slub: make early_kmem_cache_node_alloc void
[linux-2.6/x86.git] / mm / slub.c
blobb6968899cb5852a0a9d8a8dc103deae678d596f6
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/cpu.h>
20 #include <linux/cpuset.h>
21 #include <linux/mempolicy.h>
22 #include <linux/ctype.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/memory.h>
26 #include <linux/math64.h>
29 * Lock order:
30 * 1. slab_lock(page)
31 * 2. slab->list_lock
33 * The slab_lock protects operations on the object of a particular
34 * slab and its metadata in the page struct. If the slab lock
35 * has been taken then no allocations nor frees can be performed
36 * on the objects in the slab nor can the slab be added or removed
37 * from the partial or full lists since this would mean modifying
38 * the page_struct of the slab.
40 * The list_lock protects the partial and full list on each node and
41 * the partial slab counter. If taken then no new slabs may be added or
42 * removed from the lists nor make the number of partial slabs be modified.
43 * (Note that the total number of slabs is an atomic value that may be
44 * modified without taking the list lock).
46 * The list_lock is a centralized lock and thus we avoid taking it as
47 * much as possible. As long as SLUB does not have to handle partial
48 * slabs, operations can continue without any centralized lock. F.e.
49 * allocating a long series of objects that fill up slabs does not require
50 * the list lock.
52 * The lock order is sometimes inverted when we are trying to get a slab
53 * off a list. We take the list_lock and then look for a page on the list
54 * to use. While we do that objects in the slabs may be freed. We can
55 * only operate on the slab if we have also taken the slab_lock. So we use
56 * a slab_trylock() on the slab. If trylock was successful then no frees
57 * can occur anymore and we can use the slab for allocations etc. If the
58 * slab_trylock() does not succeed then frees are in progress in the slab and
59 * we must stay away from it for a while since we may cause a bouncing
60 * cacheline if we try to acquire the lock. So go onto the next slab.
61 * If all pages are busy then we may allocate a new slab instead of reusing
62 * a partial slab. A new slab has noone operating on it and thus there is
63 * no danger of cacheline contention.
65 * Interrupts are disabled during allocation and deallocation in order to
66 * make the slab allocator safe to use in the context of an irq. In addition
67 * interrupts are disabled to ensure that the processor does not change
68 * while handling per_cpu slabs, due to kernel preemption.
70 * SLUB assigns one slab for allocation to each processor.
71 * Allocations only occur from these slabs called cpu slabs.
73 * Slabs with free elements are kept on a partial list and during regular
74 * operations no list for full slabs is used. If an object in a full slab is
75 * freed then the slab will show up again on the partial lists.
76 * We track full slabs for debugging purposes though because otherwise we
77 * cannot scan all objects.
79 * Slabs are freed when they become empty. Teardown and setup is
80 * minimal so we rely on the page allocators per cpu caches for
81 * fast frees and allocs.
83 * Overloading of page flags that are otherwise used for LRU management.
85 * PageActive The slab is frozen and exempt from list processing.
86 * This means that the slab is dedicated to a purpose
87 * such as satisfying allocations for a specific
88 * processor. Objects may be freed in the slab while
89 * it is frozen but slab_free will then skip the usual
90 * list operations. It is up to the processor holding
91 * the slab to integrate the slab into the slab lists
92 * when the slab is no longer needed.
94 * One use of this flag is to mark slabs that are
95 * used for allocations. Then such a slab becomes a cpu
96 * slab. The cpu slab may be equipped with an additional
97 * freelist that allows lockless access to
98 * free objects in addition to the regular freelist
99 * that requires the slab lock.
101 * PageError Slab requires special handling due to debug
102 * options set. This moves slab handling out of
103 * the fast path and disables lockless freelists.
106 #ifdef CONFIG_SLUB_DEBUG
107 #define SLABDEBUG 1
108 #else
109 #define SLABDEBUG 0
110 #endif
113 * Issues still to be resolved:
115 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
117 * - Variable sizing of the per node arrays
120 /* Enable to test recovery from slab corruption on boot */
121 #undef SLUB_RESILIENCY_TEST
124 * Mininum number of partial slabs. These will be left on the partial
125 * lists even if they are empty. kmem_cache_shrink may reclaim them.
127 #define MIN_PARTIAL 5
130 * Maximum number of desirable partial slabs.
131 * The existence of more partial slabs makes kmem_cache_shrink
132 * sort the partial list by the number of objects in the.
134 #define MAX_PARTIAL 10
136 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
137 SLAB_POISON | SLAB_STORE_USER)
140 * Set of flags that will prevent slab merging
142 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
143 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
145 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
146 SLAB_CACHE_DMA)
148 #ifndef ARCH_KMALLOC_MINALIGN
149 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
150 #endif
152 #ifndef ARCH_SLAB_MINALIGN
153 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
154 #endif
156 #define OO_SHIFT 16
157 #define OO_MASK ((1 << OO_SHIFT) - 1)
158 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
160 /* Internal SLUB flags */
161 #define __OBJECT_POISON 0x80000000 /* Poison object */
162 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
164 static int kmem_size = sizeof(struct kmem_cache);
166 #ifdef CONFIG_SMP
167 static struct notifier_block slab_notifier;
168 #endif
170 static enum {
171 DOWN, /* No slab functionality available */
172 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
173 UP, /* Everything works but does not show up in sysfs */
174 SYSFS /* Sysfs up */
175 } slab_state = DOWN;
177 /* A list of all slab caches on the system */
178 static DECLARE_RWSEM(slub_lock);
179 static LIST_HEAD(slab_caches);
182 * Tracking user of a slab.
184 struct track {
185 unsigned long addr; /* Called from address */
186 int cpu; /* Was running on cpu */
187 int pid; /* Pid context */
188 unsigned long when; /* When did the operation occur */
191 enum track_item { TRACK_ALLOC, TRACK_FREE };
193 #ifdef CONFIG_SLUB_DEBUG
194 static int sysfs_slab_add(struct kmem_cache *);
195 static int sysfs_slab_alias(struct kmem_cache *, const char *);
196 static void sysfs_slab_remove(struct kmem_cache *);
198 #else
199 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
200 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
201 { return 0; }
202 static inline void sysfs_slab_remove(struct kmem_cache *s)
204 kfree(s);
207 #endif
209 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
211 #ifdef CONFIG_SLUB_STATS
212 c->stat[si]++;
213 #endif
216 /********************************************************************
217 * Core slab cache functions
218 *******************************************************************/
220 int slab_is_available(void)
222 return slab_state >= UP;
225 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
227 #ifdef CONFIG_NUMA
228 return s->node[node];
229 #else
230 return &s->local_node;
231 #endif
234 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
236 #ifdef CONFIG_SMP
237 return s->cpu_slab[cpu];
238 #else
239 return &s->cpu_slab;
240 #endif
243 /* Verify that a pointer has an address that is valid within a slab page */
244 static inline int check_valid_pointer(struct kmem_cache *s,
245 struct page *page, const void *object)
247 void *base;
249 if (!object)
250 return 1;
252 base = page_address(page);
253 if (object < base || object >= base + page->objects * s->size ||
254 (object - base) % s->size) {
255 return 0;
258 return 1;
262 * Slow version of get and set free pointer.
264 * This version requires touching the cache lines of kmem_cache which
265 * we avoid to do in the fast alloc free paths. There we obtain the offset
266 * from the page struct.
268 static inline void *get_freepointer(struct kmem_cache *s, void *object)
270 return *(void **)(object + s->offset);
273 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
275 *(void **)(object + s->offset) = fp;
278 /* Loop over all objects in a slab */
279 #define for_each_object(__p, __s, __addr, __objects) \
280 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
281 __p += (__s)->size)
283 /* Scan freelist */
284 #define for_each_free_object(__p, __s, __free) \
285 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
287 /* Determine object index from a given position */
288 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
290 return (p - addr) / s->size;
293 static inline struct kmem_cache_order_objects oo_make(int order,
294 unsigned long size)
296 struct kmem_cache_order_objects x = {
297 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
300 return x;
303 static inline int oo_order(struct kmem_cache_order_objects x)
305 return x.x >> OO_SHIFT;
308 static inline int oo_objects(struct kmem_cache_order_objects x)
310 return x.x & OO_MASK;
313 #ifdef CONFIG_SLUB_DEBUG
315 * Debug settings:
317 #ifdef CONFIG_SLUB_DEBUG_ON
318 static int slub_debug = DEBUG_DEFAULT_FLAGS;
319 #else
320 static int slub_debug;
321 #endif
323 static char *slub_debug_slabs;
326 * Object debugging
328 static void print_section(char *text, u8 *addr, unsigned int length)
330 int i, offset;
331 int newline = 1;
332 char ascii[17];
334 ascii[16] = 0;
336 for (i = 0; i < length; i++) {
337 if (newline) {
338 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
339 newline = 0;
341 printk(KERN_CONT " %02x", addr[i]);
342 offset = i % 16;
343 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
344 if (offset == 15) {
345 printk(KERN_CONT " %s\n", ascii);
346 newline = 1;
349 if (!newline) {
350 i %= 16;
351 while (i < 16) {
352 printk(KERN_CONT " ");
353 ascii[i] = ' ';
354 i++;
356 printk(KERN_CONT " %s\n", ascii);
360 static struct track *get_track(struct kmem_cache *s, void *object,
361 enum track_item alloc)
363 struct track *p;
365 if (s->offset)
366 p = object + s->offset + sizeof(void *);
367 else
368 p = object + s->inuse;
370 return p + alloc;
373 static void set_track(struct kmem_cache *s, void *object,
374 enum track_item alloc, unsigned long addr)
376 struct track *p;
378 if (s->offset)
379 p = object + s->offset + sizeof(void *);
380 else
381 p = object + s->inuse;
383 p += alloc;
384 if (addr) {
385 p->addr = addr;
386 p->cpu = smp_processor_id();
387 p->pid = current->pid;
388 p->when = jiffies;
389 } else
390 memset(p, 0, sizeof(struct track));
393 static void init_tracking(struct kmem_cache *s, void *object)
395 if (!(s->flags & SLAB_STORE_USER))
396 return;
398 set_track(s, object, TRACK_FREE, 0UL);
399 set_track(s, object, TRACK_ALLOC, 0UL);
402 static void print_track(const char *s, struct track *t)
404 if (!t->addr)
405 return;
407 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
408 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
411 static void print_tracking(struct kmem_cache *s, void *object)
413 if (!(s->flags & SLAB_STORE_USER))
414 return;
416 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
417 print_track("Freed", get_track(s, object, TRACK_FREE));
420 static void print_page_info(struct page *page)
422 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
423 page, page->objects, page->inuse, page->freelist, page->flags);
427 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
429 va_list args;
430 char buf[100];
432 va_start(args, fmt);
433 vsnprintf(buf, sizeof(buf), fmt, args);
434 va_end(args);
435 printk(KERN_ERR "========================================"
436 "=====================================\n");
437 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
438 printk(KERN_ERR "----------------------------------------"
439 "-------------------------------------\n\n");
442 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
444 va_list args;
445 char buf[100];
447 va_start(args, fmt);
448 vsnprintf(buf, sizeof(buf), fmt, args);
449 va_end(args);
450 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
453 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
455 unsigned int off; /* Offset of last byte */
456 u8 *addr = page_address(page);
458 print_tracking(s, p);
460 print_page_info(page);
462 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
463 p, p - addr, get_freepointer(s, p));
465 if (p > addr + 16)
466 print_section("Bytes b4", p - 16, 16);
468 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
470 if (s->flags & SLAB_RED_ZONE)
471 print_section("Redzone", p + s->objsize,
472 s->inuse - s->objsize);
474 if (s->offset)
475 off = s->offset + sizeof(void *);
476 else
477 off = s->inuse;
479 if (s->flags & SLAB_STORE_USER)
480 off += 2 * sizeof(struct track);
482 if (off != s->size)
483 /* Beginning of the filler is the free pointer */
484 print_section("Padding", p + off, s->size - off);
486 dump_stack();
489 static void object_err(struct kmem_cache *s, struct page *page,
490 u8 *object, char *reason)
492 slab_bug(s, "%s", reason);
493 print_trailer(s, page, object);
496 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
498 va_list args;
499 char buf[100];
501 va_start(args, fmt);
502 vsnprintf(buf, sizeof(buf), fmt, args);
503 va_end(args);
504 slab_bug(s, "%s", buf);
505 print_page_info(page);
506 dump_stack();
509 static void init_object(struct kmem_cache *s, void *object, int active)
511 u8 *p = object;
513 if (s->flags & __OBJECT_POISON) {
514 memset(p, POISON_FREE, s->objsize - 1);
515 p[s->objsize - 1] = POISON_END;
518 if (s->flags & SLAB_RED_ZONE)
519 memset(p + s->objsize,
520 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
521 s->inuse - s->objsize);
524 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
526 while (bytes) {
527 if (*start != (u8)value)
528 return start;
529 start++;
530 bytes--;
532 return NULL;
535 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
536 void *from, void *to)
538 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
539 memset(from, data, to - from);
542 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
543 u8 *object, char *what,
544 u8 *start, unsigned int value, unsigned int bytes)
546 u8 *fault;
547 u8 *end;
549 fault = check_bytes(start, value, bytes);
550 if (!fault)
551 return 1;
553 end = start + bytes;
554 while (end > fault && end[-1] == value)
555 end--;
557 slab_bug(s, "%s overwritten", what);
558 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
559 fault, end - 1, fault[0], value);
560 print_trailer(s, page, object);
562 restore_bytes(s, what, value, fault, end);
563 return 0;
567 * Object layout:
569 * object address
570 * Bytes of the object to be managed.
571 * If the freepointer may overlay the object then the free
572 * pointer is the first word of the object.
574 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
575 * 0xa5 (POISON_END)
577 * object + s->objsize
578 * Padding to reach word boundary. This is also used for Redzoning.
579 * Padding is extended by another word if Redzoning is enabled and
580 * objsize == inuse.
582 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
583 * 0xcc (RED_ACTIVE) for objects in use.
585 * object + s->inuse
586 * Meta data starts here.
588 * A. Free pointer (if we cannot overwrite object on free)
589 * B. Tracking data for SLAB_STORE_USER
590 * C. Padding to reach required alignment boundary or at mininum
591 * one word if debugging is on to be able to detect writes
592 * before the word boundary.
