mask */
814 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
815 (1UL << partid)) != 0;
819 * Update the remote partition's info.
821 static void
822 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
823 unsigned long *remote_rp_stamp, u64 remote_rp_pa,
824 u64 remote_vars_pa,
825 struct xpc_vars_sn2 *remote_vars)
827 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
829 part->remote_rp_version = remote_rp_version;
830 dev_dbg(xpc_part, " remote_rp_version = 0x%016x\n",
831 part->remote_rp_version);
833 part->remote_rp_stamp = *remote_rp_stamp;
834 dev_dbg(xpc_part, " remote_rp_stamp = 0x%016lx\n",
835 part->remote_rp_stamp);
837 part->remote_rp_pa = remote_rp_pa;
838 dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
840 part_sn2->remote_vars_pa = remote_vars_pa;
841 dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n",
842 part_sn2->remote_vars_pa);
844 part->last_heartbeat = remote_vars->heartbeat;
845 dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n",
846 part->last_heartbeat);
848 part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
849 dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n",
850 part_sn2->remote_vars_part_pa);
852 part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
853 dev_dbg(xpc_part, " activate_IRQ_nasid = 0x%x\n",
854 part_sn2->activate_IRQ_nasid);
856 part_sn2->activate_IRQ_phys_cpuid =
857 remote_vars->activate_IRQ_phys_cpuid;
858 dev_dbg(xpc_part, " activate_IRQ_phys_cpuid = 0x%x\n",
859 part_sn2->activate_IRQ_phys_cpuid);
861 part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
862 dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n",
863 part_sn2->remote_amos_page_pa);
865 part_sn2->remote_vars_version = remote_vars->version;
866 dev_dbg(xpc_part, " remote_vars_version = 0x%x\n",
867 part_sn2->remote_vars_version);
871 * Prior code has determined the nasid which generated a activate IRQ.
872 * Inspect that nasid to determine if its partition needs to be activated
873 * or deactivated.
875 * A partition is considered "awaiting activation" if our partition
876 * flags indicate it is not active and it has a heartbeat. A
877 * partition is considered "awaiting deactivation" if our partition
878 * flags indicate it is active but it has no heartbeat or it is not
879 * sending its heartbeat to us.
881 * To determine the heartbeat, the remote nasid must have a properly
882 * initialized reserved page.
884 static void
885 xpc_identify_activate_IRQ_req_sn2(int nasid)
887 struct xpc_rsvd_page *remote_rp;
888 struct xpc_vars_sn2 *remote_vars;
889 u64 remote_rp_pa;
890 u64 remote_vars_pa;
891 int remote_rp_version;
892 int reactivate = 0;
893 unsigned long remote_rp_stamp = 0;
894 short partid;
895 struct xpc_partition *part;
896 struct xpc_partition_sn2 *part_sn2;
897 enum xp_retval ret;
899 /* pull over the reserved page structure */
901 remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer;
903 ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
904 if (ret != xpSuccess) {
905 dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
906 "which sent interrupt, reason=%d\n", nasid, ret);
907 return;
910 remote_vars_pa = remote_rp->sn.vars_pa;
911 remote_rp_version = remote_rp->version;
912 remote_rp_stamp = remote_rp->stamp;
914 partid = remote_rp->SAL_partid;
915 part = &xpc_partitions[partid];
916 part_sn2 = &part->sn.sn2;
918 /* pull over the cross partition variables */
920 remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer;
922 ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
923 if (ret != xpSuccess) {
924 dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
925 "which sent interrupt, reason=%d\n", nasid, ret);
927 XPC_DEACTIVATE_PARTITION(part, ret);
928 return;
931 part->activate_IRQ_rcvd++;
933 dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
934 "%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd,
935 remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
937 if (xpc_partition_disengaged(part) &&
938 part->act_state == XPC_P_INACTIVE) {
940 xpc_update_partition_info_sn2(part, remote_rp_version,
941 &remote_rp_stamp, remote_rp_pa,
942 remote_vars_pa, remote_vars);
944 if (xpc_partition_deactivation_requested_sn2(partid)) {
946 * Other side is waiting on us to deactivate even though
947 * we already have.
949 return;
952 xpc_activate_partition(part);
953 return;
956 DBUG_ON(part->remote_rp_version == 0);
957 DBUG_ON(part_sn2->remote_vars_version == 0);
959 if (remote_rp_stamp != part->remote_rp_stamp) {
961 /* the other side rebooted */
963 DBUG_ON(xpc_partition_engaged_sn2(partid));
964 DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
966 xpc_update_partition_info_sn2(part, remote_rp_version,
967 &remote_rp_stamp, remote_rp_pa,
968 remote_vars_pa, remote_vars);
969 reactivate = 1;
972 if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
973 /* still waiting on other side to disengage from us */
974 return;
977 if (reactivate)
978 XPC_DEACTIVATE_PARTITION(part, xpReactivating);
979 else if (xpc_partition_deactivation_requested_sn2(partid))
980 XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
984 * Loop through the activation amo variables and process any bits
985 * which are set. Each bit indicates a nasid sending a partition
986 * activation or deactivation request.
988 * Return #of IRQs detected.
991 xpc_identify_activate_IRQ_sender_sn2(void)
993 int word, bit;
994 u64 nasid_mask;
995 u64 nasid; /* remote nasid */
996 int n_IRQs_detected = 0;
997 struct amo *act_amos;
999 act_amos = xpc_vars->amos_page + XPC_ACTIVATE_IRQ_AMOS;
1001 /* scan through act amo variable looking for non-zero entries */
1002 for (word = 0; word < xp_nasid_mask_words; word++) {
1004 if (xpc_exiting)
1005 break;
1007 nasid_mask = xpc_receive_IRQ_amo_sn2(&act_amos[word]);
1008 if (nasid_mask == 0) {
1009 /* no IRQs from nasids in this variable */
1010 continue;
1013 dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", word,
1014 nasid_mask);
1017 * If this nasid has been added to the machine since
1018 * our partition was reset, this will retain the
1019 * remote nasid in our reserved pages machine mask.
