sched: Rename select_task_rq() argument
[linux-2.6/x86.git] / kernel / sched_fair.c
blobb554e63c521a79d7f519726c90a70082880dd91b
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency = 5000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity = 1000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency = 5;
51 * After fork, child runs first. If set to 0 (default) then
52 * parent will (try to) run first.
54 unsigned int sysctl_sched_child_runs_first __read_mostly;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield;
65 * SCHED_OTHER wake-up granularity.
66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
76 static const struct sched_class fair_sched_class;
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
82 #ifdef CONFIG_FAIR_GROUP_SCHED
84 /* cpu runqueue to which this cfs_rq is attached */
85 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
87 return cfs_rq->rq;
90 /* An entity is a task if it doesn't "own" a runqueue */
91 #define entity_is_task(se) (!se->my_q)
93 static inline struct task_struct *task_of(struct sched_entity *se)
95 #ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97 #endif
98 return container_of(se, struct task_struct, se);
101 /* Walk up scheduling entities hierarchy */
102 #define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
105 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
107 return p->se.cfs_rq;
110 /* runqueue on which this entity is (to be) queued */
111 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
113 return se->cfs_rq;
116 /* runqueue "owned" by this group */
117 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
119 return grp->my_q;
122 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
125 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
127 return cfs_rq->tg->cfs_rq[this_cpu];
130 /* Iterate thr' all leaf cfs_rq's on a runqueue */
131 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
134 /* Do the two (enqueued) entities belong to the same group ? */
135 static inline int
136 is_same_group(struct sched_entity *se, struct sched_entity *pse)
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
141 return 0;
144 static inline struct sched_entity *parent_entity(struct sched_entity *se)
146 return se->parent;
149 /* return depth at which a sched entity is present in the hierarchy */
150 static inline int depth_se(struct sched_entity *se)
152 int depth = 0;
154 for_each_sched_entity(se)
155 depth++;
157 return depth;
160 static void
161 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
163 int se_depth, pse_depth;
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
192 #else /* !CONFIG_FAIR_GROUP_SCHED */
194 static inline struct task_struct *task_of(struct sched_entity *se)
196 return container_of(se, struct task_struct, se);
199 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
201 return container_of(cfs_rq, struct rq, cfs);
204 #define entity_is_task(se) 1
206 #define for_each_sched_entity(se) \
207 for (; se; se = NULL)
209 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
211 return &task_rq(p)->cfs;
214 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
219 return &rq->cfs;
222 /* runqueue "owned" by this group */
223 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
225 return NULL;
228 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
230 return &cpu_rq(this_cpu)->cfs;
233 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
236 static inline int
237 is_same_group(struct sched_entity *se, struct sched_entity *pse)
239 return 1;
242 static inline struct sched_entity *parent_entity(struct sched_entity *se)
244 return NULL;
247 static inline void
248 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
252 #endif /* CONFIG_FAIR_GROUP_SCHED */
255 /**************************************************************
256 * Scheduling class tree data structure manipulation methods:
259 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
263 min_vruntime = vruntime;
265 return min_vruntime;
268 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
274 return min_vruntime;
277 static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
280 return (s64)(a->vruntime - b->vruntime) < 0;
283 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
285 return se->vruntime - cfs_rq->min_vruntime;
288 static void update_min_vruntime(struct cfs_rq *cfs_rq)
290 u64 vruntime = cfs_rq->min_vruntime;
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
300 if (!cfs_rq->curr)
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
310 * Enqueue an entity into the rb-tree:
312 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
317 s64 key = entity_key(cfs_rq, se);
318 int leftmost = 1;
321 * Find the right place in the rbtree:
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
330 if (key < entity_key(cfs_rq, entry)) {
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
342 if (leftmost)
343 cfs_rq->rb_leftmost = &se->run_node;
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
349 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
361 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
363 struct rb_node *left = cfs_rq->rb_leftmost;
365 if (!left)
366 return NULL;
368 return rb_entry(left, struct sched_entity, run_node);
371 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
375 if (!last)
376 return NULL;
378 return rb_entry(last, struct sched_entity, run_node);
381 /**************************************************************
382 * Scheduling class statistics methods:
385 #ifdef CONFIG_SCHED_DEBUG
386 int sched_nr_latency_handler(struct ctl_table *table, int write,
387 struct file *filp, void __user *buffer, size_t *lenp,
388 loff_t *ppos)
390 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
392 if (ret || !write)
393 return ret;
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
398 return 0;
400 #endif
403 * delta /= w
405 static inline unsigned long
406 calc_delta_fair(unsigned long delta, struct sched_entity *se)
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
411 return delta;
415 * The idea is to set a period in which each task runs once.