594 * Padding is done using 0x5a (POISON_INUSE)
596 * object + s->size
597 * Nothing is used beyond s->size.
599 * If slabcaches are merged then the objsize and inuse boundaries are mostly
600 * ignored. And therefore no slab options that rely on these boundaries
601 * may be used with merged slabcaches.
604 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
606 unsigned long off = s->inuse; /* The end of info */
608 if (s->offset)
609 /* Freepointer is placed after the object. */
610 off += sizeof(void *);
612 if (s->flags & SLAB_STORE_USER)
613 /* We also have user information there */
614 off += 2 * sizeof(struct track);
616 if (s->size == off)
617 return 1;
619 return check_bytes_and_report(s, page, p, "Object padding",
620 p + off, POISON_INUSE, s->size - off);
623 /* Check the pad bytes at the end of a slab page */
624 static int slab_pad_check(struct kmem_cache *s, struct page *page)
626 u8 *start;
627 u8 *fault;
628 u8 *end;
629 int length;
630 int remainder;
632 if (!(s->flags & SLAB_POISON))
633 return 1;
635 start = page_address(page);
636 length = (PAGE_SIZE << compound_order(page));
637 end = start + length;
638 remainder = length % s->size;
639 if (!remainder)
640 return 1;
642 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
643 if (!fault)
644 return 1;
645 while (end > fault && end[-1] == POISON_INUSE)
646 end--;
648 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
649 print_section("Padding", end - remainder, remainder);
651 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
652 return 0;
655 static int check_object(struct kmem_cache *s, struct page *page,
656 void *object, int active)
658 u8 *p = object;
659 u8 *endobject = object + s->objsize;
661 if (s->flags & SLAB_RED_ZONE) {
662 unsigned int red =
663 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
665 if (!check_bytes_and_report(s, page, object, "Redzone",
666 endobject, red, s->inuse - s->objsize))
667 return 0;
668 } else {
669 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
670 check_bytes_and_report(s, page, p, "Alignment padding",
671 endobject, POISON_INUSE, s->inuse - s->objsize);
675 if (s->flags & SLAB_POISON) {
676 if (!active && (s->flags & __OBJECT_POISON) &&
677 (!check_bytes_and_report(s, page, p, "Poison", p,
678 POISON_FREE, s->objsize - 1) ||
679 !check_bytes_and_report(s, page, p, "Poison",
680 p + s->objsize - 1, POISON_END, 1)))
681 return 0;
683 * check_pad_bytes cleans up on its own.
685 check_pad_bytes(s, page, p);
688 if (!s->offset && active)
690 * Object and freepointer overlap. Cannot check
691 * freepointer while object is allocated.
693 return 1;
695 /* Check free pointer validity */
696 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
697 object_err(s, page, p, "Freepointer corrupt");
699 * No choice but to zap it and thus loose the remainder
700 * of the free objects in this slab. May cause
701 * another error because the object count is now wrong.
703 set_freepointer(s, p, NULL);
704 return 0;
706 return 1;
709 static int check_slab(struct kmem_cache *s, struct page *page)
711 int maxobj;
713 VM_BUG_ON(!irqs_disabled());
715 if (!PageSlab(page)) {
716 slab_err(s, page, "Not a valid slab page");
717 return 0;
720 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
721 if (page->objects > maxobj) {
722 slab_err(s, page, "objects %u > max %u",
723 s->name, page->objects, maxobj);
724 return 0;
726 if (page->inuse > page->objects) {
727 slab_err(s, page, "inuse %u > max %u",
728 s->name, page->inuse, page->objects);
729 return 0;
731 /* Slab_pad_check fixes things up after itself */
732 slab_pad_check(s, page);
733 return 1;
737 * Determine if a certain object on a page is on the freelist. Must hold the
738 * slab lock to guarantee that the chains are in a consistent state.
740 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
742 int nr = 0;
743 void *fp = page->freelist;
744 void *object = NULL;
745 unsigned long max_objects;
747 while (fp && nr <= page->objects) {
748 if (fp == search)
749 return 1;
750 if (!check_valid_pointer(s, page, fp)) {
751 if (object) {
752 object_err(s, page, object,
753 "Freechain corrupt");
754 set_freepointer(s, object, NULL);
755 break;
756 } else {
757 slab_err(s, page, "Freepointer corrupt");
758 page->freelist = NULL;
759 page->inuse = page->objects;
760 slab_fix(s, "Freelist cleared");
761 return 0;
763 break;
765 object = fp;
766 fp = get_freepointer(s, object);
767 nr++;
770 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
771 if (max_objects > MAX_OBJS_PER_PAGE)
772 max_objects = MAX_OBJS_PER_PAGE;
774 if (page->objects != max_objects) {
775 slab_err(s, page, "Wrong number of objects. Found %d but "
776 "should be %d", page->objects, max_objects);
777 page->objects = max_objects;
778 slab_fix(s, "Number of objects adjusted.");
780 if (page->inuse != page->objects - nr) {
781 slab_err(s, page, "Wrong object count. Counter is %d but "
782 "counted were %d", page->inuse, page->objects - nr);
783 page->inuse = page->objects - nr;
784 slab_fix(s, "Object count adjusted.");
786 return search == NULL;
789 static void trace(struct kmem_cache *s, struct page *page, void *object,
790 int alloc)
792 if (s->flags & SLAB_TRACE) {
793 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
794 s->name,
795 alloc ? "alloc" : "free",
796 object, page->inuse,
797 page->freelist);
799 if (!alloc)
800 print_section("Object", (void *)object, s->objsize);
802 dump_stack();
807 * Tracking of fully allocated slabs for debugging purposes.
809 static void add_full(struct kmem_cache_node *n, struct page *page)
811 spin_lock(&n->list_lock);
812 list_add(&page->lru, &n->full);
813 spin_unlock(&n->list_lock);
816 static void remove_full(struct kmem_cache *s, struct page *page)
818 struct kmem_cache_node *n;
820 if (!(s->flags & SLAB_STORE_USER))
821 return;
823 n = get_node(s, page_to_nid(page));
825 spin_lock(&n->list_lock);
826 list_del(&page->lru);
827 spin_unlock(&n->list_lock);
830 /* Tracking of the number of slabs for debugging purposes */
831 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
833 struct kmem_cache_node *n = get_node(s, node);
835 return atomic_long_read(&n->nr_slabs);
838 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
840 struct kmem_cache_node *n = get_node(s, node);
843 * May be called early in order to allocate a slab for the
844 * kmem_cache_node structure. Solve the chicken-egg
845 * dilemma by deferring the increment of the count during
846 * bootstrap (see early_kmem_cache_node_alloc).
848 if (!NUMA_BUILD || n) {
849 atomic_long_inc(&n->nr_slabs);
850 atomic_long_add(objects, &n->total_objects);
853 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
855 struct kmem_cache_node *n = get_node(s, node);
857 atomic_long_dec(&n->nr_slabs);
858 atomic_long_sub(objects, &n->total_objects);
861 /* Object debug checks for alloc/free paths */
862 static void setup_object_debug(struct kmem_cache *s, struct page *page,
863 void *object)
865 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
866 return;
868 init_object(s, object, 0);
869 init_tracking(s, object);
872 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
873 void *object, unsigned long addr)
875 if (!check_slab(s, page))
876 goto bad;
878 if (!on_freelist(s, page, object)) {
879 object_err(s, page, object, "Object already allocated");
880 goto bad;
883 if (!check_valid_pointer(s, page, object)) {
884 object_err(s, page, object, "Freelist Pointer check fails");
885 goto bad;
888 if (!check_object(s, page, object, 0))
889 goto bad;
891 /* Success perform special debug activities for allocs */
892 if (s->flags & SLAB_STORE_USER)
893 set_track(s, object, TRACK_ALLOC, addr);
894 trace(s, page, object, 1);
895 init_object(s, object, 1);
896 return 1;
898 bad:
899 if (PageSlab(page)) {
901 * If this is a slab page then lets do the best we can
902 * to avoid issues in the future. Marking all objects
903 * as used avoids touching the remaining objects.
905 slab_fix(s, "Marking all objects used");
906 page->inuse = page->objects;
907 page->freelist = NULL;
909 return 0;
912 static int free_debug_processing(struct kmem_cache *s, struct page *page,
913 void *object, unsigned long addr)
915 if (!check_slab(s, page))
916 goto fail;
918 if (!check_valid_pointer(s, page, object)) {
919 slab_err(s, page, "Invalid object pointer 0x%p", object);
920 goto fail;
923 if (on_freelist(s, page, object)) {
924 object_err(s, page, object, "Object already free");
925 goto fail;
928 if (!check_object(s, page, object, 1))
929 return 0;
931 if (unlikely(s != page->slab)) {
932 if (!PageSlab(page)) {
933 slab_err(s, page, "Attempt to free object(0x%p) "
934 "outside of slab", object);
935 } else if (!page->slab) {
936 printk(KERN_ERR
937 "SLUB <none>: no slab for object 0x%p.\n",
938 object);
939 dump_stack();
940 } else
941 object_err(s, page, object,
942 "page slab pointer corrupt.");
943 goto fail;
946 /* Special debug activities for freeing objects */
947 if (!PageSlubFrozen(page) && !page->freelist)
948 remove_full(s, page);
949 if (s->flags & SLAB_STORE_USER)
950 set_track(s, object, TRACK_FREE, addr);
951 trace(s, page, object, 0);
952 init_object(s, object, 0);
953 return 1;
955 fail:
956 slab_fix(s, "Object at 0x%p not freed", object);
957 return 0;
960 static int __init setup_slub_debug(char *str)
962 slub_debug = DEBUG_DEFAULT_FLAGS;
963 if (*str++ != '=' || !*str)
965 * No options specified. Switch on full debugging.
967 goto out;
969 if (*str == ',')
971 * No options but restriction on slabs. This means full
972 * debugging for slabs matching a pattern.
974 goto check_slabs;
976 slub_debug = 0;
977 if (*str == '-')
979 * Switch off all debugging measures.
981 goto out;
984 * Determine which debug features should be switched on
986 for (; *str && *str != ','; str++) {
987 switch (tolower(*str)) {
988 case 'f':
989 slub_debug |= SLAB_DEBUG_FREE;
990 break;
991 case 'z':
992 slub_debug |= SLAB_RED_ZONE;
993 break;
994 case 'p':
995 slub_debug |= SLAB_POISON;
996 break;
997 case 'u':
998 slub_debug |= SLAB_STORE_USER;
999 break;
1000 case 't':
1001 slub_debug |= SLAB_TRACE;
1002 break;
1003 default:
1004 printk(KERN_ERR "slub_debug option '%c' "
1005 "unknown. skipped\n", *str);
1009 check_slabs:
1010 if (*str == ',')
1011 slub_debug_slabs = str + 1;
1012 out:
1013 return 1;
1016 __setup("slub_debug", setup_slub_debug);
1018 static unsigned long kmem_cache_flags(unsigned long objsize,
1019 unsigned long flags, const char *name,
1020 void (*ctor)(void *))
1023 * Enable debugging if selected on the kernel commandline.
1025 if (slub_debug && (!slub_debug_slabs ||
1026 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1027 flags |= slub_debug;
1029 return flags;
1031 #else
1032 static inline void setup_object_debug(struct kmem_cache *s,
1033 struct page *page, void *object) {}
1035 static inline int alloc_debug_processing(struct kmem_cache *s,
1036 struct page *page, void *object, unsigned long addr) { return 0; }
1038 static inline int free_debug_processing(struct kmem_cache *s,
1039 struct page *page, void *object, unsigned long addr) { return 0; }
1041 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1042 { return 1; }
1043 static inline int check_object(struct kmem_cache *s, struct page *page,
1044 void *object, int active) { return 1; }
1045 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1046 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1047 unsigned long flags, const char *name,
1048 void (*ctor)(void *))
1050 return flags;
1052 #define slub_debug 0
1054 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1055 { return 0; }
1056 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1057 int objects) {}
1058 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1059 int objects) {}
1060 #endif
1063 * Slab allocation and freeing
1065 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1066 struct kmem_cache_order_objects oo)
1068 int order = oo_order(oo);
1070 if (node == -1)
1071 return alloc_pages(flags, order);
1072 else
1073 return alloc_pages_node(node, flags, order);
1076 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1078 struct page *page;
1079 struct kmem_cache_order_objects oo = s->oo;
1081 flags |= s->allocflags;
1083 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1084 oo);
1085 if (unlikely(!page)) {
1086 oo = s->min;
1088 * Allocation may have failed due to fragmentation.