1020 * This is used in the event of module reload.
1022 xpc_mach_nasids[word] |= nasid_mask;
1024 /* locate the nasid(s) which sent interrupts */
1026 for (bit = 0; bit < (8 * sizeof(u64)); bit++) {
1027 if (nasid_mask & (1UL << bit)) {
1028 n_IRQs_detected++;
1029 nasid = XPC_NASID_FROM_W_B(word, bit);
1030 dev_dbg(xpc_part, "interrupt from nasid %ld\n",
1031 nasid);
1032 xpc_identify_activate_IRQ_req_sn2(nasid);
1036 return n_IRQs_detected;
1039 static void
1040 xpc_process_activate_IRQ_rcvd_sn2(int n_IRQs_expected)
1042 int n_IRQs_detected;
1044 n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1045 if (n_IRQs_detected < n_IRQs_expected) {
1046 /* retry once to help avoid missing amo */
1047 (void)xpc_identify_activate_IRQ_sender_sn2();
1052 * Guarantee that the kzalloc'd memory is cacheline aligned.
1054 static void *
1055 xpc_kzalloc_cacheline_aligned_sn2(size_t size, gfp_t flags, void **base)
1057 /* see if kzalloc will give us cachline aligned memory by default */
1058 *base = kzalloc(size, flags);
1059 if (*base == NULL)
1060 return NULL;
1062 if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
1063 return *base;
1065 kfree(*base);
1067 /* nope, we'll have to do it ourselves */
1068 *base = kzalloc(size + L1_CACHE_BYTES, flags);
1069 if (*base == NULL)
1070 return NULL;
1072 return (void *)L1_CACHE_ALIGN((u64)*base);
1076 * Setup the infrastructure necessary to support XPartition Communication
1077 * between the specified remote partition and the local one.
1079 static enum xp_retval
1080 xpc_setup_infrastructure_sn2(struct xpc_partition *part)
1082 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1083 enum xp_retval retval;
1084 int ret;
1085 int cpuid;
1086 int ch_number;
1087 struct xpc_channel *ch;
1088 struct timer_list *timer;
1089 short partid = XPC_PARTID(part);
1092 * Allocate all of the channel structures as a contiguous chunk of
1093 * memory.
1095 DBUG_ON(part->channels != NULL);
1096 part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
1097 GFP_KERNEL);
1098 if (part->channels == NULL) {
1099 dev_err(xpc_chan, "can't get memory for channels\n");
1100 return xpNoMemory;
1103 /* allocate all the required GET/PUT values */
1105 part_sn2->local_GPs =
1106 xpc_kzalloc_cacheline_aligned_sn2(XPC_GP_SIZE, GFP_KERNEL,
1107 &part_sn2->local_GPs_base);
1108 if (part_sn2->local_GPs == NULL) {
1109 dev_err(xpc_chan, "can't get memory for local get/put "
1110 "values\n");
1111 retval = xpNoMemory;
1112 goto out_1;
1115 part_sn2->remote_GPs =
1116 xpc_kzalloc_cacheline_aligned_sn2(XPC_GP_SIZE, GFP_KERNEL,
1117 &part_sn2->remote_GPs_base);
1118 if (part_sn2->remote_GPs == NULL) {
1119 dev_err(xpc_chan, "can't get memory for remote get/put "
1120 "values\n");
1121 retval = xpNoMemory;
1122 goto out_2;
1125 part_sn2->remote_GPs_pa = 0;
1127 /* allocate all the required open and close args */
1129 part->local_openclose_args =
1130 xpc_kzalloc_cacheline_aligned_sn2(XPC_OPENCLOSE_ARGS_SIZE,
1131 GFP_KERNEL,
1132 &part->local_openclose_args_base);
1133 if (part->local_openclose_args == NULL) {
1134 dev_err(xpc_chan, "can't get memory for local connect args\n");
1135 retval = xpNoMemory;
1136 goto out_3;
1139 part->remote_openclose_args =
1140 xpc_kzalloc_cacheline_aligned_sn2(XPC_OPENCLOSE_ARGS_SIZE,
1141 GFP_KERNEL,
1142 &part->remote_openclose_args_base);
1143 if (part->remote_openclose_args == NULL) {
1144 dev_err(xpc_chan, "can't get memory for remote connect args\n");
1145 retval = xpNoMemory;
1146 goto out_4;
1149 part_sn2->remote_openclose_args_pa = 0;
1151 part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1152 part->chctl.all_flags = 0;
1153 spin_lock_init(&part->chctl_lock);
1155 part_sn2->notify_IRQ_nasid = 0;
1156 part_sn2->notify_IRQ_phys_cpuid = 0;
1157 part_sn2->remote_chctl_amo_va = NULL;
1159 atomic_set(&part->channel_mgr_requests, 1);
1160 init_waitqueue_head(&part->channel_mgr_wq);
1162 sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1163 ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1164 IRQF_SHARED, part_sn2->notify_IRQ_owner,
1165 (void *)(u64)partid);
1166 if (ret != 0) {
1167 dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1168 "errno=%d\n", -ret);
1169 retval = xpLackOfResources;
1170 goto out_5;
1173 /* Setup a timer to check for dropped notify IRQs */
1174 timer = &part_sn2->dropped_notify_IRQ_timer;
1175 init_timer(timer);
1176 timer->function =
1177 (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1178 timer->data = (unsigned long)part;
1179 timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1180 add_timer(timer);
1182 part->nchannels = XPC_MAX_NCHANNELS;
1184 atomic_set(&part->nchannels_active, 0);
1185 atomic_set(&part->nchannels_engaged, 0);
1187 for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1188 ch = &part->channels[ch_number];
1190 ch->partid = partid;
1191 ch->number = ch_number;
1192 ch->flags = XPC_C_DISCONNECTED;
1194 ch->sn.sn2.local_GP = &part_sn2->local_GPs[ch_number];
1195 ch->local_openclose_args =
1196 &part->local_openclose_args[ch_number];
1198 atomic_set(&ch->kthreads_assigned, 0);
1199 atomic_set(&ch->kthreads_idle, 0);
1200 atomic_set(&ch->kthreads_active, 0);
1202 atomic_set(&ch->references, 0);
1203 atomic_set(&ch->n_to_notify, 0);
1205 spin_lock_init(&ch->lock);
1206 mutex_init(&ch->sn.sn2.msg_to_pull_mutex);
1207 init_completion(&ch->wdisconnect_wait);
1209 atomic_set(&ch->n_on_msg_allocate_wq, 0);
1210 init_waitqueue_head(&ch->msg_allocate_wq);
1211 init_waitqueue_head(&ch->idle_wq);
1215 * With the setting of the partition setup_state to XPC_P_SETUP, we're
1216 * declaring that this partition is ready to go.
