ath9k: We don't support non-HT devices, so remove superfluous code.
[linux-2.6/verdex.git] / drivers / net / wireless / ath9k / xmit.c
blob44735b6d9f044307ee8c55bd4fd0c025918dd5d5
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "core.h"
19 #define BITS_PER_BYTE 8
20 #define OFDM_PLCP_BITS 22
21 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
22 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
23 #define L_STF 8
24 #define L_LTF 8
25 #define L_SIG 4
26 #define HT_SIG 8
27 #define HT_STF 4
28 #define HT_LTF(_ns) (4 * (_ns))
29 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
30 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
31 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
32 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34 #define OFDM_SIFS_TIME 16
36 static u32 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
46 { 52, 108 }, /* 8: BPSK */
47 { 104, 216 }, /* 9: QPSK 1/2 */
48 { 156, 324 }, /* 10: QPSK 3/4 */
49 { 208, 432 }, /* 11: 16-QAM 1/2 */
50 { 312, 648 }, /* 12: 16-QAM 3/4 */
51 { 416, 864 }, /* 13: 64-QAM 2/3 */
52 { 468, 972 }, /* 14: 64-QAM 3/4 */
53 { 520, 1080 }, /* 15: 64-QAM 5/6 */
56 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
59 * Insert a chain of ath_buf (descriptors) on a txq and
60 * assume the descriptors are already chained together by caller.
61 * NB: must be called with txq lock held
64 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
65 struct list_head *head)
67 struct ath_hal *ah = sc->sc_ah;
68 struct ath_buf *bf;
71 * Insert the frame on the outbound list and
72 * pass it on to the hardware.
75 if (list_empty(head))
76 return;
78 bf = list_first_entry(head, struct ath_buf, list);
80 list_splice_tail_init(head, &txq->axq_q);
81 txq->axq_depth++;
82 txq->axq_totalqueued++;
83 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
85 DPRINTF(sc, ATH_DBG_QUEUE,
86 "%s: txq depth = %d\n", __func__, txq->axq_depth);
88 if (txq->axq_link == NULL) {
89 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
90 DPRINTF(sc, ATH_DBG_XMIT,
91 "%s: TXDP[%u] = %llx (%p)\n",
92 __func__, txq->axq_qnum,
93 ito64(bf->bf_daddr), bf->bf_desc);
94 } else {
95 *txq->axq_link = bf->bf_daddr;
96 DPRINTF(sc, ATH_DBG_XMIT, "%s: link[%u] (%p)=%llx (%p)\n",
97 __func__,
98 txq->axq_qnum, txq->axq_link,
99 ito64(bf->bf_daddr), bf->bf_desc);
101 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
102 ath9k_hw_txstart(ah, txq->axq_qnum);
105 /* Get transmit rate index using rate in Kbps */
107 static int ath_tx_findindex(const struct ath9k_rate_table *rt, int rate)
109 int i;
110 int ndx = 0;
112 for (i = 0; i < rt->rateCount; i++) {
113 if (rt->info[i].rateKbps == rate) {
114 ndx = i;
115 break;
119 return ndx;
122 /* Check if it's okay to send out aggregates */
124 static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno)
126 struct ath_atx_tid *tid;
127 tid = ATH_AN_2_TID(an, tidno);
129 if (tid->state & AGGR_ADDBA_COMPLETE ||
130 tid->state & AGGR_ADDBA_PROGRESS)
131 return 1;
132 else
133 return 0;
136 /* Calculate Atheros packet type from IEEE80211 packet header */
138 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
140 struct ieee80211_hdr *hdr;
141 enum ath9k_pkt_type htype;
142 __le16 fc;
144 hdr = (struct ieee80211_hdr *)skb->data;
145 fc = hdr->frame_control;
147 if (ieee80211_is_beacon(fc))
148 htype = ATH9K_PKT_TYPE_BEACON;
149 else if (ieee80211_is_probe_resp(fc))
150 htype = ATH9K_PKT_TYPE_PROBE_RESP;
151 else if (ieee80211_is_atim(fc))
152 htype = ATH9K_PKT_TYPE_ATIM;
153 else if (ieee80211_is_pspoll(fc))
154 htype = ATH9K_PKT_TYPE_PSPOLL;
155 else
156 htype = ATH9K_PKT_TYPE_NORMAL;
158 return htype;
161 static bool check_min_rate(struct sk_buff *skb)
163 struct ieee80211_hdr *hdr;
164 bool use_minrate = false;
165 __le16 fc;
167 hdr = (struct ieee80211_hdr *)skb->data;
168 fc = hdr->frame_control;
170 if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) {
171 use_minrate = true;
172 } else if (ieee80211_is_data(fc)) {
173 if (ieee80211_is_nullfunc(fc) ||
174 /* Port Access Entity (IEEE 802.1X) */
175 (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
176 use_minrate = true;
180 return use_minrate;
183 static int get_hw_crypto_keytype(struct sk_buff *skb)
185 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
187 if (tx_info->control.hw_key) {
188 if (tx_info->control.hw_key->alg == ALG_WEP)
189 return ATH9K_KEY_TYPE_WEP;
190 else if (tx_info->control.hw_key->alg == ALG_TKIP)
191 return ATH9K_KEY_TYPE_TKIP;
192 else if (tx_info->control.hw_key->alg == ALG_CCMP)
193 return ATH9K_KEY_TYPE_AES;
196 return ATH9K_KEY_TYPE_CLEAR;
199 static void setup_rate_retries(struct ath_softc *sc, struct sk_buff *skb)
201 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
202 struct ath_tx_info_priv *tx_info_priv;
203 struct ath_rc_series *rcs;
204 struct ieee80211_hdr *hdr;
205 const struct ath9k_rate_table *rt;
206 bool use_minrate;
207 __le16 fc;
208 u8 rix;
210 rt = sc->sc_currates;
211 BUG_ON(!rt);
213 hdr = (struct ieee80211_hdr *)skb->data;
214 fc = hdr->frame_control;
215 tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif; /* HACK */
216 rcs = tx_info_priv->rcs;
218 /* Check if min rates have to be used */
219 use_minrate = check_min_rate(skb);
221 if (ieee80211_is_data(fc) && !use_minrate) {
222 if (is_multicast_ether_addr(hdr->addr1)) {
223 rcs[0].rix =
224 ath_tx_findindex(rt, tx_info_priv->min_rate);
225 /* mcast packets are not re-tried */
226 rcs[0].tries = 1;
228 } else {
229 /* for management and control frames,
230 or for NULL and EAPOL frames */
231 if (use_minrate)
232 rcs[0].rix = ath_rate_findrateix(sc, tx_info_priv->min_rate);
233 else
234 rcs[0].rix = 0;
235 rcs[0].tries = ATH_MGT_TXMAXTRY;
238 rix = rcs[0].rix;
240 if (ieee80211_has_morefrags(fc) ||
241 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
242 rcs[1].tries = rcs[2].tries = rcs[3].tries = 0;
243 rcs[1].rix = rcs[2].rix = rcs[3].rix = 0;
244 /* reset tries but keep rate index */
245 rcs[0].tries = ATH_TXMAXTRY;
249 /* Called only when tx aggregation is enabled and HT is supported */
251 static void assign_aggr_tid_seqno(struct sk_buff *skb,
252 struct ath_buf *bf)
254 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
255 struct ieee80211_hdr *hdr;
256 struct ath_node *an;
257 struct ath_atx_tid *tid;
258 __le16 fc;
259 u8 *qc;
261 if (!tx_info->control.sta)
262 return;
264 an = (struct ath_node *)tx_info->control.sta->drv_priv;
265 hdr = (struct ieee80211_hdr *)skb->data;
266 fc = hdr->frame_control;
268 /* Get tidno */
270 if (ieee80211_is_data_qos(fc)) {
271 qc = ieee80211_get_qos_ctl(hdr);
272 bf->bf_tidno = qc[0] & 0xf;
275 /* Get seqno */
277 if (ieee80211_is_data(fc) && !check_min_rate(skb)) {
278 /* For HT capable stations, we save tidno for later use.
279 * We also override seqno set by upper layer with the one
280 * in tx aggregation state.
282 * If fragmentation is on, the sequence number is
283 * not overridden, since it has been
284 * incremented by the fragmentation routine.
286 * FIXME: check if the fragmentation threshold exceeds
287 * IEEE80211 max.
289 tid = ATH_AN_2_TID(an, bf->bf_tidno);
290 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
291 IEEE80211_SEQ_SEQ_SHIFT);
292 bf->bf_seqno = tid->seq_next;
293 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
297 static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
298 struct ath_txq *txq)
300 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
301 int flags = 0;
303 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
304 flags |= ATH9K_TXDESC_INTREQ;
306 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
307 flags |= ATH9K_TXDESC_NOACK;
308 if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
309 flags |= ATH9K_TXDESC_RTSENA;
311 return flags;
314 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
316 struct ath_buf *bf = NULL;
318 spin_lock_bh(&sc->sc_txbuflock);
320 if (unlikely(list_empty(&sc->sc_txbuf))) {
321 spin_unlock_bh(&sc->sc_txbuflock);
322 return NULL;
325 bf = list_first_entry(&sc->sc_txbuf, struct ath_buf, list);
326 list_del(&bf->list);
328 spin_unlock_bh(&sc->sc_txbuflock);
330 return bf;
333 /* To complete a chain of buffers associated a frame */
335 static void ath_tx_complete_buf(struct ath_softc *sc,
336 struct ath_buf *bf,
337 struct list_head *bf_q,
338 int txok, int sendbar)
340 struct sk_buff *skb = bf->bf_mpdu;
341 struct ath_xmit_status tx_status;
344 * Set retry information.
