Merge branch 'x86/signal' into core/signal
[linux-2.6/x86.git] / arch / x86 / xen / enlighten.c
blob7b3508952b9c66cab4a88d5ce4b937d164827e0f
1 /*
2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
38 #include <asm/paravirt.h>
39 #include <asm/apic.h>
40 #include <asm/page.h>
41 #include <asm/xen/hypercall.h>
42 #include <asm/xen/hypervisor.h>
43 #include <asm/fixmap.h>
44 #include <asm/processor.h>
45 #include <asm/msr-index.h>
46 #include <asm/setup.h>
47 #include <asm/desc.h>
48 #include <asm/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <asm/reboot.h>
52 #include "xen-ops.h"
53 #include "mmu.h"
54 #include "multicalls.h"
56 EXPORT_SYMBOL_GPL(hypercall_page);
58 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
59 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
62 * Identity map, in addition to plain kernel map. This needs to be
63 * large enough to allocate page table pages to allocate the rest.
64 * Each page can map 2MB.
66 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
68 #ifdef CONFIG_X86_64
69 /* l3 pud for userspace vsyscall mapping */
70 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
71 #endif /* CONFIG_X86_64 */
74 * Note about cr3 (pagetable base) values:
76 * xen_cr3 contains the current logical cr3 value; it contains the
77 * last set cr3. This may not be the current effective cr3, because
78 * its update may be being lazily deferred. However, a vcpu looking
79 * at its own cr3 can use this value knowing that it everything will
80 * be self-consistent.
82 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
83 * hypercall to set the vcpu cr3 is complete (so it may be a little
84 * out of date, but it will never be set early). If one vcpu is
85 * looking at another vcpu's cr3 value, it should use this variable.
87 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
88 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
90 struct start_info *xen_start_info;
91 EXPORT_SYMBOL_GPL(xen_start_info);
93 struct shared_info xen_dummy_shared_info;
96 * Point at some empty memory to start with. We map the real shared_info
97 * page as soon as fixmap is up and running.
99 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
102 * Flag to determine whether vcpu info placement is available on all
103 * VCPUs. We assume it is to start with, and then set it to zero on
104 * the first failure. This is because it can succeed on some VCPUs
105 * and not others, since it can involve hypervisor memory allocation,
106 * or because the guest failed to guarantee all the appropriate
107 * constraints on all VCPUs (ie buffer can't cross a page boundary).
109 * Note that any particular CPU may be using a placed vcpu structure,
110 * but we can only optimise if the all are.
112 * 0: not available, 1: available
114 static int have_vcpu_info_placement = 1;
116 static void xen_vcpu_setup(int cpu)
118 struct vcpu_register_vcpu_info info;
119 int err;
120 struct vcpu_info *vcpup;
122 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
123 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
125 if (!have_vcpu_info_placement)
126 return; /* already tested, not available */
128 vcpup = &per_cpu(xen_vcpu_info, cpu);
130 info.mfn = virt_to_mfn(vcpup);
131 info.offset = offset_in_page(vcpup);
133 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
134 cpu, vcpup, info.mfn, info.offset);
136 /* Check to see if the hypervisor will put the vcpu_info
137 structure where we want it, which allows direct access via
138 a percpu-variable. */
139 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
141 if (err) {
142 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
143 have_vcpu_info_placement = 0;
144 } else {
145 /* This cpu is using the registered vcpu info, even if
146 later ones fail to. */
147 per_cpu(xen_vcpu, cpu) = vcpup;
149 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
150 cpu, vcpup);
155 * On restore, set the vcpu placement up again.
156 * If it fails, then we're in a bad state, since
157 * we can't back out from using it...
159 void xen_vcpu_restore(void)
161 if (have_vcpu_info_placement) {
162 int cpu;
164 for_each_online_cpu(cpu) {
165 bool other_cpu = (cpu != smp_processor_id());
167 if (other_cpu &&
168 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
169 BUG();
171 xen_vcpu_setup(cpu);
173 if (other_cpu &&
174 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
175 BUG();
178 BUG_ON(!have_vcpu_info_placement);
182 static void __init xen_banner(void)
184 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
185 struct xen_extraversion extra;
186 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
188 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
189 pv_info.name);
190 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
191 version >> 16, version & 0xffff, extra.extraversion,
192 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
195 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
196 unsigned int *cx, unsigned int *dx)
198 unsigned maskedx = ~0;
201 * Mask out inconvenient features, to try and disable as many
202 * unsupported kernel subsystems as possible.
