drivers/net/: all drivers/net/ cleanup with ARRAY_SIZE
[linux-2.6/verdex.git] / drivers / net / wireless / wavelan.c
blob33ed9fe95f3db61661d535bc0a37f8afe30f142c
1 /*
2 * WaveLAN ISA driver
4 * Jean II - HPLB '96
6 * Reorganisation and extension of the driver.
7 * Original copyright follows (also see the end of this file).
8 * See wavelan.p.h for details.
12 * AT&T GIS (nee NCR) WaveLAN card:
13 * An Ethernet-like radio transceiver
14 * controlled by an Intel 82586 coprocessor.
17 #include "wavelan.p.h" /* Private header */
19 /************************* MISC SUBROUTINES **************************/
21 * Subroutines which won't fit in one of the following category
22 * (WaveLAN modem or i82586)
25 /*------------------------------------------------------------------*/
27 * Translate irq number to PSA irq parameter
29 static u8 wv_irq_to_psa(int irq)
31 if (irq < 0 || irq >= ARRAY_SIZE(irqvals))
32 return 0;
34 return irqvals[irq];
37 /*------------------------------------------------------------------*/
39 * Translate PSA irq parameter to irq number
41 static int __init wv_psa_to_irq(u8 irqval)
43 int irq;
45 for (irq = 0; irq < ARRAY_SIZE(irqvals); irq++)
46 if (irqvals[irq] == irqval)
47 return irq;
49 return -1;
52 #ifdef STRUCT_CHECK
53 /*------------------------------------------------------------------*/
55 * Sanity routine to verify the sizes of the various WaveLAN interface
56 * structures.
58 static char *wv_struct_check(void)
60 #define SC(t,s,n) if (sizeof(t) != s) return(n);
62 SC(psa_t, PSA_SIZE, "psa_t");
63 SC(mmw_t, MMW_SIZE, "mmw_t");
64 SC(mmr_t, MMR_SIZE, "mmr_t");
65 SC(ha_t, HA_SIZE, "ha_t");
67 #undef SC
69 return ((char *) NULL);
70 } /* wv_struct_check */
71 #endif /* STRUCT_CHECK */
73 /********************* HOST ADAPTER SUBROUTINES *********************/
75 * Useful subroutines to manage the WaveLAN ISA interface
77 * One major difference with the PCMCIA hardware (except the port mapping)
78 * is that we have to keep the state of the Host Control Register
79 * because of the interrupt enable & bus size flags.
82 /*------------------------------------------------------------------*/
84 * Read from card's Host Adaptor Status Register.
86 static inline u16 hasr_read(unsigned long ioaddr)
88 return (inw(HASR(ioaddr)));
89 } /* hasr_read */
91 /*------------------------------------------------------------------*/
93 * Write to card's Host Adapter Command Register.
95 static inline void hacr_write(unsigned long ioaddr, u16 hacr)
97 outw(hacr, HACR(ioaddr));
98 } /* hacr_write */
100 /*------------------------------------------------------------------*/
102 * Write to card's Host Adapter Command Register. Include a delay for
103 * those times when it is needed.
105 static void hacr_write_slow(unsigned long ioaddr, u16 hacr)
107 hacr_write(ioaddr, hacr);
108 /* delay might only be needed sometimes */
109 mdelay(1);
110 } /* hacr_write_slow */
112 /*------------------------------------------------------------------*/
114 * Set the channel attention bit.
116 static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
118 hacr_write(ioaddr, hacr | HACR_CA);
119 } /* set_chan_attn */
121 /*------------------------------------------------------------------*/
123 * Reset, and then set host adaptor into default mode.
125 static inline void wv_hacr_reset(unsigned long ioaddr)
127 hacr_write_slow(ioaddr, HACR_RESET);
128 hacr_write(ioaddr, HACR_DEFAULT);
129 } /* wv_hacr_reset */
131 /*------------------------------------------------------------------*/
133 * Set the I/O transfer over the ISA bus to 8-bit mode
135 static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
137 hacr &= ~HACR_16BITS;
138 hacr_write(ioaddr, hacr);
139 } /* wv_16_off */
141 /*------------------------------------------------------------------*/
143 * Set the I/O transfer over the ISA bus to 8-bit mode
145 static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
147 hacr |= HACR_16BITS;
148 hacr_write(ioaddr, hacr);
149 } /* wv_16_on */
151 /*------------------------------------------------------------------*/
153 * Disable interrupts on the WaveLAN hardware.
154 * (called by wv_82586_stop())
156 static inline void wv_ints_off(struct net_device * dev)
158 net_local *lp = (net_local *) dev->priv;
159 unsigned long ioaddr = dev->base_addr;
161 lp->hacr &= ~HACR_INTRON;
162 hacr_write(ioaddr, lp->hacr);
163 } /* wv_ints_off */
165 /*------------------------------------------------------------------*/
167 * Enable interrupts on the WaveLAN hardware.
168 * (called by wv_hw_reset())
170 static inline void wv_ints_on(struct net_device * dev)
172 net_local *lp = (net_local *) dev->priv;
173 unsigned long ioaddr = dev->base_addr;
175 lp->hacr |= HACR_INTRON;
176 hacr_write(ioaddr, lp->hacr);
177 } /* wv_ints_on */
179 /******************* MODEM MANAGEMENT SUBROUTINES *******************/
181 * Useful subroutines to manage the modem of the WaveLAN
184 /*------------------------------------------------------------------*/
186 * Read the Parameter Storage Area from the WaveLAN card's memory
189 * Read bytes from the PSA.
191 static void psa_read(unsigned long ioaddr, u16 hacr, int o, /* offset in PSA */
192 u8 * b, /* buffer to fill */
193 int n)
194 { /* size to read */
195 wv_16_off(ioaddr, hacr);
197 while (n-- > 0) {
198 outw(o, PIOR2(ioaddr));
199 o++;
200 *b++ = inb(PIOP2(ioaddr));
203 wv_16_on(ioaddr, hacr);
204 } /* psa_read */
206 /*------------------------------------------------------------------*/
208 * Write the Parameter Storage Area to the WaveLAN card's memory.
210 static void psa_write(unsigned long ioaddr, u16 hacr, int o, /* Offset in PSA */
211 u8 * b, /* Buffer in memory */
212 int n)
213 { /* Length of buffer */
214 int count = 0;
216 wv_16_off(ioaddr, hacr);
218 while (n-- > 0) {
219 outw(o, PIOR2(ioaddr));
220 o++;
222 outb(*b, PIOP2(ioaddr));
223 b++;
225 /* Wait for the memory to finish its write cycle */
226 count = 0;
227 while ((count++ < 100) &&
228 (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
231 wv_16_on(ioaddr, hacr);
232 } /* psa_write */
234 #ifdef SET_PSA_CRC
235 /*------------------------------------------------------------------*/
237 * Calculate the PSA CRC
238 * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
239 * NOTE: By specifying a length including the CRC position the
240 * returned value should be zero. (i.e. a correct checksum in the PSA)
242 * The Windows drivers don't use the CRC, but the AP and the PtP tool
243 * depend on it.
245 static u16 psa_crc(u8 * psa, /* The PSA */
246 int size)
247 { /* Number of short for CRC */
248 int byte_cnt; /* Loop on the PSA */
249 u16 crc_bytes = 0; /* Data in the PSA */
250 int bit_cnt; /* Loop on the bits of the short */
252 for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
253 crc_bytes ^= psa[byte_cnt]; /* Its an xor */
255 for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
256 if (crc_bytes & 0x0001)
257 crc_bytes = (crc_bytes >> 1) ^ 0xA001;
258 else
259 crc_bytes >>= 1;
263 return crc_bytes;
264 } /* psa_crc */
265 #endif /* SET_PSA_CRC */
267 /*------------------------------------------------------------------*/
269 * update the checksum field in the Wavelan's PSA
271 static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
273 #ifdef SET_PSA_CRC
274 psa_t psa;
275 u16 crc;
277 /* read the parameter storage area */
278 psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
280 /* update the checksum */
281 crc = psa_crc((unsigned char *) &psa,
282 sizeof(psa) - sizeof(psa.psa_crc[0]) -
283 sizeof(psa.psa_crc[1])
284 - sizeof(psa.psa_crc_status));
286 psa.psa_crc[0] = crc & 0xFF;
287 psa.psa_crc[1] = (crc & 0xFF00) >> 8;
289 /* Write it ! */
290 psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
291 (unsigned char *) &psa.psa_crc, 2);
293 #ifdef DEBUG_IOCTL_INFO
294 printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
295 dev->name, psa.psa_crc[0], psa.psa_crc[1]);
297 /* Check again (luxury !) */
298 crc = psa_crc((unsigned char *) &psa,
299 sizeof(psa) - sizeof(psa.psa_crc_status));
301 if (crc != 0)
302 printk(KERN_WARNING
303 "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
304 dev->name);
305 #endif /* DEBUG_IOCTL_INFO */
306 #endif /* SET_PSA_CRC */
307 } /* update_psa_checksum */
309 /*------------------------------------------------------------------*/
311 * Write 1 byte to the MMC.
313 static void mmc_out(unsigned long ioaddr, u16 o, u8 d)
315 int count = 0;
317 /* Wait for MMC to go idle */
318 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
319 udelay(10);
321 outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
324 /*------------------------------------------------------------------*/
326 * Routine to write bytes to the Modem Management Controller.
327 * We start at the end because it is the way it should be!
329 static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
331 o += n;
332 b += n;
334 while (n-- > 0)
335 mmc_out(ioaddr, --o, *(--b));
336 } /* mmc_write */
338 /*------------------------------------------------------------------*/
340 * Read a byte from the MMC.
341 * Optimised version for 1 byte, avoid using memory.
343 static u8 mmc_in(unsigned long ioaddr, u16 o)
345 int count = 0;
347 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
348 udelay(10);
349 outw(o << 1, MMCR(ioaddr));
351 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
352 udelay(10);
353 return (u8) (inw(MMCR(ioaddr)) >> 8);
356 /*------------------------------------------------------------------*/
358 * Routine to read bytes from the Modem Management Controller.
359 * The implementation is complicated by a lack of address lines,
360 * which prevents decoding of the low-order bit.
361 * (code has just been moved in the above function)
362 * We start at the end because it is the way it should be!
364 static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
366 o += n;
367 b += n;
369 while (n-- > 0)
370 *(--b) = mmc_in(ioaddr, --o);
371 } /* mmc_read */
373 /*------------------------------------------------------------------*/
375 * Get the type of encryption available.
377 static inline int mmc_encr(unsigned long ioaddr)
378 { /* I/O port of the card */
379 int temp;
381 temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
382 if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
383 return 0;
384 else
385 return temp;
388 /*------------------------------------------------------------------*/
390 * Wait for the frequency EEPROM to complete a command.
391 * I hope this one will be optimally inlined.
393 static inline void fee_wait(unsigned long ioaddr, /* I/O port of the card */
394 int delay, /* Base delay to wait for */
395 int number)
396 { /* Number of time to wait */
397 int count = 0; /* Wait only a limited time */
399 while ((count++ < number) &&
400 (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
401 MMR_FEE_STATUS_BUSY)) udelay(delay);
404 /*------------------------------------------------------------------*/
406 * Read bytes from the Frequency EEPROM (frequency select cards).
408 static void fee_read(unsigned long ioaddr, /* I/O port of the card */
409 u16 o, /* destination offset */
410 u16 * b, /* data buffer */
411 int n)
412 { /* number of registers */
413 b += n; /* Position at the end of the area */
415 /* Write the address */
416 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
418 /* Loop on all buffer */
419 while (n-- > 0) {
420 /* Write the read command */
421 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
422 MMW_FEE_CTRL_READ);
424 /* Wait until EEPROM is ready (should be quick). */
425 fee_wait(ioaddr, 10, 100);
427 /* Read the value. */
428 *--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
429 mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
434 /*------------------------------------------------------------------*/
436 * Write bytes from the Frequency EEPROM (frequency select cards).
437 * This is a bit complicated, because the frequency EEPROM has to
438 * be unprotected and the write enabled.
439 * Jean II
441 static void fee_write(unsigned long ioaddr, /* I/O port of the card */
442 u16 o, /* destination offset */
443 u16 * b, /* data buffer */
444 int n)
445 { /* number of registers */
446 b += n; /* Position at the end of the area. */
448 #ifdef EEPROM_IS_PROTECTED /* disabled */
449 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
450 /* Ask to read the protected register */
451 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
453 fee_wait(ioaddr, 10, 100);
455 /* Read the protected register. */
456 printk("Protected 2: %02X-%02X\n",
457 mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
458 mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
459 #endif /* DOESNT_SEEM_TO_WORK */
461 /* Enable protected register. */
462 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
463 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
465 fee_wait(ioaddr, 10, 100);
467 /* Unprotect area. */
468 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
469 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
470 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
471 /* or use: */
472 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
473 #endif /* DOESNT_SEEM_TO_WORK */
475 fee_wait(ioaddr, 10, 100);
476 #endif /* EEPROM_IS_PROTECTED */
478 /* Write enable. */
479 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
480 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
482 fee_wait(ioaddr, 10, 100);
484 /* Write the EEPROM address. */
485 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
487 /* Loop on all buffer */
488 while (n-- > 0) {
489 /* Write the value. */
490 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
491 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
493 /* Write the write command. */
494 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
495 MMW_FEE_CTRL_WRITE);
497 /* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
498 mdelay(10);
499 fee_wait(ioaddr, 10, 100);
502 /* Write disable. */
503 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
504 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
506 fee_wait(ioaddr, 10, 100);
508 #ifdef EEPROM_IS_PROTECTED /* disabled */
509 /* Reprotect EEPROM. */
510 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
511 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
513 fee_wait(ioaddr, 10, 100);
514 #endif /* EEPROM_IS_PROTECTED */
517 /************************ I82586 SUBROUTINES *************************/
519 * Useful subroutines to manage the Ethernet controller
522 /*------------------------------------------------------------------*/
524 * Read bytes from the on-board RAM.
525 * Why does inlining this function make it fail?
527 static /*inline */ void obram_read(unsigned long ioaddr,
528 u16 o, u8 * b, int n)
530 outw(o, PIOR1(ioaddr));
531 insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
534 /*------------------------------------------------------------------*/
536 * Write bytes to the on-board RAM.
538 static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
540 outw(o, PIOR1(ioaddr));
541 outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
544 /*------------------------------------------------------------------*/
546 * Acknowledge the reading of the status issued by the i82586.
548 static void wv_ack(struct net_device * dev)
550 net_local *lp = (net_local *) dev->priv;
551 unsigned long ioaddr = dev->base_addr;
552 u16 scb_cs;
553 int i;
555 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
556 (unsigned char *) &scb_cs, sizeof(scb_cs));
557 scb_cs &= SCB_ST_INT;
559 if (scb_cs == 0)
560 return;
562 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
563 (unsigned char *) &scb_cs, sizeof(scb_cs));
565 set_chan_attn(ioaddr, lp->hacr);
567 for (i = 1000; i > 0; i--) {
568 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
569 (unsigned char *) &scb_cs, sizeof(scb_cs));
570 if (scb_cs == 0)
571 break;
573 udelay(10);
575 udelay(100);
577 #ifdef DEBUG_CONFIG_ERROR
578 if (i <= 0)
579 printk(KERN_INFO
580 "%s: wv_ack(): board not accepting command.\n",
581 dev->name);
582 #endif
585 /*------------------------------------------------------------------*/
587 * Set channel attention bit and busy wait until command has
588 * completed, then acknowledge completion of the command.
590 static int wv_synchronous_cmd(struct net_device * dev, const char *str)
592 net_local *lp = (net_local *) dev->priv;
593 unsigned long ioaddr = dev->base_addr;
594 u16 scb_cmd;
595 ach_t cb;
596 int i;
598 scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
599 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
600 (unsigned char *) &scb_cmd, sizeof(scb_cmd));
602 set_chan_attn(ioaddr, lp->hacr);
604 for (i = 1000; i > 0; i--) {
605 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
606 sizeof(cb));
607 if (cb.ac_status & AC_SFLD_C)
608 break;
610 udelay(10);
612 udelay(100);
614 if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
615 #ifdef DEBUG_CONFIG_ERROR
616 printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
617 dev->name, str, cb.ac_status);
618 #endif
619 #ifdef DEBUG_I82586_SHOW
620 wv_scb_show(ioaddr);
621 #endif
622 return -1;
625 /* Ack the status */
626 wv_ack(dev);
628 return 0;
631 /*------------------------------------------------------------------*/
633 * Configuration commands completion interrupt.
634 * Check if done, and if OK.