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
420 * p = (nr <= nl) ? l : l*nr/nl
422 static u64 __sched_period(unsigned long nr_running)
424 u64 period = sysctl_sched_latency;
425 unsigned long nr_latency = sched_nr_latency;
427 if (unlikely(nr_running > nr_latency)) {
428 period = sysctl_sched_min_granularity;
429 period *= nr_running;
432 return period;
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
439 * s = p*P[w/rw]
441 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
445 for_each_sched_entity(se) {
446 struct load_weight *load;
447 struct load_weight lw;
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
452 if (unlikely(!se->on_rq)) {
453 lw = cfs_rq->load;
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
458 slice = calc_delta_mine(slice, se->load.weight, load);
460 return slice;
464 * We calculate the vruntime slice of a to be inserted task
466 * vs = s/w
468 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
477 static inline void
478 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
481 unsigned long delta_exec_weighted;
483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
485 curr->sum_exec_runtime += delta_exec;
486 schedstat_add(cfs_rq, exec_clock, delta_exec);
487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
488 curr->vruntime += delta_exec_weighted;
489 update_min_vruntime(cfs_rq);
492 static void update_curr(struct cfs_rq *cfs_rq)
494 struct sched_entity *curr = cfs_rq->curr;
495 u64 now = rq_of(cfs_rq)->clock;
496 unsigned long delta_exec;
498 if (unlikely(!curr))
499 return;
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
506 delta_exec = (unsigned long)(now - curr->exec_start);
507 if (!delta_exec)
508 return;
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
516 cpuacct_charge(curtask, delta_exec);
517 account_group_exec_runtime(curtask, delta_exec);
521 static inline void
522 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
528 * Task is being enqueued - update stats:
530 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
533 * Are we enqueueing a waiting task? (for current tasks
534 * a dequeue/enqueue event is a NOP)
536 if (se != cfs_rq->curr)
537 update_stats_wait_start(cfs_rq, se);
540 static void
541 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 schedstat_set(se->wait_max, max(se->wait_max,
544 rq_of(cfs_rq)->clock - se->wait_start));
545 schedstat_set(se->wait_count, se->wait_count + 1);
546 schedstat_set(se->wait_sum, se->wait_sum +
547 rq_of(cfs_rq)->clock - se->wait_start);
548 #ifdef CONFIG_SCHEDSTATS
549 if (entity_is_task(se)) {
550 trace_sched_stat_wait(task_of(se),
551 rq_of(cfs_rq)->clock - se->wait_start);
553 #endif
554 schedstat_set(se->wait_start, 0);
557 static inline void
558 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
561 * Mark the end of the wait period if dequeueing a
562 * waiting task:
564 if (se != cfs_rq->curr)
565 update_stats_wait_end(cfs_rq, se);
569 * We are picking a new current task - update its stats:
571 static inline void
572 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
575 * We are starting a new run period:
577 se->exec_start = rq_of(cfs_rq)->clock;
580 /**************************************************
581 * Scheduling class queueing methods:
584 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
585 static void
586 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
588 cfs_rq->task_weight += weight;
590 #else
591 static inline void
592 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
595 #endif
597 static void
598 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
600 update_load_add(&cfs_rq->load, se->load.weight);
601 if (!parent_entity(se))
602 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
603 if (entity_is_task(se)) {
604 add_cfs_task_weight(cfs_rq, se->load.weight);
605 list_add(&se->group_node, &cfs_rq->tasks);
607 cfs_rq->nr_running++;
608 se->on_rq = 1;
611 static void
612 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
614 update_load_sub(&cfs_rq->load, se->load.weight);
615 if (!parent_entity(se))
616 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
617 if (entity_is_task(se)) {
618 add_cfs_task_weight(cfs_rq, -se->load.weight);
619 list_del_init(&se->group_node);
621 cfs_rq->nr_running--;
622 se->on_rq = 0;
625 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 #ifdef CONFIG_SCHEDSTATS
628 struct task_struct *tsk = NULL;
630 if (entity_is_task(se))
631 tsk = task_of(se);
633 if (se->sleep_start) {
634 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
636 if ((s64)delta < 0)
637 delta = 0;
639 if (unlikely(delta > se->sleep_max))
640 se->sleep_max = delta;
642 se->sleep_start = 0;
643 se->sum_sleep_runtime += delta;
645 if (tsk) {
646 account_scheduler_latency(tsk, delta >> 10, 1);
647 trace_sched_stat_sleep(tsk, delta);
650 if (se->block_start) {
651 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
653 if ((s64)delta < 0)
654 delta = 0;
656 if (unlikely(delta > se->block_max))
657 se->block_max = delta;
659 se->block_start = 0;
660 se->sum_sleep_runtime += delta;
662 if (tsk) {
663 if (tsk->in_iowait) {
664 se->iowait_sum += delta;
665 se->iowait_count++;
666 trace_sched_stat_iowait(tsk, delta);
670 * Blocking time is in units of nanosecs, so shift by
671 * 20 to get a milliseconds-range estimation of the
672 * amount of time that the task spent sleeping:
674 if (unlikely(prof_on == SLEEP_PROFILING)) {
675 profile_hits(SLEEP_PROFILING,
676 (void *)get_wchan(tsk),
677 delta >> 20);
679 account_scheduler_latency(tsk, delta >> 10, 0);
682 #endif
685 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
687 #ifdef CONFIG_SCHED_DEBUG
688 s64 d = se->vruntime - cfs_rq->min_vruntime;
690 if (d < 0)
691 d = -d;
693 if (d > 3*sysctl_sched_latency)
694 schedstat_inc(cfs_rq, nr_spread_over);
695 #endif
698 static void
699 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
701 u64 vruntime = cfs_rq->min_vruntime;
704 * The 'current' period is already promised to the current tasks,
705 * however the extra weight of the new task will slow them down a
706 * little, place the new task so that it fits in the slot that
707 * stays open at the end.