204 if (*ax == 1)
205 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
206 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
207 (1 << X86_FEATURE_MCE) | /* disable MCE */
208 (1 << X86_FEATURE_MCA) | /* disable MCA */
209 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
211 asm(XEN_EMULATE_PREFIX "cpuid"
212 : "=a" (*ax),
213 "=b" (*bx),
214 "=c" (*cx),
215 "=d" (*dx)
216 : "0" (*ax), "2" (*cx));
217 *dx &= maskedx;
220 static void xen_set_debugreg(int reg, unsigned long val)
222 HYPERVISOR_set_debugreg(reg, val);
225 static unsigned long xen_get_debugreg(int reg)
227 return HYPERVISOR_get_debugreg(reg);
230 static unsigned long xen_save_fl(void)
232 struct vcpu_info *vcpu;
233 unsigned long flags;
235 vcpu = x86_read_percpu(xen_vcpu);
237 /* flag has opposite sense of mask */
238 flags = !vcpu->evtchn_upcall_mask;
240 /* convert to IF type flag
241 -0 -> 0x00000000
242 -1 -> 0xffffffff
244 return (-flags) & X86_EFLAGS_IF;
247 static void xen_restore_fl(unsigned long flags)
249 struct vcpu_info *vcpu;
251 /* convert from IF type flag */
252 flags = !(flags & X86_EFLAGS_IF);
254 /* There's a one instruction preempt window here. We need to
255 make sure we're don't switch CPUs between getting the vcpu
256 pointer and updating the mask. */
257 preempt_disable();
258 vcpu = x86_read_percpu(xen_vcpu);
259 vcpu->evtchn_upcall_mask = flags;
260 preempt_enable_no_resched();
262 /* Doesn't matter if we get preempted here, because any
263 pending event will get dealt with anyway. */
265 if (flags == 0) {
266 preempt_check_resched();
267 barrier(); /* unmask then check (avoid races) */
268 if (unlikely(vcpu->evtchn_upcall_pending))
269 force_evtchn_callback();
273 static void xen_irq_disable(void)
275 /* There's a one instruction preempt window here. We need to
276 make sure we're don't switch CPUs between getting the vcpu
277 pointer and updating the mask. */
278 preempt_disable();
279 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
280 preempt_enable_no_resched();
283 static void xen_irq_enable(void)
285 struct vcpu_info *vcpu;
287 /* We don't need to worry about being preempted here, since
288 either a) interrupts are disabled, so no preemption, or b)
289 the caller is confused and is trying to re-enable interrupts
290 on an indeterminate processor. */
292 vcpu = x86_read_percpu(xen_vcpu);
293 vcpu->evtchn_upcall_mask = 0;
295 /* Doesn't matter if we get preempted here, because any
296 pending event will get dealt with anyway. */
298 barrier(); /* unmask then check (avoid races) */
299 if (unlikely(vcpu->evtchn_upcall_pending))
300 force_evtchn_callback();
303 static void xen_safe_halt(void)
305 /* Blocking includes an implicit local_irq_enable(). */
306 if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
307 BUG();
310 static void xen_halt(void)
312 if (irqs_disabled())
313 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
314 else
315 xen_safe_halt();
318 static void xen_leave_lazy(void)
320 paravirt_leave_lazy(paravirt_get_lazy_mode());
321 xen_mc_flush();
324 static unsigned long xen_store_tr(void)
326 return 0;
329 static void xen_set_ldt(const void *addr, unsigned entries)
331 struct mmuext_op *op;
332 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
334 op = mcs.args;
335 op->cmd = MMUEXT_SET_LDT;
336 op->arg1.linear_addr = (unsigned long)addr;
337 op->arg2.nr_ents = entries;
339 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
341 xen_mc_issue(PARAVIRT_LAZY_CPU);
344 static void xen_load_gdt(const struct desc_ptr *dtr)
346 unsigned long *frames;
347 unsigned long va = dtr->address;
348 unsigned int size = dtr->size + 1;
349 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
350 int f;
351 struct multicall_space mcs;
353 /* A GDT can be up to 64k in size, which corresponds to 8192
354 8-byte entries, or 16 4k pages.. */
356 BUG_ON(size > 65536);
357 BUG_ON(va & ~PAGE_MASK);
359 mcs = xen_mc_entry(sizeof(*frames) * pages);
360 frames = mcs.args;
362 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
363 frames[f] = virt_to_mfn(va);
364 make_lowmem_page_readonly((void *)va);
367 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
369 xen_mc_issue(PARAVIRT_LAZY_CPU);
372 static void load_TLS_descriptor(struct thread_struct *t,
373 unsigned int cpu, unsigned int i)
375 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
376 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
377 struct multicall_space mc = __xen_mc_entry(0);
379 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
382 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
385 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
386 * it means we're in a context switch, and %gs has just been
387 * saved. This means we can zero it out to prevent faults on
388 * exit from the hypervisor if the next process has no %gs.
389 * Either way, it has been saved, and the new value will get
390 * loaded properly. This will go away as soon as Xen has been
391 * modified to not save/restore %gs for normal hypercalls.
393 * On x86_64, this hack is not used for %gs, because gs points
394 * to KERNEL_GS_BASE (and uses it for PDA references), so we
395 * must not zero %gs on x86_64
397 * For x86_64, we need to zero %fs, otherwise we may get an
398 * exception between the new %fs descriptor being loaded and
399 * %fs being effectively cleared at __switch_to().
