perf_counter: Make call graph option consistent
[linux-2.6/x86.git] / include / linux / sched.h
blob0085d758d6453bd18c58632db93e5580f92bc642
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
33 * Scheduling policies
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
42 #ifdef __KERNEL__
44 struct sched_param {
45 int sched_priority;
48 #include <asm/param.h> /* for HZ */
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/path.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rculist.h>
81 #include <linux/rtmutex.h>
83 #include <linux/time.h>
84 #include <linux/param.h>
85 #include <linux/resource.h>
86 #include <linux/timer.h>
87 #include <linux/hrtimer.h>
88 #include <linux/task_io_accounting.h>
89 #include <linux/kobject.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
93 #include <asm/processor.h>
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct fs_struct;
100 struct bts_context;
101 struct perf_counter_context;
104 * List of flags we want to share for kernel threads,
105 * if only because they are not used by them anyway.
107 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110 * These are the constant used to fake the fixed-point load-average
111 * counting. Some notes:
112 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
113 * a load-average precision of 10 bits integer + 11 bits fractional
114 * - if you want to count load-averages more often, you need more
115 * precision, or rounding will get you. With 2-second counting freq,
116 * the EXP_n values would be 1981, 2034 and 2043 if still using only
117 * 11 bit fractions.
119 extern unsigned long avenrun[]; /* Load averages */
120 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122 #define FSHIFT 11 /* nr of bits of precision */
123 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
124 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
125 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
126 #define EXP_5 2014 /* 1/exp(5sec/5min) */
127 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129 #define CALC_LOAD(load,exp,n) \
130 load *= exp; \
131 load += n*(FIXED_1-exp); \
132 load >>= FSHIFT;
134 extern unsigned long total_forks;
135 extern int nr_threads;
136 DECLARE_PER_CPU(unsigned long, process_counts);
137 extern int nr_processes(void);
138 extern unsigned long nr_running(void);
139 extern unsigned long nr_uninterruptible(void);
140 extern unsigned long nr_iowait(void);
141 extern void calc_global_load(void);
142 extern u64 cpu_nr_migrations(int cpu);
144 extern unsigned long get_parent_ip(unsigned long addr);
146 struct seq_file;
147 struct cfs_rq;
148 struct task_group;
149 #ifdef CONFIG_SCHED_DEBUG
150 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
151 extern void proc_sched_set_task(struct task_struct *p);
152 extern void
153 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
154 #else
155 static inline void
156 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
159 static inline void proc_sched_set_task(struct task_struct *p)
162 static inline void
163 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
166 #endif
168 extern unsigned long long time_sync_thresh;
171 * Task state bitmask. NOTE! These bits are also
172 * encoded in fs/proc/array.c: get_task_state().
174 * We have two separate sets of flags: task->state
175 * is about runnability, while task->exit_state are
176 * about the task exiting. Confusing, but this way
177 * modifying one set can't modify the other one by
178 * mistake.
180 #define TASK_RUNNING 0
181 #define TASK_INTERRUPTIBLE 1
182 #define TASK_UNINTERRUPTIBLE 2
183 #define __TASK_STOPPED 4
184 #define __TASK_TRACED 8
185 /* in tsk->exit_state */
186 #define EXIT_ZOMBIE 16
187 #define EXIT_DEAD 32
188 /* in tsk->state again */
189 #define TASK_DEAD 64
190 #define TASK_WAKEKILL 128
192 /* Convenience macros for the sake of set_task_state */
193 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
194 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
195 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
197 /* Convenience macros for the sake of wake_up */
198 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
199 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
201 /* get_task_state() */
202 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
203 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
204 __TASK_TRACED)
206 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
207 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
208 #define task_is_stopped_or_traced(task) \
209 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
210 #define task_contributes_to_load(task) \
211 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
212 (task->flags & PF_FROZEN) == 0)
214 #define __set_task_state(tsk, state_value) \
215 do { (tsk)->state = (state_value); } while (0)
216 #define set_task_state(tsk, state_value) \
217 set_mb((tsk)->state, (state_value))
220 * set_current_state() includes a barrier so that the write of current->state
221 * is correctly serialised wrt the caller's subsequent test of whether to
222 * actually sleep:
224 * set_current_state(TASK_UNINTERRUPTIBLE);
225 * if (do_i_need_to_sleep())
226 * schedule();
228 * If the caller does not need such serialisation then use __set_current_state()
230 #define __set_current_state(state_value) \
231 do { current->state = (state_value); } while (0)
232 #define set_current_state(state_value) \
233 set_mb(current->state, (state_value))
235 /* Task command name length */
236 #define TASK_COMM_LEN 16
238 #include <linux/spinlock.h>
241 * This serializes "schedule()" and also protects
242 * the run-queue from deletions/modifications (but
243 * _adding_ to the beginning of the run-queue has
244 * a separate lock).
246 extern rwlock_t tasklist_lock;
247 extern spinlock_t mmlist_lock;
249 struct task_struct;
251 extern void sched_init(void);
252 extern void sched_init_smp(void);
253 extern asmlinkage void schedule_tail(struct task_struct *prev);
254 extern void init_idle(struct task_struct *idle, int cpu);
255 extern void init_idle_bootup_task(struct task_struct *idle);
257 extern int runqueue_is_locked(void);
258 extern void task_rq_unlock_wait(struct task_struct *p);
260 extern cpumask_var_t nohz_cpu_mask;
261 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
262 extern int select_nohz_load_balancer(int cpu);
263 extern int get_nohz_load_balancer(void);
264 #else
265 static inline int select_nohz_load_balancer(int cpu)
267 return 0;
269 #endif
272 * Only dump TASK_* tasks. (0 for all tasks)
274 extern void show_state_filter(unsigned long state_filter);
276 static inline void show_state(void)
278 show_state_filter(0);
281 extern void show_regs(struct pt_regs *);
284 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
285 * task), SP is the stack pointer of the first frame that should be shown in the back
286 * trace (or NULL if the entire call-chain of the task should be shown).
288 extern void show_stack(struct task_struct *task, unsigned long *sp);
290 void io_schedule(void);
291 long io_schedule_timeout(long timeout);
293 extern void cpu_init (void);
294 extern void trap_init(void);
295 extern void update_process_times(int user);
296 extern void scheduler_tick(void);
298 extern void sched_show_task(struct task_struct *p);
300 #ifdef CONFIG_DETECT_SOFTLOCKUP
301 extern void softlockup_tick(void);
302 extern void touch_softlockup_watchdog(void);
303 extern void touch_all_softlockup_watchdogs(void);
304 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
305 struct file *filp, void __user *buffer,
306 size_t *lenp, loff_t *ppos);
307 extern unsigned int softlockup_panic;
308 extern int softlockup_thresh;
309 #else
310 static inline void softlockup_tick(void)
313 static inline void touch_softlockup_watchdog(void)
316 static inline void touch_all_softlockup_watchdogs(void)
319 #endif
321 #ifdef CONFIG_DETECT_HUNG_TASK
322 extern unsigned int sysctl_hung_task_panic;
323 extern unsigned long sysctl_hung_task_check_count;
324 extern unsigned long sysctl_hung_task_timeout_secs;
325 extern unsigned long sysctl_hung_task_warnings;
326 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
327 struct file *filp, void __user *buffer,
328 size_t *lenp, loff_t *ppos);
329 #endif
331 /* Attach to any functions which should be ignored in wchan output. */
332 #define __sched __attribute__((__section__(".sched.text")))
334 /* Linker adds these: start and end of __sched functions */
335 extern char __sched_text_start[], __sched_text_end[];
337 /* Is this address in the __sched functions? */
338 extern int in_sched_functions(unsigned long addr);
340 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
341 extern signed long schedule_timeout(signed long timeout);
342 extern signed long schedule_timeout_interruptible(signed long timeout);
343 extern signed long schedule_timeout_killable(signed long timeout);
344 extern signed long schedule_timeout_uninterruptible(signed long timeout);
345 asmlinkage void __schedule(void);
346 asmlinkage void schedule(void);
347 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
349 struct nsproxy;
350 struct user_namespace;
353 * Default maximum number of active map areas, this limits the number of vmas
354 * per mm struct. Users can overwrite this number by sysctl but there is a
355 * problem.
357 * When a program's coredump is generated as ELF format, a section is created
358 * per a vma. In ELF, the number of sections is represented in unsigned short.