636 static int
637 wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
639 unsigned short mcs_addr;
640 unsigned short status;
641 int ret;
643 #ifdef DEBUG_INTERRUPT_TRACE
644 printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
645 #endif
647 mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
648 + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
650 /* Read the status of the last command (set mc list). */
651 obram_read(ioaddr, acoff(mcs_addr, ac_status),
652 (unsigned char *) &status, sizeof(status));
654 /* If not completed -> exit */
655 if ((status & AC_SFLD_C) == 0)
656 ret = 0; /* Not ready to be scrapped */
657 else {
658 #ifdef DEBUG_CONFIG_ERROR
659 unsigned short cfg_addr;
660 unsigned short ias_addr;
662 /* Check mc_config command */
663 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
664 printk(KERN_INFO
665 "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
666 dev->name, status);
668 /* check ia-config command */
669 ias_addr = mcs_addr - sizeof(ac_ias_t);
670 obram_read(ioaddr, acoff(ias_addr, ac_status),
671 (unsigned char *) &status, sizeof(status));
672 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
673 printk(KERN_INFO
674 "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
675 dev->name, status);
677 /* Check config command. */
678 cfg_addr = ias_addr - sizeof(ac_cfg_t);
679 obram_read(ioaddr, acoff(cfg_addr, ac_status),
680 (unsigned char *) &status, sizeof(status));
681 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
682 printk(KERN_INFO
683 "%s: wv_config_complete(): configure failed; status = 0x%x\n",
684 dev->name, status);
685 #endif /* DEBUG_CONFIG_ERROR */
687 ret = 1; /* Ready to be scrapped */
690 #ifdef DEBUG_INTERRUPT_TRACE
691 printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
692 ret);
693 #endif
694 return ret;
697 /*------------------------------------------------------------------*/
699 * Command completion interrupt.
700 * Reclaim as many freed tx buffers as we can.
701 * (called in wavelan_interrupt()).
702 * Note : the spinlock is already grabbed for us.
704 static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
706 int nreaped = 0;
708 #ifdef DEBUG_INTERRUPT_TRACE
709 printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
710 #endif
712 /* Loop on all the transmit buffers */
713 while (lp->tx_first_in_use != I82586NULL) {
714 unsigned short tx_status;
716 /* Read the first transmit buffer */
717 obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
718 (unsigned char *) &tx_status,
719 sizeof(tx_status));
721 /* If not completed -> exit */
722 if ((tx_status & AC_SFLD_C) == 0)
723 break;
725 /* Hack for reconfiguration */
726 if (tx_status == 0xFFFF)
727 if (!wv_config_complete(dev, ioaddr, lp))
728 break; /* Not completed */
730 /* We now remove this buffer */
731 nreaped++;
732 --lp->tx_n_in_use;
735 if (lp->tx_n_in_use > 0)
736 printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
739 /* Was it the last one? */
740 if (lp->tx_n_in_use <= 0)
741 lp->tx_first_in_use = I82586NULL;
742 else {
743 /* Next one in the chain */
744 lp->tx_first_in_use += TXBLOCKZ;
745 if (lp->tx_first_in_use >=
746 OFFSET_CU +
747 NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
748 NTXBLOCKS * TXBLOCKZ;
751 /* Hack for reconfiguration */
752 if (tx_status == 0xFFFF)
753 continue;
755 /* Now, check status of the finished command */
756 if (tx_status & AC_SFLD_OK) {
757 int ncollisions;
759 lp->stats.tx_packets++;
760 ncollisions = tx_status & AC_SFLD_MAXCOL;
761 lp->stats.collisions += ncollisions;
762 #ifdef DEBUG_TX_INFO
763 if (ncollisions > 0)
764 printk(KERN_DEBUG
765 "%s: wv_complete(): tx completed after %d collisions.\n",
766 dev->name, ncollisions);
767 #endif
768 } else {
769 lp->stats.tx_errors++;
770 if (tx_status & AC_SFLD_S10) {
771 lp->stats.tx_carrier_errors++;
772 #ifdef DEBUG_TX_FAIL
773 printk(KERN_DEBUG
774 "%s: wv_complete(): tx error: no CS.\n",
775 dev->name);
776 #endif
778 if (tx_status & AC_SFLD_S9) {
779 lp->stats.tx_carrier_errors++;
780 #ifdef DEBUG_TX_FAIL
781 printk(KERN_DEBUG
782 "%s: wv_complete(): tx error: lost CTS.\n",
783 dev->name);
784 #endif
786 if (tx_status & AC_SFLD_S8) {
787 lp->stats.tx_fifo_errors++;
788 #ifdef DEBUG_TX_FAIL
789 printk(KERN_DEBUG
790 "%s: wv_complete(): tx error: slow DMA.\n",
791 dev->name);
792 #endif
794 if (tx_status & AC_SFLD_S6) {
795 lp->stats.tx_heartbeat_errors++;
796 #ifdef DEBUG_TX_FAIL
797 printk(KERN_DEBUG
798 "%s: wv_complete(): tx error: heart beat.\n",
799 dev->name);
800 #endif
802 if (tx_status & AC_SFLD_S5) {
803 lp->stats.tx_aborted_errors++;
804 #ifdef DEBUG_TX_FAIL
805 printk(KERN_DEBUG
806 "%s: wv_complete(): tx error: too many collisions.\n",
807 dev->name);
808 #endif
812 #ifdef DEBUG_TX_INFO
813 printk(KERN_DEBUG
814 "%s: wv_complete(): tx completed, tx_status 0x%04x\n",
815 dev->name, tx_status);
816 #endif
819 #ifdef DEBUG_INTERRUPT_INFO
820 if (nreaped > 1)
821 printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
822 dev->name, nreaped);
823 #endif
826 * Inform upper layers.
828 if (lp->tx_n_in_use < NTXBLOCKS - 1) {
829 netif_wake_queue(dev);
831 #ifdef DEBUG_INTERRUPT_TRACE
832 printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
833 #endif
834 return nreaped;
837 /*------------------------------------------------------------------*/
839 * Reconfigure the i82586, or at least ask for it.
840 * Because wv_82586_config uses a transmission buffer, we must do it
841 * when we are sure that there is one left, so we do it now
842 * or in wavelan_packet_xmit() (I can't find any better place,
843 * wavelan_interrupt is not an option), so you may experience
844 * delays sometimes.
846 static void wv_82586_reconfig(struct net_device * dev)
848 net_local *lp = (net_local *) dev->priv;
849 unsigned long flags;
851 /* Arm the flag, will be cleard in wv_82586_config() */
852 lp->reconfig_82586 = 1;
854 /* Check if we can do it now ! */
855 if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
856 spin_lock_irqsave(&lp->spinlock, flags);
857 /* May fail */
858 wv_82586_config(dev);
859 spin_unlock_irqrestore(&lp->spinlock, flags);
861 else {
862 #ifdef DEBUG_CONFIG_INFO
863 printk(KERN_DEBUG
864 "%s: wv_82586_reconfig(): delayed (state = %lX)\n",
865 dev->name, dev->state);
866 #endif
870 /********************* DEBUG & INFO SUBROUTINES *********************/
872 * This routine is used in the code to show information for debugging.
873 * Most of the time, it dumps the contents of hardware structures.
876 #ifdef DEBUG_PSA_SHOW
877 /*------------------------------------------------------------------*/
879 * Print the formatted contents of the Parameter Storage Area.
881 static void wv_psa_show(psa_t * p)
883 printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
884 printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
885 p->psa_io_base_addr_1,
886 p->psa_io_base_addr_2,
887 p->psa_io_base_addr_3, p->psa_io_base_addr_4);
888 printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
889 p->psa_rem_boot_addr_1,
890 p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
891 printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
892 printk("psa_int_req_no: %d\n", p->psa_int_req_no);
893 #ifdef DEBUG_SHOW_UNUSED
894 printk(KERN_DEBUG
895 "psa_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
896 p->psa_unused0[0], p->psa_unused0[1], p->psa_unused0[2],
897 p->psa_unused0[3], p->psa_unused0[4], p->psa_unused0[5],
898 p->psa_unused0[6]);
899 #endif /* DEBUG_SHOW_UNUSED */
900 printk(KERN_DEBUG
901 "psa_univ_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
902 p->psa_univ_mac_addr[0], p->psa_univ_mac_addr[1],
903 p->psa_univ_mac_addr[2], p->psa_univ_mac_addr[3],
904 p->psa_univ_mac_addr[4], p->psa_univ_mac_addr[5]);
905 printk(KERN_DEBUG
906 "psa_local_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
907 p->psa_local_mac_addr[0], p->psa_local_mac_addr[1],
908 p->psa_local_mac_addr[2], p->psa_local_mac_addr[3],
909 p->psa_local_mac_addr[4], p->psa_local_mac_addr[5]);
910 printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
911 p->psa_univ_local_sel);
912 printk("psa_comp_number: %d, ", p->psa_comp_number);
913 printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
914 printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
915 p->psa_feature_select);
916 printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
917 printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
918 printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
919 printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
920 p->psa_nwid[1]);
921 printk("psa_nwid_select: %d\n", p->psa_nwid_select);
922 printk(KERN_DEBUG "psa_encryption_select: %d, ",
923 p->psa_encryption_select);
924 printk
925 ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
926 p->psa_encryption_key[0], p->psa_encryption_key[1],
927 p->psa_encryption_key[2], p->psa_encryption_key[3],
928 p->psa_encryption_key[4], p->psa_encryption_key[5],
929 p->psa_encryption_key[6], p->psa_encryption_key[7]);
930 printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
931 printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
932 p->psa_call_code[0]);
933 printk
934 ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
935 p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
936 p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
937 p->psa_call_code[6], p->psa_call_code[7]);
938 #ifdef DEBUG_SHOW_UNUSED
939 printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n",
940 p->psa_reserved[0],
941 p->psa_reserved[1], p->psa_reserved[2], p->psa_reserved[3]);
942 #endif /* DEBUG_SHOW_UNUSED */
943 printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
944 printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
945 printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
946 } /* wv_psa_show */
947 #endif /* DEBUG_PSA_SHOW */
949 #ifdef DEBUG_MMC_SHOW
950 /*------------------------------------------------------------------*/
952 * Print the formatted status of the Modem Management Controller.
953 * This function needs to be completed.
955 static void wv_mmc_show(struct net_device * dev)
957 unsigned long ioaddr = dev->base_addr;
958 net_local *lp = (net_local *) dev->priv;
959 mmr_t m;
961 /* Basic check */
962 if (hasr_read(ioaddr) & HASR_NO_CLK) {
963 printk(KERN_WARNING
964 "%s: wv_mmc_show: modem not connected\n",
965 dev->name);
966 return;
969 /* Read the mmc */
970 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
971 mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
972 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
974 /* Don't forget to update statistics */
975 lp->wstats.discard.nwid +=
976 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
978 printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
979 #ifdef DEBUG_SHOW_UNUSED
980 printk(KERN_DEBUG
981 "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
982 m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
983 m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
984 m.mmr_unused0[6], m.mmr_unused0[7]);
985 #endif /* DEBUG_SHOW_UNUSED */
986 printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
987 m.mmr_des_avail, m.mmr_des_status);
988 #ifdef DEBUG_SHOW_UNUSED
989 printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
990 m.mmr_unused1[0],
991 m.mmr_unused1[1],
992 m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
993 #endif /* DEBUG_SHOW_UNUSED */
994 printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
995 m.mmr_dce_status,
997 mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
998 "energy detected," : "",
1000 mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
1001 "loop test indicated," : "",
1003 mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
1004 "transmitter on," : "",
1006 mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
1007 "jabber timer expired," : "");
1008 printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
1009 #ifdef DEBUG_SHOW_UNUSED
1010 printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
1011 m.mmr_unused2[0], m.mmr_unused2[1]);
1012 #endif /* DEBUG_SHOW_UNUSED */
1013 printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
1014 (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
1015 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
1016 printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
1017 m.mmr_thr_pre_set & MMR_THR_PRE_SET,
1019 mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
1020 "below");
1021 printk(KERN_DEBUG "signal_lvl: %d [%s], ",
1022 m.mmr_signal_lvl & MMR_SIGNAL_LVL,
1024 mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
1025 "no new msg");
1026 printk("silence_lvl: %d [%s], ",
1027 m.mmr_silence_lvl & MMR_SILENCE_LVL,
1029 mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
1030 "no new update");
1031 printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
1033 mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
1034 "Antenna 0");
1035 #ifdef DEBUG_SHOW_UNUSED
1036 printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
1037 #endif /* DEBUG_SHOW_UNUSED */
1038 } /* wv_mmc_show */
1039 #endif /* DEBUG_MMC_SHOW */
1041 #ifdef DEBUG_I82586_SHOW
1042 /*------------------------------------------------------------------*/
1044 * Print the last block of the i82586 memory.
1046 static void wv_scb_show(unsigned long ioaddr)
1048 scb_t scb;
1050 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
1051 sizeof(scb));
1053 printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
1055 printk(KERN_DEBUG "status: ");
1056 printk("stat 0x%x[%s%s%s%s] ",
1057 (scb.
1058 scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
1059 SCB_ST_RNR)) >> 12,
1060 (scb.
1061 scb_status & SCB_ST_CX) ? "command completion interrupt," :
1062 "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
1063 (scb.
1064 scb_status & SCB_ST_CNA) ? "command unit not active," : "",
1065 (scb.
1066 scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
1067 "");
1068 printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
1069 ((scb.scb_status & SCB_ST_CUS) ==
1070 SCB_ST_CUS_IDLE) ? "idle" : "",
1071 ((scb.scb_status & SCB_ST_CUS) ==
1072 SCB_ST_CUS_SUSP) ? "suspended" : "",
1073 ((scb.scb_status & SCB_ST_CUS) ==
1074 SCB_ST_CUS_ACTV) ? "active" : "");
1075 printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
1076 ((scb.scb_status & SCB_ST_RUS) ==
1077 SCB_ST_RUS_IDLE) ? "idle" : "",
1078 ((scb.scb_status & SCB_ST_RUS) ==
1079 SCB_ST_RUS_SUSP) ? "suspended" : "",
1080 ((scb.scb_status & SCB_ST_RUS) ==
1081 SCB_ST_RUS_NRES) ? "no resources" : "",
1082 ((scb.scb_status & SCB_ST_RUS) ==
1083 SCB_ST_RUS_RDY) ? "ready" : "");
1085 printk(KERN_DEBUG "command: ");
1086 printk("ack 0x%x[%s%s%s%s] ",
1087 (scb.
1088 scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
1089 SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
1090 (scb.
1091 scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
1092 (scb.
1093 scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
1094 (scb.
1095 scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
1096 (scb.
1097 scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
1098 printk("cuc 0x%x[%s%s%s%s%s] ",
1099 (scb.scb_command & SCB_CMD_CUC) >> 8,
1100 ((scb.scb_command & SCB_CMD_CUC) ==
1101 SCB_CMD_CUC_NOP) ? "nop" : "",
1102 ((scb.scb_command & SCB_CMD_CUC) ==
1103 SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
1104 ((scb.scb_command & SCB_CMD_CUC) ==
1105 SCB_CMD_CUC_RES) ? "resume execution" : "",
1106 ((scb.scb_command & SCB_CMD_CUC) ==
1107 SCB_CMD_CUC_SUS) ? "suspend execution" : "",
1108 ((scb.scb_command & SCB_CMD_CUC) ==
1109 SCB_CMD_CUC_ABT) ? "abort execution" : "");
1110 printk("ruc 0x%x[%s%s%s%s%s]\n",
1111 (scb.scb_command & SCB_CMD_RUC) >> 4,
1112 ((scb.scb_command & SCB_CMD_RUC) ==
1113 SCB_CMD_RUC_NOP) ? "nop" : "",
1114 ((scb.scb_command & SCB_CMD_RUC) ==
1115 SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
1116 ((scb.scb_command & SCB_CMD_RUC) ==
1117 SCB_CMD_RUC_RES) ? "resume reception" : "",
1118 ((scb.scb_command & SCB_CMD_RUC) ==
1119 SCB_CMD_RUC_SUS) ? "suspend reception" : "",
1120 ((scb.scb_command & SCB_CMD_RUC) ==
1121 SCB_CMD_RUC_ABT) ? "abort reception" : "");
1123 printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
1124 printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
1126 printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
1127 printk("alnerrs %d ", scb.scb_alnerrs);
1128 printk("rscerrs %d ", scb.scb_rscerrs);
1129 printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
1132 /*------------------------------------------------------------------*/
1134 * Print the formatted status of the i82586's receive unit.
1136 static void wv_ru_show(struct net_device * dev)
1138 /* net_local *lp = (net_local *) dev->priv; */
1140 printk(KERN_DEBUG
1141 "##### WaveLAN i82586 receiver unit status: #####\n");
1142 printk(KERN_DEBUG "ru:");
1144 * Not implemented yet
1146 printk("\n");
1147 } /* wv_ru_show */
1149 /*------------------------------------------------------------------*/
1151 * Display info about one control block of the i82586 memory.
1153 static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
1155 unsigned long ioaddr;
1156 ac_tx_t actx;
1158 ioaddr = dev->base_addr;
1160 printk("%d: 0x%x:", i, p);
1162 obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
1163 printk(" status=0x%x,", actx.tx_h.ac_status);
1164 printk(" command=0x%x,", actx.tx_h.ac_command);
1168 tbd_t tbd;
1170 obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
1171 printk(" tbd_status=0x%x,", tbd.tbd_status);
1175 printk("|");
1178 /*------------------------------------------------------------------*/
1180 * Print status of the command unit of the i82586.