1089 * Try a lower order alloc if possible
1091 page = alloc_slab_page(flags, node, oo);
1092 if (!page)
1093 return NULL;
1095 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1097 page->objects = oo_objects(oo);
1098 mod_zone_page_state(page_zone(page),
1099 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1100 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1101 1 << oo_order(oo));
1103 return page;
1106 static void setup_object(struct kmem_cache *s, struct page *page,
1107 void *object)
1109 setup_object_debug(s, page, object);
1110 if (unlikely(s->ctor))
1111 s->ctor(object);
1114 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1116 struct page *page;
1117 void *start;
1118 void *last;
1119 void *p;
1121 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1123 page = allocate_slab(s,
1124 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1125 if (!page)
1126 goto out;
1128 inc_slabs_node(s, page_to_nid(page), page->objects);
1129 page->slab = s;
1130 page->flags |= 1 << PG_slab;
1131 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1132 SLAB_STORE_USER | SLAB_TRACE))
1133 __SetPageSlubDebug(page);
1135 start = page_address(page);
1137 if (unlikely(s->flags & SLAB_POISON))
1138 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1140 last = start;
1141 for_each_object(p, s, start, page->objects) {
1142 setup_object(s, page, last);
1143 set_freepointer(s, last, p);
1144 last = p;
1146 setup_object(s, page, last);
1147 set_freepointer(s, last, NULL);
1149 page->freelist = start;
1150 page->inuse = 0;
1151 out:
1152 return page;
1155 static void __free_slab(struct kmem_cache *s, struct page *page)
1157 int order = compound_order(page);
1158 int pages = 1 << order;
1160 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1161 void *p;
1163 slab_pad_check(s, page);
1164 for_each_object(p, s, page_address(page),
1165 page->objects)
1166 check_object(s, page, p, 0);
1167 __ClearPageSlubDebug(page);
1170 mod_zone_page_state(page_zone(page),
1171 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1172 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1173 -pages);
1175 __ClearPageSlab(page);
1176 reset_page_mapcount(page);
1177 __free_pages(page, order);
1180 static void rcu_free_slab(struct rcu_head *h)
1182 struct page *page;
1184 page = container_of((struct list_head *)h, struct page, lru);
1185 __free_slab(page->slab, page);
1188 static void free_slab(struct kmem_cache *s, struct page *page)
1190 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1192 * RCU free overloads the RCU head over the LRU
1194 struct rcu_head *head = (void *)&page->lru;
1196 call_rcu(head, rcu_free_slab);
1197 } else
1198 __free_slab(s, page);
1201 static void discard_slab(struct kmem_cache *s, struct page *page)
1203 dec_slabs_node(s, page_to_nid(page), page->objects);
1204 free_slab(s, page);
1208 * Per slab locking using the pagelock
1210 static __always_inline void slab_lock(struct page *page)
1212 bit_spin_lock(PG_locked, &page->flags);
1215 static __always_inline void slab_unlock(struct page *page)
1217 __bit_spin_unlock(PG_locked, &page->flags);
1220 static __always_inline int slab_trylock(struct page *page)
1222 int rc = 1;
1224 rc = bit_spin_trylock(PG_locked, &page->flags);
1225 return rc;
1229 * Management of partially allocated slabs
1231 static void add_partial(struct kmem_cache_node *n,
1232 struct page *page, int tail)
1234 spin_lock(&n->list_lock);
1235 n->nr_partial++;
1236 if (tail)
1237 list_add_tail(&page->lru, &n->partial);
1238 else
1239 list_add(&page->lru, &n->partial);
1240 spin_unlock(&n->list_lock);
1243 static void remove_partial(struct kmem_cache *s, struct page *page)
1245 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1247 spin_lock(&n->list_lock);
1248 list_del(&page->lru);
1249 n->nr_partial--;
1250 spin_unlock(&n->list_lock);
1254 * Lock slab and remove from the partial list.
1256 * Must hold list_lock.
1258 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1259 struct page *page)
1261 if (slab_trylock(page)) {
1262 list_del(&page->lru);
1263 n->nr_partial--;
1264 __SetPageSlubFrozen(page);
1265 return 1;
1267 return 0;
1271 * Try to allocate a partial slab from a specific node.
1273 static struct page *get_partial_node(struct kmem_cache_node *n)
1275 struct page *page;
1278 * Racy check. If we mistakenly see no partial slabs then we
1279 * just allocate an empty slab. If we mistakenly try to get a
1280 * partial slab and there is none available then get_partials()
1281 * will return NULL.
1283 if (!n || !n->nr_partial)
1284 return NULL;
1286 spin_lock(&n->list_lock);
1287 list_for_each_entry(page, &n->partial, lru)
1288 if (lock_and_freeze_slab(n, page))
1289 goto out;
1290 page = NULL;
1291 out:
1292 spin_unlock(&n->list_lock);
1293 return page;
1297 * Get a page from somewhere. Search in increasing NUMA distances.
1299 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1301 #ifdef CONFIG_NUMA
1302 struct zonelist *zonelist;
1303 struct zoneref *z;
1304 struct zone *zone;
1305 enum zone_type high_zoneidx = gfp_zone(flags);
1306 struct page *page;
1309 * The defrag ratio allows a configuration of the tradeoffs between
1310 * inter node defragmentation and node local allocations. A lower
1311 * defrag_ratio increases the tendency to do local allocations
1312 * instead of attempting to obtain partial slabs from other nodes.
1314 * If the defrag_ratio is set to 0 then kmalloc() always
1315 * returns node local objects. If the ratio is higher then kmalloc()
1316 * may return off node objects because partial slabs are obtained
1317 * from other nodes and filled up.
1319 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1320 * defrag_ratio = 1000) then every (well almost) allocation will
1321 * first attempt to defrag slab caches on other nodes. This means
1322 * scanning over all nodes to look for partial slabs which may be
1323 * expensive if we do it every time we are trying to find a slab
1324 * with available objects.
1326 if (!s->remote_node_defrag_ratio ||
1327 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1328 return NULL;
1330 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1331 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1332 struct kmem_cache_node *n;
1334 n = get_node(s, zone_to_nid(zone));
1336 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1337 n->nr_partial > n->min_partial) {
1338 page = get_partial_node(n);
1339 if (page)
1340 return page;
1343 #endif
1344 return NULL;
1348 * Get a partial page, lock it and return it.
1350 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1352 struct page *page;
1353 int searchnode = (node == -1) ? numa_node_id() : node;
1355 page = get_partial_node(get_node(s, searchnode));
1356 if (page || (flags & __GFP_THISNODE))
1357 return page;
1359 return get_any_partial(s, flags);
1363 * Move a page back to the lists.
1365 * Must be called with the slab lock held.
1367 * On exit the slab lock will have been dropped.
1369 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1371 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1372 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1374 __ClearPageSlubFrozen(page);
1375 if (page->inuse) {
1377 if (page->freelist) {
1378 add_partial(n, page, tail);
1379 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1380 } else {
1381 stat(c, DEACTIVATE_FULL);
1382 if (SLABDEBUG && PageSlubDebug(page) &&
1383 (s->flags & SLAB_STORE_USER))
1384 add_full(n, page);
1386 slab_unlock(page);
1387 } else {
1388 stat(c, DEACTIVATE_EMPTY);
1389 if (n->nr_partial < n->min_partial) {
1391 * Adding an empty slab to the partial slabs in order
1392 * to avoid page allocator overhead. This slab needs
1393 * to come after the other slabs with objects in
1394 * so that the others get filled first. That way the
1395 * size of the partial list stays small.
1397 * kmem_cache_shrink can reclaim any empty slabs from
1398 * the partial list.
1400 add_partial(n, page, 1);
1401 slab_unlock(page);
1402 } else {
1403 slab_unlock(page);
1404 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1405 discard_slab(s, page);
1411 * Remove the cpu slab
1413 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1415 struct page *page = c->page;
1416 int tail = 1;
1418 if (page->freelist)
1419 stat(c, DEACTIVATE_REMOTE_FREES);
1421 * Merge cpu freelist into slab freelist. Typically we get here
1422 * because both freelists are empty. So this is unlikely
1423 * to occur.
1425 while (unlikely(c->freelist)) {
1426 void **object;
1428 tail = 0; /* Hot objects. Put the slab first */
1430 /* Retrieve object from cpu_freelist */
1431 object = c->freelist;
1432 c->freelist = c->freelist[c->offset];
1434 /* And put onto the regular freelist */
1435 object[c->offset] = page->freelist;
1436 page->freelist = object;
1437 page->inuse--;
1439 c->page = NULL;
1440 unfreeze_slab(s, page, tail);
1443 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1445 stat(c, CPUSLAB_FLUSH);
1446 slab_lock(c->page);
1447 deactivate_slab(s, c);
1451 * Flush cpu slab.
1453 * Called from IPI handler with interrupts disabled.
1455 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1457 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1459 if (likely(c && c->page))
1460 flush_slab(s, c);
1463 static void flush_cpu_slab(void *d)
1465 struct kmem_cache *s = d;
1467 __flush_cpu_slab(s, smp_processor_id());
1470 static void flush_all(struct kmem_cache *s)
1472 on_each_cpu(flush_cpu_slab, s, 1);
1476 * Check if the objects in a per cpu structure fit numa
1477 * locality expectations.
1479 static inline int node_match(struct kmem_cache_cpu *c, int node)
1481 #ifdef CONFIG_NUMA
1482 if (node != -1 && c->node != node)
1483 return 0;
1484 #endif
1485 return 1;
1489 * Slow path. The lockless freelist is empty or we need to perform
1490 * debugging duties.
1492 * Interrupts are disabled.
1494 * Processing is still very fast if new objects have been freed to the
1495 * regular freelist. In that case we simply take over the regular freelist
1496 * as the lockless freelist and zap the regular freelist.
1498 * If that is not working then we fall back to the partial lists. We take the
1499 * first element of the freelist as the object to allocate now and move the
1500 * rest of the freelist to the lockless freelist.
1502 * And if we were unable to get a new slab from the partial slab lists then
1503 * we need to allocate a new slab. This is the slowest path since it involves
1504 * a call to the page allocator and the setup of a new slab.
1506 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1507 unsigned long addr, struct kmem_cache_cpu *c)
1509 void **object;
1510 struct page *new;
1512 /* We handle __GFP_ZERO in the caller */
1513 gfpflags &= ~__GFP_ZERO;
1515 if (!c->page)
1516 goto new_slab;
1518 slab_lock(c->page);
1519 if (unlikely(!node_match(c, node)))
1520 goto another_slab;
1522 stat(c, ALLOC_REFILL);
1524 load_freelist:
1525 object = c->page->freelist;
1526 if (unlikely(!object))
1527 goto another_slab;
1528 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1529 goto debug;
1531 c->freelist = object[c->offset];
1532 c->page->inuse = c->page->objects;
1533 c->page->freelist = NULL;
1534 c->node = page_to_nid(c->page);
1535 unlock_out:
1536 slab_unlock(c->page);
1537 stat(c, ALLOC_SLOWPATH);
1538 return object;
1540 another_slab:
1541 deactivate_slab(s, c);
1543 new_slab:
1544 new = get_partial(s, gfpflags, node);
1545 if (new) {
1546 c->page = new;
1547 stat(c, ALLOC_FROM_PARTIAL);
1548 goto load_freelist;
1551 if (gfpflags & __GFP_WAIT)
1552 local_irq_enable();
1554 new = new_slab(s, gfpflags, node);
1556 if (gfpflags & __GFP_WAIT)
1557 local_irq_disable();
1559 if (new) {
1560 c = get_cpu_slab(s, smp_processor_id());
1561 stat(c, ALLOC_SLAB);
1562 if (c->page)
1563 flush_slab(s, c);
1564 slab_lock(new);
1565 __SetPageSlubFrozen(new);
1566 c->page = new;
1567 goto load_freelist;
1569 return NULL;
1570 debug:
1571 if (!alloc_debug_processing(s, c->page, object, addr))
1572 goto another_slab;
1574 c->page->inuse++;
1575 c->page->freelist = object[c->offset];
1576 c->node = -1;
1577 goto unlock_out;
1581 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1582 * have the fastpath folded into their functions. So no function call
1583 * overhead for requests that can be satisfied on the fastpath.
1585 * The fastpath works by first checking if the lockless freelist can be used.
1586 * If not then __slab_alloc is called for slow processing.
1588 * Otherwise we can simply pick the next object from the lockless free list.
1590 static __always_inline void *slab_alloc(struct kmem_cache *s,
1591 gfp_t gfpflags, int node, unsigned long addr)
1593 void **object;
1594 struct kmem_cache_cpu *c;
1595 unsigned long flags;
1596 unsigned int objsize;
1598 local_irq_save(flags);
1599 c = get_cpu_slab(s, smp_processor_id());
1600 objsize = c->objsize;
1601 if (unlikely(!c->freelist || !node_match(c, node)))
1603 object = __slab_alloc(s, gfpflags, node, addr, c);
1605 else {
1606 object = c->freelist;
1607 c->freelist = object[c->offset];
1608 stat(c, ALLOC_FASTPATH);
1610 local_irq_restore(flags);
1612 if (unlikely((gfpflags & __GFP_ZERO) && object))
1613 memset(object, 0, objsize);
1615 return object;
1618 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1620 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1622 EXPORT_SYMBOL(kmem_cache_alloc);
1624 #ifdef CONFIG_NUMA
1625 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1627 return slab_alloc(s, gfpflags, node, _RET_IP_);
1629 EXPORT_SYMBOL(kmem_cache_alloc_node);
1630 #endif
1633 * Slow patch handling. This may still be called frequently since objects
1634 * have a longer lifetime than the cpu slabs in most processing loads.
1636 * So we still attempt to reduce cache line usage. Just take the slab
1637 * lock and free the item. If there is no additional partial page
1638 * handling required then we can return immediately.
1640 static void __slab_free(struct kmem_cache *s, struct page *page,
1641 void *x, unsigned long addr, unsigned int offset)
1643 void *prior;
1644 void **object = (void *)x;
1645 struct kmem_cache_cpu *c;
1647 c = get_cpu_slab(s, raw_smp_processor_id());
1648 stat(c, FREE_SLOWPATH);
1649 slab_lock(page);
1651 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1652 goto debug;
1654 checks_ok:
1655 prior = object[offset] = page->freelist;
1656 page->freelist = object;
1657 page->inuse--;
1659 if (unlikely(PageSlubFrozen(page))) {
1660 stat(c, FREE_FROZEN);
1661 goto out_unlock;
1664 if (unlikely(!page->inuse))
1665 goto slab_empty;
1668 * Objects left in the slab. If it was not on the partial list before
1669 * then add it.
1671 if (unlikely(!prior)) {
1672 add_partial(get_node(s, page_to_nid(page)), page, 1);
1673 stat(c, FREE_ADD_PARTIAL);
1676 out_unlock:
1677 slab_unlock(page);
1678 return;
1680 slab_empty:
1681 if (prior) {
1683 * Slab still on the partial list.
1685 remove_partial(s, page);
1686 stat(c, FREE_REMOVE_PARTIAL);
1688 slab_unlock(page);
1689 stat(c, FREE_SLAB);
1690 discard_slab(s, page);
1691 return;
1693 debug:
1694 if (!free_debug_processing(s, page, x, addr))
1695 goto out_unlock;
1696 goto checks_ok;
1700 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1701 * can perform fastpath freeing without additional function calls.
1703 * The fastpath is only possible if we are freeing to the current cpu slab
1704 * of this processor. This typically the case if we have just allocated
1705 * the item before.
1707 * If fastpath is not possible then fall back to __slab_free where we deal
1708 * with all sorts of special processing.