359 * This means the number of sections should be smaller than 65535 at coredump.
360 * Because the kernel adds some informative sections to a image of program at
361 * generating coredump, we need some margin. The number of extra sections is
362 * 1-3 now and depends on arch. We use "5" as safe margin, here.
364 #define MAPCOUNT_ELF_CORE_MARGIN (5)
365 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
367 extern int sysctl_max_map_count;
369 #include <linux/aio.h>
371 extern unsigned long
372 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
373 unsigned long, unsigned long);
374 extern unsigned long
375 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
376 unsigned long len, unsigned long pgoff,
377 unsigned long flags);
378 extern void arch_unmap_area(struct mm_struct *, unsigned long);
379 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
381 #if USE_SPLIT_PTLOCKS
383 * The mm counters are not protected by its page_table_lock,
384 * so must be incremented atomically.
386 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
387 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
388 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
389 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
390 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
392 #else /* !USE_SPLIT_PTLOCKS */
394 * The mm counters are protected by its page_table_lock,
395 * so can be incremented directly.
397 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
398 #define get_mm_counter(mm, member) ((mm)->_##member)
399 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
400 #define inc_mm_counter(mm, member) (mm)->_##member++
401 #define dec_mm_counter(mm, member) (mm)->_##member--
403 #endif /* !USE_SPLIT_PTLOCKS */
405 #define get_mm_rss(mm) \
406 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
407 #define update_hiwater_rss(mm) do { \
408 unsigned long _rss = get_mm_rss(mm); \
409 if ((mm)->hiwater_rss < _rss) \
410 (mm)->hiwater_rss = _rss; \
411 } while (0)
412 #define update_hiwater_vm(mm) do { \
413 if ((mm)->hiwater_vm < (mm)->total_vm) \
414 (mm)->hiwater_vm = (mm)->total_vm; \
415 } while (0)
417 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
419 return max(mm->hiwater_rss, get_mm_rss(mm));
422 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
424 return max(mm->hiwater_vm, mm->total_vm);
427 extern void set_dumpable(struct mm_struct *mm, int value);
428 extern int get_dumpable(struct mm_struct *mm);
430 /* mm flags */
431 /* dumpable bits */
432 #define MMF_DUMPABLE 0 /* core dump is permitted */
433 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
434 #define MMF_DUMPABLE_BITS 2
436 /* coredump filter bits */
437 #define MMF_DUMP_ANON_PRIVATE 2
438 #define MMF_DUMP_ANON_SHARED 3
439 #define MMF_DUMP_MAPPED_PRIVATE 4
440 #define MMF_DUMP_MAPPED_SHARED 5
441 #define MMF_DUMP_ELF_HEADERS 6
442 #define MMF_DUMP_HUGETLB_PRIVATE 7
443 #define MMF_DUMP_HUGETLB_SHARED 8
444 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
445 #define MMF_DUMP_FILTER_BITS 7
446 #define MMF_DUMP_FILTER_MASK \
447 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
448 #define MMF_DUMP_FILTER_DEFAULT \
449 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
450 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
452 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
453 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
454 #else
455 # define MMF_DUMP_MASK_DEFAULT_ELF 0
456 #endif
458 struct sighand_struct {
459 atomic_t count;
460 struct k_sigaction action[_NSIG];
461 spinlock_t siglock;
462 wait_queue_head_t signalfd_wqh;
465 struct pacct_struct {
466 int ac_flag;
467 long ac_exitcode;
468 unsigned long ac_mem;
469 cputime_t ac_utime, ac_stime;
470 unsigned long ac_minflt, ac_majflt;
474 * struct task_cputime - collected CPU time counts
475 * @utime: time spent in user mode, in &cputime_t units
476 * @stime: time spent in kernel mode, in &cputime_t units
477 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
479 * This structure groups together three kinds of CPU time that are
480 * tracked for threads and thread groups. Most things considering
481 * CPU time want to group these counts together and treat all three
482 * of them in parallel.
484 struct task_cputime {
485 cputime_t utime;
486 cputime_t stime;
487 unsigned long long sum_exec_runtime;
489 /* Alternate field names when used to cache expirations. */
490 #define prof_exp stime
491 #define virt_exp utime
492 #define sched_exp sum_exec_runtime
494 #define INIT_CPUTIME \
495 (struct task_cputime) { \
496 .utime = cputime_zero, \
497 .stime = cputime_zero, \
498 .sum_exec_runtime = 0, \
502 * struct thread_group_cputimer - thread group interval timer counts
503 * @cputime: thread group interval timers.
504 * @running: non-zero when there are timers running and
505 * @cputime receives updates.
506 * @lock: lock for fields in this struct.
508 * This structure contains the version of task_cputime, above, that is
509 * used for thread group CPU timer calculations.
511 struct thread_group_cputimer {
512 struct task_cputime cputime;
513 int running;
514 spinlock_t lock;
518 * NOTE! "signal_struct" does not have it's own
519 * locking, because a shared signal_struct always
520 * implies a shared sighand_struct, so locking
521 * sighand_struct is always a proper superset of
522 * the locking of signal_struct.
524 struct signal_struct {
525 atomic_t count;
526 atomic_t live;
528 wait_queue_head_t wait_chldexit; /* for wait4() */
530 /* current thread group signal load-balancing target: */
531 struct task_struct *curr_target;
533 /* shared signal handling: */
534 struct sigpending shared_pending;
536 /* thread group exit support */
537 int group_exit_code;
538 /* overloaded:
539 * - notify group_exit_task when ->count is equal to notify_count
540 * - everyone except group_exit_task is stopped during signal delivery
541 * of fatal signals, group_exit_task processes the signal.
543 int notify_count;
544 struct task_struct *group_exit_task;
546 /* thread group stop support, overloads group_exit_code too */
547 int group_stop_count;
548 unsigned int flags; /* see SIGNAL_* flags below */
550 /* POSIX.1b Interval Timers */
551 struct list_head posix_timers;
553 /* ITIMER_REAL timer for the process */
554 struct hrtimer real_timer;
555 struct pid *leader_pid;
556 ktime_t it_real_incr;
558 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
559 cputime_t it_prof_expires, it_virt_expires;
560 cputime_t it_prof_incr, it_virt_incr;
563 * Thread group totals for process CPU timers.
564 * See thread_group_cputimer(), et al, for details.
566 struct thread_group_cputimer cputimer;
568 /* Earliest-expiration cache. */
569 struct task_cputime cputime_expires;
571 struct list_head cpu_timers[3];
573 struct pid *tty_old_pgrp;
575 /* boolean value for session group leader */
576 int leader;
578 struct tty_struct *tty; /* NULL if no tty */
581 * Cumulative resource counters for dead threads in the group,
582 * and for reaped dead child processes forked by this group.
583 * Live threads maintain their own counters and add to these
584 * in __exit_signal, except for the group leader.
586 cputime_t utime, stime, cutime, cstime;
587 cputime_t gtime;
588 cputime_t cgtime;
589 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
590 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
591 unsigned long inblock, oublock, cinblock, coublock;
592 struct task_io_accounting ioac;
595 * Cumulative ns of schedule CPU time fo dead threads in the
596 * group, not including a zombie group leader, (This only differs
597 * from jiffies_to_ns(utime + stime) if sched_clock uses something
598 * other than jiffies.)
600 unsigned long long sum_sched_runtime;
603 * We don't bother to synchronize most readers of this at all,
604 * because there is no reader checking a limit that actually needs
605 * to get both rlim_cur and rlim_max atomically, and either one
606 * alone is a single word that can safely be read normally.
607 * getrlimit/setrlimit use task_lock(current->group_leader) to
608 * protect this instead of the siglock, because they really
609 * have no need to disable irqs.
611 struct rlimit rlim[RLIM_NLIMITS];
613 #ifdef CONFIG_BSD_PROCESS_ACCT
614 struct pacct_struct pacct; /* per-process accounting information */
615 #endif
616 #ifdef CONFIG_TASKSTATS
617 struct taskstats *stats;
618 #endif
619 #ifdef CONFIG_AUDIT
620 unsigned audit_tty;
621 struct tty_audit_buf *tty_audit_buf;
622 #endif
625 /* Context switch must be unlocked if interrupts are to be enabled */
626 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
627 # define __ARCH_WANT_UNLOCKED_CTXSW
628 #endif
631 * Bits in flags field of signal_struct.