345 * NB: Don't use the information in the descriptor, because the frame
346 * could be software retried.
348 tx_status.retries = bf->bf_retries;
349 tx_status.flags = 0;
351 if (sendbar)
352 tx_status.flags = ATH_TX_BAR;
354 if (!txok) {
355 tx_status.flags |= ATH_TX_ERROR;
357 if (bf_isxretried(bf))
358 tx_status.flags |= ATH_TX_XRETRY;
361 /* Unmap this frame */
362 pci_unmap_single(sc->pdev,
363 bf->bf_dmacontext,
364 skb->len,
365 PCI_DMA_TODEVICE);
366 /* complete this frame */
367 ath_tx_complete(sc, skb, &tx_status);
370 * Return the list of ath_buf of this mpdu to free queue
372 spin_lock_bh(&sc->sc_txbuflock);
373 list_splice_tail_init(bf_q, &sc->sc_txbuf);
374 spin_unlock_bh(&sc->sc_txbuflock);
378 * queue up a dest/ac pair for tx scheduling
379 * NB: must be called with txq lock held
382 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
384 struct ath_atx_ac *ac = tid->ac;
387 * if tid is paused, hold off
389 if (tid->paused)
390 return;
393 * add tid to ac atmost once
395 if (tid->sched)
396 return;
398 tid->sched = true;
399 list_add_tail(&tid->list, &ac->tid_q);
402 * add node ac to txq atmost once
404 if (ac->sched)
405 return;
407 ac->sched = true;
408 list_add_tail(&ac->list, &txq->axq_acq);
411 /* pause a tid */
413 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
415 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
417 spin_lock_bh(&txq->axq_lock);
419 tid->paused++;
421 spin_unlock_bh(&txq->axq_lock);
424 /* resume a tid and schedule aggregate */
426 void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
428 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
430 ASSERT(tid->paused > 0);
431 spin_lock_bh(&txq->axq_lock);
433 tid->paused--;
435 if (tid->paused > 0)
436 goto unlock;
438 if (list_empty(&tid->buf_q))
439 goto unlock;
442 * Add this TID to scheduler and try to send out aggregates
444 ath_tx_queue_tid(txq, tid);
445 ath_txq_schedule(sc, txq);
446 unlock:
447 spin_unlock_bh(&txq->axq_lock);
450 /* Compute the number of bad frames */
452 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
453 int txok)
455 struct ath_buf *bf_last = bf->bf_lastbf;
456 struct ath_desc *ds = bf_last->bf_desc;
457 u16 seq_st = 0;
458 u32 ba[WME_BA_BMP_SIZE >> 5];
459 int ba_index;
460 int nbad = 0;
461 int isaggr = 0;
463 if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
464 return 0;
466 isaggr = bf_isaggr(bf);
467 if (isaggr) {
468 seq_st = ATH_DS_BA_SEQ(ds);
469 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
472 while (bf) {
473 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
474 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
475 nbad++;
477 bf = bf->bf_next;
480 return nbad;
483 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
485 struct sk_buff *skb;
486 struct ieee80211_hdr *hdr;
488 bf->bf_state.bf_type |= BUF_RETRY;
489 bf->bf_retries++;
491 skb = bf->bf_mpdu;
492 hdr = (struct ieee80211_hdr *)skb->data;
493 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
496 /* Update block ack window */
498 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
499 int seqno)
501 int index, cindex;
503 index = ATH_BA_INDEX(tid->seq_start, seqno);
504 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
506 tid->tx_buf[cindex] = NULL;
508 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
509 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
510 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
515 * ath_pkt_dur - compute packet duration (NB: not NAV)
517 * rix - rate index
518 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
519 * width - 0 for 20 MHz, 1 for 40 MHz
520 * half_gi - to use 4us v/s 3.6 us for symbol time
523 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
524 int width, int half_gi, bool shortPreamble)
526 const struct ath9k_rate_table *rt = sc->sc_currates;
527 u32 nbits, nsymbits, duration, nsymbols;
528 u8 rc;
529 int streams, pktlen;
531 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
532 rc = rt->info[rix].rateCode;
535 * for legacy rates, use old function to compute packet duration
537 if (!IS_HT_RATE(rc))
538 return ath9k_hw_computetxtime(sc->sc_ah, rt, pktlen, rix,
539 shortPreamble);
541 * find number of symbols: PLCP + data
543 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
544 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
545 nsymbols = (nbits + nsymbits - 1) / nsymbits;
547 if (!half_gi)
548 duration = SYMBOL_TIME(nsymbols);
549 else
550 duration = SYMBOL_TIME_HALFGI(nsymbols);
553 * addup duration for legacy/ht training and signal fields
555 streams = HT_RC_2_STREAMS(rc);
556 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
558 return duration;
561 /* Rate module function to set rate related fields in tx descriptor */
563 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
565 struct ath_hal *ah = sc->sc_ah;
566 const struct ath9k_rate_table *rt;
567 struct ath_desc *ds = bf->bf_desc;
568 struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
569 struct ath9k_11n_rate_series series[4];
570 int i, flags, rtsctsena = 0;
571 u32 ctsduration = 0;
572 u8 rix = 0, cix, ctsrate = 0;
573 struct ath_node *an = NULL;
574 struct sk_buff *skb;
575 struct ieee80211_tx_info *tx_info;
577 skb = (struct sk_buff *)bf->bf_mpdu;
578 tx_info = IEEE80211_SKB_CB(skb);
580 if (tx_info->control.sta)
581 an = (struct ath_node *)tx_info->control.sta->drv_priv;
584 * get the cix for the lowest valid rix.
586 rt = sc->sc_currates;
587 for (i = 4; i--;) {
588 if (bf->bf_rcs[i].tries) {
589 rix = bf->bf_rcs[i].rix;
590 break;
593 flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
594 cix = rt->info[rix].controlRate;
597 * If 802.11g protection is enabled, determine whether
598 * to use RTS/CTS or just CTS. Note that this is only
599 * done for OFDM/HT unicast frames.
601 if (sc->sc_protmode != PROT_M_NONE &&
602 (rt->info[rix].phy == PHY_OFDM ||
603 rt->info[rix].phy == PHY_HT) &&
604 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
605 if (sc->sc_protmode == PROT_M_RTSCTS)
606 flags = ATH9K_TXDESC_RTSENA;
607 else if (sc->sc_protmode == PROT_M_CTSONLY)
608 flags = ATH9K_TXDESC_CTSENA;
610 cix = rt->info[sc->sc_protrix].controlRate;
611 rtsctsena = 1;
614 /* For 11n, the default behavior is to enable RTS for
615 * hw retried frames. We enable the global flag here and
616 * let rate series flags determine which rates will actually
617 * use RTS.
619 if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
621 * 802.11g protection not needed, use our default behavior
623 if (!rtsctsena)
624 flags = ATH9K_TXDESC_RTSENA;
628 * Set protection if aggregate protection on
630 if (sc->sc_config.ath_aggr_prot &&
631 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
632 flags = ATH9K_TXDESC_RTSENA;
633 cix = rt->info[sc->sc_protrix].controlRate;
634 rtsctsena = 1;
638 * For AR5416 - RTS cannot be followed by a frame larger than 8K.
640 if (bf_isaggr(bf) && (bf->bf_al > ah->ah_caps.rts_aggr_limit)) {
642 * Ensure that in the case of SM Dynamic power save
643 * while we are bursting the second aggregate the
644 * RTS is cleared.
646 flags &= ~(ATH9K_TXDESC_RTSENA);
650 * CTS transmit rate is derived from the transmit rate
651 * by looking in the h/w rate table. We must also factor
652 * in whether or not a short preamble is to be used.
653 * NB: cix is set above where RTS/CTS is enabled
655 BUG_ON(cix == 0xff);
656 ctsrate = rt->info[cix].rateCode |
657 (bf_isshpreamble(bf) ? rt->info[cix].shortPreamble : 0);
660 * Setup HAL rate series
662 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
664 for (i = 0; i < 4; i++) {
665 if (!bf->bf_rcs[i].tries)
666 continue;
668 rix = bf->bf_rcs[i].rix;
670 series[i].Rate = rt->info[rix].rateCode |
671 (bf_isshpreamble(bf) ? rt->info[rix].shortPreamble : 0);
673 series[i].Tries = bf->bf_rcs[i].tries;
675 series[i].RateFlags = (
676 (bf->bf_rcs[i].flags & ATH_RC_RTSCTS_FLAG) ?
677 ATH9K_RATESERIES_RTS_CTS : 0) |
678 ((bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) ?
679 ATH9K_RATESERIES_2040 : 0) |
680 ((bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG) ?