709 if (initial && sched_feat(START_DEBIT))
710 vruntime += sched_vslice(cfs_rq, se);
712 if (!initial) {
713 /* sleeps upto a single latency don't count. */
714 if (sched_feat(NEW_FAIR_SLEEPERS)) {
715 unsigned long thresh = sysctl_sched_latency;
718 * Convert the sleeper threshold into virtual time.
719 * SCHED_IDLE is a special sub-class. We care about
720 * fairness only relative to other SCHED_IDLE tasks,
721 * all of which have the same weight.
723 if (sched_feat(NORMALIZED_SLEEPER) &&
724 (!entity_is_task(se) ||
725 task_of(se)->policy != SCHED_IDLE))
726 thresh = calc_delta_fair(thresh, se);
728 vruntime -= thresh;
732 /* ensure we never gain time by being placed backwards. */
733 vruntime = max_vruntime(se->vruntime, vruntime);
735 se->vruntime = vruntime;
738 static void
739 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
742 * Update run-time statistics of the 'current'.
744 update_curr(cfs_rq);
745 account_entity_enqueue(cfs_rq, se);
747 if (wakeup) {
748 place_entity(cfs_rq, se, 0);
749 enqueue_sleeper(cfs_rq, se);
752 update_stats_enqueue(cfs_rq, se);
753 check_spread(cfs_rq, se);
754 if (se != cfs_rq->curr)
755 __enqueue_entity(cfs_rq, se);
758 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
760 if (cfs_rq->last == se)
761 cfs_rq->last = NULL;
763 if (cfs_rq->next == se)
764 cfs_rq->next = NULL;
767 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
769 for_each_sched_entity(se)
770 __clear_buddies(cfs_rq_of(se), se);
773 static void
774 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
777 * Update run-time statistics of the 'current'.
779 update_curr(cfs_rq);
781 update_stats_dequeue(cfs_rq, se);
782 if (sleep) {
783 #ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 struct task_struct *tsk = task_of(se);
787 if (tsk->state & TASK_INTERRUPTIBLE)
788 se->sleep_start = rq_of(cfs_rq)->clock;
789 if (tsk->state & TASK_UNINTERRUPTIBLE)
790 se->block_start = rq_of(cfs_rq)->clock;
792 #endif
795 clear_buddies(cfs_rq, se);
797 if (se != cfs_rq->curr)
798 __dequeue_entity(cfs_rq, se);
799 account_entity_dequeue(cfs_rq, se);
800 update_min_vruntime(cfs_rq);
804 * Preempt the current task with a newly woken task if needed:
806 static void
807 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
809 unsigned long ideal_runtime, delta_exec;
811 ideal_runtime = sched_slice(cfs_rq, curr);
812 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
813 if (delta_exec > ideal_runtime) {
814 resched_task(rq_of(cfs_rq)->curr);
816 * The current task ran long enough, ensure it doesn't get
817 * re-elected due to buddy favours.
819 clear_buddies(cfs_rq, curr);
823 static void
824 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
826 /* 'current' is not kept within the tree. */
827 if (se->on_rq) {
829 * Any task has to be enqueued before it get to execute on
830 * a CPU. So account for the time it spent waiting on the
831 * runqueue.
833 update_stats_wait_end(cfs_rq, se);
834 __dequeue_entity(cfs_rq, se);
837 update_stats_curr_start(cfs_rq, se);
838 cfs_rq->curr = se;
839 #ifdef CONFIG_SCHEDSTATS
841 * Track our maximum slice length, if the CPU's load is at
842 * least twice that of our own weight (i.e. dont track it
843 * when there are only lesser-weight tasks around):
845 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
846 se->slice_max = max(se->slice_max,
847 se->sum_exec_runtime - se->prev_sum_exec_runtime);
849 #endif
850 se->prev_sum_exec_runtime = se->sum_exec_runtime;
853 static int
854 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
856 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
858 struct sched_entity *se = __pick_next_entity(cfs_rq);
860 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
861 return cfs_rq->next;
863 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
864 return cfs_rq->last;
866 return se;
869 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
872 * If still on the runqueue then deactivate_task()
873 * was not called and update_curr() has to be done:
875 if (prev->on_rq)
876 update_curr(cfs_rq);
878 check_spread(cfs_rq, prev);
879 if (prev->on_rq) {
880 update_stats_wait_start(cfs_rq, prev);
881 /* Put 'current' back into the tree. */
882 __enqueue_entity(cfs_rq, prev);
884 cfs_rq->curr = NULL;
887 static void
888 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
891 * Update run-time statistics of the 'current'.
893 update_curr(cfs_rq);
895 #ifdef CONFIG_SCHED_HRTICK
897 * queued ticks are scheduled to match the slice, so don't bother
898 * validating it and just reschedule.
900 if (queued) {
901 resched_task(rq_of(cfs_rq)->curr);
902 return;
905 * don't let the period tick interfere with the hrtick preemption
907 if (!sched_feat(DOUBLE_TICK) &&
908 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
909 return;
910 #endif
912 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
913 check_preempt_tick(cfs_rq, curr);
916 /**************************************************
917 * CFS operations on tasks:
920 #ifdef CONFIG_SCHED_HRTICK
921 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
923 struct sched_entity *se = &p->se;
924 struct cfs_rq *cfs_rq = cfs_rq_of(se);
926 WARN_ON(task_rq(p) != rq);
928 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
929 u64 slice = sched_slice(cfs_rq, se);
930 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
931 s64 delta = slice - ran;
933 if (delta < 0) {
934 if (rq->curr == p)
935 resched_task(p);
936 return;
940 * Don't schedule slices shorter than 10000ns, that just
941 * doesn't make sense. Rely on vruntime for fairness.