633 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
634 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
635 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
636 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
638 * Pending notifications to parent.
640 #define SIGNAL_CLD_STOPPED 0x00000010
641 #define SIGNAL_CLD_CONTINUED 0x00000020
642 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
644 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
646 /* If true, all threads except ->group_exit_task have pending SIGKILL */
647 static inline int signal_group_exit(const struct signal_struct *sig)
649 return (sig->flags & SIGNAL_GROUP_EXIT) ||
650 (sig->group_exit_task != NULL);
654 * Some day this will be a full-fledged user tracking system..
656 struct user_struct {
657 atomic_t __count; /* reference count */
658 atomic_t processes; /* How many processes does this user have? */
659 atomic_t files; /* How many open files does this user have? */
660 atomic_t sigpending; /* How many pending signals does this user have? */
661 #ifdef CONFIG_INOTIFY_USER
662 atomic_t inotify_watches; /* How many inotify watches does this user have? */
663 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
664 #endif
665 #ifdef CONFIG_EPOLL
666 atomic_t epoll_watches; /* The number of file descriptors currently watched */
667 #endif
668 #ifdef CONFIG_POSIX_MQUEUE
669 /* protected by mq_lock */
670 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
671 #endif
672 unsigned long locked_shm; /* How many pages of mlocked shm ? */
674 #ifdef CONFIG_KEYS
675 struct key *uid_keyring; /* UID specific keyring */
676 struct key *session_keyring; /* UID's default session keyring */
677 #endif
679 /* Hash table maintenance information */
680 struct hlist_node uidhash_node;
681 uid_t uid;
682 struct user_namespace *user_ns;
684 #ifdef CONFIG_USER_SCHED
685 struct task_group *tg;
686 #ifdef CONFIG_SYSFS
687 struct kobject kobj;
688 struct delayed_work work;
689 #endif
690 #endif
692 #ifdef CONFIG_PERF_COUNTERS
693 atomic_long_t locked_vm;
694 #endif
697 extern int uids_sysfs_init(void);
699 extern struct user_struct *find_user(uid_t);
701 extern struct user_struct root_user;
702 #define INIT_USER (&root_user)
705 struct backing_dev_info;
706 struct reclaim_state;
708 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
709 struct sched_info {
710 /* cumulative counters */
711 unsigned long pcount; /* # of times run on this cpu */
712 unsigned long long run_delay; /* time spent waiting on a runqueue */
714 /* timestamps */
715 unsigned long long last_arrival,/* when we last ran on a cpu */
716 last_queued; /* when we were last queued to run */
717 #ifdef CONFIG_SCHEDSTATS
718 /* BKL stats */
719 unsigned int bkl_count;
720 #endif
722 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
724 #ifdef CONFIG_TASK_DELAY_ACCT
725 struct task_delay_info {
726 spinlock_t lock;
727 unsigned int flags; /* Private per-task flags */
729 /* For each stat XXX, add following, aligned appropriately
731 * struct timespec XXX_start, XXX_end;
732 * u64 XXX_delay;
733 * u32 XXX_count;
735 * Atomicity of updates to XXX_delay, XXX_count protected by
736 * single lock above (split into XXX_lock if contention is an issue).
740 * XXX_count is incremented on every XXX operation, the delay
741 * associated with the operation is added to XXX_delay.
742 * XXX_delay contains the accumulated delay time in nanoseconds.
744 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
745 u64 blkio_delay; /* wait for sync block io completion */
746 u64 swapin_delay; /* wait for swapin block io completion */
747 u32 blkio_count; /* total count of the number of sync block */
748 /* io operations performed */
749 u32 swapin_count; /* total count of the number of swapin block */
750 /* io operations performed */
752 struct timespec freepages_start, freepages_end;
753 u64 freepages_delay; /* wait for memory reclaim */
754 u32 freepages_count; /* total count of memory reclaim */
756 #endif /* CONFIG_TASK_DELAY_ACCT */
758 static inline int sched_info_on(void)
760 #ifdef CONFIG_SCHEDSTATS
761 return 1;
762 #elif defined(CONFIG_TASK_DELAY_ACCT)
763 extern int delayacct_on;
764 return delayacct_on;
765 #else
766 return 0;
767 #endif
770 enum cpu_idle_type {
771 CPU_IDLE,
772 CPU_NOT_IDLE,
773 CPU_NEWLY_IDLE,
774 CPU_MAX_IDLE_TYPES
778 * sched-domains (multiprocessor balancing) declarations:
782 * Increase resolution of nice-level calculations:
784 #define SCHED_LOAD_SHIFT 10
785 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
787 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
789 #ifdef CONFIG_SMP
790 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
791 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
792 #define SD_BALANCE_EXEC 4 /* Balance on exec */
793 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
794 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
795 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
796 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
797 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
798 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
799 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
800 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
801 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
803 enum powersavings_balance_level {
804 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
805 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
806 * first for long running threads
808 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
809 * cpu package for power savings
811 MAX_POWERSAVINGS_BALANCE_LEVELS
814 extern int sched_mc_power_savings, sched_smt_power_savings;
816 static inline int sd_balance_for_mc_power(void)
818 if (sched_smt_power_savings)
819 return SD_POWERSAVINGS_BALANCE;
821 return 0;
824 static inline int sd_balance_for_package_power(void)
826 if (sched_mc_power_savings | sched_smt_power_savings)
827 return SD_POWERSAVINGS_BALANCE;
829 return 0;
833 * Optimise SD flags for power savings:
834 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
835 * Keep default SD flags if sched_{smt,mc}_power_saving=0
838 static inline int sd_power_saving_flags(void)
840 if (sched_mc_power_savings | sched_smt_power_savings)
841 return SD_BALANCE_NEWIDLE;
843 return 0;
846 struct sched_group {
847 struct sched_group *next; /* Must be a circular list */
850 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
851 * single CPU. This is read only (except for setup, hotplug CPU).
852 * Note : Never change cpu_power without recompute its reciprocal
854 unsigned int __cpu_power;
856 * reciprocal value of cpu_power to avoid expensive divides
857 * (see include/linux/reciprocal_div.h)
859 u32 reciprocal_cpu_power;
862 * The CPUs this group covers.
864 * NOTE: this field is variable length. (Allocated dynamically
865 * by attaching extra space to the end of the structure,
866 * depending on how many CPUs the kernel has booted up with)
868 * It is also be embedded into static data structures at build
869 * time. (See 'struct static_sched_group' in kernel/sched.c)
871 unsigned long cpumask[0];
874 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
876 return to_cpumask(sg->cpumask);
879 enum sched_domain_level {
880 SD_LV_NONE = 0,
881 SD_LV_SIBLING,
882 SD_LV_MC,
883 SD_LV_CPU,
884 SD_LV_NODE,
885 SD_LV_ALLNODES,
886 SD_LV_MAX
889 struct sched_domain_attr {
890 int relax_domain_level;
893 #define SD_ATTR_INIT (struct sched_domain_attr) { \
894 .relax_domain_level = -1, \
897 struct sched_domain {
898 /* These fields must be setup */
899 struct sched_domain *parent; /* top domain must be null terminated */
900 struct sched_domain *child; /* bottom domain must be null terminated */
901 struct sched_group *groups; /* the balancing groups of the domain */
902 unsigned long min_interval; /* Minimum balance interval ms */
903 unsigned long max_interval; /* Maximum balance interval ms */
904 unsigned int busy_factor; /* less balancing by factor if busy */
905 unsigned int imbalance_pct; /* No balance until over watermark */
906 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
907 unsigned int busy_idx;
908 unsigned int idle_idx;
909 unsigned int newidle_idx;
910 unsigned int wake_idx;
911 unsigned int forkexec_idx;
912 int flags; /* See SD_* */
913 enum sched_domain_level level;
915 /* Runtime fields. */
916 unsigned long last_balance; /* init to jiffies. units in jiffies */
917 unsigned int balance_interval; /* initialise to 1. units in ms. */
918 unsigned int nr_balance_failed; /* initialise to 0 */
920 u64 last_update;
922 #ifdef CONFIG_SCHEDSTATS
923 /* load_balance() stats */
924 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
925 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
926 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
927 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
928 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
929 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
930 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
931 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
933 /* Active load balancing */
934 unsigned int alb_count;
935 unsigned int alb_failed;
936 unsigned int alb_pushed;
938 /* SD_BALANCE_EXEC stats */
939 unsigned int sbe_count;
940 unsigned int sbe_balanced;
941 unsigned int sbe_pushed;
943 /* SD_BALANCE_FORK stats */
944 unsigned int sbf_count;
945 unsigned int sbf_balanced;
946 unsigned int sbf_pushed;
948 /* try_to_wake_up() stats */
949 unsigned int ttwu_wake_remote;
950 unsigned int ttwu_move_affine;
951 unsigned int ttwu_move_balance;
952 #endif
953 #ifdef CONFIG_SCHED_DEBUG
954 char *name;
955 #endif
958 * Span of all CPUs in this domain.
