KVM: PIT: remove usage of count_load_time for channel 0
[linux-2.6/verdex.git] / arch / x86 / kvm / i8254.c
blob09ae841ff462d49cf1b69cc8f4e01102fad99cea
1 /*
2 * 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
27 * Authors:
28 * Sheng Yang <sheng.yang@intel.com>
29 * Based on QEMU and Xen.
32 #include <linux/kvm_host.h>
34 #include "irq.h"
35 #include "i8254.h"
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
51 union {
52 u64 ll;
53 struct {
54 u32 low, high;
55 } l;
56 } u, res;
57 u64 rl, rh;
59 u.ll = a;
60 rl = (u64)u.l.low * (u64)b;
61 rh = (u64)u.l.high * (u64)b;
62 rh += (rl >> 32);
63 res.l.high = div64_u64(rh, c);
64 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65 return res.ll;
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
70 struct kvm_kpit_channel_state *c =
71 &kvm->arch.vpit->pit_state.channels[channel];
73 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
75 switch (c->mode) {
76 default:
77 case 0:
78 case 4:
79 /* XXX: just disable/enable counting */
80 break;
81 case 1:
82 case 2:
83 case 3:
84 case 5:
85 /* Restart counting on rising edge. */
86 if (c->gate < val)
87 c->count_load_time = ktime_get();
88 break;
91 c->gate = val;
94 static int pit_get_gate(struct kvm *kvm, int channel)
96 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
98 return kvm->arch.vpit->pit_state.channels[channel].gate;
101 static s64 __kpit_elapsed(struct kvm *kvm)
103 s64 elapsed;
104 ktime_t remaining;
105 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
107 remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
108 if (ktime_to_ns(remaining) < 0)
109 remaining = ktime_set(0, 0);
111 elapsed = ps->pit_timer.period;
112 if (ktime_to_ns(remaining) <= ps->pit_timer.period)
113 elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
115 return elapsed;
118 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
119 int channel)
121 if (channel == 0)
122 return __kpit_elapsed(kvm);
124 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
127 static int pit_get_count(struct kvm *kvm, int channel)
129 struct kvm_kpit_channel_state *c =
130 &kvm->arch.vpit->pit_state.channels[channel];
131 s64 d, t;
132 int counter;
134 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
136 t = kpit_elapsed(kvm, c, channel);
137 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
139 switch (c->mode) {
140 case 0:
141 case 1:
142 case 4:
143 case 5:
144 counter = (c->count - d) & 0xffff;
145 break;
146 case 3:
147 /* XXX: may be incorrect for odd counts */
148 counter = c->count - (mod_64((2 * d), c->count));
149 break;
150 default:
151 counter = c->count - mod_64(d, c->count);
152 break;
154 return counter;
157 static int pit_get_out(struct kvm *kvm, int channel)
159 struct kvm_kpit_channel_state *c =
160 &kvm->arch.vpit->pit_state.channels[channel];
161 s64 d, t;
162 int out;
164 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
166 t = kpit_elapsed(kvm, c, channel);
167 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
169 switch (c->mode) {
170 default:
171 case 0:
172 out = (d >= c->count);
173 break;
174 case 1:
175 out = (d < c->count);
176 break;
177 case 2:
178 out = ((mod_64(d, c->count) == 0) && (d != 0));
179 break;
180 case 3:
181 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
182 break;
183 case 4:
184 case 5:
185 out = (d == c->count);
186 break;
189 return out;
192 static void pit_latch_count(struct kvm *kvm, int channel)
194 struct kvm_kpit_channel_state *c =
195 &kvm->arch.vpit->pit_state.channels[channel];
197 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
199 if (!c->count_latched) {
200 c->latched_count = pit_get_count(kvm, channel);
201 c->count_latched = c->rw_mode;
205 static void pit_latch_status(struct kvm *kvm, int channel)
207 struct kvm_kpit_channel_state *c =
208 &kvm->arch.vpit->pit_state.channels[channel];
210 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
212 if (!c->status_latched) {
213 /* TODO: Return NULL COUNT (bit 6). */
214 c->status = ((pit_get_out(kvm, channel) << 7) |
215 (c->rw_mode << 4) |
216 (c->mode << 1) |
217 c->bcd);