1218 part->setup_state = XPC_P_SETUP;
1221 * Setup the per partition specific variables required by the
1222 * remote partition to establish channel connections with us.
1224 * The setting of the magic # indicates that these per partition
1225 * specific variables are ready to be used.
1227 xpc_vars_part[partid].GPs_pa = __pa(part_sn2->local_GPs);
1228 xpc_vars_part[partid].openclose_args_pa =
1229 __pa(part->local_openclose_args);
1230 xpc_vars_part[partid].chctl_amo_pa = __pa(part_sn2->local_chctl_amo_va);
1231 cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
1232 xpc_vars_part[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1233 xpc_vars_part[partid].notify_IRQ_phys_cpuid = cpu_physical_id(cpuid);
1234 xpc_vars_part[partid].nchannels = part->nchannels;
1235 xpc_vars_part[partid].magic = XPC_VP_MAGIC1;
1237 return xpSuccess;
1239 /* setup of infrastructure failed */
1240 out_5:
1241 kfree(part->remote_openclose_args_base);
1242 part->remote_openclose_args = NULL;
1243 out_4:
1244 kfree(part->local_openclose_args_base);
1245 part->local_openclose_args = NULL;
1246 out_3:
1247 kfree(part_sn2->remote_GPs_base);
1248 part_sn2->remote_GPs = NULL;
1249 out_2:
1250 kfree(part_sn2->local_GPs_base);
1251 part_sn2->local_GPs = NULL;
1252 out_1:
1253 kfree(part->channels);
1254 part->channels = NULL;
1255 return retval;
1259 * Teardown the infrastructure necessary to support XPartition Communication
1260 * between the specified remote partition and the local one.
1262 static void
1263 xpc_teardown_infrastructure_sn2(struct xpc_partition *part)
1265 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1266 short partid = XPC_PARTID(part);
1269 * We start off by making this partition inaccessible to local
1270 * processes by marking it as no longer setup. Then we make it
1271 * inaccessible to remote processes by clearing the XPC per partition
1272 * specific variable's magic # (which indicates that these variables
1273 * are no longer valid) and by ignoring all XPC notify IRQs sent to
1274 * this partition.
1277 DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
1278 DBUG_ON(atomic_read(&part->nchannels_active) != 0);
1279 DBUG_ON(part->setup_state != XPC_P_SETUP);
1280 part->setup_state = XPC_P_WTEARDOWN;
1282 xpc_vars_part[partid].magic = 0;
1284 free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1287 * Before proceeding with the teardown we have to wait until all
1288 * existing references cease.
1290 wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
1292 /* now we can begin tearing down the infrastructure */
1294 part->setup_state = XPC_P_TORNDOWN;
1296 /* in case we've still got outstanding timers registered... */
1297 del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1299 kfree(part->remote_openclose_args_base);
1300 part->remote_openclose_args = NULL;
1301 kfree(part->local_openclose_args_base);
1302 part->local_openclose_args = NULL;
1303 kfree(part_sn2->remote_GPs_base);
1304 part_sn2->remote_GPs = NULL;
1305 kfree(part_sn2->local_GPs_base);
1306 part_sn2->local_GPs = NULL;
1307 kfree(part->channels);
1308 part->channels = NULL;
1309 part_sn2->local_chctl_amo_va = NULL;
1313 * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1314 * (or multiple cachelines) from a remote partition.
1316 * src must be a cacheline aligned physical address on the remote partition.
1317 * dst must be a cacheline aligned virtual address on this partition.
1318 * cnt must be cacheline sized
1320 /* >>> Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1321 static enum xp_retval
1322 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1323 const void *src, size_t cnt)
1325 enum xp_retval ret;
1327 DBUG_ON((u64)src != L1_CACHE_ALIGN((u64)src));
1328 DBUG_ON((u64)dst != L1_CACHE_ALIGN((u64)dst));
1329 DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1331 if (part->act_state == XPC_P_DEACTIVATING)
1332 return part->reason;
1334 ret = xp_remote_memcpy(dst, src, cnt);
1335 if (ret != xpSuccess) {
1336 dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1337 " ret=%d\n", XPC_PARTID(part), ret);
1339 return ret;
1343 * Pull the remote per partition specific variables from the specified
1344 * partition.