401 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
402 #ifdef CONFIG_X86_32
403 loadsegment(gs, 0);
404 #else
405 loadsegment(fs, 0);
406 #endif
409 xen_mc_batch();
411 load_TLS_descriptor(t, cpu, 0);
412 load_TLS_descriptor(t, cpu, 1);
413 load_TLS_descriptor(t, cpu, 2);
415 xen_mc_issue(PARAVIRT_LAZY_CPU);
418 #ifdef CONFIG_X86_64
419 static void xen_load_gs_index(unsigned int idx)
421 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
422 BUG();
424 #endif
426 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
427 const void *ptr)
429 unsigned long lp = (unsigned long)&dt[entrynum];
430 xmaddr_t mach_lp = virt_to_machine(lp);
431 u64 entry = *(u64 *)ptr;
433 preempt_disable();
435 xen_mc_flush();
436 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
437 BUG();
439 preempt_enable();
442 static int cvt_gate_to_trap(int vector, const gate_desc *val,
443 struct trap_info *info)
445 if (val->type != 0xf && val->type != 0xe)
446 return 0;
448 info->vector = vector;
449 info->address = gate_offset(*val);
450 info->cs = gate_segment(*val);
451 info->flags = val->dpl;
452 /* interrupt gates clear IF */
453 if (val->type == 0xe)
454 info->flags |= 4;
456 return 1;
459 /* Locations of each CPU's IDT */
460 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
462 /* Set an IDT entry. If the entry is part of the current IDT, then
463 also update Xen. */
464 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
466 unsigned long p = (unsigned long)&dt[entrynum];
467 unsigned long start, end;
469 preempt_disable();
471 start = __get_cpu_var(idt_desc).address;
472 end = start + __get_cpu_var(idt_desc).size + 1;
474 xen_mc_flush();
476 native_write_idt_entry(dt, entrynum, g);
478 if (p >= start && (p + 8) <= end) {
479 struct trap_info info[2];
481 info[1].address = 0;
483 if (cvt_gate_to_trap(entrynum, g, &info[0]))
484 if (HYPERVISOR_set_trap_table(info))
485 BUG();
488 preempt_enable();
491 static void xen_convert_trap_info(const struct desc_ptr *desc,
492 struct trap_info *traps)
494 unsigned in, out, count;
496 count = (desc->size+1) / sizeof(gate_desc);
497 BUG_ON(count > 256);
499 for (in = out = 0; in < count; in++) {
500 gate_desc *entry = (gate_desc*)(desc->address) + in;
502 if (cvt_gate_to_trap(in, entry, &traps[out]))
503 out++;
505 traps[out].address = 0;
508 void xen_copy_trap_info(struct trap_info *traps)
510 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
512 xen_convert_trap_info(desc, traps);
515 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
516 hold a spinlock to protect the static traps[] array (static because
517 it avoids allocation, and saves stack space). */
518 static void xen_load_idt(const struct desc_ptr *desc)
520 static DEFINE_SPINLOCK(lock);
521 static struct trap_info traps[257];
523 spin_lock(&lock);
525 __get_cpu_var(idt_desc) = *desc;
527 xen_convert_trap_info(desc, traps);
529 xen_mc_flush();
530 if (HYPERVISOR_set_trap_table(traps))
531 BUG();
533 spin_unlock(&lock);
536 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
537 they're handled differently. */
538 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
539 const void *desc, int type)
541 preempt_disable();
543 switch (type) {
544 case DESC_LDT:
545 case DESC_TSS:
546 /* ignore */
547 break;
549 default: {
550 xmaddr_t maddr = virt_to_machine(&dt[entry]);
552 xen_mc_flush();
553 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
554 BUG();
559 preempt_enable();
562 static void xen_load_sp0(struct tss_struct *tss,
563 struct thread_struct *thread)
565 struct multicall_space mcs = xen_mc_entry(0);
566 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
567 xen_mc_issue(PARAVIRT_LAZY_CPU);
570 static void xen_set_iopl_mask(unsigned mask)
572 struct physdev_set_iopl set_iopl;
574 /* Force the change at ring 0. */
575 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
576 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
579 static void xen_io_delay(void)
583 #ifdef CONFIG_X86_LOCAL_APIC
584 static u32 xen_apic_read(u32 reg)
586 return 0;
589 static void xen_apic_write(u32 reg, u32 val)
591 /* Warn to see if there's any stray references */
592 WARN_ON(1);
595 static u64 xen_apic_icr_read(void)
597 return 0;
600 static void xen_apic_icr_write(u32 low, u32 id)
602 /* Warn to see if there's any stray references */
603 WARN_ON(1);
606 static void xen_apic_wait_icr_idle(void)
608 return;
611 static u32 xen_safe_apic_wait_icr_idle(void)
613 return 0;
616 static struct apic_ops xen_basic_apic_ops = {
617 .read = xen_apic_read,
618 .write = xen_apic_write,
619 .icr_read = xen_apic_icr_read,
620 .icr_write = xen_apic_icr_write,
621 .wait_icr_idle = xen_apic_wait_icr_idle,
622 .safe_wait_icr_idle = xen_safe_apic_wait_icr_idle,
625 #endif
627 static void xen_flush_tlb(void)
629 struct mmuext_op *op;
630 struct multicall_space mcs;
632 preempt_disable();
634 mcs = xen_mc_entry(sizeof(*op));
636 op = mcs.args;
637 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
638 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
640 xen_mc_issue(PARAVIRT_LAZY_MMU);
642 preempt_enable();
645 static void xen_flush_tlb_single(unsigned long addr)
647 struct mmuext_op *op;
648 struct multicall_space mcs;
650 preempt_disable();
652 mcs = xen_mc_entry(sizeof(*op));
653 op = mcs.args;
654 op->cmd = MMUEXT_INVLPG_LOCAL;
655 op->arg1.linear_addr = addr & PAGE_MASK;
656 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
658 xen_mc_issue(PARAVIRT_LAZY_MMU);
660 preempt_enable();
