4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
27 * The following locks and mutexes are used by kmemleak:
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/module.h>
73 #include <linux/kthread.h>
74 #include <linux/prio_tree.h>
75 #include <linux/gfp.h>
77 #include <linux/debugfs.h>
78 #include <linux/seq_file.h>
79 #include <linux/cpumask.h>
80 #include <linux/spinlock.h>
81 #include <linux/mutex.h>
82 #include <linux/rcupdate.h>
83 #include <linux/stacktrace.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/hardirq.h>
87 #include <linux/mmzone.h>
88 #include <linux/slab.h>
89 #include <linux/thread_info.h>
90 #include <linux/err.h>
91 #include <linux/uaccess.h>
92 #include <linux/string.h>
93 #include <linux/nodemask.h>
96 #include <asm/sections.h>
97 #include <asm/processor.h>
98 #include <asm/atomic.h>
100 #include <linux/kmemleak.h>
103 * Kmemleak configuration and common defines.
105 #define MAX_TRACE 16 /* stack trace length */
106 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
107 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
108 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
109 #define GRAY_LIST_PASSES 25 /* maximum number of gray list scans */
111 #define BYTES_PER_POINTER sizeof(void *)
113 /* GFP bitmask for kmemleak internal allocations */
114 #define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
116 /* scanning area inside a memory block */
117 struct kmemleak_scan_area
{
118 struct hlist_node node
;
119 unsigned long offset
;
124 * Structure holding the metadata for each allocated memory block.
125 * Modifications to such objects should be made while holding the
126 * object->lock. Insertions or deletions from object_list, gray_list or
127 * tree_node are already protected by the corresponding locks or mutex (see
128 * the notes on locking above). These objects are reference-counted
129 * (use_count) and freed using the RCU mechanism.
131 struct kmemleak_object
{
133 unsigned long flags
; /* object status flags */
134 struct list_head object_list
;
135 struct list_head gray_list
;
136 struct prio_tree_node tree_node
;
137 struct rcu_head rcu
; /* object_list lockless traversal */
138 /* object usage count; object freed when use_count == 0 */
140 unsigned long pointer
;
142 /* minimum number of a pointers found before it is considered leak */
144 /* the total number of pointers found pointing to this object */
146 /* memory ranges to be scanned inside an object (empty for all) */
147 struct hlist_head area_list
;
148 unsigned long trace
[MAX_TRACE
];
149 unsigned int trace_len
;
150 unsigned long jiffies
; /* creation timestamp */
151 pid_t pid
; /* pid of the current task */
152 char comm
[TASK_COMM_LEN
]; /* executable name */
155 /* flag representing the memory block allocation status */
156 #define OBJECT_ALLOCATED (1 << 0)
157 /* flag set after the first reporting of an unreference object */
158 #define OBJECT_REPORTED (1 << 1)
159 /* flag set to not scan the object */
160 #define OBJECT_NO_SCAN (1 << 2)
161 /* flag set on newly allocated objects */
162 #define OBJECT_NEW (1 << 3)
164 /* the list of all allocated objects */
165 static LIST_HEAD(object_list
);
166 /* the list of gray-colored objects (see color_gray comment below) */
167 static LIST_HEAD(gray_list
);
168 /* prio search tree for object boundaries */
169 static struct prio_tree_root object_tree_root
;
170 /* rw_lock protecting the access to object_list and prio_tree_root */
171 static DEFINE_RWLOCK(kmemleak_lock
);
173 /* allocation caches for kmemleak internal data */
174 static struct kmem_cache
*object_cache
;
175 static struct kmem_cache
*scan_area_cache
;
177 /* set if tracing memory operations is enabled */
178 static atomic_t kmemleak_enabled
= ATOMIC_INIT(0);
179 /* set in the late_initcall if there were no errors */
180 static atomic_t kmemleak_initialized
= ATOMIC_INIT(0);
181 /* enables or disables early logging of the memory operations */
182 static atomic_t kmemleak_early_log
= ATOMIC_INIT(1);
183 /* set if a fata kmemleak error has occurred */
184 static atomic_t kmemleak_error
= ATOMIC_INIT(0);
186 /* minimum and maximum address that may be valid pointers */
187 static unsigned long min_addr
= ULONG_MAX
;
188 static unsigned long max_addr
;
190 static struct task_struct
*scan_thread
;
191 /* used to avoid reporting of recently allocated objects */
192 static unsigned long jiffies_min_age
;
193 static unsigned long jiffies_last_scan
;
194 /* delay between automatic memory scannings */
195 static signed long jiffies_scan_wait
;
196 /* enables or disables the task stacks scanning */
197 static int kmemleak_stack_scan
= 1;
198 /* protects the memory scanning, parameters and debug/kmemleak file access */
199 static DEFINE_MUTEX(scan_mutex
);
202 * Early object allocation/freeing logging. Kmemleak is initialized after the
203 * kernel allocator. However, both the kernel allocator and kmemleak may
204 * allocate memory blocks which need to be tracked. Kmemleak defines an
205 * arbitrary buffer to hold the allocation/freeing information before it is
209 /* kmemleak operation type for early logging */
221 * Structure holding the information passed to kmemleak callbacks during the
225 int op_type
; /* kmemleak operation type */
226 const void *ptr
; /* allocated/freed memory block */
227 size_t size
; /* memory block size */
228 int min_count
; /* minimum reference count */
229 unsigned long offset
; /* scan area offset */
230 size_t length
; /* scan area length */
233 /* early logging buffer and current position */
234 static struct early_log early_log
[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE
];
235 static int crt_early_log
;
237 static void kmemleak_disable(void);
240 * Print a warning and dump the stack trace.