1346 static enum xp_retval
1347 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1349 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1350 u8 buffer[L1_CACHE_BYTES * 2];
1351 struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1352 (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1353 struct xpc_vars_part_sn2 *pulled_entry;
1354 u64 remote_entry_cacheline_pa, remote_entry_pa;
1355 short partid = XPC_PARTID(part);
1356 enum xp_retval ret;
1358 /* pull the cacheline that contains the variables we're interested in */
1360 DBUG_ON(part_sn2->remote_vars_part_pa !=
1361 L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1362 DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1364 remote_entry_pa = part_sn2->remote_vars_part_pa +
1365 sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1367 remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1369 pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1370 + (remote_entry_pa &
1371 (L1_CACHE_BYTES - 1)));
1373 ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1374 (void *)remote_entry_cacheline_pa,
1375 L1_CACHE_BYTES);
1376 if (ret != xpSuccess) {
1377 dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1378 "partition %d, ret=%d\n", partid, ret);
1379 return ret;
1382 /* see if they've been set up yet */
1384 if (pulled_entry->magic != XPC_VP_MAGIC1 &&
1385 pulled_entry->magic != XPC_VP_MAGIC2) {
1387 if (pulled_entry->magic != 0) {
1388 dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1389 "partition %d has bad magic value (=0x%lx)\n",
1390 partid, sn_partition_id, pulled_entry->magic);
1391 return xpBadMagic;
1394 /* they've not been initialized yet */
1395 return xpRetry;
1398 if (xpc_vars_part[partid].magic == XPC_VP_MAGIC1) {
1400 /* validate the variables */
1402 if (pulled_entry->GPs_pa == 0 ||
1403 pulled_entry->openclose_args_pa == 0 ||
1404 pulled_entry->chctl_amo_pa == 0) {
1406 dev_err(xpc_chan, "partition %d's XPC vars_part for "
1407 "partition %d are not valid\n", partid,
1408 sn_partition_id);
1409 return xpInvalidAddress;
1412 /* the variables we imported look to be valid */
1414 part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1415 part_sn2->remote_openclose_args_pa =
1416 pulled_entry->openclose_args_pa;
1417 part_sn2->remote_chctl_amo_va =
1418 (struct amo *)__va(pulled_entry->chctl_amo_pa);
1419 part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1420 part_sn2->notify_IRQ_phys_cpuid =
1421 pulled_entry->notify_IRQ_phys_cpuid;
1423 if (part->nchannels > pulled_entry->nchannels)
1424 part->nchannels = pulled_entry->nchannels;
1426 /* let the other side know that we've pulled their variables */
1428 xpc_vars_part[partid].magic = XPC_VP_MAGIC2;
1431 if (pulled_entry->magic == XPC_VP_MAGIC1)
1432 return xpRetry;
1434 return xpSuccess;
1438 * Establish first contact with the remote partititon. This involves pulling
1439 * the XPC per partition variables from the remote partition and waiting for
1440 * the remote partition to pull ours.
1442 static enum xp_retval
1443 xpc_make_first_contact_sn2(struct xpc_partition *part)
1445 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1446 enum xp_retval ret;
1449 * Register the remote partition's amos with SAL so it can handle
1450 * and cleanup errors within that address range should the remote
1451 * partition go down. We don't unregister this range because it is
1452 * difficult to tell when outstanding writes to the remote partition
1453 * are finished and thus when it is safe to unregister. This should
1454 * not result in wasted space in the SAL xp_addr_region table because
1455 * we should get the same page for remote_amos_page_pa after module
1456 * reloads and system reboots.
1458 if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1459 PAGE_SIZE, 1) < 0) {
1460 dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1461 "xp_addr region\n", XPC_PARTID(part));
1463 ret = xpPhysAddrRegFailed;
1464 XPC_DEACTIVATE_PARTITION(part, ret);
1465 return ret;
1469 * Send activate IRQ to get other side to activate if they've not
1470 * already begun to do so.
1472 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1473 cnodeid_to_nasid(0),
1474 part_sn2->activate_IRQ_nasid,
1475 part_sn2->activate_IRQ_phys_cpuid);
1477 while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1478 if (ret != xpRetry) {
1479 XPC_DEACTIVATE_PARTITION(part, ret);
1480 return ret;
1483 dev_dbg(xpc_part, "waiting to make first contact with "
1484 "partition %d\n", XPC_PARTID(part));
1486 /* wait a 1/4 of a second or so */
1487 (void)msleep_interruptible(250);
1489 if (part->act_state == XPC_P_DEACTIVATING)
1490 return part->reason;
1493 return xpSuccess;
1497 * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1499 static u64
1500 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1502 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1503 unsigned long irq_flags;
1504 union xpc_channel_ctl_flags chctl;
1505 enum xp_retval ret;
1508 * See if there are any chctl flags to be handled.
1511 spin_lock_irqsave(&part->chctl_lock, irq_flags);
1512 chctl = part->chctl;
1513 if (chctl.all_flags != 0)
1514 part->chctl.all_flags = 0;
1516 spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1518 if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1519 ret = xpc_pull_remote_cachelines_sn2(part, part->
1520 remote_openclose_args,
1521 (void *)part_sn2->
1522 remote_openclose_args_pa,
1523 XPC_OPENCLOSE_ARGS_SIZE);
1524 if (ret != xpSuccess) {
1525 XPC_DEACTIVATE_PARTITION(part, ret);
1527 dev_dbg(xpc_chan, "failed to pull openclose args from "
1528 "partition %d, ret=%d\n", XPC_PARTID(part),
1529 ret);
1531 /* don't bother processing chctl flags anymore */
1532 chctl.all_flags = 0;
1536 if (xpc_any_msg_chctl_flags_set(&chctl)) {
1537 ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1538 (void *)part_sn2->remote_GPs_pa,
1539 XPC_GP_SIZE);
1540 if (ret != xpSuccess) {
1541 XPC_DEACTIVATE_PARTITION(part, ret);
1543 dev_dbg(xpc_chan, "failed to pull GPs from partition "
1544 "%d, ret=%d\n", XPC_PARTID(part), ret);
1546 /* don't bother processing chctl flags anymore */
1547 chctl.all_flags = 0;
1551 return chctl.all_flags;
1555 * Allocate the local message queue and the notify queue.