943 if (rq->curr != p)
944 delta = max_t(s64, 10000LL, delta);
946 hrtick_start(rq, delta);
951 * called from enqueue/dequeue and updates the hrtick when the
952 * current task is from our class and nr_running is low enough
953 * to matter.
955 static void hrtick_update(struct rq *rq)
957 struct task_struct *curr = rq->curr;
959 if (curr->sched_class != &fair_sched_class)
960 return;
962 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
963 hrtick_start_fair(rq, curr);
965 #else /* !CONFIG_SCHED_HRTICK */
966 static inline void
967 hrtick_start_fair(struct rq *rq, struct task_struct *p)
971 static inline void hrtick_update(struct rq *rq)
974 #endif
977 * The enqueue_task method is called before nr_running is
978 * increased. Here we update the fair scheduling stats and
979 * then put the task into the rbtree:
981 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
983 struct cfs_rq *cfs_rq;
984 struct sched_entity *se = &p->se;
986 for_each_sched_entity(se) {
987 if (se->on_rq)
988 break;
989 cfs_rq = cfs_rq_of(se);
990 enqueue_entity(cfs_rq, se, wakeup);
991 wakeup = 1;
994 hrtick_update(rq);
998 * The dequeue_task method is called before nr_running is
999 * decreased. We remove the task from the rbtree and
1000 * update the fair scheduling stats:
1002 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1004 struct cfs_rq *cfs_rq;
1005 struct sched_entity *se = &p->se;
1007 for_each_sched_entity(se) {
1008 cfs_rq = cfs_rq_of(se);
1009 dequeue_entity(cfs_rq, se, sleep);
1010 /* Don't dequeue parent if it has other entities besides us */
1011 if (cfs_rq->load.weight)
1012 break;
1013 sleep = 1;
1016 hrtick_update(rq);
1020 * sched_yield() support is very simple - we dequeue and enqueue.
1022 * If compat_yield is turned on then we requeue to the end of the tree.
1024 static void yield_task_fair(struct rq *rq)
1026 struct task_struct *curr = rq->curr;
1027 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1028 struct sched_entity *rightmost, *se = &curr->se;
1031 * Are we the only task in the tree?
1033 if (unlikely(cfs_rq->nr_running == 1))
1034 return;
1036 clear_buddies(cfs_rq, se);
1038 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1039 update_rq_clock(rq);
1041 * Update run-time statistics of the 'current'.
1043 update_curr(cfs_rq);
1045 return;
1048 * Find the rightmost entry in the rbtree:
1050 rightmost = __pick_last_entity(cfs_rq);
1052 * Already in the rightmost position?
1054 if (unlikely(!rightmost || entity_before(rightmost, se)))
1055 return;
1058 * Minimally necessary key value to be last in the tree:
1059 * Upon rescheduling, sched_class::put_prev_task() will place
1060 * 'current' within the tree based on its new key value.
1062 se->vruntime = rightmost->vruntime + 1;
1065 #ifdef CONFIG_SMP
1067 #ifdef CONFIG_FAIR_GROUP_SCHED
1069 * effective_load() calculates the load change as seen from the root_task_group
1071 * Adding load to a group doesn't make a group heavier, but can cause movement
1072 * of group shares between cpus. Assuming the shares were perfectly aligned one
1073 * can calculate the shift in shares.
1075 * The problem is that perfectly aligning the shares is rather expensive, hence
1076 * we try to avoid doing that too often - see update_shares(), which ratelimits
1077 * this change.
1079 * We compensate this by not only taking the current delta into account, but
1080 * also considering the delta between when the shares were last adjusted and
1081 * now.
1083 * We still saw a performance dip, some tracing learned us that between
1084 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1085 * significantly. Therefore try to bias the error in direction of failing
1086 * the affine wakeup.
1089 static long effective_load(struct task_group *tg, int cpu,
1090 long wl, long wg)
1092 struct sched_entity *se = tg->se[cpu];
1094 if (!tg->parent)
1095 return wl;
1098 * By not taking the decrease of shares on the other cpu into
1099 * account our error leans towards reducing the affine wakeups.
1101 if (!wl && sched_feat(ASYM_EFF_LOAD))
1102 return wl;
1104 for_each_sched_entity(se) {
1105 long S, rw, s, a, b;
1106 long more_w;
1109 * Instead of using this increment, also add the difference
1110 * between when the shares were last updated and now.
1112 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1113 wl += more_w;
1114 wg += more_w;
1116 S = se->my_q->tg->shares;
1117 s = se->my_q->shares;
1118 rw = se->my_q->rq_weight;
1120 a = S*(rw + wl);
1121 b = S*rw + s*wg;
1123 wl = s*(a-b);
1125 if (likely(b))
1126 wl /= b;
1129 * Assume the group is already running and will
1130 * thus already be accounted for in the weight.
1132 * That is, moving shares between CPUs, does not
1133 * alter the group weight.