681 ATH9K_RATESERIES_HALFGI : 0);
683 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
684 (bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) != 0,
685 (bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG),
686 bf_isshpreamble(bf));
688 if (bf_isht(bf) && an)
689 series[i].ChSel = ath_chainmask_sel_logic(sc, an);
690 else
691 series[i].ChSel = sc->sc_tx_chainmask;
693 if (rtsctsena)
694 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
698 * set dur_update_en for l-sig computation except for PS-Poll frames
700 ath9k_hw_set11n_ratescenario(ah, ds, lastds,
701 !bf_ispspoll(bf),
702 ctsrate,
703 ctsduration,
704 series, 4, flags);
706 if (sc->sc_config.ath_aggr_prot && flags)
707 ath9k_hw_set11n_burstduration(ah, ds, 8192);
711 * Function to send a normal HT (non-AMPDU) frame
712 * NB: must be called with txq lock held
715 static int ath_tx_send_normal(struct ath_softc *sc,
716 struct ath_txq *txq,
717 struct ath_atx_tid *tid,
718 struct list_head *bf_head)
720 struct ath_buf *bf;
721 struct sk_buff *skb;
722 struct ieee80211_tx_info *tx_info;
723 struct ath_tx_info_priv *tx_info_priv;
725 BUG_ON(list_empty(bf_head));
727 bf = list_first_entry(bf_head, struct ath_buf, list);
728 bf->bf_state.bf_type &= ~BUF_AMPDU; /* regular HT frame */
730 skb = (struct sk_buff *)bf->bf_mpdu;
731 tx_info = IEEE80211_SKB_CB(skb);
733 /* XXX: HACK! */
734 tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif;
735 memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
737 /* update starting sequence number for subsequent ADDBA request */
738 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
740 /* Queue to h/w without aggregation */
741 bf->bf_nframes = 1;
742 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
743 ath_buf_set_rate(sc, bf);
744 ath_tx_txqaddbuf(sc, txq, bf_head);
746 return 0;
749 /* flush tid's software queue and send frames as non-ampdu's */
751 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
753 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
754 struct ath_buf *bf;
755 struct list_head bf_head;
756 INIT_LIST_HEAD(&bf_head);
758 ASSERT(tid->paused > 0);
759 spin_lock_bh(&txq->axq_lock);
761 tid->paused--;
763 if (tid->paused > 0) {
764 spin_unlock_bh(&txq->axq_lock);
765 return;
768 while (!list_empty(&tid->buf_q)) {
769 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
770 ASSERT(!bf_isretried(bf));
771 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
772 ath_tx_send_normal(sc, txq, tid, &bf_head);
775 spin_unlock_bh(&txq->axq_lock);
778 /* Completion routine of an aggregate */
780 static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
781 struct ath_txq *txq,
782 struct ath_buf *bf,
783 struct list_head *bf_q,
784 int txok)
786 struct ath_node *an = NULL;
787 struct sk_buff *skb;
788 struct ieee80211_tx_info *tx_info;
789 struct ath_atx_tid *tid = NULL;
790 struct ath_buf *bf_last = bf->bf_lastbf;
791 struct ath_desc *ds = bf_last->bf_desc;
792 struct ath_buf *bf_next, *bf_lastq = NULL;
793 struct list_head bf_head, bf_pending;
794 u16 seq_st = 0;
795 u32 ba[WME_BA_BMP_SIZE >> 5];
796 int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
798 skb = (struct sk_buff *)bf->bf_mpdu;
799 tx_info = IEEE80211_SKB_CB(skb);
801 if (tx_info->control.sta) {
802 an = (struct ath_node *)tx_info->control.sta->drv_priv;
803 tid = ATH_AN_2_TID(an, bf->bf_tidno);
806 isaggr = bf_isaggr(bf);
807 if (isaggr) {
808 if (txok) {
809 if (ATH_DS_TX_BA(ds)) {
811 * extract starting sequence and
812 * block-ack bitmap
814 seq_st = ATH_DS_BA_SEQ(ds);
815 memcpy(ba,
816 ATH_DS_BA_BITMAP(ds),
817 WME_BA_BMP_SIZE >> 3);
818 } else {
819 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
822 * AR5416 can become deaf/mute when BA
823 * issue happens. Chip needs to be reset.
824 * But AP code may have sychronization issues
825 * when perform internal reset in this routine.
826 * Only enable reset in STA mode for now.
828 if (sc->sc_ah->ah_opmode == ATH9K_M_STA)
829 needreset = 1;
831 } else {
832 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
836 INIT_LIST_HEAD(&bf_pending);
837 INIT_LIST_HEAD(&bf_head);
839 while (bf) {
840 txfail = txpending = 0;
841 bf_next = bf->bf_next;
843 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
844 /* transmit completion, subframe is
845 * acked by block ack */
846 } else if (!isaggr && txok) {
847 /* transmit completion */
848 } else {
850 if (!(tid->state & AGGR_CLEANUP) &&
851 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
852 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
853 ath_tx_set_retry(sc, bf);
854 txpending = 1;
855 } else {
856 bf->bf_state.bf_type |= BUF_XRETRY;
857 txfail = 1;
858 sendbar = 1;
860 } else {
862 * cleanup in progress, just fail
863 * the un-acked sub-frames
865 txfail = 1;
869 * Remove ath_buf's of this sub-frame from aggregate queue.
871 if (bf_next == NULL) { /* last subframe in the aggregate */
872 ASSERT(bf->bf_lastfrm == bf_last);
875 * The last descriptor of the last sub frame could be
876 * a holding descriptor for h/w. If that's the case,
877 * bf->bf_lastfrm won't be in the bf_q.
878 * Make sure we handle bf_q properly here.
881 if (!list_empty(bf_q)) {
882 bf_lastq = list_entry(bf_q->prev,
883 struct ath_buf, list);
884 list_cut_position(&bf_head,
885 bf_q, &bf_lastq->list);
886 } else {
888 * XXX: if the last subframe only has one
889 * descriptor which is also being used as
890 * a holding descriptor. Then the ath_buf
891 * is not in the bf_q at all.
893 INIT_LIST_HEAD(&bf_head);
895 } else {
896 ASSERT(!list_empty(bf_q));
897 list_cut_position(&bf_head,
898 bf_q, &bf->bf_lastfrm->list);
901 if (!txpending) {
903 * complete the acked-ones/xretried ones; update
904 * block-ack window
906 spin_lock_bh(&txq->axq_lock);
907 ath_tx_update_baw(sc, tid, bf->bf_seqno);
908 spin_unlock_bh(&txq->axq_lock);
910 /* complete this sub-frame */
911 ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
912 } else {
914 * retry the un-acked ones
917 * XXX: if the last descriptor is holding descriptor,
918 * in order to requeue the frame to software queue, we
919 * need to allocate a new descriptor and
920 * copy the content of holding descriptor to it.
922 if (bf->bf_next == NULL &&
923 bf_last->bf_status & ATH_BUFSTATUS_STALE) {
924 struct ath_buf *tbf;
926 /* allocate new descriptor */
927 spin_lock_bh(&sc->sc_txbuflock);
928 ASSERT(!list_empty((&sc->sc_txbuf)));
929 tbf = list_first_entry(&sc->sc_txbuf,
930 struct ath_buf, list);
931 list_del(&tbf->list);
932 spin_unlock_bh(&sc->sc_txbuflock);
934 ATH_TXBUF_RESET(tbf);
936 /* copy descriptor content */
937 tbf->bf_mpdu = bf_last->bf_mpdu;
938 tbf->bf_buf_addr = bf_last->bf_buf_addr;
939 *(tbf->bf_desc) = *(bf_last->bf_desc);
941 /* link it to the frame */
942 if (bf_lastq) {
943 bf_lastq->bf_desc->ds_link =
944 tbf->bf_daddr;
945 bf->bf_lastfrm = tbf;
946 ath9k_hw_cleartxdesc(sc->sc_ah,
947 bf->bf_lastfrm->bf_desc);
948 } else {
949 tbf->bf_state = bf_last->bf_state;
950 tbf->bf_lastfrm = tbf;
951 ath9k_hw_cleartxdesc(sc->sc_ah,
952 tbf->bf_lastfrm->bf_desc);
954 /* copy the DMA context */
955 tbf->bf_dmacontext =
956 bf_last->bf_dmacontext;
958 list_add_tail(&tbf->list, &bf_head);
959 } else {
961 * Clear descriptor status words for
962 * software retry
964 ath9k_hw_cleartxdesc(sc->sc_ah,
965 bf->bf_lastfrm->bf_desc);
969 * Put this buffer to the temporary pending
970 * queue to retain ordering
972 list_splice_tail_init(&bf_head, &bf_pending);
975 bf = bf_next;
978 if (tid->state & AGGR_CLEANUP) {
979 /* check to see if we're done with cleaning the h/w queue */
980 spin_lock_bh(&txq->axq_lock);
982 if (tid->baw_head == tid->baw_tail) {
983 tid->state &= ~AGGR_ADDBA_COMPLETE;
984 tid->addba_exchangeattempts = 0;
985 spin_unlock_bh(&txq->axq_lock);
987 tid->state &= ~AGGR_CLEANUP;
989 /* send buffered frames as singles */
990 ath_tx_flush_tid(sc, tid);
991 } else
992 spin_unlock_bh(&txq->axq_lock);
994 return;
998 * prepend un-acked frames to the beginning of the pending frame queue
1000 if (!list_empty(&bf_pending)) {
1001 spin_lock_bh(&txq->axq_lock);
1002 /* Note: we _prepend_, we _do_not_ at to
1003 * the end of the queue ! */
1004 list_splice(&bf_pending, &tid->buf_q);
1005 ath_tx_queue_tid(txq, tid);
1006 spin_unlock_bh(&txq->axq_lock);
1009 if (needreset)
1010 ath_reset(sc, false);
1012 return;
1015 /* Process completed xmit descriptors from the specified queue */
1017 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
1019 struct ath_hal *ah = sc->sc_ah;
1020 struct ath_buf *bf, *lastbf, *bf_held = NULL;
1021 struct list_head bf_head;
1022 struct ath_desc *ds, *tmp_ds;
1023 struct sk_buff *skb;
1024 struct ieee80211_tx_info *tx_info;
1025 struct ath_tx_info_priv *tx_info_priv;
1026 int nacked, txok, nbad = 0, isrifs = 0;
1027 int status;
1029 DPRINTF(sc, ATH_DBG_QUEUE,
1030 "%s: tx queue %d (%x), link %p\n", __func__,
1031 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
1032 txq->axq_link);
1034 nacked = 0;
1035 for (;;) {
1036 spin_lock_bh(&txq->axq_lock);
1037 if (list_empty(&txq->axq_q)) {
1038 txq->axq_link = NULL;
1039 txq->axq_linkbuf = NULL;
1040 spin_unlock_bh(&txq->axq_lock);
1041 break;
1043 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1046 * There is a race condition that a BH gets scheduled
1047 * after sw writes TxE and before hw re-load the last
1048 * descriptor to get the newly chained one.