242 #define kmemleak_warn(x...) do { \
248 * Macro invoked when a serious kmemleak condition occured and cannot be
249 * recovered from. Kmemleak will be disabled and further allocation/freeing
250 * tracing no longer available.
252 #define kmemleak_stop(x...) do { \
254 kmemleak_disable(); \
258 * Object colors, encoded with count and min_count:
259 * - white - orphan object, not enough references to it (count < min_count)
260 * - gray - not orphan, not marked as false positive (min_count == 0) or
261 * sufficient references to it (count >= min_count)
262 * - black - ignore, it doesn't contain references (e.g. text section)
263 * (min_count == -1). No function defined for this color.
264 * Newly created objects don't have any color assigned (object->count == -1)
265 * before the next memory scan when they become white.
267 static int color_white(const struct kmemleak_object
*object
)
269 return object
->count
!= -1 && object
->count
< object
->min_count
;
272 static int color_gray(const struct kmemleak_object
*object
)
274 return object
->min_count
!= -1 && object
->count
>= object
->min_count
;
277 static int color_black(const struct kmemleak_object
*object
)
279 return object
->min_count
== -1;
283 * Objects are considered unreferenced only if their color is white, they have
284 * not be deleted and have a minimum age to avoid false positives caused by
285 * pointers temporarily stored in CPU registers.
287 static int unreferenced_object(struct kmemleak_object
*object
)
289 return (object
->flags
& OBJECT_ALLOCATED
) && color_white(object
) &&
290 time_before_eq(object
->jiffies
+ jiffies_min_age
,
295 * Printing of the unreferenced objects information to the seq file. The
296 * print_unreferenced function must be called with the object->lock held.
298 static void print_unreferenced(struct seq_file
*seq
,
299 struct kmemleak_object
*object
)
303 seq_printf(seq
, "unreferenced object 0x%08lx (size %zu):\n",
304 object
->pointer
, object
->size
);
305 seq_printf(seq
, " comm \"%s\", pid %d, jiffies %lu\n",
306 object
->comm
, object
->pid
, object
->jiffies
);
307 seq_printf(seq
, " backtrace:\n");
309 for (i
= 0; i
< object
->trace_len
; i
++) {
310 void *ptr
= (void *)object
->trace
[i
];
311 seq_printf(seq
, " [<%p>] %pS\n", ptr
, ptr
);
316 * Print the kmemleak_object information. This function is used mainly for
317 * debugging special cases when kmemleak operations. It must be called with
318 * the object->lock held.
320 static void dump_object_info(struct kmemleak_object
*object
)
322 struct stack_trace trace
;
324 trace
.nr_entries
= object
->trace_len
;
325 trace
.entries
= object
->trace
;
327 pr_notice("Object 0x%08lx (size %zu):\n",
328 object
->tree_node
.start
, object
->size
);
329 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
330 object
->comm
, object
->pid
, object
->jiffies
);
331 pr_notice(" min_count = %d\n", object
->min_count
);
332 pr_notice(" count = %d\n", object
->count
);
333 pr_notice(" backtrace:\n");
334 print_stack_trace(&trace
, 4);
338 * Look-up a memory block metadata (kmemleak_object) in the priority search
339 * tree based on a pointer value. If alias is 0, only values pointing to the
340 * beginning of the memory block are allowed. The kmemleak_lock must be held
341 * when calling this function.
343 static struct kmemleak_object
*lookup_object(unsigned long ptr
, int alias
)
345 struct prio_tree_node
*node
;
346 struct prio_tree_iter iter
;
347 struct kmemleak_object
*object
;
349 prio_tree_iter_init(&iter
, &object_tree_root
, ptr
, ptr
);
350 node
= prio_tree_next(&iter
);
352 object
= prio_tree_entry(node
, struct kmemleak_object
,
354 if (!alias
&& object
->pointer
!= ptr
) {
355 kmemleak_warn("Found object by alias");
365 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
366 * that once an object's use_count reached 0, the RCU freeing was already
367 * registered and the object should no longer be used. This function must be
368 * called under the protection of rcu_read_lock().
370 static int get_object(struct kmemleak_object
*object
)
372 return atomic_inc_not_zero(&object
->use_count
);
376 * RCU callback to free a kmemleak_object.
378 static void free_object_rcu(struct rcu_head
*rcu
)
380 struct hlist_node
*elem
, *tmp
;
381 struct kmemleak_scan_area
*area
;
382 struct kmemleak_object
*object
=
383 container_of(rcu
, struct kmemleak_object
, rcu
);
386 * Once use_count is 0 (guaranteed by put_object), there is no other
387 * code accessing this object, hence no need for locking.