1135 wg = 0;
1138 return wl;
1141 #else
1143 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1144 unsigned long wl, unsigned long wg)
1146 return wl;
1149 #endif
1151 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1153 struct task_struct *curr = current;
1154 unsigned long this_load, load;
1155 int idx, this_cpu, prev_cpu;
1156 unsigned long tl_per_task;
1157 unsigned int imbalance;
1158 struct task_group *tg;
1159 unsigned long weight;
1160 int balanced;
1162 idx = sd->wake_idx;
1163 this_cpu = smp_processor_id();
1164 prev_cpu = task_cpu(p);
1165 load = source_load(prev_cpu, idx);
1166 this_load = target_load(this_cpu, idx);
1168 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1169 p->se.avg_overlap > sysctl_sched_migration_cost))
1170 sync = 0;
1173 * If sync wakeup then subtract the (maximum possible)
1174 * effect of the currently running task from the load
1175 * of the current CPU:
1177 if (sync) {
1178 tg = task_group(current);
1179 weight = current->se.load.weight;
1181 this_load += effective_load(tg, this_cpu, -weight, -weight);
1182 load += effective_load(tg, prev_cpu, 0, -weight);
1185 tg = task_group(p);
1186 weight = p->se.load.weight;
1188 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1191 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1192 * due to the sync cause above having dropped this_load to 0, we'll
1193 * always have an imbalance, but there's really nothing you can do
1194 * about that, so that's good too.
1196 * Otherwise check if either cpus are near enough in load to allow this
1197 * task to be woken on this_cpu.
1199 balanced = !this_load ||
1200 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1201 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1204 * If the currently running task will sleep within
1205 * a reasonable amount of time then attract this newly
1206 * woken task:
1208 if (sync && balanced)
1209 return 1;
1211 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1212 tl_per_task = cpu_avg_load_per_task(this_cpu);
1214 if (balanced ||
1215 (this_load <= load &&
1216 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1218 * This domain has SD_WAKE_AFFINE and
1219 * p is cache cold in this domain, and
1220 * there is no bad imbalance.
1222 schedstat_inc(sd, ttwu_move_affine);
1223 schedstat_inc(p, se.nr_wakeups_affine);
1225 return 1;
1227 return 0;
1231 * find_idlest_group finds and returns the least busy CPU group within the
1232 * domain.
1234 static struct sched_group *
1235 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1236 int this_cpu, int flag)
1238 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1239 unsigned long min_load = ULONG_MAX, this_load = 0;
1240 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1241 int load_idx = 0;
1243 switch (flag) {
1244 case SD_BALANCE_FORK:
1245 case SD_BALANCE_EXEC:
1246 load_idx = sd->forkexec_idx;
1247 break;
1249 case SD_BALANCE_WAKE:
1250 load_idx = sd->wake_idx;
1251 break;
1253 default:
1254 break;
1257 do {
1258 unsigned long load, avg_load;
1259 int local_group;
1260 int i;
1262 /* Skip over this group if it has no CPUs allowed */
1263 if (!cpumask_intersects(sched_group_cpus(group),
1264 &p->cpus_allowed))
1265 continue;
1267 local_group = cpumask_test_cpu(this_cpu,
1268 sched_group_cpus(group));
1270 /* Tally up the load of all CPUs in the group */
1271 avg_load = 0;
1273 for_each_cpu(i, sched_group_cpus(group)) {
1274 /* Bias balancing toward cpus of our domain */
1275 if (local_group)
1276 load = source_load(i, load_idx);
1277 else
1278 load = target_load(i, load_idx);
1280 avg_load += load;
1283 /* Adjust by relative CPU power of the group */
1284 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1286 if (local_group) {
1287 this_load = avg_load;
1288 this = group;
1289 } else if (avg_load < min_load) {
1290 min_load = avg_load;
1291 idlest = group;
1293 } while (group = group->next, group != sd->groups);
1295 if (!idlest || 100*this_load < imbalance*min_load)
1296 return NULL;
1297 return idlest;
1301 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1303 static int
1304 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1306 unsigned long load, min_load = ULONG_MAX;
1307 int idlest = -1;
1308 int i;
1310 /* Traverse only the allowed CPUs */
1311 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1312 load = weighted_cpuload(i);
1314 if (load < min_load || (load == min_load && i == this_cpu)) {
1315 min_load = load;
1316 idlest = i;
1320 return idlest;
1324 * sched_balance_self: balance the current task (running on cpu) in domains
1325 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1326 * SD_BALANCE_EXEC.
1328 * Balance, ie. select the least loaded group.
1330 * Returns the target CPU number, or the same CPU if no balancing is needed.
1332 * preempt must be disabled.
1334 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int sync)
1336 struct sched_domain *tmp, *sd = NULL;
1337 int cpu = smp_processor_id();
1338 int prev_cpu = task_cpu(p);
1339 int new_cpu = cpu;
1340 int want_affine = 0;
1342 if (sd_flag & SD_BALANCE_WAKE) {
1343 if (sched_feat(AFFINE_WAKEUPS))
1344 want_affine = 1;
1345 new_cpu = prev_cpu;
1348 rcu_read_lock();
1349 for_each_domain(cpu, tmp) {
1351 * If power savings logic is enabled for a domain, see if we
1352 * are not overloaded, if so, don't balance wider.