960 * NOTE: this field is variable length. (Allocated dynamically
961 * by attaching extra space to the end of the structure,
962 * depending on how many CPUs the kernel has booted up with)
964 * It is also be embedded into static data structures at build
965 * time. (See 'struct static_sched_domain' in kernel/sched.c)
967 unsigned long span[0];
970 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
972 return to_cpumask(sd->span);
975 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
976 struct sched_domain_attr *dattr_new);
978 /* Test a flag in parent sched domain */
979 static inline int test_sd_parent(struct sched_domain *sd, int flag)
981 if (sd->parent && (sd->parent->flags & flag))
982 return 1;
984 return 0;
987 #else /* CONFIG_SMP */
989 struct sched_domain_attr;
991 static inline void
992 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
993 struct sched_domain_attr *dattr_new)
996 #endif /* !CONFIG_SMP */
998 struct io_context; /* See blkdev.h */
1001 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1002 extern void prefetch_stack(struct task_struct *t);
1003 #else
1004 static inline void prefetch_stack(struct task_struct *t) { }
1005 #endif
1007 struct audit_context; /* See audit.c */
1008 struct mempolicy;
1009 struct pipe_inode_info;
1010 struct uts_namespace;
1012 struct rq;
1013 struct sched_domain;
1015 struct sched_class {
1016 const struct sched_class *next;
1018 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1019 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1020 void (*yield_task) (struct rq *rq);
1022 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
1024 struct task_struct * (*pick_next_task) (struct rq *rq);
1025 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1027 #ifdef CONFIG_SMP
1028 int (*select_task_rq)(struct task_struct *p, int sync);
1030 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1031 struct rq *busiest, unsigned long max_load_move,
1032 struct sched_domain *sd, enum cpu_idle_type idle,
1033 int *all_pinned, int *this_best_prio);
1035 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1036 struct rq *busiest, struct sched_domain *sd,
1037 enum cpu_idle_type idle);
1038 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1039 int (*needs_post_schedule) (struct rq *this_rq);
1040 void (*post_schedule) (struct rq *this_rq);
1041 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1043 void (*set_cpus_allowed)(struct task_struct *p,
1044 const struct cpumask *newmask);
1046 void (*rq_online)(struct rq *rq);
1047 void (*rq_offline)(struct rq *rq);
1048 #endif
1050 void (*set_curr_task) (struct rq *rq);
1051 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1052 void (*task_new) (struct rq *rq, struct task_struct *p);
1054 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1055 int running);
1056 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1057 int running);
1058 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1059 int oldprio, int running);
1061 #ifdef CONFIG_FAIR_GROUP_SCHED
1062 void (*moved_group) (struct task_struct *p);
1063 #endif
1066 struct load_weight {
1067 unsigned long weight, inv_weight;
1071 * CFS stats for a schedulable entity (task, task-group etc)
1073 * Current field usage histogram:
1075 * 4 se->block_start
1076 * 4 se->run_node
1077 * 4 se->sleep_start
1078 * 6 se->load.weight
1080 struct sched_entity {
1081 struct load_weight load; /* for load-balancing */
1082 struct rb_node run_node;
1083 struct list_head group_node;
1084 unsigned int on_rq;
1086 u64 exec_start;
1087 u64 sum_exec_runtime;
1088 u64 vruntime;
1089 u64 prev_sum_exec_runtime;
1091 u64 last_wakeup;
1092 u64 avg_overlap;
1094 u64 nr_migrations;
1096 u64 start_runtime;
1097 u64 avg_wakeup;
1099 #ifdef CONFIG_SCHEDSTATS
1100 u64 wait_start;
1101 u64 wait_max;
1102 u64 wait_count;
1103 u64 wait_sum;
1105 u64 sleep_start;
1106 u64 sleep_max;
1107 s64 sum_sleep_runtime;
1109 u64 block_start;
1110 u64 block_max;
1111 u64 exec_max;
1112 u64 slice_max;
1114 u64 nr_migrations_cold;
1115 u64 nr_failed_migrations_affine;
1116 u64 nr_failed_migrations_running;
1117 u64 nr_failed_migrations_hot;
1118 u64 nr_forced_migrations;
1119 u64 nr_forced2_migrations;
1121 u64 nr_wakeups;
1122 u64 nr_wakeups_sync;
1123 u64 nr_wakeups_migrate;
1124 u64 nr_wakeups_local;
1125 u64 nr_wakeups_remote;
1126 u64 nr_wakeups_affine;
1127 u64 nr_wakeups_affine_attempts;
1128 u64 nr_wakeups_passive;
1129 u64 nr_wakeups_idle;
1130 #endif
1132 #ifdef CONFIG_FAIR_GROUP_SCHED
1133 struct sched_entity *parent;
1134 /* rq on which this entity is (to be) queued: */
1135 struct cfs_rq *cfs_rq;
1136 /* rq "owned" by this entity/group: */
1137 struct cfs_rq *my_q;
1138 #endif
1141 struct sched_rt_entity {
1142 struct list_head run_list;
1143 unsigned long timeout;
1144 unsigned int time_slice;
1145 int nr_cpus_allowed;
1147 struct sched_rt_entity *back;
1148 #ifdef CONFIG_RT_GROUP_SCHED
1149 struct sched_rt_entity *parent;
1150 /* rq on which this entity is (to be) queued: */
1151 struct rt_rq *rt_rq;
1152 /* rq "owned" by this entity/group: */
1153 struct rt_rq *my_q;
1154 #endif
1157 struct task_struct {
1158 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1159 void *stack;
1160 atomic_t usage;
1161 unsigned int flags; /* per process flags, defined below */
1162 unsigned int ptrace;
1164 int lock_depth; /* BKL lock depth */
1166 #ifdef CONFIG_SMP
1167 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1168 int oncpu;
1169 #endif
1170 #endif
1172 int prio, static_prio, normal_prio;
1173 unsigned int rt_priority;
1174 const struct sched_class *sched_class;
1175 struct sched_entity se;
1176 struct sched_rt_entity rt;
1178 #ifdef CONFIG_PREEMPT_NOTIFIERS
1179 /* list of struct preempt_notifier: */
1180 struct hlist_head preempt_notifiers;
1181 #endif
1184 * fpu_counter contains the number of consecutive context switches
1185 * that the FPU is used. If this is over a threshold, the lazy fpu
1186 * saving becomes unlazy to save the trap. This is an unsigned char
1187 * so that after 256 times the counter wraps and the behavior turns
1188 * lazy again; this to deal with bursty apps that only use FPU for
1189 * a short time
1191 unsigned char fpu_counter;
1192 #ifdef CONFIG_BLK_DEV_IO_TRACE
1193 unsigned int btrace_seq;
1194 #endif
1196 unsigned int policy;
1197 cpumask_t cpus_allowed;
1199 #ifdef CONFIG_PREEMPT_RCU
1200 int rcu_read_lock_nesting;
1201 int rcu_flipctr_idx;
1202 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1204 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1205 struct sched_info sched_info;
1206 #endif
1208 struct list_head tasks;
1209 struct plist_node pushable_tasks;
1211 struct mm_struct *mm, *active_mm;
1213 /* task state */
1214 struct linux_binfmt *binfmt;
1215 int exit_state;
1216 int exit_code, exit_signal;
1217 int pdeath_signal; /* The signal sent when the parent dies */
1218 /* ??? */
1219 unsigned int personality;
1220 unsigned did_exec:1;
1221 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1222 * execve */
1223 pid_t pid;
1224 pid_t tgid;
1226 /* Canary value for the -fstack-protector gcc feature */
1227 unsigned long stack_canary;
1230 * pointers to (original) parent process, youngest child, younger sibling,
1231 * older sibling, respectively. (p->father can be replaced with
1232 * p->real_parent->pid)
1234 struct task_struct *real_parent; /* real parent process */
1235 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1237 * children/sibling forms the list of my natural children
1239 struct list_head children; /* list of my children */
1240 struct list_head sibling; /* linkage in my parent's children list */
1241 struct task_struct *group_leader; /* threadgroup leader */
1244 * ptraced is the list of tasks this task is using ptrace on.