389 hlist_for_each_entry_safe(area
, elem
, tmp
, &object
->area_list
, node
) {
391 kmem_cache_free(scan_area_cache
, area
);
393 kmem_cache_free(object_cache
, object
);
397 * Decrement the object use_count. Once the count is 0, free the object using
398 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
399 * delete_object() path, the delayed RCU freeing ensures that there is no
400 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
403 static void put_object(struct kmemleak_object
*object
)
405 if (!atomic_dec_and_test(&object
->use_count
))
408 /* should only get here after delete_object was called */
409 WARN_ON(object
->flags
& OBJECT_ALLOCATED
);
411 call_rcu(&object
->rcu
, free_object_rcu
);
415 * Look up an object in the prio search tree and increase its use_count.
417 static struct kmemleak_object
*find_and_get_object(unsigned long ptr
, int alias
)
420 struct kmemleak_object
*object
= NULL
;
423 read_lock_irqsave(&kmemleak_lock
, flags
);
424 if (ptr
>= min_addr
&& ptr
< max_addr
)
425 object
= lookup_object(ptr
, alias
);
426 read_unlock_irqrestore(&kmemleak_lock
, flags
);
428 /* check whether the object is still available */
429 if (object
&& !get_object(object
))
437 * Create the metadata (struct kmemleak_object) corresponding to an allocated
438 * memory block and add it to the object_list and object_tree_root.
440 static void create_object(unsigned long ptr
, size_t size
, int min_count
,
444 struct kmemleak_object
*object
;
445 struct prio_tree_node
*node
;
446 struct stack_trace trace
;
448 object
= kmem_cache_alloc(object_cache
, gfp
& GFP_KMEMLEAK_MASK
);
450 kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
454 INIT_LIST_HEAD(&object
->object_list
);
455 INIT_LIST_HEAD(&object
->gray_list
);
456 INIT_HLIST_HEAD(&object
->area_list
);
457 spin_lock_init(&object
->lock
);
458 atomic_set(&object
->use_count
, 1);
459 object
->flags
= OBJECT_ALLOCATED
| OBJECT_NEW
;
460 object
->pointer
= ptr
;
462 object
->min_count
= min_count
;
463 object
->count
= -1; /* no color initially */
464 object
->jiffies
= jiffies
;
466 /* task information */
469 strncpy(object
->comm
, "hardirq", sizeof(object
->comm
));
470 } else if (in_softirq()) {
472 strncpy(object
->comm
, "softirq", sizeof(object
->comm
));
474 object
->pid
= current
->pid
;
476 * There is a small chance of a race with set_task_comm(),
477 * however using get_task_comm() here may cause locking
478 * dependency issues with current->alloc_lock. In the worst
479 * case, the command line is not correct.
481 strncpy(object
->comm
, current
->comm
, sizeof(object
->comm
));
484 /* kernel backtrace */
485 trace
.max_entries
= MAX_TRACE
;
486 trace
.nr_entries
= 0;
487 trace
.entries
= object
->trace
;
489 save_stack_trace(&trace
);
490 object
->trace_len
= trace
.nr_entries
;
492 INIT_PRIO_TREE_NODE(&object
->tree_node
);
493 object
->tree_node
.start
= ptr
;
494 object
->tree_node
.last
= ptr
+ size
- 1;
496 write_lock_irqsave(&kmemleak_lock
, flags
);
497 min_addr
= min(min_addr
, ptr
);
498 max_addr
= max(max_addr
, ptr
+ size
);
499 node
= prio_tree_insert(&object_tree_root
, &object
->tree_node
);
501 * The code calling the kernel does not yet have the pointer to the
502 * memory block to be able to free it. However, we still hold the
503 * kmemleak_lock here in case parts of the kernel started freeing
504 * random memory blocks.
506 if (node
!= &object
->tree_node
) {
509 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
510 "(already existing)\n", ptr
);
511 object
= lookup_object(ptr
, 1);
512 spin_lock_irqsave(&object
->lock
, flags
);
513 dump_object_info(object
);
514 spin_unlock_irqrestore(&object
->lock
, flags
);
518 list_add_tail_rcu(&object
->object_list
, &object_list
);
520 write_unlock_irqrestore(&kmemleak_lock
, flags
);
524 * Remove the metadata (struct kmemleak_object) for a memory block from the
525 * object_list and object_tree_root and decrement its use_count.
527 static void __delete_object(struct kmemleak_object
*object
)
531 write_lock_irqsave(&kmemleak_lock
, flags
);
532 prio_tree_remove(&object_tree_root
, &object
->tree_node
);
533 list_del_rcu(&object
->object_list
);
534 write_unlock_irqrestore(&kmemleak_lock
, flags
);
536 WARN_ON(!(object
->flags
& OBJECT_ALLOCATED
));
537 WARN_ON(atomic_read(&object
->use_count
) < 2);
540 * Locking here also ensures that the corresponding memory block
541 * cannot be freed when it is being scanned.
543 spin_lock_irqsave(&object
->lock
, flags
);
544 object
->flags
&= ~OBJECT_ALLOCATED
;
545 spin_unlock_irqrestore(&object
->lock
, flags
);
550 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
553 static void delete_object_full(unsigned long ptr
)
555 struct kmemleak_object
*object
;
557 object
= find_and_get_object(ptr
, 0);
560 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
565 __delete_object(object
);
570 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
571 * delete it. If the memory block is partially freed, the function may create
572 * additional metadata for the remaining parts of the block.