663 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
664 unsigned long va)
666 struct {
667 struct mmuext_op op;
668 cpumask_t mask;
669 } *args;
670 cpumask_t cpumask = *cpus;
671 struct multicall_space mcs;
674 * A couple of (to be removed) sanity checks:
676 * - current CPU must not be in mask
677 * - mask must exist :)
679 BUG_ON(cpus_empty(cpumask));
680 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
681 BUG_ON(!mm);
683 /* If a CPU which we ran on has gone down, OK. */
684 cpus_and(cpumask, cpumask, cpu_online_map);
685 if (cpus_empty(cpumask))
686 return;
688 mcs = xen_mc_entry(sizeof(*args));
689 args = mcs.args;
690 args->mask = cpumask;
691 args->op.arg2.vcpumask = &args->mask;
693 if (va == TLB_FLUSH_ALL) {
694 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
695 } else {
696 args->op.cmd = MMUEXT_INVLPG_MULTI;
697 args->op.arg1.linear_addr = va;
700 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
702 xen_mc_issue(PARAVIRT_LAZY_MMU);
705 static void xen_clts(void)
707 struct multicall_space mcs;
709 mcs = xen_mc_entry(0);
711 MULTI_fpu_taskswitch(mcs.mc, 0);
713 xen_mc_issue(PARAVIRT_LAZY_CPU);
716 static void xen_write_cr0(unsigned long cr0)
718 struct multicall_space mcs;
720 /* Only pay attention to cr0.TS; everything else is
721 ignored. */
722 mcs = xen_mc_entry(0);
724 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
726 xen_mc_issue(PARAVIRT_LAZY_CPU);
729 static void xen_write_cr2(unsigned long cr2)
731 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
734 static unsigned long xen_read_cr2(void)
736 return x86_read_percpu(xen_vcpu)->arch.cr2;
739 static unsigned long xen_read_cr2_direct(void)
741 return x86_read_percpu(xen_vcpu_info.arch.cr2);
744 static void xen_write_cr4(unsigned long cr4)
746 cr4 &= ~X86_CR4_PGE;
747 cr4 &= ~X86_CR4_PSE;
749 native_write_cr4(cr4);
752 static unsigned long xen_read_cr3(void)
754 return x86_read_percpu(xen_cr3);
757 static void set_current_cr3(void *v)
759 x86_write_percpu(xen_current_cr3, (unsigned long)v);
762 static void __xen_write_cr3(bool kernel, unsigned long cr3)
764 struct mmuext_op *op;
765 struct multicall_space mcs;
766 unsigned long mfn;
768 if (cr3)
769 mfn = pfn_to_mfn(PFN_DOWN(cr3));
770 else
771 mfn = 0;
773 WARN_ON(mfn == 0 && kernel);
775 mcs = __xen_mc_entry(sizeof(*op));
777 op = mcs.args;
778 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
779 op->arg1.mfn = mfn;
781 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
783 if (kernel) {
784 x86_write_percpu(xen_cr3, cr3);
786 /* Update xen_current_cr3 once the batch has actually
787 been submitted. */
788 xen_mc_callback(set_current_cr3, (void *)cr3);
792 static void xen_write_cr3(unsigned long cr3)
794 BUG_ON(preemptible());
796 xen_mc_batch(); /* disables interrupts */
798 /* Update while interrupts are disabled, so its atomic with
799 respect to ipis */
800 x86_write_percpu(xen_cr3, cr3);
802 __xen_write_cr3(true, cr3);
804 #ifdef CONFIG_X86_64
806 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
807 if (user_pgd)
808 __xen_write_cr3(false, __pa(user_pgd));
809 else
810 __xen_write_cr3(false, 0);
812 #endif
814 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
817 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
819 int ret;
821 ret = 0;
823 switch(msr) {
824 #ifdef CONFIG_X86_64
825 unsigned which;
826 u64 base;
828 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
829 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
830 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
832 set:
833 base = ((u64)high << 32) | low;
834 if (HYPERVISOR_set_segment_base(which, base) != 0)
835 ret = -EFAULT;
836 break;
837 #endif
838 default:
839 ret = native_write_msr_safe(msr, low, high);
842 return ret;
845 /* Early in boot, while setting up the initial pagetable, assume
846 everything is pinned. */
847 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
849 #ifdef CONFIG_FLATMEM
850 BUG_ON(mem_map); /* should only be used early */
851 #endif
852 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
855 /* Early release_pte assumes that all pts are pinned, since there's
856 only init_mm and anything attached to that is pinned. */
857 static void xen_release_pte_init(u32 pfn)
859 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
862 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
864 struct mmuext_op op;
865 op.cmd = cmd;
866 op.arg1.mfn = pfn_to_mfn(pfn);
867 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
868 BUG();
871 /* This needs to make sure the new pte page is pinned iff its being
872 attached to a pinned pagetable. */
873 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
875 struct page *page = pfn_to_page(pfn);
877 if (PagePinned(virt_to_page(mm->pgd))) {
878 SetPagePinned(page);
880 if (!PageHighMem(page)) {
881 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
882 if (level == PT_PTE)
883 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
884 } else
885 /* make sure there are no stray mappings of
886 this page */
887 kmap_flush_unused();
891 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
893 xen_alloc_ptpage(mm, pfn, PT_PTE);
896 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
898 xen_alloc_ptpage(mm, pfn, PT_PMD);
901 static int xen_pgd_alloc(struct mm_struct *mm)
903 pgd_t *pgd = mm->pgd;
904 int ret = 0;
906 BUG_ON(PagePinned(virt_to_page(pgd)));
908 #ifdef CONFIG_X86_64
910 struct page *page = virt_to_page(pgd);
911 pgd_t *user_pgd;
913 BUG_ON(page->private != 0);
915 ret = -ENOMEM;