1182 static void wv_cu_show(struct net_device * dev)
1184 net_local *lp = (net_local *) dev->priv;
1185 unsigned int i;
1186 u16 p;
1188 printk(KERN_DEBUG
1189 "##### WaveLAN i82586 command unit status: #####\n");
1191 printk(KERN_DEBUG);
1192 for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
1193 wv_cu_show_one(dev, lp, i, p);
1195 p += TXBLOCKZ;
1196 if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
1197 p -= NTXBLOCKS * TXBLOCKZ;
1199 printk("\n");
1201 #endif /* DEBUG_I82586_SHOW */
1203 #ifdef DEBUG_DEVICE_SHOW
1204 /*------------------------------------------------------------------*/
1206 * Print the formatted status of the WaveLAN PCMCIA device driver.
1208 static void wv_dev_show(struct net_device * dev)
1210 printk(KERN_DEBUG "dev:");
1211 printk(" state=%lX,", dev->state);
1212 printk(" trans_start=%ld,", dev->trans_start);
1213 printk(" flags=0x%x,", dev->flags);
1214 printk("\n");
1215 } /* wv_dev_show */
1217 /*------------------------------------------------------------------*/
1219 * Print the formatted status of the WaveLAN PCMCIA device driver's
1220 * private information.
1222 static void wv_local_show(struct net_device * dev)
1224 net_local *lp;
1226 lp = (net_local *) dev->priv;
1228 printk(KERN_DEBUG "local:");
1229 printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
1230 printk(" hacr=0x%x,", lp->hacr);
1231 printk(" rx_head=0x%x,", lp->rx_head);
1232 printk(" rx_last=0x%x,", lp->rx_last);
1233 printk(" tx_first_free=0x%x,", lp->tx_first_free);
1234 printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
1235 printk("\n");
1236 } /* wv_local_show */
1237 #endif /* DEBUG_DEVICE_SHOW */
1239 #if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
1240 /*------------------------------------------------------------------*/
1242 * Dump packet header (and content if necessary) on the screen
1244 static inline void wv_packet_info(u8 * p, /* Packet to dump */
1245 int length, /* Length of the packet */
1246 char *msg1, /* Name of the device */
1247 char *msg2)
1248 { /* Name of the function */
1249 int i;
1250 int maxi;
1252 printk(KERN_DEBUG
1253 "%s: %s(): dest %02X:%02X:%02X:%02X:%02X:%02X, length %d\n",
1254 msg1, msg2, p[0], p[1], p[2], p[3], p[4], p[5], length);
1255 printk(KERN_DEBUG
1256 "%s: %s(): src %02X:%02X:%02X:%02X:%02X:%02X, type 0x%02X%02X\n",
1257 msg1, msg2, p[6], p[7], p[8], p[9], p[10], p[11], p[12],
1258 p[13]);
1260 #ifdef DEBUG_PACKET_DUMP
1262 printk(KERN_DEBUG "data=\"");
1264 if ((maxi = length) > DEBUG_PACKET_DUMP)
1265 maxi = DEBUG_PACKET_DUMP;
1266 for (i = 14; i < maxi; i++)
1267 if (p[i] >= ' ' && p[i] <= '~')
1268 printk(" %c", p[i]);
1269 else
1270 printk("%02X", p[i]);
1271 if (maxi < length)
1272 printk("..");
1273 printk("\"\n");
1274 printk(KERN_DEBUG "\n");
1275 #endif /* DEBUG_PACKET_DUMP */
1277 #endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
1279 /*------------------------------------------------------------------*/
1281 * This is the information which is displayed by the driver at startup.
1282 * There are lots of flags for configuring it to your liking.
1284 static void wv_init_info(struct net_device * dev)
1286 short ioaddr = dev->base_addr;
1287 net_local *lp = (net_local *) dev->priv;
1288 psa_t psa;
1289 int i;
1291 /* Read the parameter storage area */
1292 psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
1294 #ifdef DEBUG_PSA_SHOW
1295 wv_psa_show(&psa);
1296 #endif
1297 #ifdef DEBUG_MMC_SHOW
1298 wv_mmc_show(dev);
1299 #endif
1300 #ifdef DEBUG_I82586_SHOW
1301 wv_cu_show(dev);
1302 #endif
1304 #ifdef DEBUG_BASIC_SHOW
1305 /* Now, let's go for the basic stuff. */
1306 printk(KERN_NOTICE "%s: WaveLAN at %#x,", dev->name, ioaddr);
1307 for (i = 0; i < WAVELAN_ADDR_SIZE; i++)
1308 printk("%s%02X", (i == 0) ? " " : ":", dev->dev_addr[i]);
1309 printk(", IRQ %d", dev->irq);
1311 /* Print current network ID. */
1312 if (psa.psa_nwid_select)
1313 printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
1314 psa.psa_nwid[1]);
1315 else
1316 printk(", nwid off");
1318 /* If 2.00 card */
1319 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1320 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1321 unsigned short freq;
1323 /* Ask the EEPROM to read the frequency from the first area. */
1324 fee_read(ioaddr, 0x00, &freq, 1);
1326 /* Print frequency */
1327 printk(", 2.00, %ld", (freq >> 6) + 2400L);
1329 /* Hack! */
1330 if (freq & 0x20)
1331 printk(".5");
1332 } else {
1333 printk(", PC");
1334 switch (psa.psa_comp_number) {
1335 case PSA_COMP_PC_AT_915:
1336 case PSA_COMP_PC_AT_2400:
1337 printk("-AT");
1338 break;
1339 case PSA_COMP_PC_MC_915:
1340 case PSA_COMP_PC_MC_2400:
1341 printk("-MC");
1342 break;
1343 case PSA_COMP_PCMCIA_915:
1344 printk("MCIA");
1345 break;
1346 default:
1347 printk("?");
1349 printk(", ");
1350 switch (psa.psa_subband) {
1351 case PSA_SUBBAND_915:
1352 printk("915");
1353 break;
1354 case PSA_SUBBAND_2425:
1355 printk("2425");
1356 break;
1357 case PSA_SUBBAND_2460:
1358 printk("2460");
1359 break;
1360 case PSA_SUBBAND_2484:
1361 printk("2484");
1362 break;
1363 case PSA_SUBBAND_2430_5:
1364 printk("2430.5");
1365 break;
1366 default:
1367 printk("?");
1371 printk(" MHz\n");
1372 #endif /* DEBUG_BASIC_SHOW */
1374 #ifdef DEBUG_VERSION_SHOW
1375 /* Print version information */
1376 printk(KERN_NOTICE "%s", version);
1377 #endif
1378 } /* wv_init_info */
1380 /********************* IOCTL, STATS & RECONFIG *********************/
1382 * We found here routines that are called by Linux on different
1383 * occasions after the configuration and not for transmitting data
1384 * These may be called when the user use ifconfig, /proc/net/dev
1385 * or wireless extensions
1388 /*------------------------------------------------------------------*/
1390 * Get the current Ethernet statistics. This may be called with the
1391 * card open or closed.
1392 * Used when the user read /proc/net/dev
1394 static en_stats *wavelan_get_stats(struct net_device * dev)
1396 #ifdef DEBUG_IOCTL_TRACE
1397 printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
1398 #endif
1400 return (&((net_local *) dev->priv)->stats);
1403 /*------------------------------------------------------------------*/
1405 * Set or clear the multicast filter for this adaptor.
1406 * num_addrs == -1 Promiscuous mode, receive all packets
1407 * num_addrs == 0 Normal mode, clear multicast list
1408 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1409 * and do best-effort filtering.
1411 static void wavelan_set_multicast_list(struct net_device * dev)
1413 net_local *lp = (net_local *) dev->priv;
1415 #ifdef DEBUG_IOCTL_TRACE
1416 printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
1417 dev->name);
1418 #endif
1420 #ifdef DEBUG_IOCTL_INFO
1421 printk(KERN_DEBUG
1422 "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
1423 dev->name, dev->flags, dev->mc_count);
1424 #endif
1426 /* Are we asking for promiscuous mode,
1427 * or all multicast addresses (we don't have that!)
1428 * or too many multicast addresses for the hardware filter? */
1429 if ((dev->flags & IFF_PROMISC) ||
1430 (dev->flags & IFF_ALLMULTI) ||
1431 (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
1433 * Enable promiscuous mode: receive all packets.
1435 if (!lp->promiscuous) {
1436 lp->promiscuous = 1;
1437 lp->mc_count = 0;
1439 wv_82586_reconfig(dev);
1441 /* Tell the kernel that we are doing a really bad job. */
1442 dev->flags |= IFF_PROMISC;
1444 } else
1445 /* Are there multicast addresses to send? */
1446 if (dev->mc_list != (struct dev_mc_list *) NULL) {
1448 * Disable promiscuous mode, but receive all packets
1449 * in multicast list
1451 #ifdef MULTICAST_AVOID
1452 if (lp->promiscuous || (dev->mc_count != lp->mc_count))
1453 #endif
1455 lp->promiscuous = 0;
1456 lp->mc_count = dev->mc_count;
1458 wv_82586_reconfig(dev);
1460 } else {
1462 * Switch to normal mode: disable promiscuous mode and
1463 * clear the multicast list.
1465 if (lp->promiscuous || lp->mc_count == 0) {
1466 lp->promiscuous = 0;
1467 lp->mc_count = 0;
1469 wv_82586_reconfig(dev);
1472 #ifdef DEBUG_IOCTL_TRACE
1473 printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
1474 dev->name);
1475 #endif
1478 /*------------------------------------------------------------------*/
1480 * This function doesn't exist.
1481 * (Note : it was a nice way to test the reconfigure stuff...)
1483 #ifdef SET_MAC_ADDRESS
1484 static int wavelan_set_mac_address(struct net_device * dev, void *addr)
1486 struct sockaddr *mac = addr;
1488 /* Copy the address. */
1489 memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
1491 /* Reconfigure the beast. */
1492 wv_82586_reconfig(dev);
1494 return 0;
1496 #endif /* SET_MAC_ADDRESS */
1499 /*------------------------------------------------------------------*/
1501 * Frequency setting (for hardware capable of it)
1502 * It's a bit complicated and you don't really want to look into it.
1503 * (called in wavelan_ioctl)
1505 static int wv_set_frequency(unsigned long ioaddr, /* I/O port of the card */
1506 iw_freq * frequency)
1508 const int BAND_NUM = 10; /* Number of bands */
1509 long freq = 0L; /* offset to 2.4 GHz in .5 MHz */
1510 #ifdef DEBUG_IOCTL_INFO
1511 int i;
1512 #endif
1514 /* Setting by frequency */
1515 /* Theoretically, you may set any frequency between
1516 * the two limits with a 0.5 MHz precision. In practice,
1517 * I don't want you to have trouble with local regulations.
1519 if ((frequency->e == 1) &&
1520 (frequency->m >= (int) 2.412e8)
1521 && (frequency->m <= (int) 2.487e8)) {
1522 freq = ((frequency->m / 10000) - 24000L) / 5;
1525 /* Setting by channel (same as wfreqsel) */
1526 /* Warning: each channel is 22 MHz wide, so some of the channels
1527 * will interfere. */
1528 if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
1529 /* Get frequency offset. */
1530 freq = channel_bands[frequency->m] >> 1;
1533 /* Verify that the frequency is allowed. */
1534 if (freq != 0L) {
1535 u16 table[10]; /* Authorized frequency table */
1537 /* Read the frequency table. */
1538 fee_read(ioaddr, 0x71, table, 10);
1540 #ifdef DEBUG_IOCTL_INFO
1541 printk(KERN_DEBUG "Frequency table: ");
1542 for (i = 0; i < 10; i++) {
1543 printk(" %04X", table[i]);
1545 printk("\n");
1546 #endif
1548 /* Look in the table to see whether the frequency is allowed. */
1549 if (!(table[9 - ((freq - 24) / 16)] &
1550 (1 << ((freq - 24) % 16)))) return -EINVAL; /* not allowed */
1551 } else
1552 return -EINVAL;
1554 /* if we get a usable frequency */
1555 if (freq != 0L) {
1556 unsigned short area[16];
1557 unsigned short dac[2];
1558 unsigned short area_verify[16];
1559 unsigned short dac_verify[2];
1560 /* Corresponding gain (in the power adjust value table)
1561 * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
1562 * and WCIN062D.DOC, page 6.2.9. */
1563 unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
1564 int power_band = 0; /* Selected band */
1565 unsigned short power_adjust; /* Correct value */
1567 /* Search for the gain. */
1568 power_band = 0;
1569 while ((freq > power_limit[power_band]) &&
1570 (power_limit[++power_band] != 0));
1572 /* Read the first area. */
1573 fee_read(ioaddr, 0x00, area, 16);
1575 /* Read the DAC. */
1576 fee_read(ioaddr, 0x60, dac, 2);
1578 /* Read the new power adjust value. */
1579 fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
1581 if (power_band & 0x1)
1582 power_adjust >>= 8;
1583 else
1584 power_adjust &= 0xFF;
1586 #ifdef DEBUG_IOCTL_INFO
1587 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1588 for (i = 0; i < 16; i++) {
1589 printk(" %04X", area[i]);
1591 printk("\n");
1593 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1594 dac[0], dac[1]);
1595 #endif
1597 /* Frequency offset (for info only) */
1598 area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
1600 /* Receiver Principle main divider coefficient */
1601 area[3] = (freq >> 1) + 2400L - 352L;
1602 area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1604 /* Transmitter Main divider coefficient */
1605 area[13] = (freq >> 1) + 2400L;
1606 area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1608 /* Other parts of the area are flags, bit streams or unused. */
1610 /* Set the value in the DAC. */
1611 dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
1612 dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
1614 /* Write the first area. */
1615 fee_write(ioaddr, 0x00, area, 16);
1617 /* Write the DAC. */
1618 fee_write(ioaddr, 0x60, dac, 2);
1620 /* We now should verify here that the writing of the EEPROM went OK. */
1622 /* Reread the first area. */
1623 fee_read(ioaddr, 0x00, area_verify, 16);
1625 /* Reread the DAC. */
1626 fee_read(ioaddr, 0x60, dac_verify, 2);
1628 /* Compare. */
1629 if (memcmp(area, area_verify, 16 * 2) ||
1630 memcmp(dac, dac_verify, 2 * 2)) {
1631 #ifdef DEBUG_IOCTL_ERROR
1632 printk(KERN_INFO
1633 "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
1634 #endif
1635 return -EOPNOTSUPP;
1638 /* We must download the frequency parameters to the
1639 * synthesizers (from the EEPROM - area 1)
1640 * Note: as the EEPROM is automatically decremented, we set the end
1641 * if the area... */
1642 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
1643 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1644 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1646 /* Wait until the download is finished. */
1647 fee_wait(ioaddr, 100, 100);
1649 /* We must now download the power adjust value (gain) to
1650 * the synthesizers (from the EEPROM - area 7 - DAC). */
1651 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
1652 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1653 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1655 /* Wait for the download to finish. */
1656 fee_wait(ioaddr, 100, 100);
1658 #ifdef DEBUG_IOCTL_INFO
1659 /* Verification of what we have done */
1661 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1662 for (i = 0; i < 16; i++) {
1663 printk(" %04X", area_verify[i]);
1665 printk("\n");
1667 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1668 dac_verify[0], dac_verify[1]);
1669 #endif
1671 return 0;
1672 } else
1673 return -EINVAL; /* Bah, never get there... */
1676 /*------------------------------------------------------------------*/
1678 * Give the list of available frequencies.
1680 static int wv_frequency_list(unsigned long ioaddr, /* I/O port of the card */
1681 iw_freq * list, /* List of frequencies to fill */
1682 int max)
1683 { /* Maximum number of frequencies */
1684 u16 table[10]; /* Authorized frequency table */
1685 long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */
1686 int i; /* index in the table */
1687 int c = 0; /* Channel number */
1689 /* Read the frequency table. */
1690 fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
1692 /* Check all frequencies. */
1693 i = 0;
1694 for (freq = 0; freq < 150; freq++)
1695 /* Look in the table if the frequency is allowed */
1696 if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
1697 /* Compute approximate channel number */
1698 while ((c < ARRAY_SIZE(channel_bands)) &&
1699 (((channel_bands[c] >> 1) - 24) < freq))
1700 c++;
1701 list[i].i = c; /* Set the list index */
1703 /* put in the list */
1704 list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
1705 list[i++].e = 1;
1707 /* Check number. */
1708 if (i >= max)
1709 return (i);
1712 return (i);
1715 #ifdef IW_WIRELESS_SPY
1716 /*------------------------------------------------------------------*/
1718 * Gather wireless spy statistics: for each packet, compare the source
1719 * address with our list, and if they match, get the statistics.
1720 * Sorry, but this function really needs the wireless extensions.
1722 static inline void wl_spy_gather(struct net_device * dev,
1723 u8 * mac, /* MAC address */
1724 u8 * stats) /* Statistics to gather */
1726 struct iw_quality wstats;
1728 wstats.qual = stats[2] & MMR_SGNL_QUAL;
1729 wstats.level = stats[0] & MMR_SIGNAL_LVL;
1730 wstats.noise = stats[1] & MMR_SILENCE_LVL;
1731 wstats.updated = 0x7;
1733 /* Update spy records */
1734 wireless_spy_update(dev, mac, &wstats);
1736 #endif /* IW_WIRELESS_SPY */
1738 #ifdef HISTOGRAM
1739 /*------------------------------------------------------------------*/
1741 * This function calculates a histogram of the signal level.