1557 static enum xp_retval
1558 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1560 unsigned long irq_flags;
1561 int nentries;
1562 size_t nbytes;
1564 for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1566 nbytes = nentries * ch->msg_size;
1567 ch->local_msgqueue =
1568 xpc_kzalloc_cacheline_aligned_sn2(nbytes, GFP_KERNEL,
1569 &ch->local_msgqueue_base);
1570 if (ch->local_msgqueue == NULL)
1571 continue;
1573 nbytes = nentries * sizeof(struct xpc_notify);
1574 ch->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1575 if (ch->notify_queue == NULL) {
1576 kfree(ch->local_msgqueue_base);
1577 ch->local_msgqueue = NULL;
1578 continue;
1581 spin_lock_irqsave(&ch->lock, irq_flags);
1582 if (nentries < ch->local_nentries) {
1583 dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1584 "partid=%d, channel=%d\n", nentries,
1585 ch->local_nentries, ch->partid, ch->number);
1587 ch->local_nentries = nentries;
1589 spin_unlock_irqrestore(&ch->lock, irq_flags);
1590 return xpSuccess;
1593 dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1594 "queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1595 return xpNoMemory;
1599 * Allocate the cached remote message queue.
1601 static enum xp_retval
1602 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1604 unsigned long irq_flags;
1605 int nentries;
1606 size_t nbytes;
1608 DBUG_ON(ch->remote_nentries <= 0);
1610 for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1612 nbytes = nentries * ch->msg_size;
1613 ch->remote_msgqueue =
1614 xpc_kzalloc_cacheline_aligned_sn2(nbytes, GFP_KERNEL,
1615 &ch->remote_msgqueue_base);
1616 if (ch->remote_msgqueue == NULL)
1617 continue;
1619 spin_lock_irqsave(&ch->lock, irq_flags);
1620 if (nentries < ch->remote_nentries) {
1621 dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1622 "partid=%d, channel=%d\n", nentries,
1623 ch->remote_nentries, ch->partid, ch->number);
1625 ch->remote_nentries = nentries;
1627 spin_unlock_irqrestore(&ch->lock, irq_flags);
1628 return xpSuccess;
1631 dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1632 "partid=%d, channel=%d\n", ch->partid, ch->number);
1633 return xpNoMemory;
1637 * Allocate message queues and other stuff associated with a channel.
1639 * Note: Assumes all of the channel sizes are filled in.
1641 static enum xp_retval
1642 xpc_allocate_msgqueues_sn2(struct xpc_channel *ch)
1644 enum xp_retval ret;
1646 DBUG_ON(ch->flags & XPC_C_SETUP);
1648 ret = xpc_allocate_local_msgqueue_sn2(ch);
1649 if (ret == xpSuccess) {
1651 ret = xpc_allocate_remote_msgqueue_sn2(ch);
1652 if (ret != xpSuccess) {
1653 kfree(ch->local_msgqueue_base);
1654 ch->local_msgqueue = NULL;
1655 kfree(ch->notify_queue);
1656 ch->notify_queue = NULL;
1659 return ret;
1663 * Free up message queues and other stuff that were allocated for the specified
1664 * channel.
1666 * Note: ch->reason and ch->reason_line are left set for debugging purposes,
1667 * they're cleared when XPC_C_DISCONNECTED is cleared.
1669 static void
1670 xpc_free_msgqueues_sn2(struct xpc_channel *ch)
1672 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1674 DBUG_ON(!spin_is_locked(&ch->lock));
1675 DBUG_ON(atomic_read(&ch->n_to_notify) != 0);
1677 ch->remote_msgqueue_pa = 0;
1678 ch->func = NULL;
1679 ch->key = NULL;
1680 ch->msg_size = 0;
1681 ch->local_nentries = 0;
1682 ch->remote_nentries = 0;
1683 ch->kthreads_assigned_limit = 0;
1684 ch->kthreads_idle_limit = 0;
1686 ch_sn2->local_GP->get = 0;
1687 ch_sn2->local_GP->put = 0;
1688 ch_sn2->remote_GP.get = 0;
1689 ch_sn2->remote_GP.put = 0;
1690 ch_sn2->w_local_GP.get = 0;
1691 ch_sn2->w_local_GP.put = 0;
1692 ch_sn2->w_remote_GP.get = 0;
1693 ch_sn2->w_remote_GP.put = 0;
1694 ch_sn2->next_msg_to_pull = 0;
1696 if (ch->flags & XPC_C_SETUP) {
1697 dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1698 ch->flags, ch->partid, ch->number);
1700 kfree(ch->local_msgqueue_base);
1701 ch->local_msgqueue = NULL;
1702 kfree(ch->remote_msgqueue_base);
1703 ch->remote_msgqueue = NULL;
1704 kfree(ch->notify_queue);
1705 ch->notify_queue = NULL;
1710 * Notify those who wanted to be notified upon delivery of their message.
1712 static void
1713 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1715 struct xpc_notify *notify;
1716 u8 notify_type;
1717 s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1719 while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1721 notify = &ch->notify_queue[get % ch->local_nentries];
1724 * See if the notify entry indicates it was associated with
1725 * a message who's sender wants to be notified. It is possible
1726 * that it is, but someone else is doing or has done the
1727 * notification.
1729 notify_type = notify->type;
1730 if (notify_type == 0 ||
1731 cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1732 continue;
1735 DBUG_ON(notify_type != XPC_N_CALL);
1737 atomic_dec(&ch->n_to_notify);
1739 if (notify->func != NULL) {
1740 dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, "
1741 "msg_number=%ld, partid=%d, channel=%d\n",
1742 (void *)notify, get, ch->partid, ch->number);
1744 notify->func(reason, ch->partid, ch->number,
1745 notify->key);
1747 dev_dbg(xpc_chan, "notify->func() returned, "
1748 "notify=0x%p, msg_number=%ld, partid=%d, "
1749 "channel=%d\n", (void *)notify, get,
1750 ch->partid, ch->number);
1755 static void
1756 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1758 xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1762 * Clear some of the msg flags in the local message queue.