917 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
918 page->private = (unsigned long)user_pgd;
920 if (user_pgd != NULL) {
921 user_pgd[pgd_index(VSYSCALL_START)] =
922 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
923 ret = 0;
926 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
928 #endif
930 return ret;
933 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
935 #ifdef CONFIG_X86_64
936 pgd_t *user_pgd = xen_get_user_pgd(pgd);
938 if (user_pgd)
939 free_page((unsigned long)user_pgd);
940 #endif
943 /* This should never happen until we're OK to use struct page */
944 static void xen_release_ptpage(u32 pfn, unsigned level)
946 struct page *page = pfn_to_page(pfn);
948 if (PagePinned(page)) {
949 if (!PageHighMem(page)) {
950 if (level == PT_PTE)
951 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
952 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
954 ClearPagePinned(page);
958 static void xen_release_pte(u32 pfn)
960 xen_release_ptpage(pfn, PT_PTE);
963 static void xen_release_pmd(u32 pfn)
965 xen_release_ptpage(pfn, PT_PMD);
968 #if PAGETABLE_LEVELS == 4
969 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
971 xen_alloc_ptpage(mm, pfn, PT_PUD);
974 static void xen_release_pud(u32 pfn)
976 xen_release_ptpage(pfn, PT_PUD);
978 #endif
980 #ifdef CONFIG_HIGHPTE
981 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
983 pgprot_t prot = PAGE_KERNEL;
985 if (PagePinned(page))
986 prot = PAGE_KERNEL_RO;
988 if (0 && PageHighMem(page))
989 printk("mapping highpte %lx type %d prot %s\n",
990 page_to_pfn(page), type,
991 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
993 return kmap_atomic_prot(page, type, prot);
995 #endif
997 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
999 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1000 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1001 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1002 pte_val_ma(pte));
1004 return pte;
1007 /* Init-time set_pte while constructing initial pagetables, which
1008 doesn't allow RO pagetable pages to be remapped RW */
1009 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1011 pte = mask_rw_pte(ptep, pte);
1013 xen_set_pte(ptep, pte);
1016 static __init void xen_pagetable_setup_start(pgd_t *base)
1020 void xen_setup_shared_info(void)
1022 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1023 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1024 xen_start_info->shared_info);
1026 HYPERVISOR_shared_info =
1027 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1028 } else
1029 HYPERVISOR_shared_info =
1030 (struct shared_info *)__va(xen_start_info->shared_info);
1032 #ifndef CONFIG_SMP
1033 /* In UP this is as good a place as any to set up shared info */
1034 xen_setup_vcpu_info_placement();
1035 #endif
1037 xen_setup_mfn_list_list();
1040 static __init void xen_pagetable_setup_done(pgd_t *base)
1042 xen_setup_shared_info();
1045 static __init void xen_post_allocator_init(void)
1047 pv_mmu_ops.set_pte = xen_set_pte;
1048 pv_mmu_ops.set_pmd = xen_set_pmd;
1049 pv_mmu_ops.set_pud = xen_set_pud;
1050 #if PAGETABLE_LEVELS == 4
1051 pv_mmu_ops.set_pgd = xen_set_pgd;
1052 #endif
1054 /* This will work as long as patching hasn't happened yet
1055 (which it hasn't) */
1056 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1057 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1058 pv_mmu_ops.release_pte = xen_release_pte;
1059 pv_mmu_ops.release_pmd = xen_release_pmd;
1060 #if PAGETABLE_LEVELS == 4
1061 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1062 pv_mmu_ops.release_pud = xen_release_pud;
1063 #endif
1065 #ifdef CONFIG_X86_64
1066 SetPagePinned(virt_to_page(level3_user_vsyscall));
1067 #endif
1068 xen_mark_init_mm_pinned();
1071 /* This is called once we have the cpu_possible_map */
1072 void xen_setup_vcpu_info_placement(void)
1074 int cpu;
1076 for_each_possible_cpu(cpu)
1077 xen_vcpu_setup(cpu);
1079 /* xen_vcpu_setup managed to place the vcpu_info within the
1080 percpu area for all cpus, so make use of it */
1081 #ifdef CONFIG_X86_32
1082 if (have_vcpu_info_placement) {
1083 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1085 pv_irq_ops.save_fl = xen_save_fl_direct;
1086 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1087 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1088 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1089 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1091 #endif
1094 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1095 unsigned long addr, unsigned len)
1097 char *start, *end, *reloc;
1098 unsigned ret;
1100 start = end = reloc = NULL;
1102 #define SITE(op, x) \
1103 case PARAVIRT_PATCH(op.x): \
1104 if (have_vcpu_info_placement) { \
1105 start = (char *)xen_##x##_direct; \
1106 end = xen_##x##_direct_end; \
1107 reloc = xen_##x##_direct_reloc; \
1109 goto patch_site
1111 switch (type) {
1112 #ifdef CONFIG_X86_32
1113 SITE(pv_irq_ops, irq_enable);
1114 SITE(pv_irq_ops, irq_disable);
1115 SITE(pv_irq_ops, save_fl);
1116 SITE(pv_irq_ops, restore_fl);
1117 #endif /* CONFIG_X86_32 */
1118 #undef SITE
1120 patch_site:
1121 if (start == NULL || (end-start) > len)
1122 goto default_patch;
1124 ret = paravirt_patch_insns(insnbuf, len, start, end);
1126 /* Note: because reloc is assigned from something that
1127 appears to be an array, gcc assumes it's non-null,
1128 but doesn't know its relationship with start and
1129 end. */
1130 if (reloc > start && reloc < end) {
1131 int reloc_off = reloc - start;