1742 * As the noise is quite constant, it's like doing it on the SNR.
1743 * We have defined a set of interval (lp->his_range), and each time
1744 * the level goes in that interval, we increment the count (lp->his_sum).
1745 * With this histogram you may detect if one WaveLAN is really weak,
1746 * or you may also calculate the mean and standard deviation of the level.
1748 static inline void wl_his_gather(struct net_device * dev, u8 * stats)
1749 { /* Statistics to gather */
1750 net_local *lp = (net_local *) dev->priv;
1751 u8 level = stats[0] & MMR_SIGNAL_LVL;
1752 int i;
1754 /* Find the correct interval. */
1755 i = 0;
1756 while ((i < (lp->his_number - 1))
1757 && (level >= lp->his_range[i++]));
1759 /* Increment interval counter. */
1760 (lp->his_sum[i])++;
1762 #endif /* HISTOGRAM */
1764 /*------------------------------------------------------------------*/
1766 * Wireless Handler : get protocol name
1768 static int wavelan_get_name(struct net_device *dev,
1769 struct iw_request_info *info,
1770 union iwreq_data *wrqu,
1771 char *extra)
1773 strcpy(wrqu->name, "WaveLAN");
1774 return 0;
1777 /*------------------------------------------------------------------*/
1779 * Wireless Handler : set NWID
1781 static int wavelan_set_nwid(struct net_device *dev,
1782 struct iw_request_info *info,
1783 union iwreq_data *wrqu,
1784 char *extra)
1786 unsigned long ioaddr = dev->base_addr;
1787 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1788 psa_t psa;
1789 mm_t m;
1790 unsigned long flags;
1791 int ret = 0;
1793 /* Disable interrupts and save flags. */
1794 spin_lock_irqsave(&lp->spinlock, flags);
1796 /* Set NWID in WaveLAN. */
1797 if (!wrqu->nwid.disabled) {
1798 /* Set NWID in psa */
1799 psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
1800 psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
1801 psa.psa_nwid_select = 0x01;
1802 psa_write(ioaddr, lp->hacr,
1803 (char *) psa.psa_nwid - (char *) &psa,
1804 (unsigned char *) psa.psa_nwid, 3);
1806 /* Set NWID in mmc. */
1807 m.w.mmw_netw_id_l = psa.psa_nwid[1];
1808 m.w.mmw_netw_id_h = psa.psa_nwid[0];
1809 mmc_write(ioaddr,
1810 (char *) &m.w.mmw_netw_id_l -
1811 (char *) &m,
1812 (unsigned char *) &m.w.mmw_netw_id_l, 2);
1813 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
1814 } else {
1815 /* Disable NWID in the psa. */
1816 psa.psa_nwid_select = 0x00;
1817 psa_write(ioaddr, lp->hacr,
1818 (char *) &psa.psa_nwid_select -
1819 (char *) &psa,
1820 (unsigned char *) &psa.psa_nwid_select,
1823 /* Disable NWID in the mmc (no filtering). */
1824 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
1825 MMW_LOOPT_SEL_DIS_NWID);
1827 /* update the Wavelan checksum */
1828 update_psa_checksum(dev, ioaddr, lp->hacr);
1830 /* Enable interrupts and restore flags. */
1831 spin_unlock_irqrestore(&lp->spinlock, flags);
1833 return ret;
1836 /*------------------------------------------------------------------*/
1838 * Wireless Handler : get NWID
1840 static int wavelan_get_nwid(struct net_device *dev,
1841 struct iw_request_info *info,
1842 union iwreq_data *wrqu,
1843 char *extra)
1845 unsigned long ioaddr = dev->base_addr;
1846 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1847 psa_t psa;
1848 unsigned long flags;
1849 int ret = 0;
1851 /* Disable interrupts and save flags. */
1852 spin_lock_irqsave(&lp->spinlock, flags);
1854 /* Read the NWID. */
1855 psa_read(ioaddr, lp->hacr,
1856 (char *) psa.psa_nwid - (char *) &psa,
1857 (unsigned char *) psa.psa_nwid, 3);
1858 wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
1859 wrqu->nwid.disabled = !(psa.psa_nwid_select);
1860 wrqu->nwid.fixed = 1; /* Superfluous */
1862 /* Enable interrupts and restore flags. */
1863 spin_unlock_irqrestore(&lp->spinlock, flags);
1865 return ret;
1868 /*------------------------------------------------------------------*/
1870 * Wireless Handler : set frequency
1872 static int wavelan_set_freq(struct net_device *dev,
1873 struct iw_request_info *info,
1874 union iwreq_data *wrqu,
1875 char *extra)
1877 unsigned long ioaddr = dev->base_addr;
1878 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1879 unsigned long flags;
1880 int ret;
1882 /* Disable interrupts and save flags. */
1883 spin_lock_irqsave(&lp->spinlock, flags);
1885 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
1886 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1887 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
1888 ret = wv_set_frequency(ioaddr, &(wrqu->freq));
1889 else
1890 ret = -EOPNOTSUPP;
1892 /* Enable interrupts and restore flags. */
1893 spin_unlock_irqrestore(&lp->spinlock, flags);
1895 return ret;
1898 /*------------------------------------------------------------------*/
1900 * Wireless Handler : get frequency
1902 static int wavelan_get_freq(struct net_device *dev,
1903 struct iw_request_info *info,
1904 union iwreq_data *wrqu,
1905 char *extra)
1907 unsigned long ioaddr = dev->base_addr;
1908 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1909 psa_t psa;
1910 unsigned long flags;
1911 int ret = 0;
1913 /* Disable interrupts and save flags. */
1914 spin_lock_irqsave(&lp->spinlock, flags);
1916 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
1917 * Does it work for everybody, especially old cards? */
1918 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1919 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1920 unsigned short freq;
1922 /* Ask the EEPROM to read the frequency from the first area. */
1923 fee_read(ioaddr, 0x00, &freq, 1);
1924 wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
1925 wrqu->freq.e = 1;
1926 } else {
1927 psa_read(ioaddr, lp->hacr,
1928 (char *) &psa.psa_subband - (char *) &psa,
1929 (unsigned char *) &psa.psa_subband, 1);
1931 if (psa.psa_subband <= 4) {
1932 wrqu->freq.m = fixed_bands[psa.psa_subband];
1933 wrqu->freq.e = (psa.psa_subband != 0);
1934 } else
1935 ret = -EOPNOTSUPP;
1938 /* Enable interrupts and restore flags. */
1939 spin_unlock_irqrestore(&lp->spinlock, flags);
1941 return ret;
1944 /*------------------------------------------------------------------*/
1946 * Wireless Handler : set level threshold
1948 static int wavelan_set_sens(struct net_device *dev,
1949 struct iw_request_info *info,
1950 union iwreq_data *wrqu,
1951 char *extra)
1953 unsigned long ioaddr = dev->base_addr;
1954 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1955 psa_t psa;
1956 unsigned long flags;
1957 int ret = 0;
1959 /* Disable interrupts and save flags. */
1960 spin_lock_irqsave(&lp->spinlock, flags);
1962 /* Set the level threshold. */
1963 /* We should complain loudly if wrqu->sens.fixed = 0, because we
1964 * can't set auto mode... */
1965 psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
1966 psa_write(ioaddr, lp->hacr,
1967 (char *) &psa.psa_thr_pre_set - (char *) &psa,
1968 (unsigned char *) &psa.psa_thr_pre_set, 1);
1969 /* update the Wavelan checksum */
1970 update_psa_checksum(dev, ioaddr, lp->hacr);
1971 mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
1972 psa.psa_thr_pre_set);
1974 /* Enable interrupts and restore flags. */
1975 spin_unlock_irqrestore(&lp->spinlock, flags);
1977 return ret;
1980 /*------------------------------------------------------------------*/
1982 * Wireless Handler : get level threshold
1984 static int wavelan_get_sens(struct net_device *dev,
1985 struct iw_request_info *info,
1986 union iwreq_data *wrqu,
1987 char *extra)
1989 unsigned long ioaddr = dev->base_addr;
1990 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1991 psa_t psa;
1992 unsigned long flags;
1993 int ret = 0;
1995 /* Disable interrupts and save flags. */
1996 spin_lock_irqsave(&lp->spinlock, flags);
1998 /* Read the level threshold. */
1999 psa_read(ioaddr, lp->hacr,
2000 (char *) &psa.psa_thr_pre_set - (char *) &psa,
2001 (unsigned char *) &psa.psa_thr_pre_set, 1);
2002 wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
2003 wrqu->sens.fixed = 1;
2005 /* Enable interrupts and restore flags. */
2006 spin_unlock_irqrestore(&lp->spinlock, flags);
2008 return ret;
2011 /*------------------------------------------------------------------*/
2013 * Wireless Handler : set encryption key
2015 static int wavelan_set_encode(struct net_device *dev,
2016 struct iw_request_info *info,
2017 union iwreq_data *wrqu,
2018 char *extra)
2020 unsigned long ioaddr = dev->base_addr;
2021 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
2022 unsigned long flags;
2023 psa_t psa;
2024 int ret = 0;
2026 /* Disable interrupts and save flags. */
2027 spin_lock_irqsave(&lp->spinlock, flags);
2029 /* Check if capable of encryption */
2030 if (!mmc_encr(ioaddr)) {
2031 ret = -EOPNOTSUPP;
2034 /* Check the size of the key */
2035 if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
2036 ret = -EINVAL;
2039 if(!ret) {
2040 /* Basic checking... */
2041 if (wrqu->encoding.length == 8) {
2042 /* Copy the key in the driver */
2043 memcpy(psa.psa_encryption_key, extra,
2044 wrqu->encoding.length);
2045 psa.psa_encryption_select = 1;
2047 psa_write(ioaddr, lp->hacr,
2048 (char *) &psa.psa_encryption_select -
2049 (char *) &psa,
2050 (unsigned char *) &psa.
2051 psa_encryption_select, 8 + 1);
2053 mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
2054 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
2055 mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
2056 (unsigned char *) &psa.
2057 psa_encryption_key, 8);
2060 /* disable encryption */
2061 if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
2062 psa.psa_encryption_select = 0;
2063 psa_write(ioaddr, lp->hacr,
2064 (char *) &psa.psa_encryption_select -
2065 (char *) &psa,
2066 (unsigned char *) &psa.
2067 psa_encryption_select, 1);
2069 mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
2071 /* update the Wavelan checksum */
2072 update_psa_checksum(dev, ioaddr, lp->hacr);
2075 /* Enable interrupts and restore flags. */
2076 spin_unlock_irqrestore(&lp->spinlock, flags);
2078 return ret;
2081 /*------------------------------------------------------------------*/
2083 * Wireless Handler : get encryption key
2085 static int wavelan_get_encode(struct net_device *dev,
2086 struct iw_request_info *info,
2087 union iwreq_data *wrqu,
2088 char *extra)
2090 unsigned long ioaddr = dev->base_addr;
2091 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
2092 psa_t psa;
2093 unsigned long flags;
2094 int ret = 0;
2096 /* Disable interrupts and save flags. */
2097 spin_lock_irqsave(&lp->spinlock, flags);
2099 /* Check if encryption is available */
2100 if (!mmc_encr(ioaddr)) {
2101 ret = -EOPNOTSUPP;
2102 } else {
2103 /* Read the encryption key */
2104 psa_read(ioaddr, lp->hacr,
2105 (char *) &psa.psa_encryption_select -
2106 (char *) &psa,
2107 (unsigned char *) &psa.
2108 psa_encryption_select, 1 + 8);
2110 /* encryption is enabled ? */
2111 if (psa.psa_encryption_select)
2112 wrqu->encoding.flags = IW_ENCODE_ENABLED;
2113 else
2114 wrqu->encoding.flags = IW_ENCODE_DISABLED;
2115 wrqu->encoding.flags |= mmc_encr(ioaddr);
2117 /* Copy the key to the user buffer */
2118 wrqu->encoding.length = 8;
2119 memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
2122 /* Enable interrupts and restore flags. */
2123 spin_unlock_irqrestore(&lp->spinlock, flags);
2125 return ret;
2128 /*------------------------------------------------------------------*/
2130 * Wireless Handler : get range info
2132 static int wavelan_get_range(struct net_device *dev,
2133 struct iw_request_info *info,
2134 union iwreq_data *wrqu,
2135 char *extra)
2137 unsigned long ioaddr = dev->base_addr;
2138 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
2139 struct iw_range *range = (struct iw_range *) extra;
2140 unsigned long flags;
2141 int ret = 0;
2143 /* Set the length (very important for backward compatibility) */
2144 wrqu->data.length = sizeof(struct iw_range);
2146 /* Set all the info we don't care or don't know about to zero */
2147 memset(range, 0, sizeof(struct iw_range));
2149 /* Set the Wireless Extension versions */
2150 range->we_version_compiled = WIRELESS_EXT;
2151 range->we_version_source = 9;
2153 /* Set information in the range struct. */
2154 range->throughput = 1.6 * 1000 * 1000; /* don't argue on this ! */
2155 range->min_nwid = 0x0000;
2156 range->max_nwid = 0xFFFF;
2158 range->sensitivity = 0x3F;
2159 range->max_qual.qual = MMR_SGNL_QUAL;
2160 range->max_qual.level = MMR_SIGNAL_LVL;
2161 range->max_qual.noise = MMR_SILENCE_LVL;
2162 range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
2163 /* Need to get better values for those two */
2164 range->avg_qual.level = 30;
2165 range->avg_qual.noise = 8;
2167 range->num_bitrates = 1;
2168 range->bitrate[0] = 2000000; /* 2 Mb/s */
2170 /* Event capability (kernel + driver) */
2171 range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
2172 IW_EVENT_CAPA_MASK(0x8B04));
2173 range->event_capa[1] = IW_EVENT_CAPA_K_1;
2175 /* Disable interrupts and save flags. */
2176 spin_lock_irqsave(&lp->spinlock, flags);
2178 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
2179 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
2180 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
2181 range->num_channels = 10;
2182 range->num_frequency = wv_frequency_list(ioaddr, range->freq,
2183 IW_MAX_FREQUENCIES);
2184 } else
2185 range->num_channels = range->num_frequency = 0;
2187 /* Encryption supported ? */
2188 if (mmc_encr(ioaddr)) {
2189 range->encoding_size[0] = 8; /* DES = 64 bits key */
2190 range->num_encoding_sizes = 1;
2191 range->max_encoding_tokens = 1; /* Only one key possible */
2192 } else {
2193 range->num_encoding_sizes = 0;
2194 range->max_encoding_tokens = 0;
2197 /* Enable interrupts and restore flags. */
2198 spin_unlock_irqrestore(&lp->spinlock, flags);
2200 return ret;
2203 /*------------------------------------------------------------------*/
2205 * Wireless Private Handler : set quality threshold
2207 static int wavelan_set_qthr(struct net_device *dev,
2208 struct iw_request_info *info,
2209 union iwreq_data *wrqu,
2210 char *extra)
2212 unsigned long ioaddr = dev->base_addr;
2213 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
2214 psa_t psa;
2215 unsigned long flags;
2217 /* Disable interrupts and save flags. */
2218 spin_lock_irqsave(&lp->spinlock, flags);
2220 psa.psa_quality_thr = *(extra) & 0x0F;
2221 psa_write(ioaddr, lp->hacr,
2222 (char *) &psa.psa_quality_thr - (char *) &psa,
2223 (unsigned char *) &psa.psa_quality_thr, 1);
2224 /* update the Wavelan checksum */
2225 update_psa_checksum(dev, ioaddr, lp->hacr);
2226 mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
2227 psa.psa_quality_thr);
2229 /* Enable interrupts and restore flags. */
2230 spin_unlock_irqrestore(&lp->spinlock, flags);
2232 return 0;
2235 /*------------------------------------------------------------------*/
2237 * Wireless Private Handler : get quality threshold
2239 static int wavelan_get_qthr(struct net_device *dev,
2240 struct iw_request_info *info,
2241 union iwreq_data *wrqu,
2242 char *extra)
2244 unsigned long ioaddr = dev->base_addr;
2245 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
2246 psa_t psa;
2247 unsigned long flags;
2249 /* Disable interrupts and save flags. */
2250 spin_lock_irqsave(&lp->spinlock, flags);
2252 psa_read(ioaddr, lp->hacr,
2253 (char *) &psa.psa_quality_thr - (char *) &psa,
2254 (unsigned char *) &psa.psa_quality_thr, 1);
2255 *(extra) = psa.psa_quality_thr & 0x0F;
2257 /* Enable interrupts and restore flags. */
2258 spin_unlock_irqrestore(&lp->spinlock, flags);
2260 return 0;
2263 #ifdef HISTOGRAM
2264 /*------------------------------------------------------------------*/
2266 * Wireless Private Handler : set histogram
2268 static int wavelan_set_histo(struct net_device *dev,
2269 struct iw_request_info *info,
2270 union iwreq_data *wrqu,
2271 char *extra)
2273 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
2275 /* Check the number of intervals. */
2276 if (wrqu->data.length > 16) {
2277 return(-E2BIG);
2280 /* Disable histo while we copy the addresses.