574 static void delete_object_part(unsigned long ptr
, size_t size
)
576 struct kmemleak_object
*object
;
577 unsigned long start
, end
;
579 object
= find_and_get_object(ptr
, 1);
582 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
583 "(size %zu)\n", ptr
, size
);
587 __delete_object(object
);
590 * Create one or two objects that may result from the memory block
591 * split. Note that partial freeing is only done by free_bootmem() and
592 * this happens before kmemleak_init() is called. The path below is
593 * only executed during early log recording in kmemleak_init(), so
594 * GFP_KERNEL is enough.
596 start
= object
->pointer
;
597 end
= object
->pointer
+ object
->size
;
599 create_object(start
, ptr
- start
, object
->min_count
,
601 if (ptr
+ size
< end
)
602 create_object(ptr
+ size
, end
- ptr
- size
, object
->min_count
,
608 * Make a object permanently as gray-colored so that it can no longer be
609 * reported as a leak. This is used in general to mark a false positive.
611 static void make_gray_object(unsigned long ptr
)
614 struct kmemleak_object
*object
;
616 object
= find_and_get_object(ptr
, 0);
618 kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr
);
622 spin_lock_irqsave(&object
->lock
, flags
);
623 object
->min_count
= 0;
624 spin_unlock_irqrestore(&object
->lock
, flags
);
629 * Mark the object as black-colored so that it is ignored from scans and
632 static void make_black_object(unsigned long ptr
)
635 struct kmemleak_object
*object
;
637 object
= find_and_get_object(ptr
, 0);
639 kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr
);
643 spin_lock_irqsave(&object
->lock
, flags
);
644 object
->min_count
= -1;
645 spin_unlock_irqrestore(&object
->lock
, flags
);
650 * Add a scanning area to the object. If at least one such area is added,
651 * kmemleak will only scan these ranges rather than the whole memory block.
653 static void add_scan_area(unsigned long ptr
, unsigned long offset
,
654 size_t length
, gfp_t gfp
)
657 struct kmemleak_object
*object
;
658 struct kmemleak_scan_area
*area
;
660 object
= find_and_get_object(ptr
, 0);
662 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
667 area
= kmem_cache_alloc(scan_area_cache
, gfp
& GFP_KMEMLEAK_MASK
);
669 kmemleak_warn("Cannot allocate a scan area\n");
673 spin_lock_irqsave(&object
->lock
, flags
);
674 if (offset
+ length
> object
->size
) {
675 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr
);
676 dump_object_info(object
);
677 kmem_cache_free(scan_area_cache
, area
);
681 INIT_HLIST_NODE(&area
->node
);
682 area
->offset
= offset
;
683 area
->length
= length
;
685 hlist_add_head(&area
->node
, &object
->area_list
);
687 spin_unlock_irqrestore(&object
->lock
, flags
);
693 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
694 * pointer. Such object will not be scanned by kmemleak but references to it
697 static void object_no_scan(unsigned long ptr
)
700 struct kmemleak_object
*object
;
702 object
= find_and_get_object(ptr
, 0);
704 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr
);
708 spin_lock_irqsave(&object
->lock
, flags
);
709 object
->flags
|= OBJECT_NO_SCAN
;
710 spin_unlock_irqrestore(&object
->lock
, flags
);
715 * Log an early kmemleak_* call to the early_log buffer. These calls will be
716 * processed later once kmemleak is fully initialized.
718 static void log_early(int op_type
, const void *ptr
, size_t size
,
719 int min_count
, unsigned long offset
, size_t length
)
722 struct early_log
*log
;
724 if (crt_early_log
>= ARRAY_SIZE(early_log
)) {
725 pr_warning("Early log buffer exceeded\n");
731 * There is no need for locking since the kernel is still in UP mode
732 * at this stage. Disabling the IRQs is enough.
734 local_irq_save(flags
);
735 log
= &early_log
[crt_early_log
];
736 log
->op_type
= op_type
;
739 log
->min_count
= min_count
;
740 log
->offset
= offset
;
741 log
->length
= length
;
743 local_irq_restore(flags
);
747 * Memory allocation function callback. This function is called from the
748 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
751 void kmemleak_alloc(const void *ptr
, size_t size
, int min_count
, gfp_t gfp
)
753 pr_debug("%s(0x%p, %zu, %d)\n", __func__
, ptr
, size
, min_count
);
755 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
756 create_object((unsigned long)ptr
, size
, min_count
, gfp
);
757 else if (atomic_read(&kmemleak_early_log
))
758 log_early(KMEMLEAK_ALLOC
, ptr
, size
, min_count
, 0, 0);
760 EXPORT_SYMBOL_GPL(kmemleak_alloc
);
763 * Memory freeing function callback. This function is called from the kernel
764 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
766 void kmemleak_free(const void *ptr
)
768 pr_debug("%s(0x%p)\n", __func__
, ptr
);
770 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
771 delete_object_full((unsigned long)ptr
);
772 else if (atomic_read(&kmemleak_early_log
))
773 log_early(KMEMLEAK_FREE
, ptr
, 0, 0, 0, 0);
775 EXPORT_SYMBOL_GPL(kmemleak_free
);
778 * Partial memory freeing function callback. This function is usually called
779 * from bootmem allocator when (part of) a memory block is freed.