1132 long *relocp = (long *)(insnbuf + reloc_off);
1133 long delta = start - (char *)addr;
1135 *relocp += delta;
1137 break;
1139 default_patch:
1140 default:
1141 ret = paravirt_patch_default(type, clobbers, insnbuf,
1142 addr, len);
1143 break;
1146 return ret;
1149 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1151 pte_t pte;
1153 phys >>= PAGE_SHIFT;
1155 switch (idx) {
1156 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1157 #ifdef CONFIG_X86_F00F_BUG
1158 case FIX_F00F_IDT:
1159 #endif
1160 #ifdef CONFIG_X86_32
1161 case FIX_WP_TEST:
1162 case FIX_VDSO:
1163 # ifdef CONFIG_HIGHMEM
1164 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1165 # endif
1166 #else
1167 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1168 #endif
1169 #ifdef CONFIG_X86_LOCAL_APIC
1170 case FIX_APIC_BASE: /* maps dummy local APIC */
1171 #endif
1172 pte = pfn_pte(phys, prot);
1173 break;
1175 default:
1176 pte = mfn_pte(phys, prot);
1177 break;
1180 __native_set_fixmap(idx, pte);
1182 #ifdef CONFIG_X86_64
1183 /* Replicate changes to map the vsyscall page into the user
1184 pagetable vsyscall mapping. */
1185 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1186 unsigned long vaddr = __fix_to_virt(idx);
1187 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1189 #endif
1192 static const struct pv_info xen_info __initdata = {
1193 .paravirt_enabled = 1,
1194 .shared_kernel_pmd = 0,
1196 .name = "Xen",
1199 static const struct pv_init_ops xen_init_ops __initdata = {
1200 .patch = xen_patch,
1202 .banner = xen_banner,
1203 .memory_setup = xen_memory_setup,
1204 .arch_setup = xen_arch_setup,
1205 .post_allocator_init = xen_post_allocator_init,
1208 static const struct pv_time_ops xen_time_ops __initdata = {
1209 .time_init = xen_time_init,
1211 .set_wallclock = xen_set_wallclock,
1212 .get_wallclock = xen_get_wallclock,
1213 .get_tsc_khz = xen_tsc_khz,
1214 .sched_clock = xen_sched_clock,
1217 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1218 .cpuid = xen_cpuid,
1220 .set_debugreg = xen_set_debugreg,
1221 .get_debugreg = xen_get_debugreg,
1223 .clts = xen_clts,
1225 .read_cr0 = native_read_cr0,
1226 .write_cr0 = xen_write_cr0,
1228 .read_cr4 = native_read_cr4,
1229 .read_cr4_safe = native_read_cr4_safe,
1230 .write_cr4 = xen_write_cr4,
1232 .wbinvd = native_wbinvd,
1234 .read_msr = native_read_msr_safe,
1235 .write_msr = xen_write_msr_safe,
1236 .read_tsc = native_read_tsc,
1237 .read_pmc = native_read_pmc,
1239 .iret = xen_iret,
1240 .irq_enable_sysexit = xen_sysexit,
1241 #ifdef CONFIG_X86_64
1242 .usergs_sysret32 = xen_sysret32,
1243 .usergs_sysret64 = xen_sysret64,
1244 #endif
1246 .load_tr_desc = paravirt_nop,
1247 .set_ldt = xen_set_ldt,
1248 .load_gdt = xen_load_gdt,
1249 .load_idt = xen_load_idt,
1250 .load_tls = xen_load_tls,
1251 #ifdef CONFIG_X86_64
1252 .load_gs_index = xen_load_gs_index,
1253 #endif
1255 .store_gdt = native_store_gdt,
1256 .store_idt = native_store_idt,
1257 .store_tr = xen_store_tr,
1259 .write_ldt_entry = xen_write_ldt_entry,
1260 .write_gdt_entry = xen_write_gdt_entry,
1261 .write_idt_entry = xen_write_idt_entry,
1262 .load_sp0 = xen_load_sp0,
1264 .set_iopl_mask = xen_set_iopl_mask,
1265 .io_delay = xen_io_delay,
1267 /* Xen takes care of %gs when switching to usermode for us */
1268 .swapgs = paravirt_nop,
1270 .lazy_mode = {
1271 .enter = paravirt_enter_lazy_cpu,
1272 .leave = xen_leave_lazy,
1276 static void __init __xen_init_IRQ(void)
1278 #ifdef CONFIG_X86_64
1279 int i;
1281 /* Create identity vector->irq map */
1282 for(i = 0; i < NR_VECTORS; i++) {
1283 int cpu;
1285 for_each_possible_cpu(cpu)
1286 per_cpu(vector_irq, cpu)[i] = i;
1288 #endif /* CONFIG_X86_64 */
1290 xen_init_IRQ();
1293 static const struct pv_irq_ops xen_irq_ops __initdata = {
1294 .init_IRQ = __xen_init_IRQ,
1295 .save_fl = xen_save_fl,
1296 .restore_fl = xen_restore_fl,
1297 .irq_disable = xen_irq_disable,
1298 .irq_enable = xen_irq_enable,
1299 .safe_halt = xen_safe_halt,
1300 .halt = xen_halt,
1301 #ifdef CONFIG_X86_64
1302 .adjust_exception_frame = xen_adjust_exception_frame,
1303 #endif
1306 static const struct pv_apic_ops xen_apic_ops __initdata = {
1307 #ifdef CONFIG_X86_LOCAL_APIC
1308 .setup_boot_clock = paravirt_nop,
1309 .setup_secondary_clock = paravirt_nop,
1310 .startup_ipi_hook = paravirt_nop,
1311 #endif
1314 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1315 .pagetable_setup_start = xen_pagetable_setup_start,
1316 .pagetable_setup_done = xen_pagetable_setup_done,
1318 .read_cr2 = xen_read_cr2,
1319 .write_cr2 = xen_write_cr2,
1321 .read_cr3 = xen_read_cr3,
1322 .write_cr3 = xen_write_cr3,
1324 .flush_tlb_user = xen_flush_tlb,
1325 .flush_tlb_kernel = xen_flush_tlb,
1326 .flush_tlb_single = xen_flush_tlb_single,
1327 .flush_tlb_others = xen_flush_tlb_others,
1329 .pte_update = paravirt_nop,
1330 .pte_update_defer = paravirt_nop,
1332 .pgd_alloc = xen_pgd_alloc,
1333 .pgd_free = xen_pgd_free,
1335 .alloc_pte = xen_alloc_pte_init,
1336 .release_pte = xen_release_pte_init,
1337 .alloc_pmd = xen_alloc_pte_init,
1338 .alloc_pmd_clone = paravirt_nop,
1339 .release_pmd = xen_release_pte_init,
1341 #ifdef CONFIG_HIGHPTE
1342 .kmap_atomic_pte = xen_kmap_atomic_pte,
1343 #endif
1345 #ifdef CONFIG_X86_64
1346 .set_pte = xen_set_pte,
1347 #else
1348 .set_pte = xen_set_pte_init,
1349 #endif
1350 .set_pte_at = xen_set_pte_at,
1351 .set_pmd = xen_set_pmd_hyper,
1353 .ptep_modify_prot_start = __ptep_modify_prot_start,