2281 * As we don't disable interrupts, we need to do this */
2282 lp->his_number = 0;
2284 /* Are there ranges to copy? */
2285 if (wrqu->data.length > 0) {
2286 /* Copy interval ranges to the driver */
2287 memcpy(lp->his_range, extra, wrqu->data.length);
2290 int i;
2291 printk(KERN_DEBUG "Histo :");
2292 for(i = 0; i < wrqu->data.length; i++)
2293 printk(" %d", lp->his_range[i]);
2294 printk("\n");
2297 /* Reset result structure. */
2298 memset(lp->his_sum, 0x00, sizeof(long) * 16);
2301 /* Now we can set the number of ranges */
2302 lp->his_number = wrqu->data.length;
2304 return(0);
2307 /*------------------------------------------------------------------*/
2309 * Wireless Private Handler : get histogram
2311 static int wavelan_get_histo(struct net_device *dev,
2312 struct iw_request_info *info,
2313 union iwreq_data *wrqu,
2314 char *extra)
2316 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
2318 /* Set the number of intervals. */
2319 wrqu->data.length = lp->his_number;
2321 /* Give back the distribution statistics */
2322 if(lp->his_number > 0)
2323 memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
2325 return(0);
2327 #endif /* HISTOGRAM */
2329 /*------------------------------------------------------------------*/
2331 * Structures to export the Wireless Handlers
2334 static const iw_handler wavelan_handler[] =
2336 NULL, /* SIOCSIWNAME */
2337 wavelan_get_name, /* SIOCGIWNAME */
2338 wavelan_set_nwid, /* SIOCSIWNWID */
2339 wavelan_get_nwid, /* SIOCGIWNWID */
2340 wavelan_set_freq, /* SIOCSIWFREQ */
2341 wavelan_get_freq, /* SIOCGIWFREQ */
2342 NULL, /* SIOCSIWMODE */
2343 NULL, /* SIOCGIWMODE */
2344 wavelan_set_sens, /* SIOCSIWSENS */
2345 wavelan_get_sens, /* SIOCGIWSENS */
2346 NULL, /* SIOCSIWRANGE */
2347 wavelan_get_range, /* SIOCGIWRANGE */
2348 NULL, /* SIOCSIWPRIV */
2349 NULL, /* SIOCGIWPRIV */
2350 NULL, /* SIOCSIWSTATS */
2351 NULL, /* SIOCGIWSTATS */
2352 iw_handler_set_spy, /* SIOCSIWSPY */
2353 iw_handler_get_spy, /* SIOCGIWSPY */
2354 iw_handler_set_thrspy, /* SIOCSIWTHRSPY */
2355 iw_handler_get_thrspy, /* SIOCGIWTHRSPY */
2356 NULL, /* SIOCSIWAP */
2357 NULL, /* SIOCGIWAP */
2358 NULL, /* -- hole -- */
2359 NULL, /* SIOCGIWAPLIST */
2360 NULL, /* -- hole -- */
2361 NULL, /* -- hole -- */
2362 NULL, /* SIOCSIWESSID */
2363 NULL, /* SIOCGIWESSID */
2364 NULL, /* SIOCSIWNICKN */
2365 NULL, /* SIOCGIWNICKN */
2366 NULL, /* -- hole -- */
2367 NULL, /* -- hole -- */
2368 NULL, /* SIOCSIWRATE */
2369 NULL, /* SIOCGIWRATE */
2370 NULL, /* SIOCSIWRTS */
2371 NULL, /* SIOCGIWRTS */
2372 NULL, /* SIOCSIWFRAG */
2373 NULL, /* SIOCGIWFRAG */
2374 NULL, /* SIOCSIWTXPOW */
2375 NULL, /* SIOCGIWTXPOW */
2376 NULL, /* SIOCSIWRETRY */
2377 NULL, /* SIOCGIWRETRY */
2378 /* Bummer ! Why those are only at the end ??? */
2379 wavelan_set_encode, /* SIOCSIWENCODE */
2380 wavelan_get_encode, /* SIOCGIWENCODE */
2383 static const iw_handler wavelan_private_handler[] =
2385 wavelan_set_qthr, /* SIOCIWFIRSTPRIV */
2386 wavelan_get_qthr, /* SIOCIWFIRSTPRIV + 1 */
2387 #ifdef HISTOGRAM
2388 wavelan_set_histo, /* SIOCIWFIRSTPRIV + 2 */
2389 wavelan_get_histo, /* SIOCIWFIRSTPRIV + 3 */
2390 #endif /* HISTOGRAM */
2393 static const struct iw_priv_args wavelan_private_args[] = {
2394 /*{ cmd, set_args, get_args, name } */
2395 { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
2396 { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
2397 { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" },
2398 { SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" },
2401 static const struct iw_handler_def wavelan_handler_def =
2403 .num_standard = ARRAY_SIZE(wavelan_handler),
2404 .num_private = ARRAY_SIZE(wavelan_private_handler),
2405 .num_private_args = ARRAY_SIZE(wavelan_private_args),
2406 .standard = wavelan_handler,
2407 .private = wavelan_private_handler,
2408 .private_args = wavelan_private_args,
2409 .get_wireless_stats = wavelan_get_wireless_stats,
2412 /*------------------------------------------------------------------*/
2414 * Get wireless statistics.
2415 * Called by /proc/net/wireless
2417 static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
2419 unsigned long ioaddr = dev->base_addr;
2420 net_local *lp = (net_local *) dev->priv;
2421 mmr_t m;
2422 iw_stats *wstats;
2423 unsigned long flags;
2425 #ifdef DEBUG_IOCTL_TRACE
2426 printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
2427 dev->name);
2428 #endif
2430 /* Check */
2431 if (lp == (net_local *) NULL)
2432 return (iw_stats *) NULL;
2434 /* Disable interrupts and save flags. */
2435 spin_lock_irqsave(&lp->spinlock, flags);
2437 wstats = &lp->wstats;
2439 /* Get data from the mmc. */
2440 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2442 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
2443 mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
2445 mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
2448 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2450 /* Copy data to wireless stuff. */
2451 wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
2452 wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
2453 wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
2454 wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
2455 wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7)
2456 | ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6)
2457 | ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
2458 wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
2459 wstats->discard.code = 0L;
2460 wstats->discard.misc = 0L;
2462 /* Enable interrupts and restore flags. */
2463 spin_unlock_irqrestore(&lp->spinlock, flags);
2465 #ifdef DEBUG_IOCTL_TRACE
2466 printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
2467 dev->name);
2468 #endif
2469 return &lp->wstats;
2472 /************************* PACKET RECEPTION *************************/
2474 * This part deals with receiving the packets.
2475 * The interrupt handler gets an interrupt when a packet has been
2476 * successfully received and calls this part.
2479 /*------------------------------------------------------------------*/
2481 * This routine does the actual copying of data (including the Ethernet
2482 * header structure) from the WaveLAN card to an sk_buff chain that
2483 * will be passed up to the network interface layer. NOTE: we
2484 * currently don't handle trailer protocols (neither does the rest of
2485 * the network interface), so if that is needed, it will (at least in
2486 * part) be added here. The contents of the receive ring buffer are
2487 * copied to a message chain that is then passed to the kernel.
2489 * Note: if any errors occur, the packet is "dropped on the floor".
2490 * (called by wv_packet_rcv())
2492 static void
2493 wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
2495 net_local *lp = (net_local *) dev->priv;
2496 unsigned long ioaddr = dev->base_addr;
2497 struct sk_buff *skb;
2499 #ifdef DEBUG_RX_TRACE
2500 printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
2501 dev->name, buf_off, sksize);
2502 #endif
2504 /* Allocate buffer for the data */
2505 if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
2506 #ifdef DEBUG_RX_ERROR
2507 printk(KERN_INFO
2508 "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
2509 dev->name, sksize);
2510 #endif
2511 lp->stats.rx_dropped++;
2512 return;
2515 /* Copy the packet to the buffer. */
2516 obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
2517 skb->protocol = eth_type_trans(skb, dev);
2519 #ifdef DEBUG_RX_INFO
2520 wv_packet_info(skb_mac_header(skb), sksize, dev->name,
2521 "wv_packet_read");
2522 #endif /* DEBUG_RX_INFO */
2524 /* Statistics-gathering and associated stuff.
2525 * It seem a bit messy with all the define, but it's really
2526 * simple... */
2527 if (
2528 #ifdef IW_WIRELESS_SPY /* defined in iw_handler.h */
2529 (lp->spy_data.spy_number > 0) ||
2530 #endif /* IW_WIRELESS_SPY */
2531 #ifdef HISTOGRAM
2532 (lp->his_number > 0) ||
2533 #endif /* HISTOGRAM */
2534 0) {
2535 u8 stats[3]; /* signal level, noise level, signal quality */
2537 /* Read signal level, silence level and signal quality bytes */
2538 /* Note: in the PCMCIA hardware, these are part of the frame.
2539 * It seems that for the ISA hardware, it's nowhere to be
2540 * found in the frame, so I'm obliged to do this (it has a
2541 * side effect on /proc/net/wireless).
2542 * Any ideas?
2544 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2545 mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
2546 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2548 #ifdef DEBUG_RX_INFO
2549 printk(KERN_DEBUG
2550 "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
2551 dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
2552 stats[2] & 0x0F);
2553 #endif
2555 /* Spying stuff */
2556 #ifdef IW_WIRELESS_SPY
2557 wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE,
2558 stats);
2559 #endif /* IW_WIRELESS_SPY */
2560 #ifdef HISTOGRAM
2561 wl_his_gather(dev, stats);
2562 #endif /* HISTOGRAM */
2566 * Hand the packet to the network module.
2568 netif_rx(skb);
2570 /* Keep statistics up to date */
2571 dev->last_rx = jiffies;
2572 lp->stats.rx_packets++;
2573 lp->stats.rx_bytes += sksize;
2575 #ifdef DEBUG_RX_TRACE
2576 printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
2577 #endif
2580 /*------------------------------------------------------------------*/
2582 * Transfer as many packets as we can
2583 * from the device RAM.
2584 * (called in wavelan_interrupt()).
2585 * Note : the spinlock is already grabbed for us.
2587 static void wv_receive(struct net_device * dev)
2589 unsigned long ioaddr = dev->base_addr;
2590 net_local *lp = (net_local *) dev->priv;
2591 fd_t fd;
2592 rbd_t rbd;
2593 int nreaped = 0;
2595 #ifdef DEBUG_RX_TRACE
2596 printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
2597 #endif
2599 /* Loop on each received packet. */
2600 for (;;) {
2601 obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
2602 sizeof(fd));
2604 /* Note about the status :
2605 * It start up to be 0 (the value we set). Then, when the RU
2606 * grab the buffer to prepare for reception, it sets the
2607 * FD_STATUS_B flag. When the RU has finished receiving the
2608 * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
2609 * completion and set the other flags to indicate the eventual
2610 * errors. FD_STATUS_OK indicates that the reception was OK.
2613 /* If the current frame is not complete, we have reached the end. */
2614 if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
2615 break; /* This is how we exit the loop. */
2617 nreaped++;
2619 /* Check whether frame was correctly received. */
2620 if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
2621 /* Does the frame contain a pointer to the data? Let's check. */
2622 if (fd.fd_rbd_offset != I82586NULL) {
2623 /* Read the receive buffer descriptor */
2624 obram_read(ioaddr, fd.fd_rbd_offset,
2625 (unsigned char *) &rbd,
2626 sizeof(rbd));
2628 #ifdef DEBUG_RX_ERROR
2629 if ((rbd.rbd_status & RBD_STATUS_EOF) !=
2630 RBD_STATUS_EOF) printk(KERN_INFO
2631 "%s: wv_receive(): missing EOF flag.\n",
2632 dev->name);
2634 if ((rbd.rbd_status & RBD_STATUS_F) !=
2635 RBD_STATUS_F) printk(KERN_INFO
2636 "%s: wv_receive(): missing F flag.\n",
2637 dev->name);
2638 #endif /* DEBUG_RX_ERROR */
2640 /* Read the packet and transmit to Linux */
2641 wv_packet_read(dev, rbd.rbd_bufl,
2642 rbd.
2643 rbd_status &
2644 RBD_STATUS_ACNT);
2646 #ifdef DEBUG_RX_ERROR
2647 else /* if frame has no data */
2648 printk(KERN_INFO
2649 "%s: wv_receive(): frame has no data.\n",
2650 dev->name);
2651 #endif
2652 } else { /* If reception was no successful */
2654 lp->stats.rx_errors++;
2656 #ifdef DEBUG_RX_INFO
2657 printk(KERN_DEBUG
2658 "%s: wv_receive(): frame not received successfully (%X).\n",
2659 dev->name, fd.fd_status);
2660 #endif
2662 #ifdef DEBUG_RX_ERROR
2663 if ((fd.fd_status & FD_STATUS_S6) != 0)
2664 printk(KERN_INFO
2665 "%s: wv_receive(): no EOF flag.\n",
2666 dev->name);
2667 #endif
2669 if ((fd.fd_status & FD_STATUS_S7) != 0) {
2670 lp->stats.rx_length_errors++;
2671 #ifdef DEBUG_RX_FAIL
2672 printk(KERN_DEBUG
2673 "%s: wv_receive(): frame too short.\n",
2674 dev->name);
2675 #endif
2678 if ((fd.fd_status & FD_STATUS_S8) != 0) {
2679 lp->stats.rx_over_errors++;
2680 #ifdef DEBUG_RX_FAIL
2681 printk(KERN_DEBUG
2682 "%s: wv_receive(): rx DMA overrun.\n",
2683 dev->name);
2684 #endif
2687 if ((fd.fd_status & FD_STATUS_S9) != 0) {
2688 lp->stats.rx_fifo_errors++;
2689 #ifdef DEBUG_RX_FAIL
2690 printk(KERN_DEBUG
2691 "%s: wv_receive(): ran out of resources.\n",
2692 dev->name);
2693 #endif
2696 if ((fd.fd_status & FD_STATUS_S10) != 0) {
2697 lp->stats.rx_frame_errors++;
2698 #ifdef DEBUG_RX_FAIL
2699 printk(KERN_DEBUG
2700 "%s: wv_receive(): alignment error.\n",
2701 dev->name);
2702 #endif
2705 if ((fd.fd_status & FD_STATUS_S11) != 0) {
2706 lp->stats.rx_crc_errors++;
2707 #ifdef DEBUG_RX_FAIL
2708 printk(KERN_DEBUG
2709 "%s: wv_receive(): CRC error.\n",
2710 dev->name);
2711 #endif
2715 fd.fd_status = 0;
2716 obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
2717 (unsigned char *) &fd.fd_status,
2718 sizeof(fd.fd_status));
2720 fd.fd_command = FD_COMMAND_EL;
2721 obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
2722 (unsigned char *) &fd.fd_command,
2723 sizeof(fd.fd_command));
2725 fd.fd_command = 0;
2726 obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
2727 (unsigned char *) &fd.fd_command,
2728 sizeof(fd.fd_command));
2730 lp->rx_last = lp->rx_head;
2731 lp->rx_head = fd.fd_link_offset;
2732 } /* for(;;) -> loop on all frames */
2734 #ifdef DEBUG_RX_INFO
2735 if (nreaped > 1)
2736 printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
2737 dev->name, nreaped);
2738 #endif
2739 #ifdef DEBUG_RX_TRACE
2740 printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
2741 #endif
2744 /*********************** PACKET TRANSMISSION ***********************/
2746 * This part deals with sending packets through the WaveLAN.
2750 /*------------------------------------------------------------------*/
2752 * This routine fills in the appropriate registers and memory
2753 * locations on the WaveLAN card and starts the card off on
2754 * the transmit.
2756 * The principle:
2757 * Each block contains a transmit command, a NOP command,
2758 * a transmit block descriptor and a buffer.
2759 * The CU read the transmit block which point to the tbd,
2760 * read the tbd and the content of the buffer.
2761 * When it has finish with it, it goes to the next command
2762 * which in our case is the NOP. The NOP points on itself,
2763 * so the CU stop here.
2764 * When we add the next block, we modify the previous nop
2765 * to make it point on the new tx command.
2766 * Simple, isn't it ?