1710 static __always_inline void slab_free(struct kmem_cache *s,
1711 struct page *page, void *x, unsigned long addr)
1713 void **object = (void *)x;
1714 struct kmem_cache_cpu *c;
1715 unsigned long flags;
1717 local_irq_save(flags);
1718 c = get_cpu_slab(s, smp_processor_id());
1719 debug_check_no_locks_freed(object, c->objsize);
1720 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1721 debug_check_no_obj_freed(object, s->objsize);
1722 if (likely(page == c->page && c->node >= 0)) {
1723 object[c->offset] = c->freelist;
1724 c->freelist = object;
1725 stat(c, FREE_FASTPATH);
1726 } else
1727 __slab_free(s, page, x, addr, c->offset);
1729 local_irq_restore(flags);
1732 void kmem_cache_free(struct kmem_cache *s, void *x)
1734 struct page *page;
1736 page = virt_to_head_page(x);
1738 slab_free(s, page, x, _RET_IP_);
1740 EXPORT_SYMBOL(kmem_cache_free);
1742 /* Figure out on which slab page the object resides */
1743 static struct page *get_object_page(const void *x)
1745 struct page *page = virt_to_head_page(x);
1747 if (!PageSlab(page))
1748 return NULL;
1750 return page;
1754 * Object placement in a slab is made very easy because we always start at
1755 * offset 0. If we tune the size of the object to the alignment then we can
1756 * get the required alignment by putting one properly sized object after
1757 * another.
1759 * Notice that the allocation order determines the sizes of the per cpu
1760 * caches. Each processor has always one slab available for allocations.
1761 * Increasing the allocation order reduces the number of times that slabs
1762 * must be moved on and off the partial lists and is therefore a factor in
1763 * locking overhead.
1767 * Mininum / Maximum order of slab pages. This influences locking overhead
1768 * and slab fragmentation. A higher order reduces the number of partial slabs
1769 * and increases the number of allocations possible without having to
1770 * take the list_lock.
1772 static int slub_min_order;
1773 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1774 static int slub_min_objects;
1777 * Merge control. If this is set then no merging of slab caches will occur.
1778 * (Could be removed. This was introduced to pacify the merge skeptics.)
1780 static int slub_nomerge;
1783 * Calculate the order of allocation given an slab object size.
1785 * The order of allocation has significant impact on performance and other
1786 * system components. Generally order 0 allocations should be preferred since
1787 * order 0 does not cause fragmentation in the page allocator. Larger objects
1788 * be problematic to put into order 0 slabs because there may be too much
1789 * unused space left. We go to a higher order if more than 1/16th of the slab
1790 * would be wasted.
1792 * In order to reach satisfactory performance we must ensure that a minimum
1793 * number of objects is in one slab. Otherwise we may generate too much
1794 * activity on the partial lists which requires taking the list_lock. This is
1795 * less a concern for large slabs though which are rarely used.
1797 * slub_max_order specifies the order where we begin to stop considering the
1798 * number of objects in a slab as critical. If we reach slub_max_order then
1799 * we try to keep the page order as low as possible. So we accept more waste
1800 * of space in favor of a small page order.
1802 * Higher order allocations also allow the placement of more objects in a
1803 * slab and thereby reduce object handling overhead. If the user has
1804 * requested a higher mininum order then we start with that one instead of
1805 * the smallest order which will fit the object.
1807 static inline int slab_order(int size, int min_objects,
1808 int max_order, int fract_leftover)
1810 int order;
1811 int rem;
1812 int min_order = slub_min_order;
1814 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1815 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1817 for (order = max(min_order,
1818 fls(min_objects * size - 1) - PAGE_SHIFT);
1819 order <= max_order; order++) {
1821 unsigned long slab_size = PAGE_SIZE << order;
1823 if (slab_size < min_objects * size)
1824 continue;
1826 rem = slab_size % size;
1828 if (rem <= slab_size / fract_leftover)
1829 break;
1833 return order;
1836 static inline int calculate_order(int size)
1838 int order;
1839 int min_objects;
1840 int fraction;
1843 * Attempt to find best configuration for a slab. This
1844 * works by first attempting to generate a layout with
1845 * the best configuration and backing off gradually.
1847 * First we reduce the acceptable waste in a slab. Then
1848 * we reduce the minimum objects required in a slab.
1850 min_objects = slub_min_objects;
1851 if (!min_objects)
1852 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1853 while (min_objects > 1) {
1854 fraction = 16;
1855 while (fraction >= 4) {
1856 order = slab_order(size, min_objects,
1857 slub_max_order, fraction);
1858 if (order <= slub_max_order)
1859 return order;
1860 fraction /= 2;
1862 min_objects /= 2;
1866 * We were unable to place multiple objects in a slab. Now
1867 * lets see if we can place a single object there.
1869 order = slab_order(size, 1, slub_max_order, 1);
1870 if (order <= slub_max_order)
1871 return order;
1874 * Doh this slab cannot be placed using slub_max_order.
1876 order = slab_order(size, 1, MAX_ORDER, 1);
1877 if (order <= MAX_ORDER)
1878 return order;
1879 return -ENOSYS;
1883 * Figure out what the alignment of the objects will be.
1885 static unsigned long calculate_alignment(unsigned long flags,
1886 unsigned long align, unsigned long size)
1889 * If the user wants hardware cache aligned objects then follow that
1890 * suggestion if the object is sufficiently large.
1892 * The hardware cache alignment cannot override the specified
1893 * alignment though. If that is greater then use it.
1895 if (flags & SLAB_HWCACHE_ALIGN) {
1896 unsigned long ralign = cache_line_size();
1897 while (size <= ralign / 2)
1898 ralign /= 2;
1899 align = max(align, ralign);
1902 if (align < ARCH_SLAB_MINALIGN)
1903 align = ARCH_SLAB_MINALIGN;
1905 return ALIGN(align, sizeof(void *));
1908 static void init_kmem_cache_cpu(struct kmem_cache *s,
1909 struct kmem_cache_cpu *c)
1911 c->page = NULL;
1912 c->freelist = NULL;
1913 c->node = 0;
1914 c->offset = s->offset / sizeof(void *);
1915 c->objsize = s->objsize;
1916 #ifdef CONFIG_SLUB_STATS
1917 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1918 #endif
1921 static void
1922 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1924 n->nr_partial = 0;
1927 * The larger the object size is, the more pages we want on the partial
1928 * list to avoid pounding the page allocator excessively.
1930 n->min_partial = ilog2(s->size);
1931 if (n->min_partial < MIN_PARTIAL)
1932 n->min_partial = MIN_PARTIAL;
1933 else if (n->min_partial > MAX_PARTIAL)
1934 n->min_partial = MAX_PARTIAL;
1936 spin_lock_init(&n->list_lock);
1937 INIT_LIST_HEAD(&n->partial);
1938 #ifdef CONFIG_SLUB_DEBUG
1939 atomic_long_set(&n->nr_slabs, 0);
1940 atomic_long_set(&n->total_objects, 0);
1941 INIT_LIST_HEAD(&n->full);
1942 #endif
1945 #ifdef CONFIG_SMP
1947 * Per cpu array for per cpu structures.
1949 * The per cpu array places all kmem_cache_cpu structures from one processor
1950 * close together meaning that it becomes possible that multiple per cpu
1951 * structures are contained in one cacheline. This may be particularly
1952 * beneficial for the kmalloc caches.
1954 * A desktop system typically has around 60-80 slabs. With 100 here we are
1955 * likely able to get per cpu structures for all caches from the array defined
1956 * here. We must be able to cover all kmalloc caches during bootstrap.
1958 * If the per cpu array is exhausted then fall back to kmalloc
1959 * of individual cachelines. No sharing is possible then.
1961 #define NR_KMEM_CACHE_CPU 100
1963 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1964 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1966 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1967 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1969 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1970 int cpu, gfp_t flags)
1972 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1974 if (c)
1975 per_cpu(kmem_cache_cpu_free, cpu) =
1976 (void *)c->freelist;
1977 else {
1978 /* Table overflow: So allocate ourselves */
1979 c = kmalloc_node(
1980 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1981 flags, cpu_to_node(cpu));
1982 if (!c)
1983 return NULL;
1986 init_kmem_cache_cpu(s, c);
1987 return c;
1990 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1992 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1993 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1994 kfree(c);
1995 return;
1997 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1998 per_cpu(kmem_cache_cpu_free, cpu) = c;
2001 static void free_kmem_cache_cpus(struct kmem_cache *s)
2003 int cpu;
2005 for_each_online_cpu(cpu) {
2006 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2008 if (c) {
2009 s->cpu_slab[cpu] = NULL;
2010 free_kmem_cache_cpu(c, cpu);
2015 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2017 int cpu;
2019 for_each_online_cpu(cpu) {
2020 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2022 if (c)
2023 continue;
2025 c = alloc_kmem_cache_cpu(s, cpu, flags);
2026 if (!c) {
2027 free_kmem_cache_cpus(s);
2028 return 0;
2030 s->cpu_slab[cpu] = c;
2032 return 1;
2036 * Initialize the per cpu array.
2038 static void init_alloc_cpu_cpu(int cpu)
2040 int i;
2042 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2043 return;
2045 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2046 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2048 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2051 static void __init init_alloc_cpu(void)
2053 int cpu;
2055 for_each_online_cpu(cpu)
2056 init_alloc_cpu_cpu(cpu);
2059 #else
2060 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2061 static inline void init_alloc_cpu(void) {}
2063 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2065 init_kmem_cache_cpu(s, &s->cpu_slab);
2066 return 1;
2068 #endif
2070 #ifdef CONFIG_NUMA
2072 * No kmalloc_node yet so do it by hand. We know that this is the first
2073 * slab on the node for this slabcache. There are no concurrent accesses
2074 * possible.
2076 * Note that this function only works on the kmalloc_node_cache
2077 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2078 * memory on a fresh node that has no slab structures yet.
2080 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2082 struct page *page;
2083 struct kmem_cache_node *n;
2084 unsigned long flags;
2086 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2088 page = new_slab(kmalloc_caches, gfpflags, node);
2090 BUG_ON(!page);
2091 if (page_to_nid(page) != node) {
2092 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2093 "node %d\n", node);
2094 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2095 "in order to be able to continue\n");
2098 n = page->freelist;
2099 BUG_ON(!n);
2100 page->freelist = get_freepointer(kmalloc_caches, n);
2101 page->inuse++;
2102 kmalloc_caches->node[node] = n;
2103 #ifdef CONFIG_SLUB_DEBUG
2104 init_object(kmalloc_caches, n, 1);
2105 init_tracking(kmalloc_caches, n);
2106 #endif
2107 init_kmem_cache_node(n, kmalloc_caches);
2108 inc_slabs_node(kmalloc_caches, node, page->objects);
2111 * lockdep requires consistent irq usage for each lock
2112 * so even though there cannot be a race this early in
2113 * the boot sequence, we still disable irqs.
2115 local_irq_save(flags);
2116 add_partial(n, page, 0);
2117 local_irq_restore(flags);
2120 static void free_kmem_cache_nodes(struct kmem_cache *s)
2122 int node;
2124 for_each_node_state(node, N_NORMAL_MEMORY) {
2125 struct kmem_cache_node *n = s->node[node];
2126 if (n && n != &s->local_node)
2127 kmem_cache_free(kmalloc_caches, n);
2128 s->node[node] = NULL;
2132 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2134 int node;
2135 int local_node;
2137 if (slab_state >= UP)
2138 local_node = page_to_nid(virt_to_page(s));
2139 else
2140 local_node = 0;
2142 for_each_node_state(node, N_NORMAL_MEMORY) {
2143 struct kmem_cache_node *n;
2145 if (local_node == node)
2146 n = &s->local_node;
2147 else {
2148 if (slab_state == DOWN) {
2149 early_kmem_cache_node_alloc(gfpflags, node);
2150 continue;
2152 n = kmem_cache_alloc_node(kmalloc_caches,
2153 gfpflags, node);
2155 if (!n) {
2156 free_kmem_cache_nodes(s);
2157 return 0;
2161 s->node[node] = n;
2162 init_kmem_cache_node(n, s);
2164 return 1;
2166 #else
2167 static void free_kmem_cache_nodes(struct kmem_cache *s)
2171 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2173 init_kmem_cache_node(&s->local_node, s);
2174 return 1;
2176 #endif
2179 * calculate_sizes() determines the order and the distribution of data within
2180 * a slab object.
2182 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2184 unsigned long flags = s->flags;
2185 unsigned long size = s->objsize;
2186 unsigned long align = s->align;
2187 int order;
2190 * Round up object size to the next word boundary. We can only
2191 * place the free pointer at word boundaries and this determines
2192 * the possible location of the free pointer.
2194 size = ALIGN(size, sizeof(void *));
2196 #ifdef CONFIG_SLUB_DEBUG
2198 * Determine if we can poison the object itself. If the user of
2199 * the slab may touch the object after free or before allocation
2200 * then we should never poison the object itself.
2202 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2203 !s->ctor)
2204 s->flags |= __OBJECT_POISON;
2205 else
2206 s->flags &= ~__OBJECT_POISON;
2210 * If we are Redzoning then check if there is some space between the
2211 * end of the object and the free pointer. If not then add an
2212 * additional word to have some bytes to store Redzone information.
2214 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2215 size += sizeof(void *);
2216 #endif
2219 * With that we have determined the number of bytes in actual use
2220 * by the object. This is the potential offset to the free pointer.
2222 s->inuse = size;
2224 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2225 s->ctor)) {
2227 * Relocate free pointer after the object if it is not
2228 * permitted to overwrite the first word of the object on
2229 * kmem_cache_free.
2231 * This is the case if we do RCU, have a constructor or
2232 * destructor or are poisoning the objects.
2234 s->offset = size;
2235 size += sizeof(void *);
2238 #ifdef CONFIG_SLUB_DEBUG
2239 if (flags & SLAB_STORE_USER)
2241 * Need to store information about allocs and frees after
2242 * the object.
2244 size += 2 * sizeof(struct track);
2246 if (flags & SLAB_RED_ZONE)
2248 * Add some empty padding so that we can catch
2249 * overwrites from earlier objects rather than let
2250 * tracking information or the free pointer be
2251 * corrupted if an user writes before the start
2252 * of the object.
2254 size += sizeof(void *);
2255 #endif
2258 * Determine the alignment based on various parameters that the
2259 * user specified and the dynamic determination of cache line size
2260 * on bootup.