1354 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1356 .pte_val = xen_pte_val,
1357 .pte_flags = native_pte_flags,
1358 .pgd_val = xen_pgd_val,
1360 .make_pte = xen_make_pte,
1361 .make_pgd = xen_make_pgd,
1363 #ifdef CONFIG_X86_PAE
1364 .set_pte_atomic = xen_set_pte_atomic,
1365 .set_pte_present = xen_set_pte_at,
1366 .pte_clear = xen_pte_clear,
1367 .pmd_clear = xen_pmd_clear,
1368 #endif /* CONFIG_X86_PAE */
1369 .set_pud = xen_set_pud_hyper,
1371 .make_pmd = xen_make_pmd,
1372 .pmd_val = xen_pmd_val,
1374 #if PAGETABLE_LEVELS == 4
1375 .pud_val = xen_pud_val,
1376 .make_pud = xen_make_pud,
1377 .set_pgd = xen_set_pgd_hyper,
1379 .alloc_pud = xen_alloc_pte_init,
1380 .release_pud = xen_release_pte_init,
1381 #endif /* PAGETABLE_LEVELS == 4 */
1383 .activate_mm = xen_activate_mm,
1384 .dup_mmap = xen_dup_mmap,
1385 .exit_mmap = xen_exit_mmap,
1387 .lazy_mode = {
1388 .enter = paravirt_enter_lazy_mmu,
1389 .leave = xen_leave_lazy,
1392 .set_fixmap = xen_set_fixmap,
1395 static void xen_reboot(int reason)
1397 struct sched_shutdown r = { .reason = reason };
1399 #ifdef CONFIG_SMP
1400 smp_send_stop();
1401 #endif
1403 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1404 BUG();
1407 static void xen_restart(char *msg)
1409 xen_reboot(SHUTDOWN_reboot);
1412 static void xen_emergency_restart(void)
1414 xen_reboot(SHUTDOWN_reboot);
1417 static void xen_machine_halt(void)
1419 xen_reboot(SHUTDOWN_poweroff);
1422 static void xen_crash_shutdown(struct pt_regs *regs)
1424 xen_reboot(SHUTDOWN_crash);
1427 static const struct machine_ops __initdata xen_machine_ops = {
1428 .restart = xen_restart,
1429 .halt = xen_machine_halt,
1430 .power_off = xen_machine_halt,
1431 .shutdown = xen_machine_halt,
1432 .crash_shutdown = xen_crash_shutdown,
1433 .emergency_restart = xen_emergency_restart,
1437 static void __init xen_reserve_top(void)
1439 #ifdef CONFIG_X86_32
1440 unsigned long top = HYPERVISOR_VIRT_START;
1441 struct xen_platform_parameters pp;
1443 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1444 top = pp.virt_start;
1446 reserve_top_address(-top + 2 * PAGE_SIZE);
1447 #endif /* CONFIG_X86_32 */
1451 * Like __va(), but returns address in the kernel mapping (which is
1452 * all we have until the physical memory mapping has been set up.
1454 static void *__ka(phys_addr_t paddr)
1456 #ifdef CONFIG_X86_64
1457 return (void *)(paddr + __START_KERNEL_map);
1458 #else
1459 return __va(paddr);
1460 #endif
1463 /* Convert a machine address to physical address */
1464 static unsigned long m2p(phys_addr_t maddr)
1466 phys_addr_t paddr;
1468 maddr &= PTE_PFN_MASK;
1469 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1471 return paddr;
1474 /* Convert a machine address to kernel virtual */
1475 static void *m2v(phys_addr_t maddr)
1477 return __ka(m2p(maddr));
1480 #ifdef CONFIG_X86_64
1481 static void walk(pgd_t *pgd, unsigned long addr)
1483 unsigned l4idx = pgd_index(addr);
1484 unsigned l3idx = pud_index(addr);
1485 unsigned l2idx = pmd_index(addr);
1486 unsigned l1idx = pte_index(addr);
1487 pgd_t l4;
1488 pud_t l3;
1489 pmd_t l2;
1490 pte_t l1;
1492 xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1493 pgd, addr, l4idx, l3idx, l2idx, l1idx);
1495 l4 = pgd[l4idx];
1496 xen_raw_printk(" l4: %016lx\n", l4.pgd);
1497 xen_raw_printk(" %016lx\n", pgd_val(l4));
1499 l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1500 xen_raw_printk(" l3: %016lx\n", l3.pud);
1501 xen_raw_printk(" %016lx\n", pud_val(l3));
1503 l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1504 xen_raw_printk(" l2: %016lx\n", l2.pmd);
1505 xen_raw_printk(" %016lx\n", pmd_val(l2));
1507 l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1508 xen_raw_printk(" l1: %016lx\n", l1.pte);
1509 xen_raw_printk(" %016lx\n", pte_val(l1));
1511 #endif
1513 static void set_page_prot(void *addr, pgprot_t prot)
1515 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1516 pte_t pte = pfn_pte(pfn, prot);
1518 xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1519 addr, pfn, get_phys_to_machine(pfn),
1520 pgprot_val(prot), pte.pte);
1522 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1523 BUG();
1526 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1528 unsigned pmdidx, pteidx;
1529 unsigned ident_pte;
1530 unsigned long pfn;
1532 ident_pte = 0;
1533 pfn = 0;
1534 for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1535 pte_t *pte_page;
1537 /* Reuse or allocate a page of ptes */
1538 if (pmd_present(pmd[pmdidx]))
1539 pte_page = m2v(pmd[pmdidx].pmd);
1540 else {
1541 /* Check for free pte pages */
1542 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1543 break;
1545 pte_page = &level1_ident_pgt[ident_pte];
1546 ident_pte += PTRS_PER_PTE;
1548 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1551 /* Install mappings */
1552 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1553 pte_t pte;
1555 if (pfn > max_pfn_mapped)
1556 max_pfn_mapped = pfn;
1558 if (!pte_none(pte_page[pteidx]))
1559 continue;
1561 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1562 pte_page[pteidx] = pte;
1566 for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1567 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1569 set_page_prot(pmd, PAGE_KERNEL_RO);
1572 #ifdef CONFIG_X86_64
1573 static void convert_pfn_mfn(void *v)
1575 pte_t *pte = v;
1576 int i;
1578 /* All levels are converted the same way, so just treat them
1579 as ptes. */
1580 for(i = 0; i < PTRS_PER_PTE; i++)
1581 pte[i] = xen_make_pte(pte[i].pte);
1585 * Set up the inital kernel pagetable.