1245 * This includes both natural children and PTRACE_ATTACH targets.
1246 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1248 struct list_head ptraced;
1249 struct list_head ptrace_entry;
1252 * This is the tracer handle for the ptrace BTS extension.
1253 * This field actually belongs to the ptracer task.
1255 struct bts_context *bts;
1257 /* PID/PID hash table linkage. */
1258 struct pid_link pids[PIDTYPE_MAX];
1259 struct list_head thread_group;
1261 struct completion *vfork_done; /* for vfork() */
1262 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1263 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1265 cputime_t utime, stime, utimescaled, stimescaled;
1266 cputime_t gtime;
1267 cputime_t prev_utime, prev_stime;
1268 unsigned long nvcsw, nivcsw; /* context switch counts */
1269 struct timespec start_time; /* monotonic time */
1270 struct timespec real_start_time; /* boot based time */
1271 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1272 unsigned long min_flt, maj_flt;
1274 struct task_cputime cputime_expires;
1275 struct list_head cpu_timers[3];
1277 /* process credentials */
1278 const struct cred *real_cred; /* objective and real subjective task
1279 * credentials (COW) */
1280 const struct cred *cred; /* effective (overridable) subjective task
1281 * credentials (COW) */
1282 struct mutex cred_guard_mutex; /* guard against foreign influences on
1283 * credential calculations
1284 * (notably. ptrace) */
1286 char comm[TASK_COMM_LEN]; /* executable name excluding path
1287 - access with [gs]et_task_comm (which lock
1288 it with task_lock())
1289 - initialized normally by flush_old_exec */
1290 /* file system info */
1291 int link_count, total_link_count;
1292 #ifdef CONFIG_SYSVIPC
1293 /* ipc stuff */
1294 struct sysv_sem sysvsem;
1295 #endif
1296 #ifdef CONFIG_DETECT_HUNG_TASK
1297 /* hung task detection */
1298 unsigned long last_switch_count;
1299 #endif
1300 /* CPU-specific state of this task */
1301 struct thread_struct thread;
1302 /* filesystem information */
1303 struct fs_struct *fs;
1304 /* open file information */
1305 struct files_struct *files;
1306 /* namespaces */
1307 struct nsproxy *nsproxy;
1308 /* signal handlers */
1309 struct signal_struct *signal;
1310 struct sighand_struct *sighand;
1312 sigset_t blocked, real_blocked;
1313 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1314 struct sigpending pending;
1316 unsigned long sas_ss_sp;
1317 size_t sas_ss_size;
1318 int (*notifier)(void *priv);
1319 void *notifier_data;
1320 sigset_t *notifier_mask;
1321 struct audit_context *audit_context;
1322 #ifdef CONFIG_AUDITSYSCALL
1323 uid_t loginuid;
1324 unsigned int sessionid;
1325 #endif
1326 seccomp_t seccomp;
1328 /* Thread group tracking */
1329 u32 parent_exec_id;
1330 u32 self_exec_id;
1331 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1332 * mempolicy */
1333 spinlock_t alloc_lock;
1335 #ifdef CONFIG_GENERIC_HARDIRQS
1336 /* IRQ handler threads */
1337 struct irqaction *irqaction;
1338 #endif
1340 /* Protection of the PI data structures: */
1341 spinlock_t pi_lock;
1343 #ifdef CONFIG_RT_MUTEXES
1344 /* PI waiters blocked on a rt_mutex held by this task */
1345 struct plist_head pi_waiters;
1346 /* Deadlock detection and priority inheritance handling */
1347 struct rt_mutex_waiter *pi_blocked_on;
1348 #endif
1350 #ifdef CONFIG_DEBUG_MUTEXES
1351 /* mutex deadlock detection */
1352 struct mutex_waiter *blocked_on;
1353 #endif
1354 #ifdef CONFIG_TRACE_IRQFLAGS
1355 unsigned int irq_events;
1356 int hardirqs_enabled;
1357 unsigned long hardirq_enable_ip;
1358 unsigned int hardirq_enable_event;
1359 unsigned long hardirq_disable_ip;
1360 unsigned int hardirq_disable_event;
1361 int softirqs_enabled;
1362 unsigned long softirq_disable_ip;
1363 unsigned int softirq_disable_event;
1364 unsigned long softirq_enable_ip;
1365 unsigned int softirq_enable_event;
1366 int hardirq_context;
1367 int softirq_context;
1368 #endif
1369 #ifdef CONFIG_LOCKDEP
1370 # define MAX_LOCK_DEPTH 48UL
1371 u64 curr_chain_key;
1372 int lockdep_depth;
1373 unsigned int lockdep_recursion;
1374 struct held_lock held_locks[MAX_LOCK_DEPTH];
1375 gfp_t lockdep_reclaim_gfp;
1376 #endif
1378 /* journalling filesystem info */
1379 void *journal_info;
1381 /* stacked block device info */
1382 struct bio *bio_list, **bio_tail;
1384 /* VM state */
1385 struct reclaim_state *reclaim_state;
1387 struct backing_dev_info *backing_dev_info;
1389 struct io_context *io_context;
1391 unsigned long ptrace_message;
1392 siginfo_t *last_siginfo; /* For ptrace use. */
1393 struct task_io_accounting ioac;
1394 #if defined(CONFIG_TASK_XACCT)
1395 u64 acct_rss_mem1; /* accumulated rss usage */
1396 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1397 cputime_t acct_timexpd; /* stime + utime since last update */
1398 #endif
1399 #ifdef CONFIG_CPUSETS
1400 nodemask_t mems_allowed; /* Protected by alloc_lock */
1401 int cpuset_mem_spread_rotor;
1402 #endif
1403 #ifdef CONFIG_CGROUPS
1404 /* Control Group info protected by css_set_lock */
1405 struct css_set *cgroups;
1406 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1407 struct list_head cg_list;
1408 #endif
1409 #ifdef CONFIG_FUTEX
1410 struct robust_list_head __user *robust_list;
1411 #ifdef CONFIG_COMPAT
1412 struct compat_robust_list_head __user *compat_robust_list;
1413 #endif
1414 struct list_head pi_state_list;
1415 struct futex_pi_state *pi_state_cache;
1416 #endif
1417 #ifdef CONFIG_PERF_COUNTERS
1418 struct perf_counter_context *perf_counter_ctxp;
1419 struct mutex perf_counter_mutex;
1420 struct list_head perf_counter_list;
1421 #endif
1422 #ifdef CONFIG_NUMA
1423 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1424 short il_next;
1425 #endif
1426 atomic_t fs_excl; /* holding fs exclusive resources */
1427 struct rcu_head rcu;
1430 * cache last used pipe for splice
1432 struct pipe_inode_info *splice_pipe;
1433 #ifdef CONFIG_TASK_DELAY_ACCT
1434 struct task_delay_info *delays;
1435 #endif
1436 #ifdef CONFIG_FAULT_INJECTION
1437 int make_it_fail;
1438 #endif
1439 struct prop_local_single dirties;
1440 #ifdef CONFIG_LATENCYTOP
1441 int latency_record_count;
1442 struct latency_record latency_record[LT_SAVECOUNT];
1443 #endif
1445 * time slack values; these are used to round up poll() and
1446 * select() etc timeout values. These are in nanoseconds.
1448 unsigned long timer_slack_ns;
1449 unsigned long default_timer_slack_ns;
1451 struct list_head *scm_work_list;
1452 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1453 /* Index of current stored adress in ret_stack */
1454 int curr_ret_stack;
1455 /* Stack of return addresses for return function tracing */
1456 struct ftrace_ret_stack *ret_stack;
1457 /* time stamp for last schedule */
1458 unsigned long long ftrace_timestamp;
1460 * Number of functions that haven't been traced
1461 * because of depth overrun.