2262 align = calculate_alignment(flags, align, s->objsize);
2265 * SLUB stores one object immediately after another beginning from
2266 * offset 0. In order to align the objects we have to simply size
2267 * each object to conform to the alignment.
2269 size = ALIGN(size, align);
2270 s->size = size;
2271 if (forced_order >= 0)
2272 order = forced_order;
2273 else
2274 order = calculate_order(size);
2276 if (order < 0)
2277 return 0;
2279 s->allocflags = 0;
2280 if (order)
2281 s->allocflags |= __GFP_COMP;
2283 if (s->flags & SLAB_CACHE_DMA)
2284 s->allocflags |= SLUB_DMA;
2286 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2287 s->allocflags |= __GFP_RECLAIMABLE;
2290 * Determine the number of objects per slab
2292 s->oo = oo_make(order, size);
2293 s->min = oo_make(get_order(size), size);
2294 if (oo_objects(s->oo) > oo_objects(s->max))
2295 s->max = s->oo;
2297 return !!oo_objects(s->oo);
2301 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2302 const char *name, size_t size,
2303 size_t align, unsigned long flags,
2304 void (*ctor)(void *))
2306 memset(s, 0, kmem_size);
2307 s->name = name;
2308 s->ctor = ctor;
2309 s->objsize = size;
2310 s->align = align;
2311 s->flags = kmem_cache_flags(size, flags, name, ctor);
2313 if (!calculate_sizes(s, -1))
2314 goto error;
2316 s->refcount = 1;
2317 #ifdef CONFIG_NUMA
2318 s->remote_node_defrag_ratio = 1000;
2319 #endif
2320 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2321 goto error;
2323 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2324 return 1;
2325 free_kmem_cache_nodes(s);
2326 error:
2327 if (flags & SLAB_PANIC)
2328 panic("Cannot create slab %s size=%lu realsize=%u "
2329 "order=%u offset=%u flags=%lx\n",
2330 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2331 s->offset, flags);
2332 return 0;
2336 * Check if a given pointer is valid
2338 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2340 struct page *page;
2342 page = get_object_page(object);
2344 if (!page || s != page->slab)
2345 /* No slab or wrong slab */
2346 return 0;
2348 if (!check_valid_pointer(s, page, object))
2349 return 0;
2352 * We could also check if the object is on the slabs freelist.
2353 * But this would be too expensive and it seems that the main
2354 * purpose of kmem_ptr_valid() is to check if the object belongs
2355 * to a certain slab.
2357 return 1;
2359 EXPORT_SYMBOL(kmem_ptr_validate);
2362 * Determine the size of a slab object
2364 unsigned int kmem_cache_size(struct kmem_cache *s)
2366 return s->objsize;
2368 EXPORT_SYMBOL(kmem_cache_size);
2370 const char *kmem_cache_name(struct kmem_cache *s)
2372 return s->name;
2374 EXPORT_SYMBOL(kmem_cache_name);
2376 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2377 const char *text)
2379 #ifdef CONFIG_SLUB_DEBUG
2380 void *addr = page_address(page);
2381 void *p;
2382 DECLARE_BITMAP(map, page->objects);
2384 bitmap_zero(map, page->objects);
2385 slab_err(s, page, "%s", text);
2386 slab_lock(page);
2387 for_each_free_object(p, s, page->freelist)
2388 set_bit(slab_index(p, s, addr), map);
2390 for_each_object(p, s, addr, page->objects) {
2392 if (!test_bit(slab_index(p, s, addr), map)) {
2393 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2394 p, p - addr);
2395 print_tracking(s, p);
2398 slab_unlock(page);
2399 #endif
2403 * Attempt to free all partial slabs on a node.
2405 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2407 unsigned long flags;
2408 struct page *page, *h;
2410 spin_lock_irqsave(&n->list_lock, flags);
2411 list_for_each_entry_safe(page, h, &n->partial, lru) {
2412 if (!page->inuse) {
2413 list_del(&page->lru);
2414 discard_slab(s, page);
2415 n->nr_partial--;
2416 } else {
2417 list_slab_objects(s, page,
2418 "Objects remaining on kmem_cache_close()");
2421 spin_unlock_irqrestore(&n->list_lock, flags);
2425 * Release all resources used by a slab cache.
2427 static inline int kmem_cache_close(struct kmem_cache *s)
2429 int node;
2431 flush_all(s);
2433 /* Attempt to free all objects */
2434 free_kmem_cache_cpus(s);
2435 for_each_node_state(node, N_NORMAL_MEMORY) {
2436 struct kmem_cache_node *n = get_node(s, node);
2438 free_partial(s, n);
2439 if (n->nr_partial || slabs_node(s, node))
2440 return 1;
2442 free_kmem_cache_nodes(s);
2443 return 0;
2447 * Close a cache and release the kmem_cache structure
2448 * (must be used for caches created using kmem_cache_create)
2450 void kmem_cache_destroy(struct kmem_cache *s)
2452 down_write(&slub_lock);
2453 s->refcount--;
2454 if (!s->refcount) {
2455 list_del(&s->list);
2456 up_write(&slub_lock);
2457 if (kmem_cache_close(s)) {
2458 printk(KERN_ERR "SLUB %s: %s called for cache that "
2459 "still has objects.\n", s->name, __func__);
2460 dump_stack();
2462 sysfs_slab_remove(s);
2463 } else
2464 up_write(&slub_lock);
2466 EXPORT_SYMBOL(kmem_cache_destroy);
2468 /********************************************************************
2469 * Kmalloc subsystem
2470 *******************************************************************/
2472 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2473 EXPORT_SYMBOL(kmalloc_caches);
2475 static int __init setup_slub_min_order(char *str)
2477 get_option(&str, &slub_min_order);
2479 return 1;
2482 __setup("slub_min_order=", setup_slub_min_order);
2484 static int __init setup_slub_max_order(char *str)
2486 get_option(&str, &slub_max_order);
2488 return 1;
2491 __setup("slub_max_order=", setup_slub_max_order);
2493 static int __init setup_slub_min_objects(char *str)
2495 get_option(&str, &slub_min_objects);
2497 return 1;
2500 __setup("slub_min_objects=", setup_slub_min_objects);
2502 static int __init setup_slub_nomerge(char *str)
2504 slub_nomerge = 1;
2505 return 1;
2508 __setup("slub_nomerge", setup_slub_nomerge);
2510 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2511 const char *name, int size, gfp_t gfp_flags)
2513 unsigned int flags = 0;
2515 if (gfp_flags & SLUB_DMA)
2516 flags = SLAB_CACHE_DMA;
2518 down_write(&slub_lock);
2519 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2520 flags, NULL))
2521 goto panic;
2523 list_add(&s->list, &slab_caches);
2524 up_write(&slub_lock);
2525 if (sysfs_slab_add(s))
2526 goto panic;
2527 return s;
2529 panic:
2530 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2533 #ifdef CONFIG_ZONE_DMA
2534 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2536 static void sysfs_add_func(struct work_struct *w)
2538 struct kmem_cache *s;
2540 down_write(&slub_lock);
2541 list_for_each_entry(s, &slab_caches, list) {
2542 if (s->flags & __SYSFS_ADD_DEFERRED) {
2543 s->flags &= ~__SYSFS_ADD_DEFERRED;
2544 sysfs_slab_add(s);
2547 up_write(&slub_lock);
2550 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2552 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2554 struct kmem_cache *s;
2555 char *text;
2556 size_t realsize;
2558 s = kmalloc_caches_dma[index];
2559 if (s)
2560 return s;
2562 /* Dynamically create dma cache */
2563 if (flags & __GFP_WAIT)
2564 down_write(&slub_lock);
2565 else {
2566 if (!down_write_trylock(&slub_lock))
2567 goto out;
2570 if (kmalloc_caches_dma[index])
2571 goto unlock_out;
2573 realsize = kmalloc_caches[index].objsize;
2574 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2575 (unsigned int)realsize);
2576 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2578 if (!s || !text || !kmem_cache_open(s, flags, text,
2579 realsize, ARCH_KMALLOC_MINALIGN,
2580 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2581 kfree(s);
2582 kfree(text);
2583 goto unlock_out;
2586 list_add(&s->list, &slab_caches);
2587 kmalloc_caches_dma[index] = s;
2589 schedule_work(&sysfs_add_work);
2591 unlock_out:
2592 up_write(&slub_lock);
2593 out:
2594 return kmalloc_caches_dma[index];
2596 #endif
2599 * Conversion table for small slabs sizes / 8 to the index in the
2600 * kmalloc array. This is necessary for slabs < 192 since we have non power
2601 * of two cache sizes there. The size of larger slabs can be determined using
2602 * fls.
2604 static s8 size_index[24] = {
2605 3, /* 8 */
2606 4, /* 16 */
2607 5, /* 24 */
2608 5, /* 32 */
2609 6, /* 40 */
2610 6, /* 48 */
2611 6, /* 56 */
2612 6, /* 64 */
2613 1, /* 72 */
2614 1, /* 80 */
2615 1, /* 88 */
2616 1, /* 96 */
2617 7, /* 104 */
2618 7, /* 112 */
2619 7, /* 120 */
2620 7, /* 128 */
2621 2, /* 136 */
2622 2, /* 144 */
2623 2, /* 152 */
2624 2, /* 160 */
2625 2, /* 168 */
2626 2, /* 176 */
2627 2, /* 184 */
2628 2 /* 192 */
2631 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2633 int index;
2635 if (size <= 192) {
2636 if (!size)
2637 return ZERO_SIZE_PTR;
2639 index = size_index[(size - 1) / 8];
2640 } else
2641 index = fls(size - 1);
2643 #ifdef CONFIG_ZONE_DMA
2644 if (unlikely((flags & SLUB_DMA)))
2645 return dma_kmalloc_cache(index, flags);
2647 #endif
2648 return &kmalloc_caches[index];
2651 void *__kmalloc(size_t size, gfp_t flags)
2653 struct kmem_cache *s;
2655 if (unlikely(size > PAGE_SIZE))
2656 return kmalloc_large(size, flags);
2658 s = get_slab(size, flags);
2660 if (unlikely(ZERO_OR_NULL_PTR(s)))
2661 return s;
2663 return slab_alloc(s, flags, -1, _RET_IP_);
2665 EXPORT_SYMBOL(__kmalloc);
2667 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2669 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2670 get_order(size));
2672 if (page)
2673 return page_address(page);
2674 else
2675 return NULL;
2678 #ifdef CONFIG_NUMA
2679 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2681 struct kmem_cache *s;
2683 if (unlikely(size > PAGE_SIZE))
2684 return kmalloc_large_node(size, flags, node);
2686 s = get_slab(size, flags);
2688 if (unlikely(ZERO_OR_NULL_PTR(s)))
2689 return s;
2691 return slab_alloc(s, flags, node, _RET_IP_);
2693 EXPORT_SYMBOL(__kmalloc_node);
2694 #endif
2696 size_t ksize(const void *object)
2698 struct page *page;
2699 struct kmem_cache *s;
2701 if (unlikely(object == ZERO_SIZE_PTR))
2702 return 0;
2704 page = virt_to_head_page(object);
2706 if (unlikely(!PageSlab(page))) {
2707 WARN_ON(!PageCompound(page));
2708 return PAGE_SIZE << compound_order(page);
2710 s = page->slab;
2712 #ifdef CONFIG_SLUB_DEBUG
2714 * Debugging requires use of the padding between object
2715 * and whatever may come after it.
2717 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2718 return s->objsize;
2720 #endif
2722 * If we have the need to store the freelist pointer
2723 * back there or track user information then we can
2724 * only use the space before that information.
2726 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2727 return s->inuse;
2729 * Else we can use all the padding etc for the allocation
2731 return s->size;
2734 void kfree(const void *x)
2736 struct page *page;
2737 void *object = (void *)x;
2739 if (unlikely(ZERO_OR_NULL_PTR(x)))
2740 return;
2742 page = virt_to_head_page(x);
2743 if (unlikely(!PageSlab(page))) {
2744 BUG_ON(!PageCompound(page));
2745 put_page(page);
2746 return;
2748 slab_free(page->slab, page, object, _RET_IP_);
2750 EXPORT_SYMBOL(kfree);
2753 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2754 * the remaining slabs by the number of items in use. The slabs with the
2755 * most items in use come first. New allocations will then fill those up
2756 * and thus they can be removed from the partial lists.
2758 * The slabs with the least items are placed last. This results in them
2759 * being allocated from last increasing the chance that the last objects
2760 * are freed in them.
2762 int kmem_cache_shrink(struct kmem_cache *s)
2764 int node;
2765 int i;
2766 struct kmem_cache_node *n;
2767 struct page *page;
2768 struct page *t;
2769 int objects = oo_objects(s->max);
2770 struct list_head *slabs_by_inuse =
2771 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2772 unsigned long flags;
2774 if (!slabs_by_inuse)
2775 return -ENOMEM;
2777 flush_all(s);
2778 for_each_node_state(node, N_NORMAL_MEMORY) {
2779 n = get_node(s, node);
2781 if (!n->nr_partial)
2782 continue;
2784 for (i = 0; i < objects; i++)
2785 INIT_LIST_HEAD(slabs_by_inuse + i);
2787 spin_lock_irqsave(&n->list_lock, flags);
2790 * Build lists indexed by the items in use in each slab.
2792 * Note that concurrent frees may occur while we hold the
2793 * list_lock. page->inuse here is the upper limit.
2795 list_for_each_entry_safe(page, t, &n->partial, lru) {
2796 if (!page->inuse && slab_trylock(page)) {
2798 * Must hold slab lock here because slab_free
2799 * may have freed the last object and be
2800 * waiting to release the slab.
2802 list_del(&page->lru);
2803 n->nr_partial--;
2804 slab_unlock(page);
2805 discard_slab(s, page);
2806 } else {
2807 list_move(&page->lru,
2808 slabs_by_inuse + page->inuse);
2813 * Rebuild the partial list with the slabs filled up most
2814 * first and the least used slabs at the end.