1764 static inline void
1765 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1767 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1768 struct xpc_msg *msg;
1769 s64 get;
1771 get = ch_sn2->w_remote_GP.get;
1772 do {
1773 msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
1774 (get % ch->local_nentries) *
1775 ch->msg_size);
1776 msg->flags = 0;
1777 } while (++get < ch_sn2->remote_GP.get);
1781 * Clear some of the msg flags in the remote message queue.
1783 static inline void
1784 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1786 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1787 struct xpc_msg *msg;
1788 s64 put;
1790 put = ch_sn2->w_remote_GP.put;
1791 do {
1792 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
1793 (put % ch->remote_nentries) *
1794 ch->msg_size);
1795 msg->flags = 0;
1796 } while (++put < ch_sn2->remote_GP.put);
1799 static void
1800 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1802 struct xpc_channel *ch = &part->channels[ch_number];
1803 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1804 int nmsgs_sent;
1806 ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1808 /* See what, if anything, has changed for each connected channel */
1810 xpc_msgqueue_ref(ch);
1812 if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1813 ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1814 /* nothing changed since GPs were last pulled */
1815 xpc_msgqueue_deref(ch);
1816 return;
1819 if (!(ch->flags & XPC_C_CONNECTED)) {
1820 xpc_msgqueue_deref(ch);
1821 return;
1825 * First check to see if messages recently sent by us have been
1826 * received by the other side. (The remote GET value will have
1827 * changed since we last looked at it.)
1830 if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1833 * We need to notify any senders that want to be notified
1834 * that their sent messages have been received by their
1835 * intended recipients. We need to do this before updating
1836 * w_remote_GP.get so that we don't allocate the same message
1837 * queue entries prematurely (see xpc_allocate_msg()).
1839 if (atomic_read(&ch->n_to_notify) > 0) {
1841 * Notify senders that messages sent have been
1842 * received and delivered by the other side.
1844 xpc_notify_senders_sn2(ch, xpMsgDelivered,
1845 ch_sn2->remote_GP.get);
1849 * Clear msg->flags in previously sent messages, so that
1850 * they're ready for xpc_allocate_msg().
1852 xpc_clear_local_msgqueue_flags_sn2(ch);
1854 ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1856 dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, "
1857 "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1858 ch->number);
1861 * If anyone was waiting for message queue entries to become
1862 * available, wake them up.
1864 if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1865 wake_up(&ch->msg_allocate_wq);
1869 * Now check for newly sent messages by the other side. (The remote
1870 * PUT value will have changed since we last looked at it.)
1873 if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1875 * Clear msg->flags in previously received messages, so that
1876 * they're ready for xpc_get_deliverable_msg().
1878 xpc_clear_remote_msgqueue_flags_sn2(ch);
1880 ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1882 dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, "
1883 "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1884 ch->number);
1886 nmsgs_sent = ch_sn2->w_remote_GP.put - ch_sn2->w_local_GP.get;
1887 if (nmsgs_sent > 0) {
1888 dev_dbg(xpc_chan, "msgs waiting to be copied and "
1889 "delivered=%d, partid=%d, channel=%d\n",
1890 nmsgs_sent, ch->partid, ch->number);
1892 if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1893 xpc_activate_kthreads(ch, nmsgs_sent);
1897 xpc_msgqueue_deref(ch);
1900 static struct xpc_msg *
1901 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1903 struct xpc_partition *part = &xpc_partitions[ch->partid];
1904 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1905 struct xpc_msg *remote_msg, *msg;
1906 u32 msg_index, nmsgs;
1907 u64 msg_offset;
1908 enum xp_retval ret;
1910 if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1911 /* we were interrupted by a signal */
1912 return NULL;
1915 while (get >= ch_sn2->next_msg_to_pull) {
1917 /* pull as many messages as are ready and able to be pulled */
1919 msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1921 DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1922 nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1923 if (msg_index + nmsgs > ch->remote_nentries) {
1924 /* ignore the ones that wrap the msg queue for now */
1925 nmsgs = ch->remote_nentries - msg_index;
1928 msg_offset = msg_index * ch->msg_size;
1929 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
1930 remote_msg = (struct xpc_msg *)(ch->remote_msgqueue_pa +
1931 msg_offset);
1933 ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg,
1934 nmsgs * ch->msg_size);
1935 if (ret != xpSuccess) {
1937 dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1938 " msg %ld from partition %d, channel=%d, "
1939 "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1940 ch->partid, ch->number, ret);
1942 XPC_DEACTIVATE_PARTITION(part, ret);
1944 mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1945 return NULL;
1948 ch_sn2->next_msg_to_pull += nmsgs;
1951 mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1953 /* return the message we were looking for */
1954 msg_offset = (get % ch->remote_nentries) * ch->msg_size;
1955 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
1957 return msg;
1960 static int
1961 xpc_n_of_deliverable_msgs_sn2(struct xpc_channel *ch)
1963 return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
1967 * Get a message to be delivered.
1969 static struct xpc_msg *
1970 xpc_get_deliverable_msg_sn2(struct xpc_channel *ch)
1972 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1973 struct xpc_msg *msg = NULL;
1974 s64 get;
1976 do {
1977 if (ch->flags & XPC_C_DISCONNECTING)
1978 break;
1980 get = ch_sn2->w_local_GP.get;
1981 rmb(); /* guarantee that .get loads before .put */
1982 if (get == ch_sn2->w_remote_GP.put)
1983 break;
1985 /* There are messages waiting to be pulled and delivered.
1986 * We need to try to secure one for ourselves. We'll do this
1987 * by trying to increment w_local_GP.get and hope that no one
1988 * else beats us to it. If they do, we'll we'll simply have
1989 * to try again for the next one.
1992 if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
1993 /* we got the entry referenced by get */
1995 dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
1996 "partid=%d, channel=%d\n", get + 1,
1997 ch->partid, ch->number);
1999 /* pull the message from the remote partition */
2001 msg = xpc_pull_remote_msg_sn2(ch, get);
2003 DBUG_ON(msg != NULL && msg->number != get);
2004 DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE));
2005 DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY));
2007 break;
2010 } while (1);
2012 return msg;
2016 * Now we actually send the messages that are ready to be sent by advancing
2017 * the local message queue's Put value and then send a chctl msgrequest to the
2018 * recipient partition.