218 c->status_latched = 1;
222 static int __pit_timer_fn(struct kvm_kpit_state *ps)
224 struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
225 struct kvm_kpit_timer *pt = &ps->pit_timer;
227 if (!atomic_inc_and_test(&pt->pending))
228 set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
230 if (!pt->reinject)
231 atomic_set(&pt->pending, 1);
233 if (vcpu0 && waitqueue_active(&vcpu0->wq))
234 wake_up_interruptible(&vcpu0->wq);
236 hrtimer_add_expires_ns(&pt->timer, pt->period);
238 return (pt->period == 0 ? 0 : 1);
241 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
243 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
245 if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
246 return atomic_read(&pit->pit_state.pit_timer.pending);
247 return 0;
250 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
252 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
253 irq_ack_notifier);
254 spin_lock(&ps->inject_lock);
255 if (atomic_dec_return(&ps->pit_timer.pending) < 0)
256 atomic_inc(&ps->pit_timer.pending);
257 ps->irq_ack = 1;
258 spin_unlock(&ps->inject_lock);
261 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
263 struct kvm_kpit_state *ps;
264 int restart_timer = 0;
266 ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
268 restart_timer = __pit_timer_fn(ps);
270 if (restart_timer)
271 return HRTIMER_RESTART;
272 else
273 return HRTIMER_NORESTART;
276 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
278 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
279 struct hrtimer *timer;
281 if (vcpu->vcpu_id != 0 || !pit)
282 return;
284 timer = &pit->pit_state.pit_timer.timer;
285 if (hrtimer_cancel(timer))
286 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
289 static void destroy_pit_timer(struct kvm_kpit_timer *pt)
291 pr_debug("pit: execute del timer!\n");
292 hrtimer_cancel(&pt->timer);
295 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
297 struct kvm_kpit_timer *pt = &ps->pit_timer;
298 s64 interval;
300 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
302 pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
304 /* TODO The new value only affected after the retriggered */
305 hrtimer_cancel(&pt->timer);
306 pt->period = (is_period == 0) ? 0 : interval;
307 pt->timer.function = pit_timer_fn;
308 atomic_set(&pt->pending, 0);
309 ps->irq_ack = 1;
311 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
312 HRTIMER_MODE_ABS);
315 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
317 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
319 WARN_ON(!mutex_is_locked(&ps->lock));
321 pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
324 * Though spec said the state of 8254 is undefined after power-up,
325 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
326 * when booting up.
327 * So here setting initialize rate for it, and not a specific number
329 if (val == 0)
330 val = 0x10000;
332 ps->channels[channel].count = val;
334 if (channel != 0) {
335 ps->channels[channel].count_load_time = ktime_get();
336 return;
339 /* Two types of timer
340 * mode 1 is one shot, mode 2 is period, otherwise del timer */
341 switch (ps->channels[0].mode) {
342 case 1:
343 /* FIXME: enhance mode 4 precision */
344 case 4:
345 create_pit_timer(ps, val, 0);
346 break;
347 case 2:
348 case 3:
349 create_pit_timer(ps, val, 1);
350 break;
351 default:
352 destroy_pit_timer(&ps->pit_timer);
356 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
358 mutex_lock(&kvm->arch.vpit->pit_state.lock);
359 pit_load_count(kvm, channel, val);
360 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
363 static void pit_ioport_write(struct kvm_io_device *this,
364 gpa_t addr, int len, const void *data)
366 struct kvm_pit *pit = (struct kvm_pit *)this->private;
367 struct kvm_kpit_state *pit_state = &pit->pit_state;
368 struct kvm *kvm = pit->kvm;
369 int channel, access;
370 struct kvm_kpit_channel_state *s;
371 u32 val = *(u32 *) data;
373 val &= 0xff;
374 addr &= KVM_PIT_CHANNEL_MASK;
376 mutex_lock(&pit_state->lock);
378 if (val != 0)
379 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