2816 for (i = objects - 1; i >= 0; i--)
2817 list_splice(slabs_by_inuse + i, n->partial.prev);
2819 spin_unlock_irqrestore(&n->list_lock, flags);
2822 kfree(slabs_by_inuse);
2823 return 0;
2825 EXPORT_SYMBOL(kmem_cache_shrink);
2827 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2828 static int slab_mem_going_offline_callback(void *arg)
2830 struct kmem_cache *s;
2832 down_read(&slub_lock);
2833 list_for_each_entry(s, &slab_caches, list)
2834 kmem_cache_shrink(s);
2835 up_read(&slub_lock);
2837 return 0;
2840 static void slab_mem_offline_callback(void *arg)
2842 struct kmem_cache_node *n;
2843 struct kmem_cache *s;
2844 struct memory_notify *marg = arg;
2845 int offline_node;
2847 offline_node = marg->status_change_nid;
2850 * If the node still has available memory. we need kmem_cache_node
2851 * for it yet.
2853 if (offline_node < 0)
2854 return;
2856 down_read(&slub_lock);
2857 list_for_each_entry(s, &slab_caches, list) {
2858 n = get_node(s, offline_node);
2859 if (n) {
2861 * if n->nr_slabs > 0, slabs still exist on the node
2862 * that is going down. We were unable to free them,
2863 * and offline_pages() function shoudn't call this
2864 * callback. So, we must fail.
2866 BUG_ON(slabs_node(s, offline_node));
2868 s->node[offline_node] = NULL;
2869 kmem_cache_free(kmalloc_caches, n);
2872 up_read(&slub_lock);
2875 static int slab_mem_going_online_callback(void *arg)
2877 struct kmem_cache_node *n;
2878 struct kmem_cache *s;
2879 struct memory_notify *marg = arg;
2880 int nid = marg->status_change_nid;
2881 int ret = 0;
2884 * If the node's memory is already available, then kmem_cache_node is
2885 * already created. Nothing to do.
2887 if (nid < 0)
2888 return 0;
2891 * We are bringing a node online. No memory is available yet. We must
2892 * allocate a kmem_cache_node structure in order to bring the node
2893 * online.
2895 down_read(&slub_lock);
2896 list_for_each_entry(s, &slab_caches, list) {
2898 * XXX: kmem_cache_alloc_node will fallback to other nodes
2899 * since memory is not yet available from the node that
2900 * is brought up.
2902 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2903 if (!n) {
2904 ret = -ENOMEM;
2905 goto out;
2907 init_kmem_cache_node(n, s);
2908 s->node[nid] = n;
2910 out:
2911 up_read(&slub_lock);
2912 return ret;
2915 static int slab_memory_callback(struct notifier_block *self,
2916 unsigned long action, void *arg)
2918 int ret = 0;
2920 switch (action) {
2921 case MEM_GOING_ONLINE:
2922 ret = slab_mem_going_online_callback(arg);
2923 break;
2924 case MEM_GOING_OFFLINE:
2925 ret = slab_mem_going_offline_callback(arg);
2926 break;
2927 case MEM_OFFLINE:
2928 case MEM_CANCEL_ONLINE:
2929 slab_mem_offline_callback(arg);
2930 break;
2931 case MEM_ONLINE:
2932 case MEM_CANCEL_OFFLINE:
2933 break;
2936 ret = notifier_from_errno(ret);
2937 return ret;
2940 #endif /* CONFIG_MEMORY_HOTPLUG */
2942 /********************************************************************
2943 * Basic setup of slabs
2944 *******************************************************************/
2946 void __init kmem_cache_init(void)
2948 int i;
2949 int caches = 0;
2951 init_alloc_cpu();
2953 #ifdef CONFIG_NUMA
2955 * Must first have the slab cache available for the allocations of the
2956 * struct kmem_cache_node's. There is special bootstrap code in
2957 * kmem_cache_open for slab_state == DOWN.
2959 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2960 sizeof(struct kmem_cache_node), GFP_KERNEL);
2961 kmalloc_caches[0].refcount = -1;
2962 caches++;
2964 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2965 #endif
2967 /* Able to allocate the per node structures */
2968 slab_state = PARTIAL;
2970 /* Caches that are not of the two-to-the-power-of size */
2971 if (KMALLOC_MIN_SIZE <= 64) {
2972 create_kmalloc_cache(&kmalloc_caches[1],
2973 "kmalloc-96", 96, GFP_KERNEL);
2974 caches++;
2975 create_kmalloc_cache(&kmalloc_caches[2],
2976 "kmalloc-192", 192, GFP_KERNEL);
2977 caches++;
2980 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2981 create_kmalloc_cache(&kmalloc_caches[i],
2982 "kmalloc", 1 << i, GFP_KERNEL);
2983 caches++;
2988 * Patch up the size_index table if we have strange large alignment
2989 * requirements for the kmalloc array. This is only the case for
2990 * MIPS it seems. The standard arches will not generate any code here.
2992 * Largest permitted alignment is 256 bytes due to the way we
2993 * handle the index determination for the smaller caches.
2995 * Make sure that nothing crazy happens if someone starts tinkering
2996 * around with ARCH_KMALLOC_MINALIGN
2998 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2999 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3001 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3002 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3004 if (KMALLOC_MIN_SIZE == 128) {
3006 * The 192 byte sized cache is not used if the alignment
3007 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3008 * instead.
3010 for (i = 128 + 8; i <= 192; i += 8)
3011 size_index[(i - 1) / 8] = 8;
3014 slab_state = UP;
3016 /* Provide the correct kmalloc names now that the caches are up */
3017 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3018 kmalloc_caches[i]. name =
3019 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3021 #ifdef CONFIG_SMP
3022 register_cpu_notifier(&slab_notifier);
3023 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3024 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3025 #else
3026 kmem_size = sizeof(struct kmem_cache);
3027 #endif
3029 printk(KERN_INFO
3030 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3031 " CPUs=%d, Nodes=%d\n",
3032 caches, cache_line_size(),
3033 slub_min_order, slub_max_order, slub_min_objects,
3034 nr_cpu_ids, nr_node_ids);
3038 * Find a mergeable slab cache
3040 static int slab_unmergeable(struct kmem_cache *s)
3042 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3043 return 1;
3045 if (s->ctor)
3046 return 1;
3049 * We may have set a slab to be unmergeable during bootstrap.
3051 if (s->refcount < 0)
3052 return 1;
3054 return 0;
3057 static struct kmem_cache *find_mergeable(size_t size,
3058 size_t align, unsigned long flags, const char *name,
3059 void (*ctor)(void *))
3061 struct kmem_cache *s;
3063 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3064 return NULL;
3066 if (ctor)
3067 return NULL;
3069 size = ALIGN(size, sizeof(void *));
3070 align = calculate_alignment(flags, align, size);
3071 size = ALIGN(size, align);
3072 flags = kmem_cache_flags(size, flags, name, NULL);
3074 list_for_each_entry(s, &slab_caches, list) {
3075 if (slab_unmergeable(s))
3076 continue;
3078 if (size > s->size)
3079 continue;
3081 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3082 continue;
3084 * Check if alignment is compatible.
3085 * Courtesy of Adrian Drzewiecki
3087 if ((s->size & ~(align - 1)) != s->size)
3088 continue;
3090 if (s->size - size >= sizeof(void *))
3091 continue;
3093 return s;
3095 return NULL;
3098 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3099 size_t align, unsigned long flags, void (*ctor)(void *))
3101 struct kmem_cache *s;
3103 down_write(&slub_lock);
3104 s = find_mergeable(size, align, flags, name, ctor);
3105 if (s) {
3106 int cpu;
3108 s->refcount++;
3110 * Adjust the object sizes so that we clear
3111 * the complete object on kzalloc.
3113 s->objsize = max(s->objsize, (int)size);
3116 * And then we need to update the object size in the
3117 * per cpu structures
3119 for_each_online_cpu(cpu)
3120 get_cpu_slab(s, cpu)->objsize = s->objsize;
3122 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3123 up_write(&slub_lock);
3125 if (sysfs_slab_alias(s, name))
3126 goto err;
3127 return s;
3130 s = kmalloc(kmem_size, GFP_KERNEL);
3131 if (s) {
3132 if (kmem_cache_open(s, GFP_KERNEL, name,
3133 size, align, flags, ctor)) {
3134 list_add(&s->list, &slab_caches);
3135 up_write(&slub_lock);
3136 if (sysfs_slab_add(s))
3137 goto err;
3138 return s;
3140 kfree(s);
3142 up_write(&slub_lock);
3144 err:
3145 if (flags & SLAB_PANIC)
3146 panic("Cannot create slabcache %s\n", name);
3147 else
3148 s = NULL;
3149 return s;
3151 EXPORT_SYMBOL(kmem_cache_create);
3153 #ifdef CONFIG_SMP
3155 * Use the cpu notifier to insure that the cpu slabs are flushed when
3156 * necessary.
3158 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3159 unsigned long action, void *hcpu)
3161 long cpu = (long)hcpu;
3162 struct kmem_cache *s;
3163 unsigned long flags;
3165 switch (action) {
3166 case CPU_UP_PREPARE:
3167 case CPU_UP_PREPARE_FROZEN:
3168 init_alloc_cpu_cpu(cpu);
3169 down_read(&slub_lock);
3170 list_for_each_entry(s, &slab_caches, list)
3171 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3172 GFP_KERNEL);
3173 up_read(&slub_lock);
3174 break;
3176 case CPU_UP_CANCELED:
3177 case CPU_UP_CANCELED_FROZEN:
3178 case CPU_DEAD:
3179 case CPU_DEAD_FROZEN:
3180 down_read(&slub_lock);
3181 list_for_each_entry(s, &slab_caches, list) {
3182 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3184 local_irq_save(flags);
3185 __flush_cpu_slab(s, cpu);
3186 local_irq_restore(flags);
3187 free_kmem_cache_cpu(c, cpu);
3188 s->cpu_slab[cpu] = NULL;
3190 up_read(&slub_lock);
3191 break;
3192 default:
3193 break;
3195 return NOTIFY_OK;
3198 static struct notifier_block __cpuinitdata slab_notifier = {
3199 .notifier_call = slab_cpuup_callback
3202 #endif
3204 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3206 struct kmem_cache *s;
3208 if (unlikely(size > PAGE_SIZE))
3209 return kmalloc_large(size, gfpflags);
3211 s = get_slab(size, gfpflags);
3213 if (unlikely(ZERO_OR_NULL_PTR(s)))
3214 return s;
3216 return slab_alloc(s, gfpflags, -1, caller);
3219 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3220 int node, unsigned long caller)
3222 struct kmem_cache *s;
3224 if (unlikely(size > PAGE_SIZE))
3225 return kmalloc_large_node(size, gfpflags, node);
3227 s = get_slab(size, gfpflags);
3229 if (unlikely(ZERO_OR_NULL_PTR(s)))
3230 return s;
3232 return slab_alloc(s, gfpflags, node, caller);
3235 #ifdef CONFIG_SLUB_DEBUG
3236 static unsigned long count_partial(struct kmem_cache_node *n,
3237 int (*get_count)(struct page *))
3239 unsigned long flags;
3240 unsigned long x = 0;
3241 struct page *page;
3243 spin_lock_irqsave(&n->list_lock, flags);
3244 list_for_each_entry(page, &n->partial, lru)
3245 x += get_count(page);
3246 spin_unlock_irqrestore(&n->list_lock, flags);
3247 return x;
3250 static int count_inuse(struct page *page)
3252 return page->inuse;
3255 static int count_total(struct page *page)
3257 return page->objects;
3260 static int count_free(struct page *page)
3262 return page->objects - page->inuse;
3265 static int validate_slab(struct kmem_cache *s, struct page *page,
3266 unsigned long *map)
3268 void *p;
3269 void *addr = page_address(page);
3271 if (!check_slab(s, page) ||
3272 !on_freelist(s, page, NULL))
3273 return 0;
3275 /* Now we know that a valid freelist exists */
3276 bitmap_zero(map, page->objects);
3278 for_each_free_object(p, s, page->freelist) {
3279 set_bit(slab_index(p, s, addr), map);
3280 if (!check_object(s, page, p, 0))
3281 return 0;
3284 for_each_object(p, s, addr, page->objects)
3285 if (!test_bit(slab_index(p, s, addr), map))
3286 if (!check_object(s, page, p, 1))
3287 return 0;
3288 return 1;
3291 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3292 unsigned long *map)
3294 if (slab_trylock(page)) {
3295 validate_slab(s, page, map);
3296 slab_unlock(page);
3297 } else
3298 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3299 s->name, page);
3301 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3302 if (!PageSlubDebug(page))
3303 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3304 "on slab 0x%p\n", s->name, page);
3305 } else {
3306 if (PageSlubDebug(page))
3307 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3308 "slab 0x%p\n", s->name, page);
3312 static int validate_slab_node(struct kmem_cache *s,
3313 struct kmem_cache_node *n, unsigned long *map)
3315 unsigned long count = 0;
3316 struct page *page;
3317 unsigned long flags;
3319 spin_lock_irqsave(&n->list_lock, flags);
3321 list_for_each_entry(page, &n->partial, lru) {
3322 validate_slab_slab(s, page, map);
3323 count++;
3325 if (count != n->nr_partial)
3326 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3327 "counter=%ld\n", s->name, count, n->nr_partial);
3329 if (!(s->flags & SLAB_STORE_USER))
3330 goto out;
3332 list_for_each_entry(page, &n->full, lru) {
3333 validate_slab_slab(s, page, map);
3334 count++;
3336 if (count != atomic_long_read(&n->nr_slabs))
3337 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3338 "counter=%ld\n", s->name, count,
3339 atomic_long_read(&n->nr_slabs));
3341 out:
3342 spin_unlock_irqrestore(&n->list_lock, flags);
3343 return count;
3346 static long validate_slab_cache(struct kmem_cache *s)
3348 int node;
3349 unsigned long count = 0;
3350 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3351 sizeof(unsigned long), GFP_KERNEL);
3353 if (!map)
3354 return -ENOMEM;
3356 flush_all(s);
3357 for_each_node_state(node, N_NORMAL_MEMORY) {
3358 struct kmem_cache_node *n = get_node(s, node);
3360 count += validate_slab_node(s, n, map);
3362 kfree(map);
3363 return count;
3366 #ifdef SLUB_RESILIENCY_TEST
3367 static void resiliency_test(void)
3369 u8 *p;
3371 printk(KERN_ERR "SLUB resiliency testing\n");
3372 printk(KERN_ERR "-----------------------\n");
3373 printk(KERN_ERR "A. Corruption after allocation\n");
3375 p = kzalloc(16, GFP_KERNEL);
3376 p[16] = 0x12;
3377 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3378 " 0x12->0x%p\n\n", p + 16);
3380 validate_slab_cache(kmalloc_caches + 4);
3382 /* Hmmm... The next two are dangerous */
3383 p = kzalloc(32, GFP_KERNEL);
3384 p[32 + sizeof(void *)] = 0x34;
3385 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3386 " 0x34 -> -0x%p\n", p);
3387 printk(KERN_ERR
3388 "If allocated object is overwritten then not detectable\n\n");
3390 validate_slab_cache(kmalloc_caches + 5);
3391 p = kzalloc(64, GFP_KERNEL);
3392 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3393 *p = 0x56;
3394 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3396 printk(KERN_ERR
3397 "If allocated object is overwritten then not detectable\n\n");
3398 validate_slab_cache(kmalloc_caches + 6);
3400 printk(KERN_ERR "\nB. Corruption after free\n");
3401 p = kzalloc(128, GFP_KERNEL);
3402 kfree(p);
3403 *p = 0x78;
3404 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3405 validate_slab_cache(kmalloc_caches + 7);
3407 p = kzalloc(256, GFP_KERNEL);
3408 kfree(p);
3409 p[50] = 0x9a;
3410 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3412 validate_slab_cache(kmalloc_caches + 8);
3414 p = kzalloc(512, GFP_KERNEL);
3415 kfree(p);
3416 p[512] = 0xab;
3417 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3418 validate_slab_cache(kmalloc_caches + 9);
3420 #else
3421 static void resiliency_test(void) {};
3422 #endif
3425 * Generate lists of code addresses where slabcache objects are allocated
3426 * and freed.