1463 atomic_t trace_overrun;
1464 /* Pause for the tracing */
1465 atomic_t tracing_graph_pause;
1466 #endif
1467 #ifdef CONFIG_TRACING
1468 /* state flags for use by tracers */
1469 unsigned long trace;
1470 /* bitmask of trace recursion */
1471 unsigned long trace_recursion;
1472 #endif /* CONFIG_TRACING */
1475 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1476 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1479 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1480 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1481 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1482 * values are inverted: lower p->prio value means higher priority.
1484 * The MAX_USER_RT_PRIO value allows the actual maximum
1485 * RT priority to be separate from the value exported to
1486 * user-space. This allows kernel threads to set their
1487 * priority to a value higher than any user task. Note:
1488 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1491 #define MAX_USER_RT_PRIO 100
1492 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1494 #define MAX_PRIO (MAX_RT_PRIO + 40)
1495 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1497 static inline int rt_prio(int prio)
1499 if (unlikely(prio < MAX_RT_PRIO))
1500 return 1;
1501 return 0;
1504 static inline int rt_task(struct task_struct *p)
1506 return rt_prio(p->prio);
1509 static inline struct pid *task_pid(struct task_struct *task)
1511 return task->pids[PIDTYPE_PID].pid;
1514 static inline struct pid *task_tgid(struct task_struct *task)
1516 return task->group_leader->pids[PIDTYPE_PID].pid;
1520 * Without tasklist or rcu lock it is not safe to dereference
1521 * the result of task_pgrp/task_session even if task == current,
1522 * we can race with another thread doing sys_setsid/sys_setpgid.
1524 static inline struct pid *task_pgrp(struct task_struct *task)
1526 return task->group_leader->pids[PIDTYPE_PGID].pid;
1529 static inline struct pid *task_session(struct task_struct *task)
1531 return task->group_leader->pids[PIDTYPE_SID].pid;
1534 struct pid_namespace;
1537 * the helpers to get the task's different pids as they are seen
1538 * from various namespaces
1540 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1541 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1542 * current.
1543 * task_xid_nr_ns() : id seen from the ns specified;
1545 * set_task_vxid() : assigns a virtual id to a task;
1547 * see also pid_nr() etc in include/linux/pid.h
1549 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1550 struct pid_namespace *ns);
1552 static inline pid_t task_pid_nr(struct task_struct *tsk)
1554 return tsk->pid;
1557 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1558 struct pid_namespace *ns)
1560 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1563 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1565 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1569 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1571 return tsk->tgid;
1574 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1576 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1578 return pid_vnr(task_tgid(tsk));
1582 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1583 struct pid_namespace *ns)
1585 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1588 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1590 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1594 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1595 struct pid_namespace *ns)
1597 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1600 static inline pid_t task_session_vnr(struct task_struct *tsk)
1602 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1605 /* obsolete, do not use */
1606 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1608 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1612 * pid_alive - check that a task structure is not stale
1613 * @p: Task structure to be checked.
1615 * Test if a process is not yet dead (at most zombie state)
1616 * If pid_alive fails, then pointers within the task structure
1617 * can be stale and must not be dereferenced.
1619 static inline int pid_alive(struct task_struct *p)
1621 return p->pids[PIDTYPE_PID].pid != NULL;
1625 * is_global_init - check if a task structure is init
1626 * @tsk: Task structure to be checked.
1628 * Check if a task structure is the first user space task the kernel created.
1630 static inline int is_global_init(struct task_struct *tsk)
1632 return tsk->pid == 1;
1636 * is_container_init:
1637 * check whether in the task is init in its own pid namespace.
1639 extern int is_container_init(struct task_struct *tsk);
1641 extern struct pid *cad_pid;
1643 extern void free_task(struct task_struct *tsk);
1644 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1646 extern void __put_task_struct(struct task_struct *t);
1648 static inline void put_task_struct(struct task_struct *t)
1650 if (atomic_dec_and_test(&t->usage))
1651 __put_task_struct(t);
1654 extern cputime_t task_utime(struct task_struct *p);
1655 extern cputime_t task_stime(struct task_struct *p);
1656 extern cputime_t task_gtime(struct task_struct *p);
1659 * Per process flags
1661 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1662 /* Not implemented yet, only for 486*/
1663 #define PF_STARTING 0x00000002 /* being created */
1664 #define PF_EXITING 0x00000004 /* getting shut down */
1665 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1666 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1667 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1668 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1669 #define PF_DUMPCORE 0x00000200 /* dumped core */
1670 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1671 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1672 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1673 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1674 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1675 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1676 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1677 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1678 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1679 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1680 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1681 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1682 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1683 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1684 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1685 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1686 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1687 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1688 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1689 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1692 * Only the _current_ task can read/write to tsk->flags, but other
1693 * tasks can access tsk->flags in readonly mode for example
1694 * with tsk_used_math (like during threaded core dumping).
1695 * There is however an exception to this rule during ptrace
1696 * or during fork: the ptracer task is allowed to write to the
1697 * child->flags of its traced child (same goes for fork, the parent
1698 * can write to the child->flags), because we're guaranteed the
1699 * child is not running and in turn not changing child->flags
1700 * at the same time the parent does it.
1702 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1703 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1704 #define clear_used_math() clear_stopped_child_used_math(current)
1705 #define set_used_math() set_stopped_child_used_math(current)
1706 #define conditional_stopped_child_used_math(condition, child) \
1707 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1708 #define conditional_used_math(condition) \
1709 conditional_stopped_child_used_math(condition, current)
1710 #define copy_to_stopped_child_used_math(child) \
1711 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1712 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1713 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1714 #define used_math() tsk_used_math(current)
1716 #ifdef CONFIG_SMP
1717 extern int set_cpus_allowed_ptr(struct task_struct *p,
1718 const struct cpumask *new_mask);
1719 #else
1720 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1721 const struct cpumask *new_mask)
1723 if (!cpumask_test_cpu(0, new_mask))
1724 return -EINVAL;
1725 return 0;
1727 #endif
1728 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1730 return set_cpus_allowed_ptr(p, &new_mask);
1734 * Architectures can set this to 1 if they have specified
1735 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1736 * but then during bootup it turns out that sched_clock()
1737 * is reliable after all:
1739 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1740 extern int sched_clock_stable;
1741 #endif
1743 extern unsigned long long sched_clock(void);
1745 extern void sched_clock_init(void);
1746 extern u64 sched_clock_cpu(int cpu);
1748 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1749 static inline void sched_clock_tick(void)
1753 static inline void sched_clock_idle_sleep_event(void)
1757 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1760 #else
1761 extern void sched_clock_tick(void);
1762 extern void sched_clock_idle_sleep_event(void);
1763 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1764 #endif
1767 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1768 * clock constructed from sched_clock():
1770 extern unsigned long long cpu_clock(int cpu);
1772 extern unsigned long long
1773 task_sched_runtime(struct task_struct *task);
1774 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1776 /* sched_exec is called by processes performing an exec */
1777 #ifdef CONFIG_SMP
1778 extern void sched_exec(void);
1779 #else
1780 #define sched_exec() {}
1781 #endif
1783 extern void sched_clock_idle_sleep_event(void);
1784 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1786 #ifdef CONFIG_HOTPLUG_CPU
1787 extern void idle_task_exit(void);
1788 #else
1789 static inline void idle_task_exit(void) {}
1790 #endif
1792 extern void sched_idle_next(void);
1794 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1795 extern void wake_up_idle_cpu(int cpu);
1796 #else
1797 static inline void wake_up_idle_cpu(int cpu) { }
1798 #endif
1800 extern unsigned int sysctl_sched_latency;
1801 extern unsigned int sysctl_sched_min_granularity;
1802 extern unsigned int sysctl_sched_wakeup_granularity;
1803 extern unsigned int sysctl_sched_shares_ratelimit;
1804 extern unsigned int sysctl_sched_shares_thresh;
1805 #ifdef CONFIG_SCHED_DEBUG
1806 extern unsigned int sysctl_sched_child_runs_first;
1807 extern unsigned int sysctl_sched_features;
1808 extern unsigned int sysctl_sched_migration_cost;
1809 extern unsigned int sysctl_sched_nr_migrate;
1810 extern unsigned int sysctl_timer_migration;
1812 int sched_nr_latency_handler(struct ctl_table *table, int write,
1813 struct file *file, void __user *buffer, size_t *length,
1814 loff_t *ppos);
1815 #endif
1816 #ifdef CONFIG_SCHED_DEBUG
1817 static inline unsigned int get_sysctl_timer_migration(void)
1819 return sysctl_timer_migration;
1821 #else
1822 static inline unsigned int get_sysctl_timer_migration(void)
1824 return 1;
1826 #endif
1827 extern unsigned int sysctl_sched_rt_period;
1828 extern int sysctl_sched_rt_runtime;
1830 int sched_rt_handler(struct ctl_table *table, int write,
1831 struct file *filp, void __user *buffer, size_t *lenp,
1832 loff_t *ppos);
1834 extern unsigned int sysctl_sched_compat_yield;
1836 #ifdef CONFIG_RT_MUTEXES
1837 extern int rt_mutex_getprio(struct task_struct *p);
1838 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1839 extern void rt_mutex_adjust_pi(struct task_struct *p);
1840 #else
1841 static inline int rt_mutex_getprio(struct task_struct *p)
1843 return p->normal_prio;
1845 # define rt_mutex_adjust_pi(p) do { } while (0)
1846 #endif
1848 extern void set_user_nice(struct task_struct *p, long nice);
1849 extern int task_prio(const struct task_struct *p);
1850 extern int task_nice(const struct task_struct *p);
1851 extern int can_nice(const struct task_struct *p, const int nice);
1852 extern int task_curr(const struct task_struct *p);
1853 extern int idle_cpu(int cpu);
1854 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1855 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1856 struct sched_param *);
1857 extern struct task_struct *idle_task(int cpu);
1858 extern struct task_struct *curr_task(int cpu);
1859 extern void set_curr_task(int cpu, struct task_struct *p);
1861 void yield(void);
1864 * The default (Linux) execution domain.