380 (unsigned int)addr, len, val);
382 if (addr == 3) {
383 channel = val >> 6;
384 if (channel == 3) {
385 /* Read-Back Command. */
386 for (channel = 0; channel < 3; channel++) {
387 s = &pit_state->channels[channel];
388 if (val & (2 << channel)) {
389 if (!(val & 0x20))
390 pit_latch_count(kvm, channel);
391 if (!(val & 0x10))
392 pit_latch_status(kvm, channel);
395 } else {
396 /* Select Counter <channel>. */
397 s = &pit_state->channels[channel];
398 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
399 if (access == 0) {
400 pit_latch_count(kvm, channel);
401 } else {
402 s->rw_mode = access;
403 s->read_state = access;
404 s->write_state = access;
405 s->mode = (val >> 1) & 7;
406 if (s->mode > 5)
407 s->mode -= 4;
408 s->bcd = val & 1;
411 } else {
412 /* Write Count. */
413 s = &pit_state->channels[addr];
414 switch (s->write_state) {
415 default:
416 case RW_STATE_LSB:
417 pit_load_count(kvm, addr, val);
418 break;
419 case RW_STATE_MSB:
420 pit_load_count(kvm, addr, val << 8);
421 break;
422 case RW_STATE_WORD0:
423 s->write_latch = val;
424 s->write_state = RW_STATE_WORD1;
425 break;
426 case RW_STATE_WORD1:
427 pit_load_count(kvm, addr, s->write_latch | (val << 8));
428 s->write_state = RW_STATE_WORD0;
429 break;
433 mutex_unlock(&pit_state->lock);
436 static void pit_ioport_read(struct kvm_io_device *this,
437 gpa_t addr, int len, void *data)
439 struct kvm_pit *pit = (struct kvm_pit *)this->private;
440 struct kvm_kpit_state *pit_state = &pit->pit_state;
441 struct kvm *kvm = pit->kvm;
442 int ret, count;
443 struct kvm_kpit_channel_state *s;
445 addr &= KVM_PIT_CHANNEL_MASK;
446 s = &pit_state->channels[addr];
448 mutex_lock(&pit_state->lock);
450 if (s->status_latched) {
451 s->status_latched = 0;
452 ret = s->status;
453 } else if (s->count_latched) {
454 switch (s->count_latched) {
455 default:
456 case RW_STATE_LSB:
457 ret = s->latched_count & 0xff;
458 s->count_latched = 0;
459 break;
460 case RW_STATE_MSB:
461 ret = s->latched_count >> 8;
462 s->count_latched = 0;
463 break;
464 case RW_STATE_WORD0:
465 ret = s->latched_count & 0xff;
466 s->count_latched = RW_STATE_MSB;
467 break;
469 } else {
470 switch (s->read_state) {
471 default:
472 case RW_STATE_LSB:
473 count = pit_get_count(kvm, addr);
474 ret = count & 0xff;
475 break;
476 case RW_STATE_MSB:
477 count = pit_get_count(kvm, addr);
478 ret = (count >> 8) & 0xff;
479 break;
480 case RW_STATE_WORD0:
481 count = pit_get_count(kvm, addr);
482 ret = count & 0xff;
483 s->read_state = RW_STATE_WORD1;
484 break;
485 case RW_STATE_WORD1:
486 count = pit_get_count(kvm, addr);
487 ret = (count >> 8) & 0xff;
488 s->read_state = RW_STATE_WORD0;
489 break;
493 if (len > sizeof(ret))
494 len = sizeof(ret);
495 memcpy(data, (char *)&ret, len);
497 mutex_unlock(&pit_state->lock);
500 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
501 int len, int is_write)
503 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
504 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
507 static void speaker_ioport_write(struct kvm_io_device *this,
508 gpa_t addr, int len, const void *data)
510 struct kvm_pit *pit = (struct kvm_pit *)this->private;
511 struct kvm_kpit_state *pit_state = &pit->pit_state;
512 struct kvm *kvm = pit->kvm;
513 u32 val = *(u32 *) data;
515 mutex_lock(&pit_state->lock);
516 pit_state->speaker_data_on = (val >> 1) & 1;
517 pit_set_gate(kvm, 2, val & 1);
518 mutex_unlock(&pit_state->lock);
521 static void speaker_ioport_read(struct kvm_io_device *this,
522 gpa_t addr, int len, void *data)
524 struct kvm_pit *pit = (struct kvm_pit *)this->private;
525 struct kvm_kpit_state *pit_state = &pit->pit_state;
526 struct kvm *kvm = pit->kvm;
527 unsigned int refresh_clock;
528 int ret;
530 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
531 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
533 mutex_lock(&pit_state->lock);
534 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
535 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
536 if (len > sizeof(ret))
537 len = sizeof(ret);
538 memcpy(data, (char *)&ret, len);