1587 * We can construct this by grafting the Xen provided pagetable into
1588 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1589 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1590 * means that only the kernel has a physical mapping to start with -
1591 * but that's enough to get __va working. We need to fill in the rest
1592 * of the physical mapping once some sort of allocator has been set
1593 * up.
1595 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1597 pud_t *l3;
1598 pmd_t *l2;
1600 /* Zap identity mapping */
1601 init_level4_pgt[0] = __pgd(0);
1603 /* Pre-constructed entries are in pfn, so convert to mfn */
1604 convert_pfn_mfn(init_level4_pgt);
1605 convert_pfn_mfn(level3_ident_pgt);
1606 convert_pfn_mfn(level3_kernel_pgt);
1608 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1609 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1611 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1612 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1614 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1615 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1616 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1618 /* Set up identity map */
1619 xen_map_identity_early(level2_ident_pgt, max_pfn);
1621 /* Make pagetable pieces RO */
1622 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1623 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1624 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1625 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1626 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1627 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1629 /* Pin down new L4 */
1630 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1631 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1633 /* Unpin Xen-provided one */
1634 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1636 /* Switch over */
1637 pgd = init_level4_pgt;
1640 * At this stage there can be no user pgd, and no page
1641 * structure to attach it to, so make sure we just set kernel
1642 * pgd.
1644 xen_mc_batch();
1645 __xen_write_cr3(true, __pa(pgd));
1646 xen_mc_issue(PARAVIRT_LAZY_CPU);
1648 reserve_early(__pa(xen_start_info->pt_base),
1649 __pa(xen_start_info->pt_base +
1650 xen_start_info->nr_pt_frames * PAGE_SIZE),
1651 "XEN PAGETABLES");
1653 return pgd;
1655 #else /* !CONFIG_X86_64 */
1656 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1658 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1660 pmd_t *kernel_pmd;
1662 init_pg_tables_start = __pa(pgd);
1663 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1664 max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1666 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1667 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1669 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1671 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1672 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1673 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1675 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1676 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1677 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1679 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1681 xen_write_cr3(__pa(swapper_pg_dir));
1683 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1685 return swapper_pg_dir;
1687 #endif /* CONFIG_X86_64 */
1689 /* First C function to be called on Xen boot */
1690 asmlinkage void __init xen_start_kernel(void)
1692 pgd_t *pgd;
1694 if (!xen_start_info)
1695 return;
1697 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1699 xen_setup_features();
1701 /* Install Xen paravirt ops */
1702 pv_info = xen_info;
1703 pv_init_ops = xen_init_ops;
1704 pv_time_ops = xen_time_ops;
1705 pv_cpu_ops = xen_cpu_ops;
1706 pv_irq_ops = xen_irq_ops;
1707 pv_apic_ops = xen_apic_ops;
1708 pv_mmu_ops = xen_mmu_ops;
1710 #ifdef CONFIG_X86_LOCAL_APIC
1712 * set up the basic apic ops.
1714 apic_ops = &xen_basic_apic_ops;
1715 #endif
1717 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1718 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1719 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1722 machine_ops = xen_machine_ops;
1724 #ifdef CONFIG_X86_64
1725 /* Disable until direct per-cpu data access. */
1726 have_vcpu_info_placement = 0;
1727 x86_64_init_pda();
1728 #endif
1730 xen_smp_init();
1732 /* Get mfn list */
1733 if (!xen_feature(XENFEAT_auto_translated_physmap))
1734 xen_build_dynamic_phys_to_machine();
1736 pgd = (pgd_t *)xen_start_info->pt_base;
1738 /* Prevent unwanted bits from being set in PTEs. */
1739 __supported_pte_mask &= ~_PAGE_GLOBAL;
1740 if (!is_initial_xendomain())
1741 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1743 /* Don't do the full vcpu_info placement stuff until we have a
1744 possible map and a non-dummy shared_info. */
1745 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1747 xen_raw_console_write("mapping kernel into physical memory\n");
1748 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1750 init_mm.pgd = pgd;
1752 /* keep using Xen gdt for now; no urgent need to change it */
1754 pv_info.kernel_rpl = 1;
1755 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1756 pv_info.kernel_rpl = 0;
1758 /* set the limit of our address space */
1759 xen_reserve_top();
1761 #ifdef CONFIG_X86_32
1762 /* set up basic CPUID stuff */
1763 cpu_detect(&new_cpu_data);
1764 new_cpu_data.hard_math = 1;
1765 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1766 #endif
1768 /* Poke various useful things into boot_params */
1769 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1770 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1771 ? __pa(xen_start_info->mod_start) : 0;
1772 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1773 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1775 if (!is_initial_xendomain()) {
1776 add_preferred_console("xenboot", 0, NULL);
1777 add_preferred_console("tty", 0, NULL);
1778 add_preferred_console("hvc", 0, NULL);
1781 xen_raw_console_write("about to get started...\n");
1783 #if 0
1784 xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1785 &boot_params, __pa_symbol(&boot_params),
1786 __va(__pa_symbol(&boot_params)));
1788 walk(pgd, &boot_params);
1789 walk(pgd, __va(__pa(&boot_params)));
1790 #endif
1792 /* Start the world */
1793 #ifdef CONFIG_X86_32
1794 i386_start_kernel();
1795 #else
1796 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1797 #endif