2768 * (called in wavelan_packet_xmit())
2770 static int wv_packet_write(struct net_device * dev, void *buf, short length)
2772 net_local *lp = (net_local *) dev->priv;
2773 unsigned long ioaddr = dev->base_addr;
2774 unsigned short txblock;
2775 unsigned short txpred;
2776 unsigned short tx_addr;
2777 unsigned short nop_addr;
2778 unsigned short tbd_addr;
2779 unsigned short buf_addr;
2780 ac_tx_t tx;
2781 ac_nop_t nop;
2782 tbd_t tbd;
2783 int clen = length;
2784 unsigned long flags;
2786 #ifdef DEBUG_TX_TRACE
2787 printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
2788 length);
2789 #endif
2791 spin_lock_irqsave(&lp->spinlock, flags);
2793 /* Check nothing bad has happened */
2794 if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
2795 #ifdef DEBUG_TX_ERROR
2796 printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
2797 dev->name);
2798 #endif
2799 spin_unlock_irqrestore(&lp->spinlock, flags);
2800 return 1;
2803 /* Calculate addresses of next block and previous block. */
2804 txblock = lp->tx_first_free;
2805 txpred = txblock - TXBLOCKZ;
2806 if (txpred < OFFSET_CU)
2807 txpred += NTXBLOCKS * TXBLOCKZ;
2808 lp->tx_first_free += TXBLOCKZ;
2809 if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
2810 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
2812 lp->tx_n_in_use++;
2814 /* Calculate addresses of the different parts of the block. */
2815 tx_addr = txblock;
2816 nop_addr = tx_addr + sizeof(tx);
2817 tbd_addr = nop_addr + sizeof(nop);
2818 buf_addr = tbd_addr + sizeof(tbd);
2821 * Transmit command
2823 tx.tx_h.ac_status = 0;
2824 obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
2825 (unsigned char *) &tx.tx_h.ac_status,
2826 sizeof(tx.tx_h.ac_status));
2829 * NOP command
2831 nop.nop_h.ac_status = 0;
2832 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2833 (unsigned char *) &nop.nop_h.ac_status,
2834 sizeof(nop.nop_h.ac_status));
2835 nop.nop_h.ac_link = nop_addr;
2836 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2837 (unsigned char *) &nop.nop_h.ac_link,
2838 sizeof(nop.nop_h.ac_link));
2841 * Transmit buffer descriptor
2843 tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
2844 tbd.tbd_next_bd_offset = I82586NULL;
2845 tbd.tbd_bufl = buf_addr;
2846 tbd.tbd_bufh = 0;
2847 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
2850 * Data
2852 obram_write(ioaddr, buf_addr, buf, length);
2855 * Overwrite the predecessor NOP link
2856 * so that it points to this txblock.
2858 nop_addr = txpred + sizeof(tx);
2859 nop.nop_h.ac_status = 0;
2860 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2861 (unsigned char *) &nop.nop_h.ac_status,
2862 sizeof(nop.nop_h.ac_status));
2863 nop.nop_h.ac_link = txblock;
2864 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2865 (unsigned char *) &nop.nop_h.ac_link,
2866 sizeof(nop.nop_h.ac_link));
2868 /* Make sure the watchdog will keep quiet for a while */
2869 dev->trans_start = jiffies;
2871 /* Keep stats up to date. */
2872 lp->stats.tx_bytes += length;
2874 if (lp->tx_first_in_use == I82586NULL)
2875 lp->tx_first_in_use = txblock;
2877 if (lp->tx_n_in_use < NTXBLOCKS - 1)
2878 netif_wake_queue(dev);
2880 spin_unlock_irqrestore(&lp->spinlock, flags);
2882 #ifdef DEBUG_TX_INFO
2883 wv_packet_info((u8 *) buf, length, dev->name,
2884 "wv_packet_write");
2885 #endif /* DEBUG_TX_INFO */
2887 #ifdef DEBUG_TX_TRACE
2888 printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
2889 #endif
2891 return 0;
2894 /*------------------------------------------------------------------*/
2896 * This routine is called when we want to send a packet (NET3 callback)
2897 * In this routine, we check if the harware is ready to accept
2898 * the packet. We also prevent reentrance. Then we call the function
2899 * to send the packet.
2901 static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev)
2903 net_local *lp = (net_local *) dev->priv;
2904 unsigned long flags;
2905 char data[ETH_ZLEN];
2907 #ifdef DEBUG_TX_TRACE
2908 printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
2909 (unsigned) skb);
2910 #endif
2913 * Block a timer-based transmit from overlapping.
2914 * In other words, prevent reentering this routine.
2916 netif_stop_queue(dev);
2918 /* If somebody has asked to reconfigure the controller,
2919 * we can do it now.
2921 if (lp->reconfig_82586) {
2922 spin_lock_irqsave(&lp->spinlock, flags);
2923 wv_82586_config(dev);
2924 spin_unlock_irqrestore(&lp->spinlock, flags);
2925 /* Check that we can continue */
2926 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
2927 return 1;
2929 #ifdef DEBUG_TX_ERROR
2930 if (skb->next)
2931 printk(KERN_INFO "skb has next\n");
2932 #endif
2934 /* Do we need some padding? */
2935 /* Note : on wireless the propagation time is in the order of 1us,
2936 * and we don't have the Ethernet specific requirement of beeing
2937 * able to detect collisions, therefore in theory we don't really
2938 * need to pad. Jean II */
2939 if (skb->len < ETH_ZLEN) {
2940 memset(data, 0, ETH_ZLEN);
2941 skb_copy_from_linear_data(skb, data, skb->len);
2942 /* Write packet on the card */
2943 if(wv_packet_write(dev, data, ETH_ZLEN))
2944 return 1; /* We failed */
2946 else if(wv_packet_write(dev, skb->data, skb->len))
2947 return 1; /* We failed */
2950 dev_kfree_skb(skb);
2952 #ifdef DEBUG_TX_TRACE
2953 printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
2954 #endif
2955 return 0;
2958 /*********************** HARDWARE CONFIGURATION ***********************/
2960 * This part does the real job of starting and configuring the hardware.
2963 /*--------------------------------------------------------------------*/
2965 * Routine to initialize the Modem Management Controller.
2966 * (called by wv_hw_reset())
2968 static int wv_mmc_init(struct net_device * dev)
2970 unsigned long ioaddr = dev->base_addr;
2971 net_local *lp = (net_local *) dev->priv;
2972 psa_t psa;
2973 mmw_t m;
2974 int configured;
2976 #ifdef DEBUG_CONFIG_TRACE
2977 printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
2978 #endif
2980 /* Read the parameter storage area. */
2981 psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
2983 #ifdef USE_PSA_CONFIG
2984 configured = psa.psa_conf_status & 1;
2985 #else
2986 configured = 0;
2987 #endif
2989 /* Is the PSA is not configured */
2990 if (!configured) {
2991 /* User will be able to configure NWID later (with iwconfig). */
2992 psa.psa_nwid[0] = 0;
2993 psa.psa_nwid[1] = 0;
2995 /* no NWID checking since NWID is not set */
2996 psa.psa_nwid_select = 0;
2998 /* Disable encryption */
2999 psa.psa_encryption_select = 0;
3001 /* Set to standard values:
3002 * 0x04 for AT,
3003 * 0x01 for MCA,
3004 * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
3006 if (psa.psa_comp_number & 1)
3007 psa.psa_thr_pre_set = 0x01;
3008 else
3009 psa.psa_thr_pre_set = 0x04;
3010 psa.psa_quality_thr = 0x03;
3012 /* It is configured */
3013 psa.psa_conf_status |= 1;
3015 #ifdef USE_PSA_CONFIG
3016 /* Write the psa. */
3017 psa_write(ioaddr, lp->hacr,
3018 (char *) psa.psa_nwid - (char *) &psa,
3019 (unsigned char *) psa.psa_nwid, 4);
3020 psa_write(ioaddr, lp->hacr,
3021 (char *) &psa.psa_thr_pre_set - (char *) &psa,
3022 (unsigned char *) &psa.psa_thr_pre_set, 1);
3023 psa_write(ioaddr, lp->hacr,
3024 (char *) &psa.psa_quality_thr - (char *) &psa,
3025 (unsigned char *) &psa.psa_quality_thr, 1);
3026 psa_write(ioaddr, lp->hacr,
3027 (char *) &psa.psa_conf_status - (char *) &psa,
3028 (unsigned char *) &psa.psa_conf_status, 1);
3029 /* update the Wavelan checksum */
3030 update_psa_checksum(dev, ioaddr, lp->hacr);
3031 #endif
3034 /* Zero the mmc structure. */
3035 memset(&m, 0x00, sizeof(m));
3037 /* Copy PSA info to the mmc. */
3038 m.mmw_netw_id_l = psa.psa_nwid[1];
3039 m.mmw_netw_id_h = psa.psa_nwid[0];
3041 if (psa.psa_nwid_select & 1)
3042 m.mmw_loopt_sel = 0x00;
3043 else
3044 m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
3046 memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
3047 sizeof(m.mmw_encr_key));
3049 if (psa.psa_encryption_select)
3050 m.mmw_encr_enable =
3051 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
3052 else
3053 m.mmw_encr_enable = 0;
3055 m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
3056 m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
3059 * Set default modem control parameters.
3060 * See NCR document 407-0024326 Rev. A.
3062 m.mmw_jabber_enable = 0x01;
3063 m.mmw_freeze = 0;
3064 m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
3065 m.mmw_ifs = 0x20;
3066 m.mmw_mod_delay = 0x04;
3067 m.mmw_jam_time = 0x38;
3069 m.mmw_des_io_invert = 0;
3070 m.mmw_decay_prm = 0;
3071 m.mmw_decay_updat_prm = 0;
3073 /* Write all info to MMC. */
3074 mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
3076 /* The following code starts the modem of the 2.00 frequency
3077 * selectable cards at power on. It's not strictly needed for the
3078 * following boots.
3079 * The original patch was by Joe Finney for the PCMCIA driver, but
3080 * I've cleaned it up a bit and added documentation.
3081 * Thanks to Loeke Brederveld from Lucent for the info.
3084 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
3085 * Does it work for everybody, especially old cards? */
3086 /* Note: WFREQSEL verifies that it is able to read a sensible
3087 * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
3088 * is 0xA (Xilinx version) or 0xB (Ariadne version).
3089 * My test is more crude but does work. */
3090 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
3091 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
3092 /* We must download the frequency parameters to the
3093 * synthesizers (from the EEPROM - area 1)
3094 * Note: as the EEPROM is automatically decremented, we set the end
3095 * if the area... */
3096 m.mmw_fee_addr = 0x0F;
3097 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3098 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3099 (unsigned char *) &m.mmw_fee_ctrl, 2);
3101 /* Wait until the download is finished. */
3102 fee_wait(ioaddr, 100, 100);
3104 #ifdef DEBUG_CONFIG_INFO
3105 /* The frequency was in the last word downloaded. */
3106 mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
3107 (unsigned char *) &m.mmw_fee_data_l, 2);
3109 /* Print some info for the user. */
3110 printk(KERN_DEBUG
3111 "%s: WaveLAN 2.00 recognised (frequency select). Current frequency = %ld\n",
3112 dev->name,
3113 ((m.
3114 mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
3115 5 / 2 + 24000L);
3116 #endif
3118 /* We must now download the power adjust value (gain) to
3119 * the synthesizers (from the EEPROM - area 7 - DAC). */
3120 m.mmw_fee_addr = 0x61;
3121 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3122 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3123 (unsigned char *) &m.mmw_fee_ctrl, 2);
3125 /* Wait until the download is finished. */
3127 /* if 2.00 card */
3128 #ifdef DEBUG_CONFIG_TRACE
3129 printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
3130 #endif
3131 return 0;
3134 /*------------------------------------------------------------------*/
3136 * Construct the fd and rbd structures.
3137 * Start the receive unit.
3138 * (called by wv_hw_reset())
3140 static int wv_ru_start(struct net_device * dev)
3142 net_local *lp = (net_local *) dev->priv;
3143 unsigned long ioaddr = dev->base_addr;
3144 u16 scb_cs;
3145 fd_t fd;
3146 rbd_t rbd;
3147 u16 rx;
3148 u16 rx_next;
3149 int i;
3151 #ifdef DEBUG_CONFIG_TRACE
3152 printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
3153 #endif
3155 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3156 (unsigned char *) &scb_cs, sizeof(scb_cs));
3157 if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
3158 return 0;
3160 lp->rx_head = OFFSET_RU;
3162 for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
3163 rx_next =
3164 (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
3166 fd.fd_status = 0;
3167 fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
3168 fd.fd_link_offset = rx_next;
3169 fd.fd_rbd_offset = rx + sizeof(fd);
3170 obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
3172 rbd.rbd_status = 0;
3173 rbd.rbd_next_rbd_offset = I82586NULL;
3174 rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
3175 rbd.rbd_bufh = 0;
3176 rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
3177 obram_write(ioaddr, rx + sizeof(fd),
3178 (unsigned char *) &rbd, sizeof(rbd));
3180 lp->rx_last = rx;
3183 obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
3184 (unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
3186 scb_cs = SCB_CMD_RUC_GO;
3187 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3188 (unsigned char *) &scb_cs, sizeof(scb_cs));
3190 set_chan_attn(ioaddr, lp->hacr);
3192 for (i = 1000; i > 0; i--) {
3193 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3194 (unsigned char *) &scb_cs, sizeof(scb_cs));
3195 if (scb_cs == 0)
3196 break;
3198 udelay(10);
3201 if (i <= 0) {
3202 #ifdef DEBUG_CONFIG_ERROR
3203 printk(KERN_INFO
3204 "%s: wavelan_ru_start(): board not accepting command.\n",
3205 dev->name);
3206 #endif
3207 return -1;
3209 #ifdef DEBUG_CONFIG_TRACE
3210 printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
3211 #endif
3212 return 0;
3215 /*------------------------------------------------------------------*/
3217 * Initialise the transmit blocks.
3218 * Start the command unit executing the NOP
3219 * self-loop of the first transmit block.
3221 * Here we create the list of send buffers used to transmit packets
3222 * between the PC and the command unit. For each buffer, we create a
3223 * buffer descriptor (pointing on the buffer), a transmit command
3224 * (pointing to the buffer descriptor) and a NOP command.
3225 * The transmit command is linked to the NOP, and the NOP to itself.
3226 * When we will have finished executing the transmit command, we will
3227 * then loop on the NOP. By releasing the NOP link to a new command,
3228 * we may send another buffer.
3230 * (called by wv_hw_reset())
3232 static int wv_cu_start(struct net_device * dev)
3234 net_local *lp = (net_local *) dev->priv;
3235 unsigned long ioaddr = dev->base_addr;
3236 int i;
3237 u16 txblock;
3238 u16 first_nop;
3239 u16 scb_cs;
3241 #ifdef DEBUG_CONFIG_TRACE
3242 printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
3243 #endif
3245 lp->tx_first_free = OFFSET_CU;
3246 lp->tx_first_in_use = I82586NULL;
3248 for (i = 0, txblock = OFFSET_CU;
3249 i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
3250 ac_tx_t tx;
3251 ac_nop_t nop;
3252 tbd_t tbd;
3253 unsigned short tx_addr;
3254 unsigned short nop_addr;
3255 unsigned short tbd_addr;
3256 unsigned short buf_addr;
3258 tx_addr = txblock;
3259 nop_addr = tx_addr + sizeof(tx);
3260 tbd_addr = nop_addr + sizeof(nop);
3261 buf_addr = tbd_addr + sizeof(tbd);
3263 tx.tx_h.ac_status = 0;
3264 tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
3265 tx.tx_h.ac_link = nop_addr;
3266 tx.tx_tbd_offset = tbd_addr;
3267 obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
3268 sizeof(tx));
3270 nop.nop_h.ac_status = 0;
3271 nop.nop_h.ac_command = acmd_nop;
3272 nop.nop_h.ac_link = nop_addr;
3273 obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
3274 sizeof(nop));
3276 tbd.tbd_status = TBD_STATUS_EOF;
3277 tbd.tbd_next_bd_offset = I82586NULL;
3278 tbd.tbd_bufl = buf_addr;
3279 tbd.tbd_bufh = 0;
3280 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
3281 sizeof(tbd));
3284 first_nop =
3285 OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
3286 obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
3287 (unsigned char *) &first_nop, sizeof(first_nop));
3289 scb_cs = SCB_CMD_CUC_GO;
3290 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3291 (unsigned char *) &scb_cs, sizeof(scb_cs));
3293 set_chan_attn(ioaddr, lp->hacr);
3295 for (i = 1000; i > 0; i--) {
3296 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3297 (unsigned char *) &scb_cs, sizeof(scb_cs));
3298 if (scb_cs == 0)
3299 break;
3301 udelay(10);
3304 if (i <= 0) {
3305 #ifdef DEBUG_CONFIG_ERROR
3306 printk(KERN_INFO
3307 "%s: wavelan_cu_start(): board not accepting command.\n",
3308 dev->name);
3309 #endif
3310 return -1;
3313 lp->tx_n_in_use = 0;
3314 netif_start_queue(dev);
3315 #ifdef DEBUG_CONFIG_TRACE
3316 printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
3317 #endif
3318 return 0;
3321 /*------------------------------------------------------------------*/
3323 * This routine does a standard configuration of the WaveLAN
3324 * controller (i82586).
3326 * It initialises the scp, iscp and scb structure
3327 * The first two are just pointers to the next.
3328 * The last one is used for basic configuration and for basic
3329 * communication (interrupt status).
3331 * (called by wv_hw_reset())
3333 static int wv_82586_start(struct net_device * dev)
3335 net_local *lp = (net_local *) dev->priv;
3336 unsigned long ioaddr = dev->base_addr;
3337 scp_t scp; /* system configuration pointer */
3338 iscp_t iscp; /* intermediate scp */
3339 scb_t scb; /* system control block */
3340 ach_t cb; /* Action command header */
3341 u8 zeroes[512];
3342 int i;
3344 #ifdef DEBUG_CONFIG_TRACE
3345 printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
3346 #endif
3349 * Clear the onboard RAM.