1049 * Software must keep the last DONE descriptor as a
1050 * holding descriptor - software does so by marking
1051 * it with the STALE flag.
1053 bf_held = NULL;
1054 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1055 bf_held = bf;
1056 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1057 /* FIXME:
1058 * The holding descriptor is the last
1059 * descriptor in queue. It's safe to remove
1060 * the last holding descriptor in BH context.
1062 spin_unlock_bh(&txq->axq_lock);
1063 break;
1064 } else {
1065 /* Lets work with the next buffer now */
1066 bf = list_entry(bf_held->list.next,
1067 struct ath_buf, list);
1071 lastbf = bf->bf_lastbf;
1072 ds = lastbf->bf_desc; /* NB: last decriptor */
1074 status = ath9k_hw_txprocdesc(ah, ds);
1075 if (status == -EINPROGRESS) {
1076 spin_unlock_bh(&txq->axq_lock);
1077 break;
1079 if (bf->bf_desc == txq->axq_lastdsWithCTS)
1080 txq->axq_lastdsWithCTS = NULL;
1081 if (ds == txq->axq_gatingds)
1082 txq->axq_gatingds = NULL;
1085 * Remove ath_buf's of the same transmit unit from txq,
1086 * however leave the last descriptor back as the holding
1087 * descriptor for hw.
1089 lastbf->bf_status |= ATH_BUFSTATUS_STALE;
1090 INIT_LIST_HEAD(&bf_head);
1092 if (!list_is_singular(&lastbf->list))
1093 list_cut_position(&bf_head,
1094 &txq->axq_q, lastbf->list.prev);
1096 txq->axq_depth--;
1098 if (bf_isaggr(bf))
1099 txq->axq_aggr_depth--;
1101 txok = (ds->ds_txstat.ts_status == 0);
1103 spin_unlock_bh(&txq->axq_lock);
1105 if (bf_held) {
1106 list_del(&bf_held->list);
1107 spin_lock_bh(&sc->sc_txbuflock);
1108 list_add_tail(&bf_held->list, &sc->sc_txbuf);
1109 spin_unlock_bh(&sc->sc_txbuflock);
1112 if (!bf_isampdu(bf)) {
1114 * This frame is sent out as a single frame.
1115 * Use hardware retry status for this frame.
1117 bf->bf_retries = ds->ds_txstat.ts_longretry;
1118 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
1119 bf->bf_state.bf_type |= BUF_XRETRY;
1120 nbad = 0;
1121 } else {
1122 nbad = ath_tx_num_badfrms(sc, bf, txok);
1124 skb = bf->bf_mpdu;
1125 tx_info = IEEE80211_SKB_CB(skb);
1127 /* XXX: HACK! */
1128 tx_info_priv = (struct ath_tx_info_priv *) tx_info->control.vif;
1129 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
1130 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1131 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
1132 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
1133 if (ds->ds_txstat.ts_status == 0)
1134 nacked++;
1136 if (bf_isdata(bf)) {
1137 if (isrifs)
1138 tmp_ds = bf->bf_rifslast->bf_desc;
1139 else
1140 tmp_ds = ds;
1141 memcpy(&tx_info_priv->tx,
1142 &tmp_ds->ds_txstat,
1143 sizeof(tx_info_priv->tx));
1144 tx_info_priv->n_frames = bf->bf_nframes;
1145 tx_info_priv->n_bad_frames = nbad;
1150 * Complete this transmit unit
1152 if (bf_isampdu(bf))
1153 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok);
1154 else
1155 ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
1157 /* Wake up mac80211 queue */
1159 spin_lock_bh(&txq->axq_lock);
1160 if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <=
1161 (ATH_TXBUF - 20)) {
1162 int qnum;
1163 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1164 if (qnum != -1) {
1165 ieee80211_wake_queue(sc->hw, qnum);
1166 txq->stopped = 0;
1172 * schedule any pending packets if aggregation is enabled
1174 if (sc->sc_flags & SC_OP_TXAGGR)
1175 ath_txq_schedule(sc, txq);
1176 spin_unlock_bh(&txq->axq_lock);
1178 return nacked;
1181 static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
1183 struct ath_hal *ah = sc->sc_ah;
1185 (void) ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1186 DPRINTF(sc, ATH_DBG_XMIT, "%s: tx queue [%u] %x, link %p\n",
1187 __func__, txq->axq_qnum,
1188 ath9k_hw_gettxbuf(ah, txq->axq_qnum), txq->axq_link);
1191 /* Drain only the data queues */
1193 static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
1195 struct ath_hal *ah = sc->sc_ah;
1196 int i, status, npend = 0;
1198 if (!(sc->sc_flags & SC_OP_INVALID)) {
1199 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1200 if (ATH_TXQ_SETUP(sc, i)) {
1201 ath_tx_stopdma(sc, &sc->sc_txq[i]);
1202 /* The TxDMA may not really be stopped.
1203 * Double check the hal tx pending count */
1204 npend += ath9k_hw_numtxpending(ah,
1205 sc->sc_txq[i].axq_qnum);
1210 if (npend) {
1211 /* TxDMA not stopped, reset the hal */
1212 DPRINTF(sc, ATH_DBG_XMIT,
1213 "%s: Unable to stop TxDMA. Reset HAL!\n", __func__);
1215 spin_lock_bh(&sc->sc_resetlock);
1216 if (!ath9k_hw_reset(ah,
1217 sc->sc_ah->ah_curchan,
1218 sc->sc_ht_info.tx_chan_width,
1219 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1220 sc->sc_ht_extprotspacing, true, &status)) {
1222 DPRINTF(sc, ATH_DBG_FATAL,
1223 "%s: unable to reset hardware; hal status %u\n",
1224 __func__,
1225 status);
1227 spin_unlock_bh(&sc->sc_resetlock);
1230 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1231 if (ATH_TXQ_SETUP(sc, i))
1232 ath_tx_draintxq(sc, &sc->sc_txq[i], retry_tx);
1236 /* Add a sub-frame to block ack window */
1238 static void ath_tx_addto_baw(struct ath_softc *sc,
1239 struct ath_atx_tid *tid,
1240 struct ath_buf *bf)
1242 int index, cindex;
1244 if (bf_isretried(bf))
1245 return;
1247 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
1248 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1250 ASSERT(tid->tx_buf[cindex] == NULL);
1251 tid->tx_buf[cindex] = bf;
1253 if (index >= ((tid->baw_tail - tid->baw_head) &
1254 (ATH_TID_MAX_BUFS - 1))) {
1255 tid->baw_tail = cindex;
1256 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
1261 * Function to send an A-MPDU
1262 * NB: must be called with txq lock held
1265 static int ath_tx_send_ampdu(struct ath_softc *sc,
1266 struct ath_atx_tid *tid,
1267 struct list_head *bf_head,
1268 struct ath_tx_control *txctl)
1270 struct ath_buf *bf;
1271 struct sk_buff *skb;
1272 struct ieee80211_tx_info *tx_info;
1273 struct ath_tx_info_priv *tx_info_priv;
1275 BUG_ON(list_empty(bf_head));
1277 bf = list_first_entry(bf_head, struct ath_buf, list);
1278 bf->bf_state.bf_type |= BUF_AMPDU;
1281 * Do not queue to h/w when any of the following conditions is true:
1282 * - there are pending frames in software queue
1283 * - the TID is currently paused for ADDBA/BAR request
1284 * - seqno is not within block-ack window
1285 * - h/w queue depth exceeds low water mark
1287 if (!list_empty(&tid->buf_q) || tid->paused ||
1288 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1289 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1291 * Add this frame to software queue for scheduling later
1292 * for aggregation.