2020 static void
2021 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
2023 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2024 struct xpc_msg *msg;
2025 s64 put = initial_put + 1;
2026 int send_msgrequest = 0;
2028 while (1) {
2030 while (1) {
2031 if (put == ch_sn2->w_local_GP.put)
2032 break;
2034 msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
2035 (put % ch->local_nentries) *
2036 ch->msg_size);
2038 if (!(msg->flags & XPC_M_READY))
2039 break;
2041 put++;
2044 if (put == initial_put) {
2045 /* nothing's changed */
2046 break;
2049 if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2050 initial_put) {
2051 /* someone else beat us to it */
2052 DBUG_ON(ch_sn2->local_GP->put < initial_put);
2053 break;
2056 /* we just set the new value of local_GP->put */
2058 dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, "
2059 "channel=%d\n", put, ch->partid, ch->number);
2061 send_msgrequest = 1;
2064 * We need to ensure that the message referenced by
2065 * local_GP->put is not XPC_M_READY or that local_GP->put
2066 * equals w_local_GP.put, so we'll go have a look.
2068 initial_put = put;
2071 if (send_msgrequest)
2072 xpc_send_chctl_msgrequest_sn2(ch);
2076 * Allocate an entry for a message from the message queue associated with the
2077 * specified channel.
2079 static enum xp_retval
2080 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2081 struct xpc_msg **address_of_msg)
2083 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2084 struct xpc_msg *msg;
2085 enum xp_retval ret;
2086 s64 put;
2089 * Get the next available message entry from the local message queue.
2090 * If none are available, we'll make sure that we grab the latest
2091 * GP values.
2093 ret = xpTimeout;
2095 while (1) {
2097 put = ch_sn2->w_local_GP.put;
2098 rmb(); /* guarantee that .put loads before .get */
2099 if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2101 /* There are available message entries. We need to try
2102 * to secure one for ourselves. We'll do this by trying
2103 * to increment w_local_GP.put as long as someone else
2104 * doesn't beat us to it. If they do, we'll have to
2105 * try again.
2107 if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2108 put) {
2109 /* we got the entry referenced by put */
2110 break;
2112 continue; /* try again */
2116 * There aren't any available msg entries at this time.
2118 * In waiting for a message entry to become available,
2119 * we set a timeout in case the other side is not sending
2120 * completion interrupts. This lets us fake a notify IRQ
2121 * that will cause the notify IRQ handler to fetch the latest
2122 * GP values as if an interrupt was sent by the other side.
2124 if (ret == xpTimeout)
2125 xpc_send_chctl_local_msgrequest_sn2(ch);
2127 if (flags & XPC_NOWAIT)
2128 return xpNoWait;
2130 ret = xpc_allocate_msg_wait(ch);
2131 if (ret != xpInterrupted && ret != xpTimeout)
2132 return ret;
2135 /* get the message's address and initialize it */
2136 msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
2137 (put % ch->local_nentries) * ch->msg_size);
2139 DBUG_ON(msg->flags != 0);
2140 msg->number = put;
2142 dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, "
2143 "msg_number=%ld, partid=%d, channel=%d\n", put + 1,
2144 (void *)msg, msg->number, ch->partid, ch->number);
2146 *address_of_msg = msg;
2147 return xpSuccess;
2151 * Common code that does the actual sending of the message by advancing the
2152 * local message queue's Put value and sends a chctl msgrequest to the
2153 * partition the message is being sent to.
2155 static enum xp_retval
2156 xpc_send_msg_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2157 u16 payload_size, u8 notify_type, xpc_notify_func func,
2158 void *key)
2160 enum xp_retval ret = xpSuccess;
2161 struct xpc_msg *msg = msg;
2162 struct xpc_notify *notify = notify;
2163 s64 msg_number;
2164 s64 put;
2166 DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2168 if (XPC_MSG_SIZE(payload_size) > ch->msg_size)
2169 return xpPayloadTooBig;
2171 xpc_msgqueue_ref(ch);
2173 if (ch->flags & XPC_C_DISCONNECTING) {
2174 ret = ch->reason;
2175 goto out_1;
2177 if (!(ch->flags & XPC_C_CONNECTED)) {
2178 ret = xpNotConnected;
2179 goto out_1;
2182 ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2183 if (ret != xpSuccess)
2184 goto out_1;
2186 msg_number = msg->number;
2188 if (notify_type != 0) {
2190 * Tell the remote side to send an ACK interrupt when the
2191 * message has been delivered.
2193 msg->flags |= XPC_M_INTERRUPT;
2195 atomic_inc(&ch->n_to_notify);
2197 notify = &ch->notify_queue[msg_number % ch->local_nentries];
2198 notify->func = func;
2199 notify->key = key;
2200 notify->type = notify_type;
2202 /* >>> is a mb() needed here? */
2204 if (ch->flags & XPC_C_DISCONNECTING) {
2206 * An error occurred between our last error check and
2207 * this one. We will try to clear the type field from
2208 * the notify entry. If we succeed then
2209 * xpc_disconnect_channel() didn't already process
2210 * the notify entry.
2212 if (cmpxchg(&notify->type, notify_type, 0) ==
2213 notify_type) {
2214 atomic_dec(&ch->n_to_notify);
2215 ret = ch->reason;
2217 goto out_1;
2221 memcpy(&msg->payload, payload, payload_size);
2223 msg->flags |= XPC_M_READY;
2226 * The preceding store of msg->flags must occur before the following
2227 * load of local_GP->put.