1866 extern struct exec_domain default_exec_domain;
1868 union thread_union {
1869 struct thread_info thread_info;
1870 unsigned long stack[THREAD_SIZE/sizeof(long)];
1873 #ifndef __HAVE_ARCH_KSTACK_END
1874 static inline int kstack_end(void *addr)
1876 /* Reliable end of stack detection:
1877 * Some APM bios versions misalign the stack
1879 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1881 #endif
1883 extern union thread_union init_thread_union;
1884 extern struct task_struct init_task;
1886 extern struct mm_struct init_mm;
1888 extern struct pid_namespace init_pid_ns;
1891 * find a task by one of its numerical ids
1893 * find_task_by_pid_ns():
1894 * finds a task by its pid in the specified namespace
1895 * find_task_by_vpid():
1896 * finds a task by its virtual pid
1898 * see also find_vpid() etc in include/linux/pid.h
1901 extern struct task_struct *find_task_by_vpid(pid_t nr);
1902 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1903 struct pid_namespace *ns);
1905 extern void __set_special_pids(struct pid *pid);
1907 /* per-UID process charging. */
1908 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1909 static inline struct user_struct *get_uid(struct user_struct *u)
1911 atomic_inc(&u->__count);
1912 return u;
1914 extern void free_uid(struct user_struct *);
1915 extern void release_uids(struct user_namespace *ns);
1917 #include <asm/current.h>
1919 extern void do_timer(unsigned long ticks);
1921 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1922 extern int wake_up_process(struct task_struct *tsk);
1923 extern void wake_up_new_task(struct task_struct *tsk,
1924 unsigned long clone_flags);
1925 #ifdef CONFIG_SMP
1926 extern void kick_process(struct task_struct *tsk);
1927 #else
1928 static inline void kick_process(struct task_struct *tsk) { }
1929 #endif
1930 extern void sched_fork(struct task_struct *p, int clone_flags);
1931 extern void sched_dead(struct task_struct *p);
1933 extern void proc_caches_init(void);
1934 extern void flush_signals(struct task_struct *);
1935 extern void __flush_signals(struct task_struct *);
1936 extern void ignore_signals(struct task_struct *);
1937 extern void flush_signal_handlers(struct task_struct *, int force_default);
1938 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1940 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1942 unsigned long flags;
1943 int ret;
1945 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1946 ret = dequeue_signal(tsk, mask, info);
1947 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1949 return ret;
1952 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1953 sigset_t *mask);
1954 extern void unblock_all_signals(void);
1955 extern void release_task(struct task_struct * p);
1956 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1957 extern int force_sigsegv(int, struct task_struct *);
1958 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1959 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1960 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1961 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1962 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1963 extern int kill_pid(struct pid *pid, int sig, int priv);
1964 extern int kill_proc_info(int, struct siginfo *, pid_t);
1965 extern int do_notify_parent(struct task_struct *, int);
1966 extern void force_sig(int, struct task_struct *);
1967 extern void force_sig_specific(int, struct task_struct *);
1968 extern int send_sig(int, struct task_struct *, int);
1969 extern void zap_other_threads(struct task_struct *p);
1970 extern struct sigqueue *sigqueue_alloc(void);
1971 extern void sigqueue_free(struct sigqueue *);
1972 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1973 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1974 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1976 static inline int kill_cad_pid(int sig, int priv)
1978 return kill_pid(cad_pid, sig, priv);
1981 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1982 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1983 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1984 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1986 static inline int is_si_special(const struct siginfo *info)
1988 return info <= SEND_SIG_FORCED;
1991 /* True if we are on the alternate signal stack. */
1993 static inline int on_sig_stack(unsigned long sp)
1995 return (sp - current->sas_ss_sp < current->sas_ss_size);
1998 static inline int sas_ss_flags(unsigned long sp)
2000 return (current->sas_ss_size == 0 ? SS_DISABLE
2001 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2005 * Routines for handling mm_structs
2007 extern struct mm_struct * mm_alloc(void);
2009 /* mmdrop drops the mm and the page tables */
2010 extern void __mmdrop(struct mm_struct *);
2011 static inline void mmdrop(struct mm_struct * mm)
2013 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2014 __mmdrop(mm);
2017 /* mmput gets rid of the mappings and all user-space */
2018 extern void mmput(struct mm_struct *);
2019 /* Grab a reference to a task's mm, if it is not already going away */
2020 extern struct mm_struct *get_task_mm(struct task_struct *task);
2021 /* Remove the current tasks stale references to the old mm_struct */
2022 extern void mm_release(struct task_struct *, struct mm_struct *);
2023 /* Allocate a new mm structure and copy contents from tsk->mm */
2024 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2026 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2027 struct task_struct *, struct pt_regs *);
2028 extern void flush_thread(void);
2029 extern void exit_thread(void);
2031 extern void exit_files(struct task_struct *);
2032 extern void __cleanup_signal(struct signal_struct *);
2033 extern void __cleanup_sighand(struct sighand_struct *);
2035 extern void exit_itimers(struct signal_struct *);
2036 extern void flush_itimer_signals(void);
2038 extern NORET_TYPE void do_group_exit(int);
2040 extern void daemonize(const char *, ...);
2041 extern int allow_signal(int);
2042 extern int disallow_signal(int);
2044 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2045 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2046 struct task_struct *fork_idle(int);
2048 extern void set_task_comm(struct task_struct *tsk, char *from);
2049 extern char *get_task_comm(char *to, struct task_struct *tsk);
2051 #ifdef CONFIG_SMP
2052 extern void wait_task_context_switch(struct task_struct *p);
2053 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2054 #else
2055 static inline void wait_task_context_switch(struct task_struct *p) {}
2056 static inline unsigned long wait_task_inactive(struct task_struct *p,
2057 long match_state)
2059 return 1;
2061 #endif
2063 #define next_task(p) \
2064 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2066 #define for_each_process(p) \
2067 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2069 extern bool is_single_threaded(struct task_struct *);
2072 * Careful: do_each_thread/while_each_thread is a double loop so
2073 * 'break' will not work as expected - use goto instead.
2075 #define do_each_thread(g, t) \
2076 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2078 #define while_each_thread(g, t) \
2079 while ((t = next_thread(t)) != g)
2081 /* de_thread depends on thread_group_leader not being a pid based check */
2082 #define thread_group_leader(p) (p == p->group_leader)
2084 /* Do to the insanities of de_thread it is possible for a process
2085 * to have the pid of the thread group leader without actually being
2086 * the thread group leader. For iteration through the pids in proc
2087 * all we care about is that we have a task with the appropriate
2088 * pid, we don't actually care if we have the right task.
