[PATCH] powerpc: Use PE configuration address consistently
[linux-2.6/verdex.git] / arch / powerpc / platforms / pseries / eeh.c
blob4da77571288b1213d8a29135d0fd0344d6d5ea08
1 /*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/seq_file.h>
27 #include <linux/spinlock.h>
28 #include <asm/atomic.h>
29 #include <asm/eeh.h>
30 #include <asm/eeh_event.h>
31 #include <asm/io.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/rtas.h>
36 #undef DEBUG
38 /** Overview:
39 * EEH, or "Extended Error Handling" is a PCI bridge technology for
40 * dealing with PCI bus errors that can't be dealt with within the
41 * usual PCI framework, except by check-stopping the CPU. Systems
42 * that are designed for high-availability/reliability cannot afford
43 * to crash due to a "mere" PCI error, thus the need for EEH.
44 * An EEH-capable bridge operates by converting a detected error
45 * into a "slot freeze", taking the PCI adapter off-line, making
46 * the slot behave, from the OS'es point of view, as if the slot
47 * were "empty": all reads return 0xff's and all writes are silently
48 * ignored. EEH slot isolation events can be triggered by parity
49 * errors on the address or data busses (e.g. during posted writes),
50 * which in turn might be caused by low voltage on the bus, dust,
51 * vibration, humidity, radioactivity or plain-old failed hardware.
53 * Note, however, that one of the leading causes of EEH slot
54 * freeze events are buggy device drivers, buggy device microcode,
55 * or buggy device hardware. This is because any attempt by the
56 * device to bus-master data to a memory address that is not
57 * assigned to the device will trigger a slot freeze. (The idea
58 * is to prevent devices-gone-wild from corrupting system memory).
59 * Buggy hardware/drivers will have a miserable time co-existing
60 * with EEH.
62 * Ideally, a PCI device driver, when suspecting that an isolation
63 * event has occured (e.g. by reading 0xff's), will then ask EEH
64 * whether this is the case, and then take appropriate steps to
65 * reset the PCI slot, the PCI device, and then resume operations.
66 * However, until that day, the checking is done here, with the
67 * eeh_check_failure() routine embedded in the MMIO macros. If
68 * the slot is found to be isolated, an "EEH Event" is synthesized
69 * and sent out for processing.
72 /* If a device driver keeps reading an MMIO register in an interrupt
73 * handler after a slot isolation event has occurred, we assume it
74 * is broken and panic. This sets the threshold for how many read
75 * attempts we allow before panicking.
77 #define EEH_MAX_FAILS 100000
79 /* RTAS tokens */
80 static int ibm_set_eeh_option;
81 static int ibm_set_slot_reset;
82 static int ibm_read_slot_reset_state;
83 static int ibm_read_slot_reset_state2;
84 static int ibm_slot_error_detail;
85 static int ibm_get_config_addr_info;
87 int eeh_subsystem_enabled;
88 EXPORT_SYMBOL(eeh_subsystem_enabled);
90 /* Lock to avoid races due to multiple reports of an error */
91 static DEFINE_SPINLOCK(confirm_error_lock);
93 /* Buffer for reporting slot-error-detail rtas calls */
94 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
95 static DEFINE_SPINLOCK(slot_errbuf_lock);
96 static int eeh_error_buf_size;
98 /* System monitoring statistics */
99 static DEFINE_PER_CPU(unsigned long, no_device);
100 static DEFINE_PER_CPU(unsigned long, no_dn);
101 static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
102 static DEFINE_PER_CPU(unsigned long, ignored_check);
103 static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
104 static DEFINE_PER_CPU(unsigned long, false_positives);
105 static DEFINE_PER_CPU(unsigned long, ignored_failures);
106 static DEFINE_PER_CPU(unsigned long, slot_resets);
108 /* --------------------------------------------------------------- */
109 /* Below lies the EEH event infrastructure */
111 void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
113 int config_addr;
114 unsigned long flags;
115 int rc;
117 /* Log the error with the rtas logger */
118 spin_lock_irqsave(&slot_errbuf_lock, flags);
119 memset(slot_errbuf, 0, eeh_error_buf_size);
121 /* Use PE configuration address, if present */
122 config_addr = pdn->eeh_config_addr;
123 if (pdn->eeh_pe_config_addr)
124 config_addr = pdn->eeh_pe_config_addr;
126 rc = rtas_call(ibm_slot_error_detail,
127 8, 1, NULL, config_addr,
128 BUID_HI(pdn->phb->buid),
129 BUID_LO(pdn->phb->buid), NULL, 0,
130 virt_to_phys(slot_errbuf),
131 eeh_error_buf_size,
132 severity);
134 if (rc == 0)
135 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
136 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
140 * read_slot_reset_state - Read the reset state of a device node's slot
141 * @dn: device node to read
142 * @rets: array to return results in
144 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
146 int token, outputs;
147 int config_addr;
149 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
150 token = ibm_read_slot_reset_state2;
151 outputs = 4;
152 } else {
153 token = ibm_read_slot_reset_state;
154 rets[2] = 0; /* fake PE Unavailable info */
155 outputs = 3;
158 /* Use PE configuration address, if present */
159 config_addr = pdn->eeh_config_addr;
160 if (pdn->eeh_pe_config_addr)
161 config_addr = pdn->eeh_pe_config_addr;
163 return rtas_call(token, 3, outputs, rets, config_addr,
164 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
168 * eeh_token_to_phys - convert EEH address token to phys address
169 * @token i/o token, should be address in the form 0xA....