1354 if (tmp->flags & SD_POWERSAVINGS_BALANCE) {
1355 unsigned long power = 0;
1356 unsigned long nr_running = 0;
1357 unsigned long capacity;
1358 int i;
1360 for_each_cpu(i, sched_domain_span(tmp)) {
1361 power += power_of(i);
1362 nr_running += cpu_rq(i)->cfs.nr_running;
1365 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1367 if (nr_running/2 < capacity)
1368 break;
1371 switch (sd_flag) {
1372 case SD_BALANCE_WAKE:
1373 if (!sched_feat(LB_WAKEUP_UPDATE))
1374 break;
1375 case SD_BALANCE_FORK:
1376 case SD_BALANCE_EXEC:
1377 if (root_task_group_empty())
1378 break;
1379 update_shares(tmp);
1380 default:
1381 break;
1384 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1385 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1387 if (wake_affine(tmp, p, sync)) {
1388 new_cpu = cpu;
1389 goto out;
1392 want_affine = 0;
1395 if (!(tmp->flags & sd_flag))
1396 continue;
1398 sd = tmp;
1401 while (sd) {
1402 struct sched_group *group;
1403 int weight;
1405 if (!(sd->flags & sd_flag)) {
1406 sd = sd->child;
1407 continue;
1410 group = find_idlest_group(sd, p, cpu, sd_flag);
1411 if (!group) {
1412 sd = sd->child;
1413 continue;
1416 new_cpu = find_idlest_cpu(group, p, cpu);
1417 if (new_cpu == -1 || new_cpu == cpu) {
1418 /* Now try balancing at a lower domain level of cpu */
1419 sd = sd->child;
1420 continue;
1423 /* Now try balancing at a lower domain level of new_cpu */
1424 cpu = new_cpu;
1425 weight = cpumask_weight(sched_domain_span(sd));
1426 sd = NULL;
1427 for_each_domain(cpu, tmp) {
1428 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1429 break;
1430 if (tmp->flags & sd_flag)
1431 sd = tmp;
1433 /* while loop will break here if sd == NULL */
1436 out:
1437 rcu_read_unlock();
1438 return new_cpu;
1440 #endif /* CONFIG_SMP */
1443 * Adaptive granularity
1445 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1446 * with the limit of wakeup_gran -- when it never does a wakeup.
1448 * So the smaller avg_wakeup is the faster we want this task to preempt,
1449 * but we don't want to treat the preemptee unfairly and therefore allow it
1450 * to run for at least the amount of time we'd like to run.
1452 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1454 * NOTE: we use *nr_running to scale with load, this nicely matches the
1455 * degrading latency on load.
1457 static unsigned long
1458 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1460 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1461 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1462 u64 gran = 0;
1464 if (this_run < expected_wakeup)
1465 gran = expected_wakeup - this_run;
1467 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1470 static unsigned long
1471 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1473 unsigned long gran = sysctl_sched_wakeup_granularity;
1475 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1476 gran = adaptive_gran(curr, se);
1479 * Since its curr running now, convert the gran from real-time
1480 * to virtual-time in his units.
1482 if (sched_feat(ASYM_GRAN)) {
1484 * By using 'se' instead of 'curr' we penalize light tasks, so
1485 * they get preempted easier. That is, if 'se' < 'curr' then
1486 * the resulting gran will be larger, therefore penalizing the
1487 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1488 * be smaller, again penalizing the lighter task.
1490 * This is especially important for buddies when the leftmost
1491 * task is higher priority than the buddy.
1493 if (unlikely(se->load.weight != NICE_0_LOAD))
1494 gran = calc_delta_fair(gran, se);
1495 } else {
1496 if (unlikely(curr->load.weight != NICE_0_LOAD))
1497 gran = calc_delta_fair(gran, curr);
1500 return gran;
1504 * Should 'se' preempt 'curr'.
1506 * |s1
1507 * |s2
1508 * |s3
1510 * |<--->|c
1512 * w(c, s1) = -1
1513 * w(c, s2) = 0
1514 * w(c, s3) = 1
1517 static int
1518 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1520 s64 gran, vdiff = curr->vruntime - se->vruntime;
1522 if (vdiff <= 0)
1523 return -1;
1525 gran = wakeup_gran(curr, se);
1526 if (vdiff > gran)
1527 return 1;
1529 return 0;
1532 static void set_last_buddy(struct sched_entity *se)
1534 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1535 for_each_sched_entity(se)
1536 cfs_rq_of(se)->last = se;
1540 static void set_next_buddy(struct sched_entity *se)
1542 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1543 for_each_sched_entity(se)
1544 cfs_rq_of(se)->next = se;
1549 * Preempt the current task with a newly woken task if needed:
1551 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1553 struct task_struct *curr = rq->curr;
1554 struct sched_entity *se = &curr->se, *pse = &p->se;
1555 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1557 update_curr(cfs_rq);
1559 if (unlikely(rt_prio(p->prio))) {
1560 resched_task(curr);
1561 return;
1564 if (unlikely(p->sched_class != &fair_sched_class))
1565 return;
1567 if (unlikely(se == pse))
1568 return;
1571 * Only set the backward buddy when the current task is still on the
1572 * rq. This can happen when a wakeup gets interleaved with schedule on
1573 * the ->pre_schedule() or idle_balance() point, either of which can
1574 * drop the rq lock.