781 void kmemleak_free_part(const void *ptr
, size_t size
)
783 pr_debug("%s(0x%p)\n", __func__
, ptr
);
785 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
786 delete_object_part((unsigned long)ptr
, size
);
787 else if (atomic_read(&kmemleak_early_log
))
788 log_early(KMEMLEAK_FREE_PART
, ptr
, size
, 0, 0, 0);
790 EXPORT_SYMBOL_GPL(kmemleak_free_part
);
793 * Mark an already allocated memory block as a false positive. This will cause
794 * the block to no longer be reported as leak and always be scanned.
796 void kmemleak_not_leak(const void *ptr
)
798 pr_debug("%s(0x%p)\n", __func__
, ptr
);
800 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
801 make_gray_object((unsigned long)ptr
);
802 else if (atomic_read(&kmemleak_early_log
))
803 log_early(KMEMLEAK_NOT_LEAK
, ptr
, 0, 0, 0, 0);
805 EXPORT_SYMBOL(kmemleak_not_leak
);
808 * Ignore a memory block. This is usually done when it is known that the
809 * corresponding block is not a leak and does not contain any references to
810 * other allocated memory blocks.
812 void kmemleak_ignore(const void *ptr
)
814 pr_debug("%s(0x%p)\n", __func__
, ptr
);
816 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
817 make_black_object((unsigned long)ptr
);
818 else if (atomic_read(&kmemleak_early_log
))
819 log_early(KMEMLEAK_IGNORE
, ptr
, 0, 0, 0, 0);
821 EXPORT_SYMBOL(kmemleak_ignore
);
824 * Limit the range to be scanned in an allocated memory block.
826 void kmemleak_scan_area(const void *ptr
, unsigned long offset
, size_t length
,
829 pr_debug("%s(0x%p)\n", __func__
, ptr
);
831 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
832 add_scan_area((unsigned long)ptr
, offset
, length
, gfp
);
833 else if (atomic_read(&kmemleak_early_log
))
834 log_early(KMEMLEAK_SCAN_AREA
, ptr
, 0, 0, offset
, length
);
836 EXPORT_SYMBOL(kmemleak_scan_area
);
839 * Inform kmemleak not to scan the given memory block.
841 void kmemleak_no_scan(const void *ptr
)
843 pr_debug("%s(0x%p)\n", __func__
, ptr
);
845 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
846 object_no_scan((unsigned long)ptr
);
847 else if (atomic_read(&kmemleak_early_log
))
848 log_early(KMEMLEAK_NO_SCAN
, ptr
, 0, 0, 0, 0);
850 EXPORT_SYMBOL(kmemleak_no_scan
);
853 * Memory scanning is a long process and it needs to be interruptable. This
854 * function checks whether such interrupt condition occured.
856 static int scan_should_stop(void)
858 if (!atomic_read(&kmemleak_enabled
))
862 * This function may be called from either process or kthread context,
863 * hence the need to check for both stop conditions.
866 return signal_pending(current
);
868 return kthread_should_stop();
874 * Scan a memory block (exclusive range) for valid pointers and add those
875 * found to the gray list.
877 static void scan_block(void *_start
, void *_end
,
878 struct kmemleak_object
*scanned
, int allow_resched
)
881 unsigned long *start
= PTR_ALIGN(_start
, BYTES_PER_POINTER
);
882 unsigned long *end
= _end
- (BYTES_PER_POINTER
- 1);
884 for (ptr
= start
; ptr
< end
; ptr
++) {
886 unsigned long pointer
= *ptr
;
887 struct kmemleak_object
*object
;
891 if (scan_should_stop())
894 object
= find_and_get_object(pointer
, 1);
897 if (object
== scanned
) {
898 /* self referenced, ignore */
904 * Avoid the lockdep recursive warning on object->lock being
905 * previously acquired in scan_object(). These locks are
906 * enclosed by scan_mutex.
908 spin_lock_irqsave_nested(&object
->lock
, flags
,
909 SINGLE_DEPTH_NESTING
);
910 if (!color_white(object
)) {
911 /* non-orphan, ignored or new */
912 spin_unlock_irqrestore(&object
->lock
, flags
);
918 * Increase the object's reference count (number of pointers
919 * to the memory block). If this count reaches the required
920 * minimum, the object's color will become gray and it will be
921 * added to the gray_list.
924 if (color_gray(object
))
925 list_add_tail(&object
->gray_list
, &gray_list
);
928 spin_unlock_irqrestore(&object
->lock
, flags
);
933 * Scan a memory block corresponding to a kmemleak_object. A condition is
934 * that object->use_count >= 1.
936 static void scan_object(struct kmemleak_object
*object
)
938 struct kmemleak_scan_area
*area
;
939 struct hlist_node
*elem
;
943 * Once the object->lock is aquired, the corresponding memory block
944 * cannot be freed (the same lock is aquired in delete_object).