1294 list_splice_tail_init(bf_head, &tid->buf_q);
1295 ath_tx_queue_tid(txctl->txq, tid);
1296 return 0;
1299 skb = (struct sk_buff *)bf->bf_mpdu;
1300 tx_info = IEEE80211_SKB_CB(skb);
1301 /* XXX: HACK! */
1302 tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif;
1303 memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
1305 /* Add sub-frame to BAW */
1306 ath_tx_addto_baw(sc, tid, bf);
1308 /* Queue to h/w without aggregation */
1309 bf->bf_nframes = 1;
1310 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
1311 ath_buf_set_rate(sc, bf);
1312 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1314 return 0;
1318 * looks up the rate
1319 * returns aggr limit based on lowest of the rates
1322 static u32 ath_lookup_rate(struct ath_softc *sc,
1323 struct ath_buf *bf,
1324 struct ath_atx_tid *tid)
1326 const struct ath9k_rate_table *rt = sc->sc_currates;
1327 struct sk_buff *skb;
1328 struct ieee80211_tx_info *tx_info;
1329 struct ath_tx_info_priv *tx_info_priv;
1330 u32 max_4ms_framelen, frame_length;
1331 u16 aggr_limit, legacy = 0, maxampdu;
1332 int i;
1334 skb = (struct sk_buff *)bf->bf_mpdu;
1335 tx_info = IEEE80211_SKB_CB(skb);
1336 tx_info_priv = (struct ath_tx_info_priv *)
1337 tx_info->control.vif; /* XXX: HACK! */
1338 memcpy(bf->bf_rcs,
1339 tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
1342 * Find the lowest frame length among the rate series that will have a
1343 * 4ms transmit duration.
1344 * TODO - TXOP limit needs to be considered.
1346 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
1348 for (i = 0; i < 4; i++) {
1349 if (bf->bf_rcs[i].tries) {
1350 frame_length = bf->bf_rcs[i].max_4ms_framelen;
1352 if (rt->info[bf->bf_rcs[i].rix].phy != PHY_HT) {
1353 legacy = 1;
1354 break;
1357 max_4ms_framelen = min(max_4ms_framelen, frame_length);
1362 * limit aggregate size by the minimum rate if rate selected is
1363 * not a probe rate, if rate selected is a probe rate then
1364 * avoid aggregation of this packet.
1366 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
1367 return 0;
1369 aggr_limit = min(max_4ms_framelen,
1370 (u32)ATH_AMPDU_LIMIT_DEFAULT);
1373 * h/w can accept aggregates upto 16 bit lengths (65535).
1374 * The IE, however can hold upto 65536, which shows up here
1375 * as zero. Ignore 65536 since we are constrained by hw.
1377 maxampdu = tid->an->maxampdu;
1378 if (maxampdu)
1379 aggr_limit = min(aggr_limit, maxampdu);
1381 return aggr_limit;
1385 * returns the number of delimiters to be added to
1386 * meet the minimum required mpdudensity.
1387 * caller should make sure that the rate is HT rate .
1390 static int ath_compute_num_delims(struct ath_softc *sc,
1391 struct ath_atx_tid *tid,
1392 struct ath_buf *bf,
1393 u16 frmlen)
1395 const struct ath9k_rate_table *rt = sc->sc_currates;
1396 u32 nsymbits, nsymbols, mpdudensity;
1397 u16 minlen;
1398 u8 rc, flags, rix;
1399 int width, half_gi, ndelim, mindelim;
1401 /* Select standard number of delimiters based on frame length alone */
1402 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
1405 * If encryption enabled, hardware requires some more padding between
1406 * subframes.
1407 * TODO - this could be improved to be dependent on the rate.
1408 * The hardware can keep up at lower rates, but not higher rates
1410 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
1411 ndelim += ATH_AGGR_ENCRYPTDELIM;
1414 * Convert desired mpdu density from microeconds to bytes based
1415 * on highest rate in rate series (i.e. first rate) to determine
1416 * required minimum length for subframe. Take into account
1417 * whether high rate is 20 or 40Mhz and half or full GI.
1419 mpdudensity = tid->an->mpdudensity;
1422 * If there is no mpdu density restriction, no further calculation
1423 * is needed.
1425 if (mpdudensity == 0)
1426 return ndelim;
1428 rix = bf->bf_rcs[0].rix;
1429 flags = bf->bf_rcs[0].flags;
1430 rc = rt->info[rix].rateCode;
1431 width = (flags & ATH_RC_CW40_FLAG) ? 1 : 0;
1432 half_gi = (flags & ATH_RC_SGI_FLAG) ? 1 : 0;
1434 if (half_gi)
1435 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
1436 else
1437 nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
1439 if (nsymbols == 0)
1440 nsymbols = 1;
1442 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1443 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
1445 /* Is frame shorter than required minimum length? */
1446 if (frmlen < minlen) {
1447 /* Get the minimum number of delimiters required. */
1448 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
1449 ndelim = max(mindelim, ndelim);
1452 return ndelim;
1456 * For aggregation from software buffer queue.
1457 * NB: must be called with txq lock held
1460 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
1461 struct ath_atx_tid *tid,
1462 struct list_head *bf_q,
1463 struct ath_buf **bf_last,
1464 struct aggr_rifs_param *param,
1465 int *prev_frames)
1467 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1468 struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL;
1469 struct list_head bf_head;
1470 int rl = 0, nframes = 0, ndelim;
1471 u16 aggr_limit = 0, al = 0, bpad = 0,
1472 al_delta, h_baw = tid->baw_size / 2;
1473 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
1474 int prev_al = 0, is_ds_rate = 0;
1475 INIT_LIST_HEAD(&bf_head);
1477 BUG_ON(list_empty(&tid->buf_q));
1479 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
1481 do {
1482 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1485 * do not step over block-ack window
1487 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
1488 status = ATH_AGGR_BAW_CLOSED;
1489 break;
1492 if (!rl) {
1493 aggr_limit = ath_lookup_rate(sc, bf, tid);
1494 rl = 1;
1496 * Is rate dual stream
1498 is_ds_rate =
1499 (bf->bf_rcs[0].flags & ATH_RC_DS_FLAG) ? 1 : 0;
1503 * do not exceed aggregation limit
1505 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
1507 if (nframes && (aggr_limit <
1508 (al + bpad + al_delta + prev_al))) {
1509 status = ATH_AGGR_LIMITED;
1510 break;
1514 * do not exceed subframe limit
1516 if ((nframes + *prev_frames) >=
1517 min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
1518 status = ATH_AGGR_LIMITED;
1519 break;
1523 * add padding for previous frame to aggregation length
1525 al += bpad + al_delta;
1528 * Get the delimiters needed to meet the MPDU
1529 * density for this node.
1531 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
1533 bpad = PADBYTES(al_delta) + (ndelim << 2);
1535 bf->bf_next = NULL;
1536 bf->bf_lastfrm->bf_desc->ds_link = 0;
1539 * this packet is part of an aggregate
1540 * - remove all descriptors belonging to this frame from
1541 * software queue
1542 * - add it to block ack window
1543 * - set up descriptors for aggregation
1545 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1546 ath_tx_addto_baw(sc, tid, bf);
1548 list_for_each_entry(tbf, &bf_head, list) {
1549 ath9k_hw_set11n_aggr_middle(sc->sc_ah,
1550 tbf->bf_desc, ndelim);
1554 * link buffers of this frame to the aggregate
1556 list_splice_tail_init(&bf_head, bf_q);
1557 nframes++;
1559 if (bf_prev) {
1560 bf_prev->bf_next = bf;
1561 bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr;
1563 bf_prev = bf;
1565 #ifdef AGGR_NOSHORT
1567 * terminate aggregation on a small packet boundary
1569 if (bf->bf_frmlen < ATH_AGGR_MINPLEN) {
1570 status = ATH_AGGR_SHORTPKT;
1571 break;
1573 #endif
1574 } while (!list_empty(&tid->buf_q));
1576 bf_first->bf_al = al;
1577 bf_first->bf_nframes = nframes;
1578 *bf_last = bf_prev;
1579 return status;
1580 #undef PADBYTES
1584 * process pending frames possibly doing a-mpdu aggregation
1585 * NB: must be called with txq lock held
1588 static void ath_tx_sched_aggr(struct ath_softc *sc,
1589 struct ath_txq *txq, struct ath_atx_tid *tid)
1591 struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL;
1592 enum ATH_AGGR_STATUS status;
1593 struct list_head bf_q;
1594 struct aggr_rifs_param param = {0, 0, 0, 0, NULL};
1595 int prev_frames = 0;
1597 do {
1598 if (list_empty(&tid->buf_q))
1599 return;
1601 INIT_LIST_HEAD(&bf_q);
1603 status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, &param,
1604 &prev_frames);
1607 * no frames picked up to be aggregated; block-ack
1608 * window is not open
1610 if (list_empty(&bf_q))
1611 break;
1613 bf = list_first_entry(&bf_q, struct ath_buf, list);
1614 bf_last = list_entry(bf_q.prev, struct ath_buf, list);
1615 bf->bf_lastbf = bf_last;
1618 * if only one frame, send as non-aggregate
1620 if (bf->bf_nframes == 1) {
1621 ASSERT(bf->bf_lastfrm == bf_last);
1623 bf->bf_state.bf_type &= ~BUF_AGGR;
1625 * clear aggr bits for every descriptor
1626 * XXX TODO: is there a way to optimize it?