1576 * Also, during early boot the idle thread is in the fair class, for
1577 * obvious reasons its a bad idea to schedule back to the idle thread.
1579 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1580 set_last_buddy(se);
1581 if (sched_feat(NEXT_BUDDY))
1582 set_next_buddy(pse);
1585 * We can come here with TIF_NEED_RESCHED already set from new task
1586 * wake up path.
1588 if (test_tsk_need_resched(curr))
1589 return;
1592 * Batch and idle tasks do not preempt (their preemption is driven by
1593 * the tick):
1595 if (unlikely(p->policy != SCHED_NORMAL))
1596 return;
1598 /* Idle tasks are by definition preempted by everybody. */
1599 if (unlikely(curr->policy == SCHED_IDLE)) {
1600 resched_task(curr);
1601 return;
1604 if (!sched_feat(WAKEUP_PREEMPT))
1605 return;
1607 if ((sched_feat(WAKEUP_SYNC) && sync) ||
1608 (sched_feat(WAKEUP_OVERLAP) &&
1609 (se->avg_overlap < sysctl_sched_migration_cost &&
1610 pse->avg_overlap < sysctl_sched_migration_cost))) {
1611 resched_task(curr);
1612 return;
1615 find_matching_se(&se, &pse);
1617 BUG_ON(!pse);
1619 if (wakeup_preempt_entity(se, pse) == 1)
1620 resched_task(curr);
1623 static struct task_struct *pick_next_task_fair(struct rq *rq)
1625 struct task_struct *p;
1626 struct cfs_rq *cfs_rq = &rq->cfs;
1627 struct sched_entity *se;
1629 if (unlikely(!cfs_rq->nr_running))
1630 return NULL;
1632 do {
1633 se = pick_next_entity(cfs_rq);
1635 * If se was a buddy, clear it so that it will have to earn
1636 * the favour again.
1638 __clear_buddies(cfs_rq, se);
1639 set_next_entity(cfs_rq, se);
1640 cfs_rq = group_cfs_rq(se);
1641 } while (cfs_rq);
1643 p = task_of(se);
1644 hrtick_start_fair(rq, p);
1646 return p;
1650 * Account for a descheduled task:
1652 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1654 struct sched_entity *se = &prev->se;
1655 struct cfs_rq *cfs_rq;
1657 for_each_sched_entity(se) {
1658 cfs_rq = cfs_rq_of(se);
1659 put_prev_entity(cfs_rq, se);
1663 #ifdef CONFIG_SMP
1664 /**************************************************
1665 * Fair scheduling class load-balancing methods:
1669 * Load-balancing iterator. Note: while the runqueue stays locked
1670 * during the whole iteration, the current task might be
1671 * dequeued so the iterator has to be dequeue-safe. Here we
1672 * achieve that by always pre-iterating before returning
1673 * the current task:
1675 static struct task_struct *
1676 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1678 struct task_struct *p = NULL;
1679 struct sched_entity *se;
1681 if (next == &cfs_rq->tasks)
1682 return NULL;
1684 se = list_entry(next, struct sched_entity, group_node);
1685 p = task_of(se);
1686 cfs_rq->balance_iterator = next->next;
1688 return p;
1691 static struct task_struct *load_balance_start_fair(void *arg)
1693 struct cfs_rq *cfs_rq = arg;
1695 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1698 static struct task_struct *load_balance_next_fair(void *arg)
1700 struct cfs_rq *cfs_rq = arg;
1702 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1705 static unsigned long
1706 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1707 unsigned long max_load_move, struct sched_domain *sd,
1708 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1709 struct cfs_rq *cfs_rq)
1711 struct rq_iterator cfs_rq_iterator;
1713 cfs_rq_iterator.start = load_balance_start_fair;
1714 cfs_rq_iterator.next = load_balance_next_fair;
1715 cfs_rq_iterator.arg = cfs_rq;
1717 return balance_tasks(this_rq, this_cpu, busiest,
1718 max_load_move, sd, idle, all_pinned,
1719 this_best_prio, &cfs_rq_iterator);
1722 #ifdef CONFIG_FAIR_GROUP_SCHED
1723 static unsigned long
1724 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1725 unsigned long max_load_move,
1726 struct sched_domain *sd, enum cpu_idle_type idle,
1727 int *all_pinned, int *this_best_prio)
1729 long rem_load_move = max_load_move;
1730 int busiest_cpu = cpu_of(busiest);
1731 struct task_group *tg;
1733 rcu_read_lock();
1734 update_h_load(busiest_cpu);
1736 list_for_each_entry_rcu(tg, &task_groups, list) {
1737 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1738 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1739 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1740 u64 rem_load, moved_load;
1743 * empty group
1745 if (!busiest_cfs_rq->task_weight)
1746 continue;
1748 rem_load = (u64)rem_load_move * busiest_weight;
1749 rem_load = div_u64(rem_load, busiest_h_load + 1);
1751 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1752 rem_load, sd, idle, all_pinned, this_best_prio,
1753 tg->cfs_rq[busiest_cpu]);
1755 if (!moved_load)
1756 continue;
1758 moved_load *= busiest_h_load;
1759 moved_load = div_u64(moved_load, busiest_weight + 1);
1761 rem_load_move -= moved_load;
1762 if (rem_load_move < 0)
1763 break;
1765 rcu_read_unlock();
1767 return max_load_move - rem_load_move;
1769 #else
1770 static unsigned long