539 mutex_unlock(&pit_state->lock);
542 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
543 int len, int is_write)
545 return (addr == KVM_SPEAKER_BASE_ADDRESS);
548 void kvm_pit_reset(struct kvm_pit *pit)
550 int i;
551 struct kvm_kpit_channel_state *c;
553 mutex_lock(&pit->pit_state.lock);
554 for (i = 0; i < 3; i++) {
555 c = &pit->pit_state.channels[i];
556 c->mode = 0xff;
557 c->gate = (i != 2);
558 pit_load_count(pit->kvm, i, 0);
560 mutex_unlock(&pit->pit_state.lock);
562 atomic_set(&pit->pit_state.pit_timer.pending, 0);
563 pit->pit_state.irq_ack = 1;
566 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
568 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
570 if (!mask) {
571 atomic_set(&pit->pit_state.pit_timer.pending, 0);
572 pit->pit_state.irq_ack = 1;
576 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
578 struct kvm_pit *pit;
579 struct kvm_kpit_state *pit_state;
581 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
582 if (!pit)
583 return NULL;
585 pit->irq_source_id = kvm_request_irq_source_id(kvm);
586 if (pit->irq_source_id < 0) {
587 kfree(pit);
588 return NULL;
591 mutex_init(&pit->pit_state.lock);
592 mutex_lock(&pit->pit_state.lock);
593 spin_lock_init(&pit->pit_state.inject_lock);
595 /* Initialize PIO device */
596 pit->dev.read = pit_ioport_read;
597 pit->dev.write = pit_ioport_write;
598 pit->dev.in_range = pit_in_range;
599 pit->dev.private = pit;
600 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
602 pit->speaker_dev.read = speaker_ioport_read;
603 pit->speaker_dev.write = speaker_ioport_write;
604 pit->speaker_dev.in_range = speaker_in_range;
605 pit->speaker_dev.private = pit;
606 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
608 kvm->arch.vpit = pit;
609 pit->kvm = kvm;
611 pit_state = &pit->pit_state;
612 pit_state->pit = pit;
613 hrtimer_init(&pit_state->pit_timer.timer,
614 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
615 pit_state->irq_ack_notifier.gsi = 0;
616 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
617 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
618 pit_state->pit_timer.reinject = true;
619 mutex_unlock(&pit->pit_state.lock);
621 kvm_pit_reset(pit);
623 pit->mask_notifier.func = pit_mask_notifer;
624 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
626 return pit;
629 void kvm_free_pit(struct kvm *kvm)
631 struct hrtimer *timer;
633 if (kvm->arch.vpit) {
634 kvm_unregister_irq_mask_notifier(kvm, 0,
635 &kvm->arch.vpit->mask_notifier);
636 mutex_lock(&kvm->arch.vpit->pit_state.lock);
637 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
638 hrtimer_cancel(timer);
639 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
640 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
641 kfree(kvm->arch.vpit);
645 static void __inject_pit_timer_intr(struct kvm *kvm)
647 struct kvm_vcpu *vcpu;
648 int i;
650 mutex_lock(&kvm->lock);
651 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
652 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
653 mutex_unlock(&kvm->lock);
656 * Provides NMI watchdog support via Virtual Wire mode.
657 * The route is: PIT -> PIC -> LVT0 in NMI mode.
659 * Note: Our Virtual Wire implementation is simplified, only
660 * propagating PIT interrupts to all VCPUs when they have set
661 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
662 * VCPU0, and only if its LVT0 is in EXTINT mode.
664 if (kvm->arch.vapics_in_nmi_mode > 0)
665 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
666 vcpu = kvm->vcpus[i];
667 if (vcpu)
668 kvm_apic_nmi_wd_deliver(vcpu);
672 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
674 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
675 struct kvm *kvm = vcpu->kvm;
676 struct kvm_kpit_state *ps;
678 if (vcpu && pit) {
679 int inject = 0;
680 ps = &pit->pit_state;
682 /* Try to inject pending interrupts when
683 * last one has been acked.
685 spin_lock(&ps->inject_lock);
686 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
687 ps->irq_ack = 0;
688 inject = 1;
690 spin_unlock(&ps->inject_lock);
691 if (inject)
692 __inject_pit_timer_intr(kvm);