1628 list_for_each_entry(tbf, &bf_q, list) {
1629 ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc);
1632 ath_buf_set_rate(sc, bf);
1633 ath_tx_txqaddbuf(sc, txq, &bf_q);
1634 continue;
1638 * setup first desc with rate and aggr info
1640 bf->bf_state.bf_type |= BUF_AGGR;
1641 ath_buf_set_rate(sc, bf);
1642 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
1645 * anchor last frame of aggregate correctly
1647 ASSERT(bf_lastaggr);
1648 ASSERT(bf_lastaggr->bf_lastfrm == bf_last);
1649 tbf = bf_lastaggr;
1650 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1652 /* XXX: We don't enter into this loop, consider removing this */
1653 while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) {
1654 tbf = list_entry(tbf->list.next, struct ath_buf, list);
1655 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1658 txq->axq_aggr_depth++;
1661 * Normal aggregate, queue to hardware
1663 ath_tx_txqaddbuf(sc, txq, &bf_q);
1665 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
1666 status != ATH_AGGR_BAW_CLOSED);
1669 /* Called with txq lock held */
1671 static void ath_tid_drain(struct ath_softc *sc,
1672 struct ath_txq *txq,
1673 struct ath_atx_tid *tid)
1676 struct ath_buf *bf;
1677 struct list_head bf_head;
1678 INIT_LIST_HEAD(&bf_head);
1680 for (;;) {
1681 if (list_empty(&tid->buf_q))
1682 break;
1683 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1685 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1687 /* update baw for software retried frame */
1688 if (bf_isretried(bf))
1689 ath_tx_update_baw(sc, tid, bf->bf_seqno);
1692 * do not indicate packets while holding txq spinlock.
1693 * unlock is intentional here
1695 spin_unlock(&txq->axq_lock);
1697 /* complete this sub-frame */
1698 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
1700 spin_lock(&txq->axq_lock);
1704 * TODO: For frame(s) that are in the retry state, we will reuse the
1705 * sequence number(s) without setting the retry bit. The
1706 * alternative is to give up on these and BAR the receiver's window
1707 * forward.
1709 tid->seq_next = tid->seq_start;
1710 tid->baw_tail = tid->baw_head;
1714 * Drain all pending buffers
1715 * NB: must be called with txq lock held
1718 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1719 struct ath_txq *txq)
1721 struct ath_atx_ac *ac, *ac_tmp;
1722 struct ath_atx_tid *tid, *tid_tmp;
1724 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1725 list_del(&ac->list);
1726 ac->sched = false;
1727 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1728 list_del(&tid->list);
1729 tid->sched = false;
1730 ath_tid_drain(sc, txq, tid);
1735 static void ath_tx_setup_buffer(struct ath_softc *sc, struct ath_buf *bf,
1736 struct sk_buff *skb, struct scatterlist *sg,
1737 struct ath_tx_control *txctl)
1739 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1740 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1741 struct ath_tx_info_priv *tx_info_priv;
1742 struct ath_rc_series *rcs;
1743 int hdrlen;
1744 __le16 fc;
1746 tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif;
1747 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1748 fc = hdr->frame_control;
1749 rcs = tx_info_priv->rcs;
1751 ATH_TXBUF_RESET(bf);
1753 /* Frame type */
1755 bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3);
1757 ieee80211_is_data(fc) ?
1758 (bf->bf_state.bf_type |= BUF_DATA) :
1759 (bf->bf_state.bf_type &= ~BUF_DATA);
1760 ieee80211_is_back_req(fc) ?
1761 (bf->bf_state.bf_type |= BUF_BAR) :
1762 (bf->bf_state.bf_type &= ~BUF_BAR);
1763 ieee80211_is_pspoll(fc) ?
1764 (bf->bf_state.bf_type |= BUF_PSPOLL) :
1765 (bf->bf_state.bf_type &= ~BUF_PSPOLL);
1766 (sc->sc_flags & SC_OP_PREAMBLE_SHORT) ?
1767 (bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) :
1768 (bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE);
1769 (sc->hw->conf.ht.enabled &&
1770 (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) ?
1771 (bf->bf_state.bf_type |= BUF_HT) :
1772 (bf->bf_state.bf_type &= ~BUF_HT);
1774 bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1776 /* Crypto */
1778 bf->bf_keytype = get_hw_crypto_keytype(skb);
1780 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1781 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1782 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1783 } else {
1784 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1787 /* Rate series */
1789 setup_rate_retries(sc, skb);
1791 bf->bf_rcs[0] = rcs[0];
1792 bf->bf_rcs[1] = rcs[1];
1793 bf->bf_rcs[2] = rcs[2];
1794 bf->bf_rcs[3] = rcs[3];
1796 /* Assign seqno, tidno */
1798 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR))
1799 assign_aggr_tid_seqno(skb, bf);
1801 /* DMA setup */
1803 bf->bf_mpdu = skb;
1804 bf->bf_dmacontext = pci_map_single(sc->pdev, skb->data,
1805 skb->len, PCI_DMA_TODEVICE);
1806 bf->bf_buf_addr = bf->bf_dmacontext;
1809 /* FIXME: tx power */
1810 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1811 struct scatterlist *sg, u32 n_sg,
1812 struct ath_tx_control *txctl)
1814 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
1815 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1816 struct ath_node *an = NULL;
1817 struct list_head bf_head;
1818 struct ath_desc *ds;
1819 struct ath_atx_tid *tid;
1820 struct ath_hal *ah = sc->sc_ah;
1821 int frm_type;
1823 frm_type = get_hw_packet_type(skb);
1825 INIT_LIST_HEAD(&bf_head);
1826 list_add_tail(&bf->list, &bf_head);
1828 /* setup descriptor */
1830 ds = bf->bf_desc;
1831 ds->ds_link = 0;
1832 ds->ds_data = bf->bf_buf_addr;
1834 /* Formulate first tx descriptor with tx controls */
1836 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1837 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1839 ath9k_hw_filltxdesc(ah, ds,
1840 sg_dma_len(sg), /* segment length */
1841 true, /* first segment */
1842 (n_sg == 1) ? true : false, /* last segment */
1843 ds); /* first descriptor */
1845 bf->bf_lastfrm = bf;
1847 spin_lock_bh(&txctl->txq->axq_lock);
1849 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1850 tx_info->control.sta) {
1851 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1852 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1854 if (ath_aggr_query(sc, an, bf->bf_tidno)) {
1856 * Try aggregation if it's a unicast data frame
1857 * and the destination is HT capable.
1859 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1860 } else {
1862 * Send this frame as regular when ADDBA
1863 * exchange is neither complete nor pending.
1865 ath_tx_send_normal(sc, txctl->txq,
1866 tid, &bf_head);
1868 } else {
1869 bf->bf_lastbf = bf;
1870 bf->bf_nframes = 1;
1872 ath_buf_set_rate(sc, bf);
1873 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head);
1876 spin_unlock_bh(&txctl->txq->axq_lock);
1879 int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb,
1880 struct ath_tx_control *txctl)
1882 struct ath_buf *bf;
1883 struct scatterlist sg;
1885 /* Check if a tx buffer is available */
1887 bf = ath_tx_get_buffer(sc);
1888 if (!bf) {
1889 DPRINTF(sc, ATH_DBG_XMIT, "%s: TX buffers are full\n",
1890 __func__);
1891 return -1;
1894 ath_tx_setup_buffer(sc, bf, skb, &sg, txctl);
1896 /* Setup S/G */
1898 memset(&sg, 0, sizeof(struct scatterlist));
1899 sg_dma_address(&sg) = bf->bf_dmacontext;
1900 sg_dma_len(&sg) = skb->len;
1902 ath_tx_start_dma(sc, bf, &sg, 1, txctl);
1904 return 0;
1907 /* Initialize TX queue and h/w */
1909 int ath_tx_init(struct ath_softc *sc, int nbufs)
1911 int error = 0;
1913 do {
1914 spin_lock_init(&sc->sc_txbuflock);
1916 /* Setup tx descriptors */
1917 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
1918 "tx", nbufs, 1);
1919 if (error != 0) {
1920 DPRINTF(sc, ATH_DBG_FATAL,
1921 "%s: failed to allocate tx descriptors: %d\n",
1922 __func__, error);
1923 break;
1926 /* XXX allocate beacon state together with vap */
1927 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
1928 "beacon", ATH_BCBUF, 1);
1929 if (error != 0) {
1930 DPRINTF(sc, ATH_DBG_FATAL,
1931 "%s: failed to allocate "
1932 "beacon descripotrs: %d\n",
1933 __func__, error);
1934 break;
1937 } while (0);
1939 if (error != 0)
1940 ath_tx_cleanup(sc);
1942 return error;
1945 /* Reclaim all tx queue resources */
1947 int ath_tx_cleanup(struct ath_softc *sc)
1949 /* cleanup beacon descriptors */
1950 if (sc->sc_bdma.dd_desc_len != 0)
1951 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
1953 /* cleanup tx descriptors */
1954 if (sc->sc_txdma.dd_desc_len != 0)
1955 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
1957 return 0;
1960 /* Setup a h/w transmit queue */
1962 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1964 struct ath_hal *ah = sc->sc_ah;
1965 struct ath9k_tx_queue_info qi;
1966 int qnum;
1968 memset(&qi, 0, sizeof(qi));
1969 qi.tqi_subtype = subtype;
1970 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1971 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1972 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1973 qi.tqi_physCompBuf = 0;
1976 * Enable interrupts only for EOL and DESC conditions.