3429 struct location {
3430 unsigned long count;
3431 unsigned long addr;
3432 long long sum_time;
3433 long min_time;
3434 long max_time;
3435 long min_pid;
3436 long max_pid;
3437 cpumask_t cpus;
3438 nodemask_t nodes;
3441 struct loc_track {
3442 unsigned long max;
3443 unsigned long count;
3444 struct location *loc;
3447 static void free_loc_track(struct loc_track *t)
3449 if (t->max)
3450 free_pages((unsigned long)t->loc,
3451 get_order(sizeof(struct location) * t->max));
3454 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3456 struct location *l;
3457 int order;
3459 order = get_order(sizeof(struct location) * max);
3461 l = (void *)__get_free_pages(flags, order);
3462 if (!l)
3463 return 0;
3465 if (t->count) {
3466 memcpy(l, t->loc, sizeof(struct location) * t->count);
3467 free_loc_track(t);
3469 t->max = max;
3470 t->loc = l;
3471 return 1;
3474 static int add_location(struct loc_track *t, struct kmem_cache *s,
3475 const struct track *track)
3477 long start, end, pos;
3478 struct location *l;
3479 unsigned long caddr;
3480 unsigned long age = jiffies - track->when;
3482 start = -1;
3483 end = t->count;
3485 for ( ; ; ) {
3486 pos = start + (end - start + 1) / 2;
3489 * There is nothing at "end". If we end up there
3490 * we need to add something to before end.
3492 if (pos == end)
3493 break;
3495 caddr = t->loc[pos].addr;
3496 if (track->addr == caddr) {
3498 l = &t->loc[pos];
3499 l->count++;
3500 if (track->when) {
3501 l->sum_time += age;
3502 if (age < l->min_time)
3503 l->min_time = age;
3504 if (age > l->max_time)
3505 l->max_time = age;
3507 if (track->pid < l->min_pid)
3508 l->min_pid = track->pid;
3509 if (track->pid > l->max_pid)
3510 l->max_pid = track->pid;
3512 cpu_set(track->cpu, l->cpus);
3514 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3515 return 1;
3518 if (track->addr < caddr)
3519 end = pos;
3520 else
3521 start = pos;
3525 * Not found. Insert new tracking element.
3527 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3528 return 0;
3530 l = t->loc + pos;
3531 if (pos < t->count)
3532 memmove(l + 1, l,
3533 (t->count - pos) * sizeof(struct location));
3534 t->count++;
3535 l->count = 1;
3536 l->addr = track->addr;
3537 l->sum_time = age;
3538 l->min_time = age;
3539 l->max_time = age;
3540 l->min_pid = track->pid;
3541 l->max_pid = track->pid;
3542 cpus_clear(l->cpus);
3543 cpu_set(track->cpu, l->cpus);
3544 nodes_clear(l->nodes);
3545 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3546 return 1;
3549 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3550 struct page *page, enum track_item alloc)
3552 void *addr = page_address(page);
3553 DECLARE_BITMAP(map, page->objects);
3554 void *p;
3556 bitmap_zero(map, page->objects);
3557 for_each_free_object(p, s, page->freelist)
3558 set_bit(slab_index(p, s, addr), map);
3560 for_each_object(p, s, addr, page->objects)
3561 if (!test_bit(slab_index(p, s, addr), map))
3562 add_location(t, s, get_track(s, p, alloc));
3565 static int list_locations(struct kmem_cache *s, char *buf,
3566 enum track_item alloc)
3568 int len = 0;
3569 unsigned long i;
3570 struct loc_track t = { 0, 0, NULL };
3571 int node;
3573 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3574 GFP_TEMPORARY))
3575 return sprintf(buf, "Out of memory\n");
3577 /* Push back cpu slabs */
3578 flush_all(s);
3580 for_each_node_state(node, N_NORMAL_MEMORY) {
3581 struct kmem_cache_node *n = get_node(s, node);
3582 unsigned long flags;
3583 struct page *page;
3585 if (!atomic_long_read(&n->nr_slabs))
3586 continue;
3588 spin_lock_irqsave(&n->list_lock, flags);
3589 list_for_each_entry(page, &n->partial, lru)
3590 process_slab(&t, s, page, alloc);
3591 list_for_each_entry(page, &n->full, lru)
3592 process_slab(&t, s, page, alloc);
3593 spin_unlock_irqrestore(&n->list_lock, flags);
3596 for (i = 0; i < t.count; i++) {
3597 struct location *l = &t.loc[i];
3599 if (len > PAGE_SIZE - 100)
3600 break;
3601 len += sprintf(buf + len, "%7ld ", l->count);
3603 if (l->addr)
3604 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3605 else
3606 len += sprintf(buf + len, "<not-available>");
3608 if (l->sum_time != l->min_time) {
3609 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3610 l->min_time,
3611 (long)div_u64(l->sum_time, l->count),
3612 l->max_time);
3613 } else
3614 len += sprintf(buf + len, " age=%ld",
3615 l->min_time);
3617 if (l->min_pid != l->max_pid)
3618 len += sprintf(buf + len, " pid=%ld-%ld",
3619 l->min_pid, l->max_pid);
3620 else
3621 len += sprintf(buf + len, " pid=%ld",
3622 l->min_pid);
3624 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3625 len < PAGE_SIZE - 60) {
3626 len += sprintf(buf + len, " cpus=");
3627 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3628 l->cpus);
3631 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3632 len < PAGE_SIZE - 60) {
3633 len += sprintf(buf + len, " nodes=");
3634 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3635 l->nodes);
3638 len += sprintf(buf + len, "\n");
3641 free_loc_track(&t);
3642 if (!t.count)
3643 len += sprintf(buf, "No data\n");
3644 return len;
3647 enum slab_stat_type {
3648 SL_ALL, /* All slabs */
3649 SL_PARTIAL, /* Only partially allocated slabs */
3650 SL_CPU, /* Only slabs used for cpu caches */
3651 SL_OBJECTS, /* Determine allocated objects not slabs */
3652 SL_TOTAL /* Determine object capacity not slabs */
3655 #define SO_ALL (1 << SL_ALL)
3656 #define SO_PARTIAL (1 << SL_PARTIAL)
3657 #define SO_CPU (1 << SL_CPU)
3658 #define SO_OBJECTS (1 << SL_OBJECTS)
3659 #define SO_TOTAL (1 << SL_TOTAL)
3661 static ssize_t show_slab_objects(struct kmem_cache *s,
3662 char *buf, unsigned long flags)
3664 unsigned long total = 0;
3665 int node;
3666 int x;
3667 unsigned long *nodes;
3668 unsigned long *per_cpu;
3670 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3671 if (!nodes)
3672 return -ENOMEM;
3673 per_cpu = nodes + nr_node_ids;
3675 if (flags & SO_CPU) {
3676 int cpu;
3678 for_each_possible_cpu(cpu) {
3679 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3681 if (!c || c->node < 0)
3682 continue;
3684 if (c->page) {
3685 if (flags & SO_TOTAL)
3686 x = c->page->objects;
3687 else if (flags & SO_OBJECTS)
3688 x = c->page->inuse;
3689 else
3690 x = 1;
3692 total += x;
3693 nodes[c->node] += x;
3695 per_cpu[c->node]++;
3699 if (flags & SO_ALL) {
3700 for_each_node_state(node, N_NORMAL_MEMORY) {
3701 struct kmem_cache_node *n = get_node(s, node);
3703 if (flags & SO_TOTAL)
3704 x = atomic_long_read(&n->total_objects);
3705 else if (flags & SO_OBJECTS)
3706 x = atomic_long_read(&n->total_objects) -
3707 count_partial(n, count_free);
3709 else
3710 x = atomic_long_read(&n->nr_slabs);
3711 total += x;
3712 nodes[node] += x;
3715 } else if (flags & SO_PARTIAL) {
3716 for_each_node_state(node, N_NORMAL_MEMORY) {
3717 struct kmem_cache_node *n = get_node(s, node);
3719 if (flags & SO_TOTAL)
3720 x = count_partial(n, count_total);
3721 else if (flags & SO_OBJECTS)
3722 x = count_partial(n, count_inuse);
3723 else
3724 x = n->nr_partial;
3725 total += x;
3726 nodes[node] += x;
3729 x = sprintf(buf, "%lu", total);
3730 #ifdef CONFIG_NUMA
3731 for_each_node_state(node, N_NORMAL_MEMORY)
3732 if (nodes[node])
3733 x += sprintf(buf + x, " N%d=%lu",
3734 node, nodes[node]);
3735 #endif
3736 kfree(nodes);
3737 return x + sprintf(buf + x, "\n");
3740 static int any_slab_objects(struct kmem_cache *s)
3742 int node;
3744 for_each_online_node(node) {
3745 struct kmem_cache_node *n = get_node(s, node);
3747 if (!n)
3748 continue;
3750 if (atomic_long_read(&n->total_objects))
3751 return 1;
3753 return 0;
3756 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3757 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3759 struct slab_attribute {
3760 struct attribute attr;
3761 ssize_t (*show)(struct kmem_cache *s, char *buf);
3762 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3765 #define SLAB_ATTR_RO(_name) \
3766 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3768 #define SLAB_ATTR(_name) \
3769 static struct slab_attribute _name##_attr = \
3770 __ATTR(_name, 0644, _name##_show, _name##_store)
3772 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3774 return sprintf(buf, "%d\n", s->size);
3776 SLAB_ATTR_RO(slab_size);
3778 static ssize_t align_show(struct kmem_cache *s, char *buf)
3780 return sprintf(buf, "%d\n", s->align);
3782 SLAB_ATTR_RO(align);
3784 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3786 return sprintf(buf, "%d\n", s->objsize);
3788 SLAB_ATTR_RO(object_size);
3790 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3792 return sprintf(buf, "%d\n", oo_objects(s->oo));
3794 SLAB_ATTR_RO(objs_per_slab);
3796 static ssize_t order_store(struct kmem_cache *s,
3797 const char *buf, size_t length)
3799 unsigned long order;
3800 int err;
3802 err = strict_strtoul(buf, 10, &order);
3803 if (err)
3804 return err;
3806 if (order > slub_max_order || order < slub_min_order)
3807 return -EINVAL;
3809 calculate_sizes(s, order);
3810 return length;
3813 static ssize_t order_show(struct kmem_cache *s, char *buf)
3815 return sprintf(buf, "%d\n", oo_order(s->oo));
3817 SLAB_ATTR(order);
3819 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3821 if (s->ctor) {
3822 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3824 return n + sprintf(buf + n, "\n");
3826 return 0;
3828 SLAB_ATTR_RO(ctor);
3830 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3832 return sprintf(buf, "%d\n", s->refcount - 1);
3834 SLAB_ATTR_RO(aliases);
3836 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3838 return show_slab_objects(s, buf, SO_ALL);
3840 SLAB_ATTR_RO(slabs);
3842 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3844 return show_slab_objects(s, buf, SO_PARTIAL);
3846 SLAB_ATTR_RO(partial);
3848 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3850 return show_slab_objects(s, buf, SO_CPU);
3852 SLAB_ATTR_RO(cpu_slabs);
3854 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3856 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3858 SLAB_ATTR_RO(objects);
3860 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3862 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3864 SLAB_ATTR_RO(objects_partial);
3866 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3868 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3870 SLAB_ATTR_RO(total_objects);
3872 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3874 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3877 static ssize_t sanity_checks_store(struct kmem_cache *s,
3878 const char *buf, size_t length)
3880 s->flags &= ~SLAB_DEBUG_FREE;
3881 if (buf[0] == '1')
3882 s->flags |= SLAB_DEBUG_FREE;
3883 return length;
3885 SLAB_ATTR(sanity_checks);
3887 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3889 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3892 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3893 size_t length)
3895 s->flags &= ~SLAB_TRACE;
3896 if (buf[0] == '1')
3897 s->flags |= SLAB_TRACE;
3898 return length;
3900 SLAB_ATTR(trace);
3902 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3904 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3907 static ssize_t reclaim_account_store(struct kmem_cache *s,
3908 const char *buf, size_t length)
3910 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3911 if (buf[0] == '1')
3912 s->flags |= SLAB_RECLAIM_ACCOUNT;
3913 return length;
3915 SLAB_ATTR(reclaim_account);
3917 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3919 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3921 SLAB_ATTR_RO(hwcache_align);
3923 #ifdef CONFIG_ZONE_DMA
3924 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3926 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3928 SLAB_ATTR_RO(cache_dma);
3929 #endif
3931 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3933 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3935 SLAB_ATTR_RO(destroy_by_rcu);
3937 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3939 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3942 static ssize_t red_zone_store(struct kmem_cache *s,
3943 const char *buf, size_t length)
3945 if (any_slab_objects(s))
3946 return -EBUSY;
3948 s->flags &= ~SLAB_RED_ZONE;
3949 if (buf[0] == '1')
3950 s->flags |= SLAB_RED_ZONE;
3951 calculate_sizes(s, -1);
3952 return length;
3954 SLAB_ATTR(red_zone);
3956 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3958 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3961 static ssize_t poison_store(struct kmem_cache *s,
3962 const char *buf, size_t length)
3964 if (any_slab_objects(s))
3965 return -EBUSY;
3967 s->flags &= ~SLAB_POISON;
3968 if (buf[0] == '1')
3969 s->flags |= SLAB_POISON;
3970 calculate_sizes(s, -1);
3971 return length;