2090 static inline int has_group_leader_pid(struct task_struct *p)
2092 return p->pid == p->tgid;
2095 static inline
2096 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2098 return p1->tgid == p2->tgid;
2101 static inline struct task_struct *next_thread(const struct task_struct *p)
2103 return list_entry_rcu(p->thread_group.next,
2104 struct task_struct, thread_group);
2107 static inline int thread_group_empty(struct task_struct *p)
2109 return list_empty(&p->thread_group);
2112 #define delay_group_leader(p) \
2113 (thread_group_leader(p) && !thread_group_empty(p))
2115 static inline int task_detached(struct task_struct *p)
2117 return p->exit_signal == -1;
2121 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2122 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2123 * pins the final release of task.io_context. Also protects ->cpuset and
2124 * ->cgroup.subsys[].
2126 * Nests both inside and outside of read_lock(&tasklist_lock).
2127 * It must not be nested with write_lock_irq(&tasklist_lock),
2128 * neither inside nor outside.
2130 static inline void task_lock(struct task_struct *p)
2132 spin_lock(&p->alloc_lock);
2135 static inline void task_unlock(struct task_struct *p)
2137 spin_unlock(&p->alloc_lock);
2140 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2141 unsigned long *flags);
2143 static inline void unlock_task_sighand(struct task_struct *tsk,
2144 unsigned long *flags)
2146 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2149 #ifndef __HAVE_THREAD_FUNCTIONS
2151 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2152 #define task_stack_page(task) ((task)->stack)
2154 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2156 *task_thread_info(p) = *task_thread_info(org);
2157 task_thread_info(p)->task = p;
2160 static inline unsigned long *end_of_stack(struct task_struct *p)
2162 return (unsigned long *)(task_thread_info(p) + 1);
2165 #endif
2167 static inline int object_is_on_stack(void *obj)
2169 void *stack = task_stack_page(current);
2171 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2174 extern void thread_info_cache_init(void);
2176 #ifdef CONFIG_DEBUG_STACK_USAGE
2177 static inline unsigned long stack_not_used(struct task_struct *p)
2179 unsigned long *n = end_of_stack(p);
2181 do { /* Skip over canary */
2182 n++;
2183 } while (!*n);
2185 return (unsigned long)n - (unsigned long)end_of_stack(p);
2187 #endif
2189 /* set thread flags in other task's structures
2190 * - see asm/thread_info.h for TIF_xxxx flags available
2192 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2194 set_ti_thread_flag(task_thread_info(tsk), flag);
2197 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2199 clear_ti_thread_flag(task_thread_info(tsk), flag);
2202 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2204 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2207 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2209 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2212 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2214 return test_ti_thread_flag(task_thread_info(tsk), flag);
2217 static inline void set_tsk_need_resched(struct task_struct *tsk)
2219 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2222 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2224 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2227 static inline int test_tsk_need_resched(struct task_struct *tsk)
2229 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2232 static inline int restart_syscall(void)
2234 set_tsk_thread_flag(current, TIF_SIGPENDING);
2235 return -ERESTARTNOINTR;
2238 static inline int signal_pending(struct task_struct *p)
2240 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2243 extern int __fatal_signal_pending(struct task_struct *p);
2245 static inline int fatal_signal_pending(struct task_struct *p)
2247 return signal_pending(p) && __fatal_signal_pending(p);
2250 static inline int signal_pending_state(long state, struct task_struct *p)
2252 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2253 return 0;
2254 if (!signal_pending(p))
2255 return 0;
2257 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2260 static inline int need_resched(void)
2262 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2266 * cond_resched() and cond_resched_lock(): latency reduction via
2267 * explicit rescheduling in places that are safe. The return
2268 * value indicates whether a reschedule was done in fact.
2269 * cond_resched_lock() will drop the spinlock before scheduling,
2270 * cond_resched_softirq() will enable bhs before scheduling.
2272 extern int _cond_resched(void);
2273 #ifdef CONFIG_PREEMPT_BKL
2274 static inline int cond_resched(void)
2276 return 0;
2278 #else
2279 static inline int cond_resched(void)
2281 return _cond_resched();
2283 #endif
2284 extern int cond_resched_lock(spinlock_t * lock);
2285 extern int cond_resched_softirq(void);
2286 static inline int cond_resched_bkl(void)
2288 return _cond_resched();
2292 * Does a critical section need to be broken due to another
2293 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2294 * but a general need for low latency)
2296 static inline int spin_needbreak(spinlock_t *lock)
2298 #ifdef CONFIG_PREEMPT
2299 return spin_is_contended(lock);
2300 #else
2301 return 0;
2302 #endif
2306 * Thread group CPU time accounting.
2308 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2309 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2311 static inline void thread_group_cputime_init(struct signal_struct *sig)
2313 sig->cputimer.cputime = INIT_CPUTIME;
2314 spin_lock_init(&sig->cputimer.lock);
2315 sig->cputimer.running = 0;
2318 static inline void thread_group_cputime_free(struct signal_struct *sig)
2323 * Reevaluate whether the task has signals pending delivery.
2324 * Wake the task if so.
2325 * This is required every time the blocked sigset_t changes.
2326 * callers must hold sighand->siglock.
2328 extern void recalc_sigpending_and_wake(struct task_struct *t);
2329 extern void recalc_sigpending(void);
2331 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2334 * Wrappers for p->thread_info->cpu access. No-op on UP.
2336 #ifdef CONFIG_SMP
2338 static inline unsigned int task_cpu(const struct task_struct *p)
2340 return task_thread_info(p)->cpu;
2343 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2345 #else
2347 static inline unsigned int task_cpu(const struct task_struct *p)
2349 return 0;
2352 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2356 #endif /* CONFIG_SMP */
2358 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2360 #ifdef CONFIG_TRACING
2361 extern void
2362 __trace_special(void *__tr, void *__data,
2363 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2364 #else
2365 static inline void
2366 __trace_special(void *__tr, void *__data,
2367 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2370 #endif
2372 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2373 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2375 extern void normalize_rt_tasks(void);
2377 #ifdef CONFIG_GROUP_SCHED
2379 extern struct task_group init_task_group;
2380 #ifdef CONFIG_USER_SCHED
2381 extern struct task_group root_task_group;
2382 extern void set_tg_uid(struct user_struct *user);
2383 #endif
2385 extern struct task_group *sched_create_group(struct task_group *parent);
2386 extern void sched_destroy_group(struct task_group *tg);
2387 extern void sched_move_task(struct task_struct *tsk);
2388 #ifdef CONFIG_FAIR_GROUP_SCHED
2389 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2390 extern unsigned long sched_group_shares(struct task_group *tg);
2391 #endif
2392 #ifdef CONFIG_RT_GROUP_SCHED
2393 extern int sched_group_set_rt_runtime(struct task_group *tg,
2394 long rt_runtime_us);
2395 extern long sched_group_rt_runtime(struct task_group *tg);
2396 extern int sched_group_set_rt_period(struct task_group *tg,
2397 long rt_period_us);
2398 extern long sched_group_rt_period(struct task_group *tg);
2399 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2400 #endif
2401 #endif
2403 extern int task_can_switch_user(struct user_struct *up,
2404 struct task_struct *tsk);
2406 #ifdef CONFIG_TASK_XACCT
2407 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2409 tsk->ioac.rchar += amt;
2412 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2414 tsk->ioac.wchar += amt;
2417 static inline void inc_syscr(struct task_struct *tsk)
2419 tsk->ioac.syscr++;
2422 static inline void inc_syscw(struct task_struct *tsk)
2424 tsk->ioac.syscw++;
2426 #else
2427 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2431 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2435 static inline void inc_syscr(struct task_struct *tsk)
2439 static inline void inc_syscw(struct task_struct *tsk)
2442 #endif
2444 #ifndef TASK_SIZE_OF
2445 #define TASK_SIZE_OF(tsk) TASK_SIZE
2446 #endif
2449 * Call the function if the target task is executing on a CPU right now:
2451 extern void task_oncpu_function_call(struct task_struct *p,
2452 void (*func) (void *info), void *info);
2455 #ifdef CONFIG_MM_OWNER
2456 extern void mm_update_next_owner(struct mm_struct *mm);
2457 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2458 #else
2459 static inline void mm_update_next_owner(struct mm_struct *mm)
2463 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2466 #endif /* CONFIG_MM_OWNER */
2468 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2470 #endif /* __KERNEL__ */
2472 #endif