1977 * We mark tx descriptors to receive a DESC interrupt
1978 * when a tx queue gets deep; otherwise waiting for the
1979 * EOL to reap descriptors. Note that this is done to
1980 * reduce interrupt load and this only defers reaping
1981 * descriptors, never transmitting frames. Aside from
1982 * reducing interrupts this also permits more concurrency.
1983 * The only potential downside is if the tx queue backs
1984 * up in which case the top half of the kernel may backup
1985 * due to a lack of tx descriptors.
1987 * The UAPSD queue is an exception, since we take a desc-
1988 * based intr on the EOSP frames.
1990 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1991 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1992 else
1993 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1994 TXQ_FLAG_TXDESCINT_ENABLE;
1995 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1996 if (qnum == -1) {
1998 * NB: don't print a message, this happens
1999 * normally on parts with too few tx queues
2001 return NULL;
2003 if (qnum >= ARRAY_SIZE(sc->sc_txq)) {
2004 DPRINTF(sc, ATH_DBG_FATAL,
2005 "%s: hal qnum %u out of range, max %u!\n",
2006 __func__, qnum, (unsigned int)ARRAY_SIZE(sc->sc_txq));
2007 ath9k_hw_releasetxqueue(ah, qnum);
2008 return NULL;
2010 if (!ATH_TXQ_SETUP(sc, qnum)) {
2011 struct ath_txq *txq = &sc->sc_txq[qnum];
2013 txq->axq_qnum = qnum;
2014 txq->axq_link = NULL;
2015 INIT_LIST_HEAD(&txq->axq_q);
2016 INIT_LIST_HEAD(&txq->axq_acq);
2017 spin_lock_init(&txq->axq_lock);
2018 txq->axq_depth = 0;
2019 txq->axq_aggr_depth = 0;
2020 txq->axq_totalqueued = 0;
2021 txq->axq_linkbuf = NULL;
2022 sc->sc_txqsetup |= 1<<qnum;
2024 return &sc->sc_txq[qnum];
2027 /* Reclaim resources for a setup queue */
2029 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
2031 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
2032 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
2036 * Setup a hardware data transmit queue for the specified
2037 * access control. The hal may not support all requested
2038 * queues in which case it will return a reference to a
2039 * previously setup queue. We record the mapping from ac's
2040 * to h/w queues for use by ath_tx_start and also track
2041 * the set of h/w queues being used to optimize work in the
2042 * transmit interrupt handler and related routines.
2045 int ath_tx_setup(struct ath_softc *sc, int haltype)
2047 struct ath_txq *txq;
2049 if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
2050 DPRINTF(sc, ATH_DBG_FATAL,
2051 "%s: HAL AC %u out of range, max %zu!\n",
2052 __func__, haltype, ARRAY_SIZE(sc->sc_haltype2q));
2053 return 0;
2055 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
2056 if (txq != NULL) {
2057 sc->sc_haltype2q[haltype] = txq->axq_qnum;
2058 return 1;
2059 } else
2060 return 0;
2063 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
2065 int qnum;
2067 switch (qtype) {
2068 case ATH9K_TX_QUEUE_DATA:
2069 if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
2070 DPRINTF(sc, ATH_DBG_FATAL,
2071 "%s: HAL AC %u out of range, max %zu!\n",
2072 __func__,
2073 haltype, ARRAY_SIZE(sc->sc_haltype2q));
2074 return -1;
2076 qnum = sc->sc_haltype2q[haltype];
2077 break;
2078 case ATH9K_TX_QUEUE_BEACON:
2079 qnum = sc->sc_bhalq;
2080 break;
2081 case ATH9K_TX_QUEUE_CAB:
2082 qnum = sc->sc_cabq->axq_qnum;
2083 break;
2084 default:
2085 qnum = -1;
2087 return qnum;
2090 /* Get a transmit queue, if available */
2092 struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
2094 struct ath_txq *txq = NULL;
2095 int qnum;
2097 qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
2098 txq = &sc->sc_txq[qnum];
2100 spin_lock_bh(&txq->axq_lock);
2102 /* Try to avoid running out of descriptors */
2103 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
2104 DPRINTF(sc, ATH_DBG_FATAL,
2105 "%s: TX queue: %d is full, depth: %d\n",
2106 __func__, qnum, txq->axq_depth);
2107 ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb));
2108 txq->stopped = 1;
2109 spin_unlock_bh(&txq->axq_lock);
2110 return NULL;
2113 spin_unlock_bh(&txq->axq_lock);
2115 return txq;
2118 /* Update parameters for a transmit queue */
2120 int ath_txq_update(struct ath_softc *sc, int qnum,
2121 struct ath9k_tx_queue_info *qinfo)
2123 struct ath_hal *ah = sc->sc_ah;
2124 int error = 0;
2125 struct ath9k_tx_queue_info qi;
2127 if (qnum == sc->sc_bhalq) {
2129 * XXX: for beacon queue, we just save the parameter.
2130 * It will be picked up by ath_beaconq_config when
2131 * it's necessary.
2133 sc->sc_beacon_qi = *qinfo;
2134 return 0;
2137 ASSERT(sc->sc_txq[qnum].axq_qnum == qnum);
2139 ath9k_hw_get_txq_props(ah, qnum, &qi);
2140 qi.tqi_aifs = qinfo->tqi_aifs;
2141 qi.tqi_cwmin = qinfo->tqi_cwmin;
2142 qi.tqi_cwmax = qinfo->tqi_cwmax;
2143 qi.tqi_burstTime = qinfo->tqi_burstTime;
2144 qi.tqi_readyTime = qinfo->tqi_readyTime;
2146 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
2147 DPRINTF(sc, ATH_DBG_FATAL,
2148 "%s: unable to update hardware queue %u!\n",
2149 __func__, qnum);
2150 error = -EIO;
2151 } else {
2152 ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */
2155 return error;
2158 int ath_cabq_update(struct ath_softc *sc)
2160 struct ath9k_tx_queue_info qi;
2161 int qnum = sc->sc_cabq->axq_qnum;
2162 struct ath_beacon_config conf;
2164 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
2166 * Ensure the readytime % is within the bounds.
2168 if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
2169 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
2170 else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
2171 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
2173 ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
2174 qi.tqi_readyTime =
2175 (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100;
2176 ath_txq_update(sc, qnum, &qi);
2178 return 0;
2181 /* Deferred processing of transmit interrupt */
2183 void ath_tx_tasklet(struct ath_softc *sc)
2185 int i;
2186 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2188 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2191 * Process each active queue.
2193 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2194 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2195 ath_tx_processq(sc, &sc->sc_txq[i]);
2199 void ath_tx_draintxq(struct ath_softc *sc,
2200 struct ath_txq *txq, bool retry_tx)
2202 struct ath_buf *bf, *lastbf;
2203 struct list_head bf_head;
2205 INIT_LIST_HEAD(&bf_head);
2208 * NB: this assumes output has been stopped and
2209 * we do not need to block ath_tx_tasklet
2211 for (;;) {
2212 spin_lock_bh(&txq->axq_lock);
2214 if (list_empty(&txq->axq_q)) {
2215 txq->axq_link = NULL;
2216 txq->axq_linkbuf = NULL;
2217 spin_unlock_bh(&txq->axq_lock);
2218 break;
2221 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2223 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
2224 list_del(&bf->list);
2225 spin_unlock_bh(&txq->axq_lock);
2227 spin_lock_bh(&sc->sc_txbuflock);
2228 list_add_tail(&bf->list, &sc->sc_txbuf);
2229 spin_unlock_bh(&sc->sc_txbuflock);
2230 continue;
2233 lastbf = bf->bf_lastbf;
2234 if (!retry_tx)
2235 lastbf->bf_desc->ds_txstat.ts_flags =
2236 ATH9K_TX_SW_ABORTED;
2238 /* remove ath_buf's of the same mpdu from txq */
2239 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
2240 txq->axq_depth--;
2242 spin_unlock_bh(&txq->axq_lock);
2244 if (bf_isampdu(bf))
2245 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0);
2246 else
2247 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2250 /* flush any pending frames if aggregation is enabled */
2251 if (sc->sc_flags & SC_OP_TXAGGR) {
2252 if (!retry_tx) {
2253 spin_lock_bh(&txq->axq_lock);
2254 ath_txq_drain_pending_buffers(sc, txq);
2255 spin_unlock_bh(&txq->axq_lock);
2260 /* Drain the transmit queues and reclaim resources */
2262 void ath_draintxq(struct ath_softc *sc, bool retry_tx)
2264 /* stop beacon queue. The beacon will be freed when
2265 * we go to INIT state */
2266 if (!(sc->sc_flags & SC_OP_INVALID)) {
2267 (void) ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
2268 DPRINTF(sc, ATH_DBG_XMIT, "%s: beacon queue %x\n", __func__,
2269 ath9k_hw_gettxbuf(sc->sc_ah, sc->sc_bhalq));
2272 ath_drain_txdataq(sc, retry_tx);
2275 u32 ath_txq_depth(struct ath_softc *sc, int qnum)
2277 return sc->sc_txq[qnum].axq_depth;
2280 u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum)
2282 return sc->sc_txq[qnum].axq_aggr_depth;
2285 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
2287 struct ath_atx_tid *txtid;
2289 if (!(sc->sc_flags & SC_OP_TXAGGR))
2290 return false;
2292 txtid = ATH_AN_2_TID(an, tidno);
2294 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
2295 if (!(txtid->state & AGGR_ADDBA_PROGRESS) &&
2296 (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
2297 txtid->addba_exchangeattempts++;
2298 return true;
2302 return false;
2305 /* Start TX aggregation */
2307 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
2308 u16 tid, u16 *ssn)
2310 struct ath_atx_tid *txtid;
2311 struct ath_node *an;
2313 an = (struct ath_node *)sta->drv_priv;
2315 if (sc->sc_flags & SC_OP_TXAGGR) {
2316 txtid = ATH_AN_2_TID(an, tid);
2317 txtid->state |= AGGR_ADDBA_PROGRESS;
2318 ath_tx_pause_tid(sc, txtid);
2321 return 0;
2324 /* Stop tx aggregation */
2326 int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
2328 struct ath_node *an = (struct ath_node *)sta->drv_priv;
2330 ath_tx_aggr_teardown(sc, an, tid);
2331 return 0;
2334 /* Resume tx aggregation */
2336 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
2338 struct ath_atx_tid *txtid;
2339 struct ath_node *an;
2341 an = (struct ath_node *)sta->drv_priv;
2343 if (sc->sc_flags & SC_OP_TXAGGR) {
2344 txtid = ATH_AN_2_TID(an, tid);
2345 txtid->baw_size =
2346 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
2347 txtid->state |= AGGR_ADDBA_COMPLETE;
2348 txtid->state &= ~AGGR_ADDBA_PROGRESS;
2349 ath_tx_resume_tid(sc, txtid);
2354 * Performs transmit side cleanup when TID changes from aggregated to
2355 * unaggregated.