2229 mb();
2231 /* see if the message is next in line to be sent, if so send it */
2233 put = ch->sn.sn2.local_GP->put;
2234 if (put == msg_number)
2235 xpc_send_msgs_sn2(ch, put);
2237 out_1:
2238 xpc_msgqueue_deref(ch);
2239 return ret;
2243 * Now we actually acknowledge the messages that have been delivered and ack'd
2244 * by advancing the cached remote message queue's Get value and if requested
2245 * send a chctl msgrequest to the message sender's partition.
2247 static void
2248 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2250 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2251 struct xpc_msg *msg;
2252 s64 get = initial_get + 1;
2253 int send_msgrequest = 0;
2255 while (1) {
2257 while (1) {
2258 if (get == ch_sn2->w_local_GP.get)
2259 break;
2261 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
2262 (get % ch->remote_nentries) *
2263 ch->msg_size);
2265 if (!(msg->flags & XPC_M_DONE))
2266 break;
2268 msg_flags |= msg->flags;
2269 get++;
2272 if (get == initial_get) {
2273 /* nothing's changed */
2274 break;
2277 if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2278 initial_get) {
2279 /* someone else beat us to it */
2280 DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2281 break;
2284 /* we just set the new value of local_GP->get */
2286 dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, "
2287 "channel=%d\n", get, ch->partid, ch->number);
2289 send_msgrequest = (msg_flags & XPC_M_INTERRUPT);
2292 * We need to ensure that the message referenced by
2293 * local_GP->get is not XPC_M_DONE or that local_GP->get
2294 * equals w_local_GP.get, so we'll go have a look.
2296 initial_get = get;
2299 if (send_msgrequest)
2300 xpc_send_chctl_msgrequest_sn2(ch);
2303 static void
2304 xpc_received_msg_sn2(struct xpc_channel *ch, struct xpc_msg *msg)
2306 s64 get;
2307 s64 msg_number = msg->number;
2309 dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n",
2310 (void *)msg, msg_number, ch->partid, ch->number);
2312 DBUG_ON((((u64)msg - (u64)ch->remote_msgqueue) / ch->msg_size) !=
2313 msg_number % ch->remote_nentries);
2314 DBUG_ON(msg->flags & XPC_M_DONE);
2316 msg->flags |= XPC_M_DONE;
2319 * The preceding store of msg->flags must occur before the following
2320 * load of local_GP->get.
2322 mb();
2325 * See if this message is next in line to be acknowledged as having
2326 * been delivered.
2328 get = ch->sn.sn2.local_GP->get;
2329 if (get == msg_number)
2330 xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2334 xpc_init_sn2(void)
2336 int ret;
2338 xpc_rsvd_page_init = xpc_rsvd_page_init_sn2;
2339 xpc_increment_heartbeat = xpc_increment_heartbeat_sn2;
2340 xpc_offline_heartbeat = xpc_offline_heartbeat_sn2;
2341 xpc_online_heartbeat = xpc_online_heartbeat_sn2;
2342 xpc_heartbeat_init = xpc_heartbeat_init_sn2;
2343 xpc_heartbeat_exit = xpc_heartbeat_exit_sn2;
2344 xpc_check_remote_hb = xpc_check_remote_hb_sn2;
2346 xpc_request_partition_activation = xpc_request_partition_activation_sn2;
2347 xpc_request_partition_reactivation =
2348 xpc_request_partition_reactivation_sn2;
2349 xpc_request_partition_deactivation =
2350 xpc_request_partition_deactivation_sn2;
2351 xpc_cancel_partition_deactivation_request =
2352 xpc_cancel_partition_deactivation_request_sn2;
2354 xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2;
2355 xpc_setup_infrastructure = xpc_setup_infrastructure_sn2;
2356 xpc_teardown_infrastructure = xpc_teardown_infrastructure_sn2;
2357 xpc_make_first_contact = xpc_make_first_contact_sn2;
2358 xpc_get_chctl_all_flags = xpc_get_chctl_all_flags_sn2;
2359 xpc_allocate_msgqueues = xpc_allocate_msgqueues_sn2;
2360 xpc_free_msgqueues = xpc_free_msgqueues_sn2;
2361 xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2;
2362 xpc_process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2;
2363 xpc_n_of_deliverable_msgs = xpc_n_of_deliverable_msgs_sn2;
2364 xpc_get_deliverable_msg = xpc_get_deliverable_msg_sn2;
2366 xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_sn2;
2367 xpc_partition_engaged = xpc_partition_engaged_sn2;
2368 xpc_any_partition_engaged = xpc_any_partition_engaged_sn2;
2369 xpc_indicate_partition_disengaged =
2370 xpc_indicate_partition_disengaged_sn2;
2371 xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_sn2;
2373 xpc_send_chctl_closerequest = xpc_send_chctl_closerequest_sn2;
2374 xpc_send_chctl_closereply = xpc_send_chctl_closereply_sn2;
2375 xpc_send_chctl_openrequest = xpc_send_chctl_openrequest_sn2;
2376 xpc_send_chctl_openreply = xpc_send_chctl_openreply_sn2;
2378 xpc_send_msg = xpc_send_msg_sn2;
2379 xpc_received_msg = xpc_received_msg_sn2;
2381 /* open up protections for IPI and [potentially] amo operations */
2382 xpc_allow_IPI_ops_sn2();
2383 xpc_allow_amo_ops_shub_wars_1_1_sn2();
2386 * This is safe to do before the xpc_hb_checker thread has started
2387 * because the handler releases a wait queue. If an interrupt is
2388 * received before the thread is waiting, it will not go to sleep,
2389 * but rather immediately process the interrupt.
2391 ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2392 "xpc hb", NULL);
2393 if (ret != 0) {
2394 dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2395 "errno=%d\n", -ret);
2396 xpc_disallow_IPI_ops_sn2();
2398 return ret;
2401 void
2402 xpc_exit_sn2(void)
2404 free_irq(SGI_XPC_ACTIVATE, NULL);
2405 xpc_disallow_IPI_ops_sn2();