946 spin_lock_irqsave(&object
->lock
, flags
);
947 if (object
->flags
& OBJECT_NO_SCAN
)
949 if (!(object
->flags
& OBJECT_ALLOCATED
))
950 /* already freed object */
952 if (hlist_empty(&object
->area_list
))
953 scan_block((void *)object
->pointer
,
954 (void *)(object
->pointer
+ object
->size
), object
, 0);
956 hlist_for_each_entry(area
, elem
, &object
->area_list
, node
)
957 scan_block((void *)(object
->pointer
+ area
->offset
),
958 (void *)(object
->pointer
+ area
->offset
959 + area
->length
), object
, 0);
961 spin_unlock_irqrestore(&object
->lock
, flags
);
965 * Scan data sections and all the referenced memory blocks allocated via the
966 * kernel's standard allocators. This function must be called with the
969 static void kmemleak_scan(void)
972 struct kmemleak_object
*object
, *tmp
;
973 struct task_struct
*task
;
976 int gray_list_pass
= 0;
978 jiffies_last_scan
= jiffies
;
980 /* prepare the kmemleak_object's */
982 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
983 spin_lock_irqsave(&object
->lock
, flags
);
986 * With a few exceptions there should be a maximum of
987 * 1 reference to any object at this point.
989 if (atomic_read(&object
->use_count
) > 1) {
990 pr_debug("object->use_count = %d\n",
991 atomic_read(&object
->use_count
));
992 dump_object_info(object
);
995 /* reset the reference count (whiten the object) */
997 object
->flags
&= ~OBJECT_NEW
;
998 if (color_gray(object
) && get_object(object
))
999 list_add_tail(&object
->gray_list
, &gray_list
);
1001 spin_unlock_irqrestore(&object
->lock
, flags
);
1005 /* data/bss scanning */
1006 scan_block(_sdata
, _edata
, NULL
, 1);
1007 scan_block(__bss_start
, __bss_stop
, NULL
, 1);
1010 /* per-cpu sections scanning */
1011 for_each_possible_cpu(i
)
1012 scan_block(__per_cpu_start
+ per_cpu_offset(i
),
1013 __per_cpu_end
+ per_cpu_offset(i
), NULL
, 1);
1017 * Struct page scanning for each node. The code below is not yet safe
1018 * with MEMORY_HOTPLUG.
1020 for_each_online_node(i
) {
1021 pg_data_t
*pgdat
= NODE_DATA(i
);
1022 unsigned long start_pfn
= pgdat
->node_start_pfn
;
1023 unsigned long end_pfn
= start_pfn
+ pgdat
->node_spanned_pages
;
1026 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1029 if (!pfn_valid(pfn
))
1031 page
= pfn_to_page(pfn
);
1032 /* only scan if page is in use */
1033 if (page_count(page
) == 0)
1035 scan_block(page
, page
+ 1, NULL
, 1);
1040 * Scanning the task stacks may introduce false negatives and it is
1041 * not enabled by default.
1043 if (kmemleak_stack_scan
) {
1044 read_lock(&tasklist_lock
);
1045 for_each_process(task
)
1046 scan_block(task_stack_page(task
),
1047 task_stack_page(task
) + THREAD_SIZE
,
1049 read_unlock(&tasklist_lock
);
1053 * Scan the objects already referenced from the sections scanned
1054 * above. More objects will be referenced and, if there are no memory
1055 * leaks, all the objects will be scanned. The list traversal is safe
1056 * for both tail additions and removals from inside the loop. The
1057 * kmemleak objects cannot be freed from outside the loop because their
1058 * use_count was increased.
1061 object
= list_entry(gray_list
.next
, typeof(*object
), gray_list
);
1062 while (&object
->gray_list
!= &gray_list
) {
1065 /* may add new objects to the list */
1066 if (!scan_should_stop())
1067 scan_object(object
);
1069 tmp
= list_entry(object
->gray_list
.next
, typeof(*object
),
1072 /* remove the object from the list and release it */
1073 list_del(&object
->gray_list
);
1079 if (scan_should_stop() || ++gray_list_pass
>= GRAY_LIST_PASSES
)
1083 * Check for new objects allocated during this scanning and add them
1087 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1088 spin_lock_irqsave(&object
->lock
, flags
);
1089 if ((object
->flags
& OBJECT_NEW
) && !color_black(object
) &&
1090 get_object(object
)) {
1091 object
->flags
&= ~OBJECT_NEW
;
1092 list_add_tail(&object
->gray_list
, &gray_list
);
1094 spin_unlock_irqrestore(&object
->lock
, flags
);
1098 if (!list_empty(&gray_list
))
1102 WARN_ON(!list_empty(&gray_list
));
1105 * If scanning was stopped or new objects were being allocated at a
1106 * higher rate than gray list scanning, do not report any new
1107 * unreferenced objects.
1109 if (scan_should_stop() || gray_list_pass
>= GRAY_LIST_PASSES
)
1113 * Scanning result reporting.
1116 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1117 spin_lock_irqsave(&object
->lock
, flags
);
1118 if (unreferenced_object(object
) &&
1119 !(object
->flags
& OBJECT_REPORTED
)) {
1120 object
->flags
|= OBJECT_REPORTED
;
1123 spin_unlock_irqrestore(&object
->lock
, flags
);
1128 pr_info("%d new suspected memory leaks (see "
1129 "/sys/kernel/debug/kmemleak)\n", new_leaks
);
1134 * Thread function performing automatic memory scanning. Unreferenced objects
1135 * at the end of a memory scan are reported but only the first time.