3973 SLAB_ATTR(poison);
3975 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3977 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3980 static ssize_t store_user_store(struct kmem_cache *s,
3981 const char *buf, size_t length)
3983 if (any_slab_objects(s))
3984 return -EBUSY;
3986 s->flags &= ~SLAB_STORE_USER;
3987 if (buf[0] == '1')
3988 s->flags |= SLAB_STORE_USER;
3989 calculate_sizes(s, -1);
3990 return length;
3992 SLAB_ATTR(store_user);
3994 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3996 return 0;
3999 static ssize_t validate_store(struct kmem_cache *s,
4000 const char *buf, size_t length)
4002 int ret = -EINVAL;
4004 if (buf[0] == '1') {
4005 ret = validate_slab_cache(s);
4006 if (ret >= 0)
4007 ret = length;
4009 return ret;
4011 SLAB_ATTR(validate);
4013 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4015 return 0;
4018 static ssize_t shrink_store(struct kmem_cache *s,
4019 const char *buf, size_t length)
4021 if (buf[0] == '1') {
4022 int rc = kmem_cache_shrink(s);
4024 if (rc)
4025 return rc;
4026 } else
4027 return -EINVAL;
4028 return length;
4030 SLAB_ATTR(shrink);
4032 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4034 if (!(s->flags & SLAB_STORE_USER))
4035 return -ENOSYS;
4036 return list_locations(s, buf, TRACK_ALLOC);
4038 SLAB_ATTR_RO(alloc_calls);
4040 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4042 if (!(s->flags & SLAB_STORE_USER))
4043 return -ENOSYS;
4044 return list_locations(s, buf, TRACK_FREE);
4046 SLAB_ATTR_RO(free_calls);
4048 #ifdef CONFIG_NUMA
4049 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4051 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4054 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4055 const char *buf, size_t length)
4057 unsigned long ratio;
4058 int err;
4060 err = strict_strtoul(buf, 10, &ratio);
4061 if (err)
4062 return err;
4064 if (ratio <= 100)
4065 s->remote_node_defrag_ratio = ratio * 10;
4067 return length;
4069 SLAB_ATTR(remote_node_defrag_ratio);
4070 #endif
4072 #ifdef CONFIG_SLUB_STATS
4073 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4075 unsigned long sum = 0;
4076 int cpu;
4077 int len;
4078 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4080 if (!data)
4081 return -ENOMEM;
4083 for_each_online_cpu(cpu) {
4084 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4086 data[cpu] = x;
4087 sum += x;
4090 len = sprintf(buf, "%lu", sum);
4092 #ifdef CONFIG_SMP
4093 for_each_online_cpu(cpu) {
4094 if (data[cpu] && len < PAGE_SIZE - 20)
4095 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4097 #endif
4098 kfree(data);
4099 return len + sprintf(buf + len, "\n");
4102 #define STAT_ATTR(si, text) \
4103 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4105 return show_stat(s, buf, si); \
4107 SLAB_ATTR_RO(text); \
4109 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4110 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4111 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4112 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4113 STAT_ATTR(FREE_FROZEN, free_frozen);
4114 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4115 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4116 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4117 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4118 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4119 STAT_ATTR(FREE_SLAB, free_slab);
4120 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4121 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4122 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4123 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4124 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4125 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4126 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4127 #endif
4129 static struct attribute *slab_attrs[] = {
4130 &slab_size_attr.attr,
4131 &object_size_attr.attr,
4132 &objs_per_slab_attr.attr,
4133 &order_attr.attr,
4134 &objects_attr.attr,
4135 &objects_partial_attr.attr,
4136 &total_objects_attr.attr,
4137 &slabs_attr.attr,
4138 &partial_attr.attr,
4139 &cpu_slabs_attr.attr,
4140 &ctor_attr.attr,
4141 &aliases_attr.attr,
4142 &align_attr.attr,
4143 &sanity_checks_attr.attr,
4144 &trace_attr.attr,
4145 &hwcache_align_attr.attr,
4146 &reclaim_account_attr.attr,
4147 &destroy_by_rcu_attr.attr,
4148 &red_zone_attr.attr,
4149 &poison_attr.attr,
4150 &store_user_attr.attr,
4151 &validate_attr.attr,
4152 &shrink_attr.attr,
4153 &alloc_calls_attr.attr,
4154 &free_calls_attr.attr,
4155 #ifdef CONFIG_ZONE_DMA
4156 &cache_dma_attr.attr,
4157 #endif
4158 #ifdef CONFIG_NUMA
4159 &remote_node_defrag_ratio_attr.attr,
4160 #endif
4161 #ifdef CONFIG_SLUB_STATS
4162 &alloc_fastpath_attr.attr,
4163 &alloc_slowpath_attr.attr,
4164 &free_fastpath_attr.attr,
4165 &free_slowpath_attr.attr,
4166 &free_frozen_attr.attr,
4167 &free_add_partial_attr.attr,
4168 &free_remove_partial_attr.attr,
4169 &alloc_from_partial_attr.attr,
4170 &alloc_slab_attr.attr,
4171 &alloc_refill_attr.attr,
4172 &free_slab_attr.attr,
4173 &cpuslab_flush_attr.attr,
4174 &deactivate_full_attr.attr,
4175 &deactivate_empty_attr.attr,
4176 &deactivate_to_head_attr.attr,
4177 &deactivate_to_tail_attr.attr,
4178 &deactivate_remote_frees_attr.attr,
4179 &order_fallback_attr.attr,
4180 #endif
4181 NULL
4184 static struct attribute_group slab_attr_group = {
4185 .attrs = slab_attrs,
4188 static ssize_t slab_attr_show(struct kobject *kobj,
4189 struct attribute *attr,
4190 char *buf)
4192 struct slab_attribute *attribute;
4193 struct kmem_cache *s;
4194 int err;
4196 attribute = to_slab_attr(attr);
4197 s = to_slab(kobj);
4199 if (!attribute->show)
4200 return -EIO;
4202 err = attribute->show(s, buf);
4204 return err;
4207 static ssize_t slab_attr_store(struct kobject *kobj,
4208 struct attribute *attr,
4209 const char *buf, size_t len)
4211 struct slab_attribute *attribute;
4212 struct kmem_cache *s;
4213 int err;
4215 attribute = to_slab_attr(attr);
4216 s = to_slab(kobj);
4218 if (!attribute->store)
4219 return -EIO;
4221 err = attribute->store(s, buf, len);
4223 return err;
4226 static void kmem_cache_release(struct kobject *kobj)
4228 struct kmem_cache *s = to_slab(kobj);
4230 kfree(s);
4233 static struct sysfs_ops slab_sysfs_ops = {
4234 .show = slab_attr_show,
4235 .store = slab_attr_store,
4238 static struct kobj_type slab_ktype = {
4239 .sysfs_ops = &slab_sysfs_ops,
4240 .release = kmem_cache_release
4243 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4245 struct kobj_type *ktype = get_ktype(kobj);
4247 if (ktype == &slab_ktype)
4248 return 1;
4249 return 0;
4252 static struct kset_uevent_ops slab_uevent_ops = {
4253 .filter = uevent_filter,
4256 static struct kset *slab_kset;
4258 #define ID_STR_LENGTH 64
4260 /* Create a unique string id for a slab cache:
4262 * Format :[flags-]size
4264 static char *create_unique_id(struct kmem_cache *s)
4266 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4267 char *p = name;
4269 BUG_ON(!name);
4271 *p++ = ':';
4273 * First flags affecting slabcache operations. We will only
4274 * get here for aliasable slabs so we do not need to support
4275 * too many flags. The flags here must cover all flags that
4276 * are matched during merging to guarantee that the id is
4277 * unique.
4279 if (s->flags & SLAB_CACHE_DMA)
4280 *p++ = 'd';
4281 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4282 *p++ = 'a';
4283 if (s->flags & SLAB_DEBUG_FREE)
4284 *p++ = 'F';
4285 if (p != name + 1)
4286 *p++ = '-';
4287 p += sprintf(p, "%07d", s->size);
4288 BUG_ON(p > name + ID_STR_LENGTH - 1);
4289 return name;
4292 static int sysfs_slab_add(struct kmem_cache *s)
4294 int err;
4295 const char *name;
4296 int unmergeable;
4298 if (slab_state < SYSFS)
4299 /* Defer until later */
4300 return 0;
4302 unmergeable = slab_unmergeable(s);
4303 if (unmergeable) {
4305 * Slabcache can never be merged so we can use the name proper.
4306 * This is typically the case for debug situations. In that
4307 * case we can catch duplicate names easily.
4309 sysfs_remove_link(&slab_kset->kobj, s->name);
4310 name = s->name;
4311 } else {
4313 * Create a unique name for the slab as a target
4314 * for the symlinks.
4316 name = create_unique_id(s);
4319 s->kobj.kset = slab_kset;
4320 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4321 if (err) {
4322 kobject_put(&s->kobj);
4323 return err;
4326 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4327 if (err)
4328 return err;
4329 kobject_uevent(&s->kobj, KOBJ_ADD);
4330 if (!unmergeable) {
4331 /* Setup first alias */
4332 sysfs_slab_alias(s, s->name);
4333 kfree(name);
4335 return 0;
4338 static void sysfs_slab_remove(struct kmem_cache *s)
4340 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4341 kobject_del(&s->kobj);
4342 kobject_put(&s->kobj);
4346 * Need to buffer aliases during bootup until sysfs becomes
4347 * available lest we loose that information.
4349 struct saved_alias {
4350 struct kmem_cache *s;
4351 const char *name;
4352 struct saved_alias *next;
4355 static struct saved_alias *alias_list;
4357 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4359 struct saved_alias *al;
4361 if (slab_state == SYSFS) {
4363 * If we have a leftover link then remove it.
4365 sysfs_remove_link(&slab_kset->kobj, name);
4366 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4369 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4370 if (!al)
4371 return -ENOMEM;
4373 al->s = s;
4374 al->name = name;
4375 al->next = alias_list;
4376 alias_list = al;
4377 return 0;
4380 static int __init slab_sysfs_init(void)
4382 struct kmem_cache *s;
4383 int err;
4385 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4386 if (!slab_kset) {
4387 printk(KERN_ERR "Cannot register slab subsystem.\n");
4388 return -ENOSYS;
4391 slab_state = SYSFS;
4393 list_for_each_entry(s, &slab_caches, list) {
4394 err = sysfs_slab_add(s);
4395 if (err)
4396 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4397 " to sysfs\n", s->name);
4400 while (alias_list) {
4401 struct saved_alias *al = alias_list;
4403 alias_list = alias_list->next;
4404 err = sysfs_slab_alias(al->s, al->name);
4405 if (err)
4406 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4407 " %s to sysfs\n", s->name);
4408 kfree(al);
4411 resiliency_test();
4412 return 0;
4415 __initcall(slab_sysfs_init);
4416 #endif
4419 * The /proc/slabinfo ABI
4421 #ifdef CONFIG_SLABINFO
4422 static void print_slabinfo_header(struct seq_file *m)
4424 seq_puts(m, "slabinfo - version: 2.1\n");
4425 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4426 "<objperslab> <pagesperslab>");
4427 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4428 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4429 seq_putc(m, '\n');
4432 static void *s_start(struct seq_file *m, loff_t *pos)
4434 loff_t n = *pos;
4436 down_read(&slub_lock);
4437 if (!n)
4438 print_slabinfo_header(m);
4440 return seq_list_start(&slab_caches, *pos);
4443 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4445 return seq_list_next(p, &slab_caches, pos);
4448 static void s_stop(struct seq_file *m, void *p)
4450 up_read(&slub_lock);
4453 static int s_show(struct seq_file *m, void *p)
4455 unsigned long nr_partials = 0;
4456 unsigned long nr_slabs = 0;
4457 unsigned long nr_inuse = 0;
4458 unsigned long nr_objs = 0;
4459 unsigned long nr_free = 0;
4460 struct kmem_cache *s;
4461 int node;
4463 s = list_entry(p, struct kmem_cache, list);
4465 for_each_online_node(node) {
4466 struct kmem_cache_node *n = get_node(s, node);
4468 if (!n)
4469 continue;
4471 nr_partials += n->nr_partial;
4472 nr_slabs += atomic_long_read(&n->nr_slabs);
4473 nr_objs += atomic_long_read(&n->total_objects);
4474 nr_free += count_partial(n, count_free);
4477 nr_inuse = nr_objs - nr_free;
4479 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4480 nr_objs, s->size, oo_objects(s->oo),
4481 (1 << oo_order(s->oo)));
4482 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4483 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4484 0UL);
4485 seq_putc(m, '\n');
4486 return 0;
4489 static const struct seq_operations slabinfo_op = {
4490 .start = s_start,
4491 .next = s_next,
4492 .stop = s_stop,
4493 .show = s_show,
4496 static int slabinfo_open(struct inode *inode, struct file *file)
4498 return seq_open(file, &slabinfo_op);
4501 static const struct file_operations proc_slabinfo_operations = {
4502 .open = slabinfo_open,
4503 .read = seq_read,
4504 .llseek = seq_lseek,
4505 .release = seq_release,
4508 static int __init slab_proc_init(void)
4510 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4511 return 0;
4513 module_init(slab_proc_init);
4514 #endif /* CONFIG_SLABINFO */