2356 * - Pause the TID and mark cleanup in progress
2357 * - Discard all retry frames from the s/w queue.
2360 void ath_tx_aggr_teardown(struct ath_softc *sc, struct ath_node *an, u8 tid)
2362 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
2363 struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum];
2364 struct ath_buf *bf;
2365 struct list_head bf_head;
2366 INIT_LIST_HEAD(&bf_head);
2368 DPRINTF(sc, ATH_DBG_AGGR, "%s: teardown TX aggregation\n", __func__);
2370 if (txtid->state & AGGR_CLEANUP) /* cleanup is in progress */
2371 return;
2373 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
2374 txtid->addba_exchangeattempts = 0;
2375 return;
2378 /* TID must be paused first */
2379 ath_tx_pause_tid(sc, txtid);
2381 /* drop all software retried frames and mark this TID */
2382 spin_lock_bh(&txq->axq_lock);
2383 while (!list_empty(&txtid->buf_q)) {
2384 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
2385 if (!bf_isretried(bf)) {
2387 * NB: it's based on the assumption that
2388 * software retried frame will always stay
2389 * at the head of software queue.
2391 break;
2393 list_cut_position(&bf_head,
2394 &txtid->buf_q, &bf->bf_lastfrm->list);
2395 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
2397 /* complete this sub-frame */
2398 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2401 if (txtid->baw_head != txtid->baw_tail) {
2402 spin_unlock_bh(&txq->axq_lock);
2403 txtid->state |= AGGR_CLEANUP;
2404 } else {
2405 txtid->state &= ~AGGR_ADDBA_COMPLETE;
2406 txtid->addba_exchangeattempts = 0;
2407 spin_unlock_bh(&txq->axq_lock);
2408 ath_tx_flush_tid(sc, txtid);
2413 * Tx scheduling logic
2414 * NB: must be called with txq lock held
2417 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
2419 struct ath_atx_ac *ac;
2420 struct ath_atx_tid *tid;
2422 /* nothing to schedule */
2423 if (list_empty(&txq->axq_acq))
2424 return;
2426 * get the first node/ac pair on the queue
2428 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
2429 list_del(&ac->list);
2430 ac->sched = false;
2433 * process a single tid per destination
2435 do {
2436 /* nothing to schedule */
2437 if (list_empty(&ac->tid_q))
2438 return;
2440 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
2441 list_del(&tid->list);
2442 tid->sched = false;
2444 if (tid->paused) /* check next tid to keep h/w busy */
2445 continue;
2447 if ((txq->axq_depth % 2) == 0)
2448 ath_tx_sched_aggr(sc, txq, tid);
2451 * add tid to round-robin queue if more frames
2452 * are pending for the tid
2454 if (!list_empty(&tid->buf_q))
2455 ath_tx_queue_tid(txq, tid);
2457 /* only schedule one TID at a time */
2458 break;
2459 } while (!list_empty(&ac->tid_q));
2462 * schedule AC if more TIDs need processing
2464 if (!list_empty(&ac->tid_q)) {
2466 * add dest ac to txq if not already added
2468 if (!ac->sched) {
2469 ac->sched = true;
2470 list_add_tail(&ac->list, &txq->axq_acq);
2475 /* Initialize per-node transmit state */
2477 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2479 struct ath_atx_tid *tid;
2480 struct ath_atx_ac *ac;
2481 int tidno, acno;
2484 * Init per tid tx state
2486 for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno];
2487 tidno < WME_NUM_TID;
2488 tidno++, tid++) {
2489 tid->an = an;
2490 tid->tidno = tidno;
2491 tid->seq_start = tid->seq_next = 0;
2492 tid->baw_size = WME_MAX_BA;
2493 tid->baw_head = tid->baw_tail = 0;
2494 tid->sched = false;
2495 tid->paused = false;
2496 tid->state &= ~AGGR_CLEANUP;
2497 INIT_LIST_HEAD(&tid->buf_q);
2499 acno = TID_TO_WME_AC(tidno);
2500 tid->ac = &an->an_aggr.tx.ac[acno];
2502 /* ADDBA state */
2503 tid->state &= ~AGGR_ADDBA_COMPLETE;
2504 tid->state &= ~AGGR_ADDBA_PROGRESS;
2505 tid->addba_exchangeattempts = 0;
2509 * Init per ac tx state
2511 for (acno = 0, ac = &an->an_aggr.tx.ac[acno];
2512 acno < WME_NUM_AC; acno++, ac++) {
2513 ac->sched = false;
2514 INIT_LIST_HEAD(&ac->tid_q);
2516 switch (acno) {
2517 case WME_AC_BE:
2518 ac->qnum = ath_tx_get_qnum(sc,
2519 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2520 break;
2521 case WME_AC_BK:
2522 ac->qnum = ath_tx_get_qnum(sc,
2523 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2524 break;
2525 case WME_AC_VI:
2526 ac->qnum = ath_tx_get_qnum(sc,
2527 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2528 break;
2529 case WME_AC_VO:
2530 ac->qnum = ath_tx_get_qnum(sc,
2531 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2532 break;
2537 /* Cleanupthe pending buffers for the node. */
2539 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2541 int i;
2542 struct ath_atx_ac *ac, *ac_tmp;
2543 struct ath_atx_tid *tid, *tid_tmp;
2544 struct ath_txq *txq;
2545 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2546 if (ATH_TXQ_SETUP(sc, i)) {
2547 txq = &sc->sc_txq[i];
2549 spin_lock(&txq->axq_lock);
2551 list_for_each_entry_safe(ac,
2552 ac_tmp, &txq->axq_acq, list) {
2553 tid = list_first_entry(&ac->tid_q,
2554 struct ath_atx_tid, list);
2555 if (tid && tid->an != an)
2556 continue;
2557 list_del(&ac->list);
2558 ac->sched = false;
2560 list_for_each_entry_safe(tid,
2561 tid_tmp, &ac->tid_q, list) {
2562 list_del(&tid->list);
2563 tid->sched = false;
2564 ath_tid_drain(sc, txq, tid);
2565 tid->state &= ~AGGR_ADDBA_COMPLETE;
2566 tid->addba_exchangeattempts = 0;
2567 tid->state &= ~AGGR_CLEANUP;
2571 spin_unlock(&txq->axq_lock);
2576 void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb)
2578 int hdrlen, padsize;
2579 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2580 struct ath_tx_control txctl;
2582 memset(&txctl, 0, sizeof(struct ath_tx_control));
2585 * As a temporary workaround, assign seq# here; this will likely need
2586 * to be cleaned up to work better with Beacon transmission and virtual
2587 * BSSes.
2589 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2590 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2591 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2592 sc->seq_no += 0x10;
2593 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2594 hdr->seq_ctrl |= cpu_to_le16(sc->seq_no);
2597 /* Add the padding after the header if this is not already done */
2598 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2599 if (hdrlen & 3) {
2600 padsize = hdrlen % 4;
2601 if (skb_headroom(skb) < padsize) {
2602 DPRINTF(sc, ATH_DBG_XMIT, "%s: TX CABQ padding "
2603 "failed\n", __func__);
2604 dev_kfree_skb_any(skb);
2605 return;
2607 skb_push(skb, padsize);
2608 memmove(skb->data, skb->data + padsize, hdrlen);
2611 txctl.txq = sc->sc_cabq;
2613 DPRINTF(sc, ATH_DBG_XMIT, "%s: transmitting CABQ packet, skb: %p\n",
2614 __func__,
2615 skb);
2617 if (ath_tx_start(sc, skb, &txctl) != 0) {
2618 DPRINTF(sc, ATH_DBG_XMIT, "%s: TX failed\n", __func__);
2619 goto exit;
2622 return;
2623 exit:
2624 dev_kfree_skb_any(skb);