1137 static int kmemleak_scan_thread(void *arg
)
1139 static int first_run
= 1;
1141 pr_info("Automatic memory scanning thread started\n");
1142 set_user_nice(current
, 10);
1145 * Wait before the first scan to allow the system to fully initialize.
1149 ssleep(SECS_FIRST_SCAN
);
1152 while (!kthread_should_stop()) {
1153 signed long timeout
= jiffies_scan_wait
;
1155 mutex_lock(&scan_mutex
);
1157 mutex_unlock(&scan_mutex
);
1159 /* wait before the next scan */
1160 while (timeout
&& !kthread_should_stop())
1161 timeout
= schedule_timeout_interruptible(timeout
);
1164 pr_info("Automatic memory scanning thread ended\n");
1170 * Start the automatic memory scanning thread. This function must be called
1171 * with the scan_mutex held.
1173 void start_scan_thread(void)
1177 scan_thread
= kthread_run(kmemleak_scan_thread
, NULL
, "kmemleak");
1178 if (IS_ERR(scan_thread
)) {
1179 pr_warning("Failed to create the scan thread\n");
1185 * Stop the automatic memory scanning thread. This function must be called
1186 * with the scan_mutex held.
1188 void stop_scan_thread(void)
1191 kthread_stop(scan_thread
);
1197 * Iterate over the object_list and return the first valid object at or after
1198 * the required position with its use_count incremented. The function triggers
1199 * a memory scanning when the pos argument points to the first position.
1201 static void *kmemleak_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1203 struct kmemleak_object
*object
;
1207 err
= mutex_lock_interruptible(&scan_mutex
);
1209 return ERR_PTR(err
);
1212 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1215 if (get_object(object
))
1224 * Return the next object in the object_list. The function decrements the
1225 * use_count of the previous object and increases that of the next one.
1227 static void *kmemleak_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1229 struct kmemleak_object
*prev_obj
= v
;
1230 struct kmemleak_object
*next_obj
= NULL
;
1231 struct list_head
*n
= &prev_obj
->object_list
;
1235 list_for_each_continue_rcu(n
, &object_list
) {
1236 next_obj
= list_entry(n
, struct kmemleak_object
, object_list
);
1237 if (get_object(next_obj
))
1241 put_object(prev_obj
);
1246 * Decrement the use_count of the last object required, if any.
1248 static void kmemleak_seq_stop(struct seq_file
*seq
, void *v
)
1252 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1253 * waiting was interrupted, so only release it if !IS_ERR.
1256 mutex_unlock(&scan_mutex
);
1263 * Print the information for an unreferenced object to the seq file.
1265 static int kmemleak_seq_show(struct seq_file
*seq
, void *v
)
1267 struct kmemleak_object
*object
= v
;
1268 unsigned long flags
;
1270 spin_lock_irqsave(&object
->lock
, flags
);
1271 if ((object
->flags
& OBJECT_REPORTED
) && unreferenced_object(object
))
1272 print_unreferenced(seq
, object
);
1273 spin_unlock_irqrestore(&object
->lock
, flags
);
1277 static const struct seq_operations kmemleak_seq_ops
= {
1278 .start
= kmemleak_seq_start
,
1279 .next
= kmemleak_seq_next
,
1280 .stop
= kmemleak_seq_stop
,
1281 .show
= kmemleak_seq_show
,
1284 static int kmemleak_open(struct inode
*inode
, struct file
*file
)
1286 if (!atomic_read(&kmemleak_enabled
))
1289 return seq_open(file
, &kmemleak_seq_ops
);
1292 static int kmemleak_release(struct inode
*inode
, struct file
*file
)
1294 return seq_release(inode
, file
);
1298 * File write operation to configure kmemleak at run-time. The following
1299 * commands can be written to the /sys/kernel/debug/kmemleak file:
1300 * off - disable kmemleak (irreversible)
1301 * stack=on - enable the task stacks scanning
1302 * stack=off - disable the tasks stacks scanning
1303 * scan=on - start the automatic memory scanning thread
1304 * scan=off - stop the automatic memory scanning thread
1305 * scan=... - set the automatic memory scanning period in seconds (0 to
1307 * scan - trigger a memory scan
1309 static ssize_t
kmemleak_write(struct file
*file
, const char __user
*user_buf
,
1310 size_t size
, loff_t
*ppos
)
1316 buf_size
= min(size
, (sizeof(buf
) - 1));
1317 if (strncpy_from_user(buf
, user_buf
, buf_size
) < 0)
1321 ret
= mutex_lock_interruptible(&scan_mutex
);
1325 if (strncmp(buf
, "off", 3) == 0)
1327 else if (strncmp(buf
, "stack=on", 8) == 0)
1328 kmemleak_stack_scan
= 1;
1329 else if (strncmp(buf
, "stack=off", 9) == 0)
1330 kmemleak_stack_scan
= 0;
1331 else if (strncmp(buf
, "scan=on", 7) == 0)
1332 start_scan_thread();
1333 else if (strncmp(buf
, "scan=off", 8) == 0)
1335 else if (strncmp(buf
, "scan=", 5) == 0) {
1338 ret
= strict_strtoul(buf
+ 5, 0, &secs
);
1343 jiffies_scan_wait
= msecs_to_jiffies(secs
* 1000);
1344 start_scan_thread();
1346 } else if (strncmp(buf
, "scan", 4) == 0)
1352 mutex_unlock(&scan_mutex
);
1356 /* ignore the rest of the buffer, only one command at a time */
1361 static const struct file_operations kmemleak_fops
= {
1362 .owner
= THIS_MODULE
,
1363 .open
= kmemleak_open
,
1365 .write
= kmemleak_write
,
1366 .llseek
= seq_lseek
,
1367 .release
= kmemleak_release
,
1371 * Perform the freeing of the kmemleak internal objects after waiting for any
1372 * current memory scan to complete.