1771 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1772 unsigned long max_load_move,
1773 struct sched_domain *sd, enum cpu_idle_type idle,
1774 int *all_pinned, int *this_best_prio)
1776 return __load_balance_fair(this_rq, this_cpu, busiest,
1777 max_load_move, sd, idle, all_pinned,
1778 this_best_prio, &busiest->cfs);
1780 #endif
1782 static int
1783 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1784 struct sched_domain *sd, enum cpu_idle_type idle)
1786 struct cfs_rq *busy_cfs_rq;
1787 struct rq_iterator cfs_rq_iterator;
1789 cfs_rq_iterator.start = load_balance_start_fair;
1790 cfs_rq_iterator.next = load_balance_next_fair;
1792 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1794 * pass busy_cfs_rq argument into
1795 * load_balance_[start|next]_fair iterators
1797 cfs_rq_iterator.arg = busy_cfs_rq;
1798 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1799 &cfs_rq_iterator))
1800 return 1;
1803 return 0;
1805 #endif /* CONFIG_SMP */
1808 * scheduler tick hitting a task of our scheduling class:
1810 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1812 struct cfs_rq *cfs_rq;
1813 struct sched_entity *se = &curr->se;
1815 for_each_sched_entity(se) {
1816 cfs_rq = cfs_rq_of(se);
1817 entity_tick(cfs_rq, se, queued);
1822 * Share the fairness runtime between parent and child, thus the
1823 * total amount of pressure for CPU stays equal - new tasks
1824 * get a chance to run but frequent forkers are not allowed to
1825 * monopolize the CPU. Note: the parent runqueue is locked,
1826 * the child is not running yet.
1828 static void task_new_fair(struct rq *rq, struct task_struct *p)
1830 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1831 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1832 int this_cpu = smp_processor_id();
1834 sched_info_queued(p);
1836 update_curr(cfs_rq);
1837 if (curr)
1838 se->vruntime = curr->vruntime;
1839 place_entity(cfs_rq, se, 1);
1841 /* 'curr' will be NULL if the child belongs to a different group */
1842 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1843 curr && entity_before(curr, se)) {
1845 * Upon rescheduling, sched_class::put_prev_task() will place
1846 * 'current' within the tree based on its new key value.
1848 swap(curr->vruntime, se->vruntime);
1849 resched_task(rq->curr);
1852 enqueue_task_fair(rq, p, 0);
1856 * Priority of the task has changed. Check to see if we preempt
1857 * the current task.
1859 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1860 int oldprio, int running)
1863 * Reschedule if we are currently running on this runqueue and
1864 * our priority decreased, or if we are not currently running on
1865 * this runqueue and our priority is higher than the current's
1867 if (running) {
1868 if (p->prio > oldprio)
1869 resched_task(rq->curr);
1870 } else
1871 check_preempt_curr(rq, p, 0);
1875 * We switched to the sched_fair class.
1877 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1878 int running)
1881 * We were most likely switched from sched_rt, so
1882 * kick off the schedule if running, otherwise just see
1883 * if we can still preempt the current task.
1885 if (running)
1886 resched_task(rq->curr);
1887 else
1888 check_preempt_curr(rq, p, 0);
1891 /* Account for a task changing its policy or group.
1893 * This routine is mostly called to set cfs_rq->curr field when a task
1894 * migrates between groups/classes.
1896 static void set_curr_task_fair(struct rq *rq)
1898 struct sched_entity *se = &rq->curr->se;
1900 for_each_sched_entity(se)
1901 set_next_entity(cfs_rq_of(se), se);
1904 #ifdef CONFIG_FAIR_GROUP_SCHED
1905 static void moved_group_fair(struct task_struct *p)
1907 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1909 update_curr(cfs_rq);
1910 place_entity(cfs_rq, &p->se, 1);
1912 #endif
1915 * All the scheduling class methods:
1917 static const struct sched_class fair_sched_class = {
1918 .next = &idle_sched_class,
1919 .enqueue_task = enqueue_task_fair,
1920 .dequeue_task = dequeue_task_fair,
1921 .yield_task = yield_task_fair,
1923 .check_preempt_curr = check_preempt_wakeup,
1925 .pick_next_task = pick_next_task_fair,
1926 .put_prev_task = put_prev_task_fair,
1928 #ifdef CONFIG_SMP
1929 .select_task_rq = select_task_rq_fair,
1931 .load_balance = load_balance_fair,
1932 .move_one_task = move_one_task_fair,
1933 #endif
1935 .set_curr_task = set_curr_task_fair,
1936 .task_tick = task_tick_fair,
1937 .task_new = task_new_fair,
1939 .prio_changed = prio_changed_fair,
1940 .switched_to = switched_to_fair,
1942 #ifdef CONFIG_FAIR_GROUP_SCHED
1943 .moved_group = moved_group_fair,
1944 #endif
1947 #ifdef CONFIG_SCHED_DEBUG
1948 static void print_cfs_stats(struct seq_file *m, int cpu)
1950 struct cfs_rq *cfs_rq;
1952 rcu_read_lock();
1953 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1954 print_cfs_rq(m, cpu, cfs_rq);
1955 rcu_read_unlock();
1957 #endif