3351 memset(&zeroes[0], 0x00, sizeof(zeroes));
3352 for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
3353 obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
3356 * Construct the command unit structures:
3357 * scp, iscp, scb, cb.
3359 memset(&scp, 0x00, sizeof(scp));
3360 scp.scp_sysbus = SCP_SY_16BBUS;
3361 scp.scp_iscpl = OFFSET_ISCP;
3362 obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
3363 sizeof(scp));
3365 memset(&iscp, 0x00, sizeof(iscp));
3366 iscp.iscp_busy = 1;
3367 iscp.iscp_offset = OFFSET_SCB;
3368 obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3369 sizeof(iscp));
3371 /* Our first command is to reset the i82586. */
3372 memset(&scb, 0x00, sizeof(scb));
3373 scb.scb_command = SCB_CMD_RESET;
3374 scb.scb_cbl_offset = OFFSET_CU;
3375 scb.scb_rfa_offset = OFFSET_RU;
3376 obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3377 sizeof(scb));
3379 set_chan_attn(ioaddr, lp->hacr);
3381 /* Wait for command to finish. */
3382 for (i = 1000; i > 0; i--) {
3383 obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3384 sizeof(iscp));
3386 if (iscp.iscp_busy == (unsigned short) 0)
3387 break;
3389 udelay(10);
3392 if (i <= 0) {
3393 #ifdef DEBUG_CONFIG_ERROR
3394 printk(KERN_INFO
3395 "%s: wv_82586_start(): iscp_busy timeout.\n",
3396 dev->name);
3397 #endif
3398 return -1;
3401 /* Check command completion. */
3402 for (i = 15; i > 0; i--) {
3403 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3404 sizeof(scb));
3406 if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
3407 break;
3409 udelay(10);
3412 if (i <= 0) {
3413 #ifdef DEBUG_CONFIG_ERROR
3414 printk(KERN_INFO
3415 "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
3416 dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
3417 #endif
3418 return -1;
3421 wv_ack(dev);
3423 /* Set the action command header. */
3424 memset(&cb, 0x00, sizeof(cb));
3425 cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
3426 cb.ac_link = OFFSET_CU;
3427 obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3429 if (wv_synchronous_cmd(dev, "diag()") == -1)
3430 return -1;
3432 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3433 if (cb.ac_status & AC_SFLD_FAIL) {
3434 #ifdef DEBUG_CONFIG_ERROR
3435 printk(KERN_INFO
3436 "%s: wv_82586_start(): i82586 Self Test failed.\n",
3437 dev->name);
3438 #endif
3439 return -1;
3441 #ifdef DEBUG_I82586_SHOW
3442 wv_scb_show(ioaddr);
3443 #endif
3445 #ifdef DEBUG_CONFIG_TRACE
3446 printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
3447 #endif
3448 return 0;
3451 /*------------------------------------------------------------------*/
3453 * This routine does a standard configuration of the WaveLAN
3454 * controller (i82586).
3456 * This routine is a violent hack. We use the first free transmit block
3457 * to make our configuration. In the buffer area, we create the three
3458 * configuration commands (linked). We make the previous NOP point to
3459 * the beginning of the buffer instead of the tx command. After, we go
3460 * as usual to the NOP command.
3461 * Note that only the last command (mc_set) will generate an interrupt.
3463 * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
3465 static void wv_82586_config(struct net_device * dev)
3467 net_local *lp = (net_local *) dev->priv;
3468 unsigned long ioaddr = dev->base_addr;
3469 unsigned short txblock;
3470 unsigned short txpred;
3471 unsigned short tx_addr;
3472 unsigned short nop_addr;
3473 unsigned short tbd_addr;
3474 unsigned short cfg_addr;
3475 unsigned short ias_addr;
3476 unsigned short mcs_addr;
3477 ac_tx_t tx;
3478 ac_nop_t nop;
3479 ac_cfg_t cfg; /* Configure action */
3480 ac_ias_t ias; /* IA-setup action */
3481 ac_mcs_t mcs; /* Multicast setup */
3482 struct dev_mc_list *dmi;
3484 #ifdef DEBUG_CONFIG_TRACE
3485 printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
3486 #endif
3488 /* Check nothing bad has happened */
3489 if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
3490 #ifdef DEBUG_CONFIG_ERROR
3491 printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
3492 dev->name);
3493 #endif
3494 return;
3497 /* Calculate addresses of next block and previous block. */
3498 txblock = lp->tx_first_free;
3499 txpred = txblock - TXBLOCKZ;
3500 if (txpred < OFFSET_CU)
3501 txpred += NTXBLOCKS * TXBLOCKZ;
3502 lp->tx_first_free += TXBLOCKZ;
3503 if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
3504 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
3506 lp->tx_n_in_use++;
3508 /* Calculate addresses of the different parts of the block. */
3509 tx_addr = txblock;
3510 nop_addr = tx_addr + sizeof(tx);
3511 tbd_addr = nop_addr + sizeof(nop);
3512 cfg_addr = tbd_addr + sizeof(tbd_t); /* beginning of the buffer */
3513 ias_addr = cfg_addr + sizeof(cfg);
3514 mcs_addr = ias_addr + sizeof(ias);
3517 * Transmit command
3519 tx.tx_h.ac_status = 0xFFFF; /* Fake completion value */
3520 obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
3521 (unsigned char *) &tx.tx_h.ac_status,
3522 sizeof(tx.tx_h.ac_status));
3525 * NOP command
3527 nop.nop_h.ac_status = 0;
3528 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3529 (unsigned char *) &nop.nop_h.ac_status,
3530 sizeof(nop.nop_h.ac_status));
3531 nop.nop_h.ac_link = nop_addr;
3532 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3533 (unsigned char *) &nop.nop_h.ac_link,
3534 sizeof(nop.nop_h.ac_link));
3536 /* Create a configure action. */
3537 memset(&cfg, 0x00, sizeof(cfg));
3540 * For Linux we invert AC_CFG_ALOC() so as to conform
3541 * to the way that net packets reach us from above.
3542 * (See also ac_tx_t.)
3544 * Updated from Wavelan Manual WCIN085B
3546 cfg.cfg_byte_cnt =
3547 AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
3548 cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
3549 cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
3550 cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
3551 AC_CFG_ILPBCK(0) |
3552 AC_CFG_PRELEN(AC_CFG_PLEN_2) |
3553 AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
3554 cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
3555 AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
3556 cfg.cfg_ifs = 0x20;
3557 cfg.cfg_slotl = 0x0C;
3558 cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
3559 cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
3560 AC_CFG_BTSTF(0) |
3561 AC_CFG_CRC16(0) |
3562 AC_CFG_NCRC(0) |
3563 AC_CFG_TNCRS(1) |
3564 AC_CFG_MANCH(0) |
3565 AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
3566 cfg.cfg_byte15 = AC_CFG_ICDS(0) |
3567 AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
3569 cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
3571 cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
3573 cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
3574 cfg.cfg_h.ac_link = ias_addr;
3575 obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
3577 /* Set up the MAC address */
3578 memset(&ias, 0x00, sizeof(ias));
3579 ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
3580 ias.ias_h.ac_link = mcs_addr;
3581 memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
3582 sizeof(ias.ias_addr));
3583 obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
3585 /* Initialize adapter's Ethernet multicast addresses */
3586 memset(&mcs, 0x00, sizeof(mcs));
3587 mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
3588 mcs.mcs_h.ac_link = nop_addr;
3589 mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
3590 obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
3592 /* Any address to set? */
3593 if (lp->mc_count) {
3594 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3595 outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
3596 WAVELAN_ADDR_SIZE >> 1);
3598 #ifdef DEBUG_CONFIG_INFO
3599 printk(KERN_DEBUG
3600 "%s: wv_82586_config(): set %d multicast addresses:\n",
3601 dev->name, lp->mc_count);
3602 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3603 printk(KERN_DEBUG
3604 " %02x:%02x:%02x:%02x:%02x:%02x\n",
3605 dmi->dmi_addr[0], dmi->dmi_addr[1],
3606 dmi->dmi_addr[2], dmi->dmi_addr[3],
3607 dmi->dmi_addr[4], dmi->dmi_addr[5]);
3608 #endif
3612 * Overwrite the predecessor NOP link
3613 * so that it points to the configure action.
3615 nop_addr = txpred + sizeof(tx);
3616 nop.nop_h.ac_status = 0;
3617 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3618 (unsigned char *) &nop.nop_h.ac_status,
3619 sizeof(nop.nop_h.ac_status));
3620 nop.nop_h.ac_link = cfg_addr;
3621 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3622 (unsigned char *) &nop.nop_h.ac_link,
3623 sizeof(nop.nop_h.ac_link));
3625 /* Job done, clear the flag */
3626 lp->reconfig_82586 = 0;
3628 if (lp->tx_first_in_use == I82586NULL)
3629 lp->tx_first_in_use = txblock;
3631 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
3632 netif_stop_queue(dev);
3634 #ifdef DEBUG_CONFIG_TRACE
3635 printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
3636 #endif
3639 /*------------------------------------------------------------------*/
3641 * This routine, called by wavelan_close(), gracefully stops the
3642 * WaveLAN controller (i82586).
3643 * (called by wavelan_close())
3645 static void wv_82586_stop(struct net_device * dev)
3647 net_local *lp = (net_local *) dev->priv;
3648 unsigned long ioaddr = dev->base_addr;
3649 u16 scb_cmd;
3651 #ifdef DEBUG_CONFIG_TRACE
3652 printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
3653 #endif
3655 /* Suspend both command unit and receive unit. */
3656 scb_cmd =
3657 (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
3658 SCB_CMD_RUC_SUS);
3659 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3660 (unsigned char *) &scb_cmd, sizeof(scb_cmd));
3661 set_chan_attn(ioaddr, lp->hacr);
3663 /* No more interrupts */
3664 wv_ints_off(dev);
3666 #ifdef DEBUG_CONFIG_TRACE
3667 printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
3668 #endif
3671 /*------------------------------------------------------------------*/
3673 * Totally reset the WaveLAN and restart it.
3674 * Performs the following actions:
3675 * 1. A power reset (reset DMA)
3676 * 2. Initialize the radio modem (using wv_mmc_init)
3677 * 3. Reset & Configure LAN controller (using wv_82586_start)
3678 * 4. Start the LAN controller's command unit
3679 * 5. Start the LAN controller's receive unit
3680 * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
3682 static int wv_hw_reset(struct net_device * dev)
3684 net_local *lp = (net_local *) dev->priv;
3685 unsigned long ioaddr = dev->base_addr;
3687 #ifdef DEBUG_CONFIG_TRACE
3688 printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
3689 (unsigned int) dev);
3690 #endif
3692 /* Increase the number of resets done. */
3693 lp->nresets++;
3695 wv_hacr_reset(ioaddr);
3696 lp->hacr = HACR_DEFAULT;
3698 if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
3699 return -1;
3701 /* Enable the card to send interrupts. */
3702 wv_ints_on(dev);
3704 /* Start card functions */
3705 if (wv_cu_start(dev) < 0)
3706 return -1;
3708 /* Setup the controller and parameters */
3709 wv_82586_config(dev);
3711 /* Finish configuration with the receive unit */
3712 if (wv_ru_start(dev) < 0)
3713 return -1;
3715 #ifdef DEBUG_CONFIG_TRACE
3716 printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
3717 #endif
3718 return 0;
3721 /*------------------------------------------------------------------*/
3723 * Check if there is a WaveLAN at the specific base address.
3724 * As a side effect, this reads the MAC address.
3725 * (called in wavelan_probe() and init_module())
3727 static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
3729 int i; /* Loop counter */
3731 /* Check if the base address if available. */
3732 if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
3733 return -EBUSY; /* ioaddr already used */
3735 /* Reset host interface */
3736 wv_hacr_reset(ioaddr);
3738 /* Read the MAC address from the parameter storage area. */
3739 psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
3740 mac, 6);
3742 release_region(ioaddr, sizeof(ha_t));
3745 * Check the first three octets of the address for the manufacturer's code.
3746 * Note: if this can't find your WaveLAN card, you've got a
3747 * non-NCR/AT&T/Lucent ISA card. See wavelan.p.h for detail on
3748 * how to configure your card.
3750 for (i = 0; i < (sizeof(MAC_ADDRESSES) / sizeof(char) / 3); i++)
3751 if ((mac[0] == MAC_ADDRESSES[i][0]) &&
3752 (mac[1] == MAC_ADDRESSES[i][1]) &&
3753 (mac[2] == MAC_ADDRESSES[i][2]))
3754 return 0;
3756 #ifdef DEBUG_CONFIG_INFO
3757 printk(KERN_WARNING
3758 "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
3759 ioaddr, mac[0], mac[1], mac[2]);
3760 #endif
3761 return -ENODEV;
3764 /************************ INTERRUPT HANDLING ************************/
3767 * This function is the interrupt handler for the WaveLAN card. This
3768 * routine will be called whenever:
3770 static irqreturn_t wavelan_interrupt(int irq, void *dev_id)
3772 struct net_device *dev;
3773 unsigned long ioaddr;
3774 net_local *lp;
3775 u16 hasr;
3776 u16 status;
3777 u16 ack_cmd;
3779 dev = dev_id;
3781 #ifdef DEBUG_INTERRUPT_TRACE
3782 printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
3783 #endif
3785 lp = (net_local *) dev->priv;
3786 ioaddr = dev->base_addr;
3788 #ifdef DEBUG_INTERRUPT_INFO
3789 /* Check state of our spinlock */
3790 if(spin_is_locked(&lp->spinlock))
3791 printk(KERN_DEBUG
3792 "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
3793 dev->name);
3794 #endif
3796 /* Prevent reentrancy. We need to do that because we may have
3797 * multiple interrupt handler running concurrently.
3798 * It is safe because interrupts are disabled before acquiring
3799 * the spinlock. */
3800 spin_lock(&lp->spinlock);
3802 /* We always had spurious interrupts at startup, but lately I
3803 * saw them comming *between* the request_irq() and the
3804 * spin_lock_irqsave() in wavelan_open(), so the spinlock
3805 * protection is no enough.
3806 * So, we also check lp->hacr that will tell us is we enabled
3807 * irqs or not (see wv_ints_on()).
3808 * We can't use netif_running(dev) because we depend on the
3809 * proper processing of the irq generated during the config. */
3811 /* Which interrupt it is ? */
3812 hasr = hasr_read(ioaddr);
3814 #ifdef DEBUG_INTERRUPT_INFO
3815 printk(KERN_INFO
3816 "%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
3817 dev->name, hasr, lp->hacr);
3818 #endif
3820 /* Check modem interrupt */
3821 if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
3822 u8 dce_status;
3825 * Interrupt from the modem management controller.
3826 * This will clear it -- ignored for now.
3828 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
3829 sizeof(dce_status));
3831 #ifdef DEBUG_INTERRUPT_ERROR
3832 printk(KERN_INFO
3833 "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
3834 dev->name, dce_status);
3835 #endif
3838 /* Check if not controller interrupt */
3839 if (((hasr & HASR_82586_INTR) == 0) ||
3840 ((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
3841 #ifdef DEBUG_INTERRUPT_ERROR
3842 printk(KERN_INFO
3843 "%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
3844 dev->name, hasr);
3845 #endif
3846 spin_unlock (&lp->spinlock);
3847 return IRQ_NONE;
3850 /* Read interrupt data. */
3851 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3852 (unsigned char *) &status, sizeof(status));
3855 * Acknowledge the interrupt(s).
3857 ack_cmd = status & SCB_ST_INT;
3858 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3859 (unsigned char *) &ack_cmd, sizeof(ack_cmd));
3860 set_chan_attn(ioaddr, lp->hacr);
3862 #ifdef DEBUG_INTERRUPT_INFO
3863 printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
3864 dev->name, status);
3865 #endif
3867 /* Command completed. */
3868 if ((status & SCB_ST_CX) == SCB_ST_CX) {
3869 #ifdef DEBUG_INTERRUPT_INFO
3870 printk(KERN_DEBUG
3871 "%s: wavelan_interrupt(): command completed.\n",
3872 dev->name);
3873 #endif
3874 wv_complete(dev, ioaddr, lp);
3877 /* Frame received. */
3878 if ((status & SCB_ST_FR) == SCB_ST_FR) {
3879 #ifdef DEBUG_INTERRUPT_INFO
3880 printk(KERN_DEBUG
3881 "%s: wavelan_interrupt(): received packet.\n",
3882 dev->name);
3883 #endif
3884 wv_receive(dev);
3887 /* Check the state of the command unit. */
3888 if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
3889 (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
3890 (netif_running(dev)))) {
3891 #ifdef DEBUG_INTERRUPT_ERROR
3892 printk(KERN_INFO
3893 "%s: wavelan_interrupt(): CU inactive -- restarting\n",
3894 dev->name);
3895 #endif
3896 wv_hw_reset(dev);
3899 /* Check the state of the command unit. */
3900 if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
3901 (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
3902 (netif_running(dev)))) {
3903 #ifdef DEBUG_INTERRUPT_ERROR
3904 printk(KERN_INFO
3905 "%s: wavelan_interrupt(): RU not ready -- restarting\n",
3906 dev->name);
3907 #endif
3908 wv_hw_reset(dev);
3911 /* Release spinlock */
3912 spin_unlock (&lp->spinlock);
3914 #ifdef DEBUG_INTERRUPT_TRACE
3915 printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
3916 #endif
3917 return IRQ_HANDLED;
3920 /*------------------------------------------------------------------*/
3922 * Watchdog: when we start a transmission, a timer is set for us in the
3923 * kernel. If the transmission completes, this timer is disabled. If
3924 * the timer expires, we are called and we try to unlock the hardware.