1374 static int kmemleak_cleanup_thread(void *arg
)
1376 struct kmemleak_object
*object
;
1378 mutex_lock(&scan_mutex
);
1382 list_for_each_entry_rcu(object
, &object_list
, object_list
)
1383 delete_object_full(object
->pointer
);
1385 mutex_unlock(&scan_mutex
);
1391 * Start the clean-up thread.
1393 static void kmemleak_cleanup(void)
1395 struct task_struct
*cleanup_thread
;
1397 cleanup_thread
= kthread_run(kmemleak_cleanup_thread
, NULL
,
1399 if (IS_ERR(cleanup_thread
))
1400 pr_warning("Failed to create the clean-up thread\n");
1404 * Disable kmemleak. No memory allocation/freeing will be traced once this
1405 * function is called. Disabling kmemleak is an irreversible operation.
1407 static void kmemleak_disable(void)
1409 /* atomically check whether it was already invoked */
1410 if (atomic_cmpxchg(&kmemleak_error
, 0, 1))
1413 /* stop any memory operation tracing */
1414 atomic_set(&kmemleak_early_log
, 0);
1415 atomic_set(&kmemleak_enabled
, 0);
1417 /* check whether it is too early for a kernel thread */
1418 if (atomic_read(&kmemleak_initialized
))
1421 pr_info("Kernel memory leak detector disabled\n");
1425 * Allow boot-time kmemleak disabling (enabled by default).
1427 static int kmemleak_boot_config(char *str
)
1431 if (strcmp(str
, "off") == 0)
1433 else if (strcmp(str
, "on") != 0)
1437 early_param("kmemleak", kmemleak_boot_config
);
1440 * Kmemleak initialization.
1442 void __init
kmemleak_init(void)
1445 unsigned long flags
;
1447 jiffies_min_age
= msecs_to_jiffies(MSECS_MIN_AGE
);
1448 jiffies_scan_wait
= msecs_to_jiffies(SECS_SCAN_WAIT
* 1000);
1450 object_cache
= KMEM_CACHE(kmemleak_object
, SLAB_NOLEAKTRACE
);
1451 scan_area_cache
= KMEM_CACHE(kmemleak_scan_area
, SLAB_NOLEAKTRACE
);
1452 INIT_PRIO_TREE_ROOT(&object_tree_root
);
1454 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1455 local_irq_save(flags
);
1456 if (!atomic_read(&kmemleak_error
)) {
1457 atomic_set(&kmemleak_enabled
, 1);
1458 atomic_set(&kmemleak_early_log
, 0);
1460 local_irq_restore(flags
);
1463 * This is the point where tracking allocations is safe. Automatic
1464 * scanning is started during the late initcall. Add the early logged
1465 * callbacks to the kmemleak infrastructure.
1467 for (i
= 0; i
< crt_early_log
; i
++) {
1468 struct early_log
*log
= &early_log
[i
];
1470 switch (log
->op_type
) {
1471 case KMEMLEAK_ALLOC
:
1472 kmemleak_alloc(log
->ptr
, log
->size
, log
->min_count
,
1476 kmemleak_free(log
->ptr
);
1478 case KMEMLEAK_FREE_PART
:
1479 kmemleak_free_part(log
->ptr
, log
->size
);
1481 case KMEMLEAK_NOT_LEAK
:
1482 kmemleak_not_leak(log
->ptr
);
1484 case KMEMLEAK_IGNORE
:
1485 kmemleak_ignore(log
->ptr
);
1487 case KMEMLEAK_SCAN_AREA
:
1488 kmemleak_scan_area(log
->ptr
, log
->offset
, log
->length
,
1491 case KMEMLEAK_NO_SCAN
:
1492 kmemleak_no_scan(log
->ptr
);
1501 * Late initialization function.
1503 static int __init
kmemleak_late_init(void)
1505 struct dentry
*dentry
;
1507 atomic_set(&kmemleak_initialized
, 1);
1509 if (atomic_read(&kmemleak_error
)) {
1511 * Some error occured and kmemleak was disabled. There is a
1512 * small chance that kmemleak_disable() was called immediately
1513 * after setting kmemleak_initialized and we may end up with
1514 * two clean-up threads but serialized by scan_mutex.
1520 dentry
= debugfs_create_file("kmemleak", S_IRUGO
, NULL
, NULL
,
1523 pr_warning("Failed to create the debugfs kmemleak file\n");
1524 mutex_lock(&scan_mutex
);
1525 start_scan_thread();
1526 mutex_unlock(&scan_mutex
);
1528 pr_info("Kernel memory leak detector initialized\n");
1532 late_initcall(kmemleak_late_init
);