3926 static void wavelan_watchdog(struct net_device * dev)
3928 net_local * lp = (net_local *)dev->priv;
3929 u_long ioaddr = dev->base_addr;
3930 unsigned long flags;
3931 unsigned int nreaped;
3933 #ifdef DEBUG_INTERRUPT_TRACE
3934 printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
3935 #endif
3937 #ifdef DEBUG_INTERRUPT_ERROR
3938 printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
3939 dev->name);
3940 #endif
3942 /* Check that we came here for something */
3943 if (lp->tx_n_in_use <= 0) {
3944 return;
3947 spin_lock_irqsave(&lp->spinlock, flags);
3949 /* Try to see if some buffers are not free (in case we missed
3950 * an interrupt */
3951 nreaped = wv_complete(dev, ioaddr, lp);
3953 #ifdef DEBUG_INTERRUPT_INFO
3954 printk(KERN_DEBUG
3955 "%s: wavelan_watchdog(): %d reaped, %d remain.\n",
3956 dev->name, nreaped, lp->tx_n_in_use);
3957 #endif
3959 #ifdef DEBUG_PSA_SHOW
3961 psa_t psa;
3962 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
3963 wv_psa_show(&psa);
3965 #endif
3966 #ifdef DEBUG_MMC_SHOW
3967 wv_mmc_show(dev);
3968 #endif
3969 #ifdef DEBUG_I82586_SHOW
3970 wv_cu_show(dev);
3971 #endif
3973 /* If no buffer has been freed */
3974 if (nreaped == 0) {
3975 #ifdef DEBUG_INTERRUPT_ERROR
3976 printk(KERN_INFO
3977 "%s: wavelan_watchdog(): cleanup failed, trying reset\n",
3978 dev->name);
3979 #endif
3980 wv_hw_reset(dev);
3983 /* At this point, we should have some free Tx buffer ;-) */
3984 if (lp->tx_n_in_use < NTXBLOCKS - 1)
3985 netif_wake_queue(dev);
3987 spin_unlock_irqrestore(&lp->spinlock, flags);
3989 #ifdef DEBUG_INTERRUPT_TRACE
3990 printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
3991 #endif
3994 /********************* CONFIGURATION CALLBACKS *********************/
3996 * Here are the functions called by the Linux networking code (NET3)
3997 * for initialization, configuration and deinstallations of the
3998 * WaveLAN ISA hardware.
4001 /*------------------------------------------------------------------*/
4003 * Configure and start up the WaveLAN PCMCIA adaptor.
4004 * Called by NET3 when it "opens" the device.
4006 static int wavelan_open(struct net_device * dev)
4008 net_local * lp = (net_local *)dev->priv;
4009 unsigned long flags;
4011 #ifdef DEBUG_CALLBACK_TRACE
4012 printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
4013 (unsigned int) dev);
4014 #endif
4016 /* Check irq */
4017 if (dev->irq == 0) {
4018 #ifdef DEBUG_CONFIG_ERROR
4019 printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
4020 dev->name);
4021 #endif
4022 return -ENXIO;
4025 if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0)
4027 #ifdef DEBUG_CONFIG_ERROR
4028 printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
4029 dev->name);
4030 #endif
4031 return -EAGAIN;
4034 spin_lock_irqsave(&lp->spinlock, flags);
4036 if (wv_hw_reset(dev) != -1) {
4037 netif_start_queue(dev);
4038 } else {
4039 free_irq(dev->irq, dev);
4040 #ifdef DEBUG_CONFIG_ERROR
4041 printk(KERN_INFO
4042 "%s: wavelan_open(): impossible to start the card\n",
4043 dev->name);
4044 #endif
4045 spin_unlock_irqrestore(&lp->spinlock, flags);
4046 return -EAGAIN;
4048 spin_unlock_irqrestore(&lp->spinlock, flags);
4050 #ifdef DEBUG_CALLBACK_TRACE
4051 printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
4052 #endif
4053 return 0;
4056 /*------------------------------------------------------------------*/
4058 * Shut down the WaveLAN ISA card.
4059 * Called by NET3 when it "closes" the device.
4061 static int wavelan_close(struct net_device * dev)
4063 net_local *lp = (net_local *) dev->priv;
4064 unsigned long flags;
4066 #ifdef DEBUG_CALLBACK_TRACE
4067 printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
4068 (unsigned int) dev);
4069 #endif
4071 netif_stop_queue(dev);
4074 * Flush the Tx and disable Rx.
4076 spin_lock_irqsave(&lp->spinlock, flags);
4077 wv_82586_stop(dev);
4078 spin_unlock_irqrestore(&lp->spinlock, flags);
4080 free_irq(dev->irq, dev);
4082 #ifdef DEBUG_CALLBACK_TRACE
4083 printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
4084 #endif
4085 return 0;
4088 /*------------------------------------------------------------------*/
4090 * Probe an I/O address, and if the WaveLAN is there configure the
4091 * device structure
4092 * (called by wavelan_probe() and via init_module()).
4094 static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
4096 u8 irq_mask;
4097 int irq;
4098 net_local *lp;
4099 mac_addr mac;
4100 int err;
4102 if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
4103 return -EADDRINUSE;
4105 err = wv_check_ioaddr(ioaddr, mac);
4106 if (err)
4107 goto out;
4109 memcpy(dev->dev_addr, mac, 6);
4111 dev->base_addr = ioaddr;
4113 #ifdef DEBUG_CALLBACK_TRACE
4114 printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
4115 dev->name, (unsigned int) dev, ioaddr);
4116 #endif
4118 /* Check IRQ argument on command line. */
4119 if (dev->irq != 0) {
4120 irq_mask = wv_irq_to_psa(dev->irq);
4122 if (irq_mask == 0) {
4123 #ifdef DEBUG_CONFIG_ERROR
4124 printk(KERN_WARNING
4125 "%s: wavelan_config(): invalid IRQ %d ignored.\n",
4126 dev->name, dev->irq);
4127 #endif
4128 dev->irq = 0;
4129 } else {
4130 #ifdef DEBUG_CONFIG_INFO
4131 printk(KERN_DEBUG
4132 "%s: wavelan_config(): changing IRQ to %d\n",
4133 dev->name, dev->irq);
4134 #endif
4135 psa_write(ioaddr, HACR_DEFAULT,
4136 psaoff(0, psa_int_req_no), &irq_mask, 1);
4137 /* update the Wavelan checksum */
4138 update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
4139 wv_hacr_reset(ioaddr);
4143 psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
4144 &irq_mask, 1);
4145 if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
4146 #ifdef DEBUG_CONFIG_ERROR
4147 printk(KERN_INFO
4148 "%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
4149 dev->name, irq_mask);
4150 #endif
4151 err = -EAGAIN;
4152 goto out;
4155 dev->irq = irq;
4157 dev->mem_start = 0x0000;
4158 dev->mem_end = 0x0000;
4159 dev->if_port = 0;
4161 /* Initialize device structures */
4162 memset(dev->priv, 0, sizeof(net_local));
4163 lp = (net_local *) dev->priv;
4165 /* Back link to the device structure. */
4166 lp->dev = dev;
4167 /* Add the device at the beginning of the linked list. */
4168 lp->next = wavelan_list;
4169 wavelan_list = lp;
4171 lp->hacr = HACR_DEFAULT;
4173 /* Multicast stuff */
4174 lp->promiscuous = 0;
4175 lp->mc_count = 0;
4177 /* Init spinlock */
4178 spin_lock_init(&lp->spinlock);
4180 dev->open = wavelan_open;
4181 dev->stop = wavelan_close;
4182 dev->hard_start_xmit = wavelan_packet_xmit;
4183 dev->get_stats = wavelan_get_stats;
4184 dev->set_multicast_list = &wavelan_set_multicast_list;
4185 dev->tx_timeout = &wavelan_watchdog;
4186 dev->watchdog_timeo = WATCHDOG_JIFFIES;
4187 #ifdef SET_MAC_ADDRESS
4188 dev->set_mac_address = &wavelan_set_mac_address;
4189 #endif /* SET_MAC_ADDRESS */
4191 dev->wireless_handlers = &wavelan_handler_def;
4192 lp->wireless_data.spy_data = &lp->spy_data;
4193 dev->wireless_data = &lp->wireless_data;
4195 dev->mtu = WAVELAN_MTU;
4197 /* Display nice information. */
4198 wv_init_info(dev);
4200 #ifdef DEBUG_CALLBACK_TRACE
4201 printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
4202 #endif
4203 return 0;
4204 out:
4205 release_region(ioaddr, sizeof(ha_t));
4206 return err;
4209 /*------------------------------------------------------------------*/
4211 * Check for a network adaptor of this type. Return '0' iff one
4212 * exists. There seem to be different interpretations of
4213 * the initial value of dev->base_addr.
4214 * We follow the example in drivers/net/ne.c.
4215 * (called in "Space.c")
4217 struct net_device * __init wavelan_probe(int unit)
4219 struct net_device *dev;
4220 short base_addr;
4221 int def_irq;
4222 int i;
4223 int r = 0;
4225 #ifdef STRUCT_CHECK
4226 if (wv_struct_check() != (char *) NULL) {
4227 printk(KERN_WARNING
4228 "%s: wavelan_probe(): structure/compiler botch: \"%s\"\n",
4229 dev->name, wv_struct_check());
4230 return -ENODEV;
4232 #endif /* STRUCT_CHECK */
4234 dev = alloc_etherdev(sizeof(net_local));
4235 if (!dev)
4236 return ERR_PTR(-ENOMEM);
4238 sprintf(dev->name, "eth%d", unit);
4239 netdev_boot_setup_check(dev);
4240 base_addr = dev->base_addr;
4241 def_irq = dev->irq;
4243 #ifdef DEBUG_CALLBACK_TRACE
4244 printk(KERN_DEBUG
4245 "%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
4246 dev->name, dev, (unsigned int) dev->base_addr);
4247 #endif
4249 /* Don't probe at all. */
4250 if (base_addr < 0) {
4251 #ifdef DEBUG_CONFIG_ERROR
4252 printk(KERN_WARNING
4253 "%s: wavelan_probe(): invalid base address\n",
4254 dev->name);
4255 #endif
4256 r = -ENXIO;
4257 } else if (base_addr > 0x100) { /* Check a single specified location. */
4258 r = wavelan_config(dev, base_addr);
4259 #ifdef DEBUG_CONFIG_INFO
4260 if (r != 0)
4261 printk(KERN_DEBUG
4262 "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
4263 dev->name, base_addr);
4264 #endif
4266 #ifdef DEBUG_CALLBACK_TRACE
4267 printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
4268 #endif
4269 } else { /* Scan all possible addresses of the WaveLAN hardware. */
4270 for (i = 0; i < ARRAY_SIZE(iobase); i++) {
4271 dev->irq = def_irq;
4272 if (wavelan_config(dev, iobase[i]) == 0) {
4273 #ifdef DEBUG_CALLBACK_TRACE
4274 printk(KERN_DEBUG
4275 "%s: <-wavelan_probe()\n",
4276 dev->name);
4277 #endif
4278 break;
4281 if (i == ARRAY_SIZE(iobase))
4282 r = -ENODEV;
4284 if (r)
4285 goto out;
4286 r = register_netdev(dev);
4287 if (r)
4288 goto out1;
4289 return dev;
4290 out1:
4291 release_region(dev->base_addr, sizeof(ha_t));
4292 wavelan_list = wavelan_list->next;
4293 out:
4294 free_netdev(dev);
4295 return ERR_PTR(r);
4298 /****************************** MODULE ******************************/
4300 * Module entry point: insertion and removal
4303 #ifdef MODULE
4304 /*------------------------------------------------------------------*/
4306 * Insertion of the module
4307 * I'm now quite proud of the multi-device support.
4309 int __init init_module(void)
4311 int ret = -EIO; /* Return error if no cards found */
4312 int i;
4314 #ifdef DEBUG_MODULE_TRACE
4315 printk(KERN_DEBUG "-> init_module()\n");
4316 #endif
4318 /* If probing is asked */
4319 if (io[0] == 0) {
4320 #ifdef DEBUG_CONFIG_ERROR
4321 printk(KERN_WARNING
4322 "WaveLAN init_module(): doing device probing (bad !)\n");
4323 printk(KERN_WARNING
4324 "Specify base addresses while loading module to correct the problem\n");
4325 #endif
4327 /* Copy the basic set of address to be probed. */
4328 for (i = 0; i < ARRAY_SIZE(iobase); i++)
4329 io[i] = iobase[i];
4333 /* Loop on all possible base addresses. */
4334 i = -1;
4335 while ((io[++i] != 0) && (i < ARRAY_SIZE(io))) {
4336 struct net_device *dev = alloc_etherdev(sizeof(net_local));
4337 if (!dev)
4338 break;
4339 if (name[i])
4340 strcpy(dev->name, name[i]); /* Copy name */
4341 dev->base_addr = io[i];
4342 dev->irq = irq[i];
4344 /* Check if there is something at this base address. */
4345 if (wavelan_config(dev, io[i]) == 0) {
4346 if (register_netdev(dev) != 0) {
4347 release_region(dev->base_addr, sizeof(ha_t));
4348 wavelan_list = wavelan_list->next;
4349 } else {
4350 ret = 0;
4351 continue;
4354 free_netdev(dev);
4357 #ifdef DEBUG_CONFIG_ERROR
4358 if (!wavelan_list)
4359 printk(KERN_WARNING
4360 "WaveLAN init_module(): no device found\n");
4361 #endif
4363 #ifdef DEBUG_MODULE_TRACE
4364 printk(KERN_DEBUG "<- init_module()\n");
4365 #endif
4366 return ret;
4369 /*------------------------------------------------------------------*/
4371 * Removal of the module
4373 void cleanup_module(void)
4375 #ifdef DEBUG_MODULE_TRACE
4376 printk(KERN_DEBUG "-> cleanup_module()\n");
4377 #endif
4379 /* Loop on all devices and release them. */
4380 while (wavelan_list) {
4381 struct net_device *dev = wavelan_list->dev;
4383 #ifdef DEBUG_CONFIG_INFO
4384 printk(KERN_DEBUG
4385 "%s: cleanup_module(): removing device at 0x%x\n",
4386 dev->name, (unsigned int) dev);
4387 #endif
4388 unregister_netdev(dev);
4390 release_region(dev->base_addr, sizeof(ha_t));
4391 wavelan_list = wavelan_list->next;
4393 free_netdev(dev);
4396 #ifdef DEBUG_MODULE_TRACE
4397 printk(KERN_DEBUG "<- cleanup_module()\n");
4398 #endif
4400 #endif /* MODULE */
4401 MODULE_LICENSE("GPL");
4404 * This software may only be used and distributed
4405 * according to the terms of the GNU General Public License.
4407 * This software was developed as a component of the
4408 * Linux operating system.
4409 * It is based on other device drivers and information
4410 * either written or supplied by:
4411 * Ajay Bakre (bakre@paul.rutgers.edu),
4412 * Donald Becker (becker@scyld.com),
4413 * Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
4414 * Anders Klemets (klemets@it.kth.se),
4415 * Vladimir V. Kolpakov (w@stier.koenig.ru),
4416 * Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
4417 * Pauline Middelink (middelin@polyware.iaf.nl),
4418 * Robert Morris (rtm@das.harvard.edu),
4419 * Jean Tourrilhes (jt@hplb.hpl.hp.com),
4420 * Girish Welling (welling@paul.rutgers.edu),
4422 * Thanks go also to:
4423 * James Ashton (jaa101@syseng.anu.edu.au),
4424 * Alan Cox (alan@redhat.com),
4425 * Allan Creighton (allanc@cs.usyd.edu.au),
4426 * Matthew Geier (matthew@cs.usyd.edu.au),
4427 * Remo di Giovanni (remo@cs.usyd.edu.au),
4428 * Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
4429 * Vipul Gupta (vgupta@cs.binghamton.edu),
4430 * Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
4431 * Tim Nicholson (tim@cs.usyd.edu.au),
4432 * Ian Parkin (ian@cs.usyd.edu.au),
4433 * John Rosenberg (johnr@cs.usyd.edu.au),
4434 * George Rossi (george@phm.gov.au),
4435 * Arthur Scott (arthur@cs.usyd.edu.au),
4436 * Peter Storey,
4437 * for their assistance and advice.
4439 * Please send bug reports, updates, comments to:
4441 * Bruce Janson Email: bruce@cs.usyd.edu.au
4442 * Basser Department of Computer Science Phone: +61-2-9351-3423
4443 * University of Sydney, N.S.W., 2006, AUSTRALIA Fax: +61-2-9351-3838