171 static inline unsigned long eeh_token_to_phys(unsigned long token)
173 pte_t *ptep;
174 unsigned long pa;
176 ptep = find_linux_pte(init_mm.pgd, token);
177 if (!ptep)
178 return token;
179 pa = pte_pfn(*ptep) << PAGE_SHIFT;
181 return pa | (token & (PAGE_SIZE-1));
184 /**
185 * Return the "partitionable endpoint" (pe) under which this device lies
187 struct device_node * find_device_pe(struct device_node *dn)
189 while ((dn->parent) && PCI_DN(dn->parent) &&
190 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
191 dn = dn->parent;
193 return dn;
196 /** Mark all devices that are peers of this device as failed.
197 * Mark the device driver too, so that it can see the failure
198 * immediately; this is critical, since some drivers poll
199 * status registers in interrupts ... If a driver is polling,
200 * and the slot is frozen, then the driver can deadlock in
201 * an interrupt context, which is bad.
204 static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
206 while (dn) {
207 if (PCI_DN(dn)) {
208 PCI_DN(dn)->eeh_mode |= mode_flag;
210 /* Mark the pci device driver too */
211 struct pci_dev *dev = PCI_DN(dn)->pcidev;
212 if (dev && dev->driver)
213 dev->error_state = pci_channel_io_frozen;
215 if (dn->child)
216 __eeh_mark_slot (dn->child, mode_flag);
218 dn = dn->sibling;
222 void eeh_mark_slot (struct device_node *dn, int mode_flag)
224 dn = find_device_pe (dn);
225 PCI_DN(dn)->eeh_mode |= mode_flag;
226 __eeh_mark_slot (dn->child, mode_flag);
229 static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
231 while (dn) {
232 if (PCI_DN(dn)) {
233 PCI_DN(dn)->eeh_mode &= ~mode_flag;
234 PCI_DN(dn)->eeh_check_count = 0;
235 if (dn->child)
236 __eeh_clear_slot (dn->child, mode_flag);
238 dn = dn->sibling;
242 void eeh_clear_slot (struct device_node *dn, int mode_flag)
244 unsigned long flags;
245 spin_lock_irqsave(&confirm_error_lock, flags);
246 dn = find_device_pe (dn);
247 PCI_DN(dn)->eeh_mode &= ~mode_flag;
248 PCI_DN(dn)->eeh_check_count = 0;
249 __eeh_clear_slot (dn->child, mode_flag);
250 spin_unlock_irqrestore(&confirm_error_lock, flags);
254 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
255 * @dn device node
256 * @dev pci device, if known
258 * Check for an EEH failure for the given device node. Call this
259 * routine if the result of a read was all 0xff's and you want to
260 * find out if this is due to an EEH slot freeze. This routine
261 * will query firmware for the EEH status.
263 * Returns 0 if there has not been an EEH error; otherwise returns
264 * a non-zero value and queues up a slot isolation event notification.
266 * It is safe to call this routine in an interrupt context.
268 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
270 int ret;
271 int rets[3];
272 unsigned long flags;
273 struct pci_dn *pdn;
274 enum pci_channel_state state;
275 int rc = 0;
277 __get_cpu_var(total_mmio_ffs)++;
279 if (!eeh_subsystem_enabled)
280 return 0;
282 if (!dn) {
283 __get_cpu_var(no_dn)++;
284 return 0;
286 pdn = PCI_DN(dn);
288 /* Access to IO BARs might get this far and still not want checking. */
289 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
290 pdn->eeh_mode & EEH_MODE_NOCHECK) {
291 __get_cpu_var(ignored_check)++;
292 #ifdef DEBUG
293 printk ("EEH:ignored check (%x) for %s %s\n",
294 pdn->eeh_mode, pci_name (dev), dn->full_name);
295 #endif
296 return 0;
299 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
300 __get_cpu_var(no_cfg_addr)++;
301 return 0;
304 /* If we already have a pending isolation event for this
305 * slot, we know it's bad already, we don't need to check.
306 * Do this checking under a lock; as multiple PCI devices
307 * in one slot might report errors simultaneously, and we
308 * only want one error recovery routine running.
310 spin_lock_irqsave(&confirm_error_lock, flags);
311 rc = 1;
312 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
313 pdn->eeh_check_count ++;
314 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
315 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
316 pdn->eeh_check_count);
317 dump_stack();
319 /* re-read the slot reset state */
320 if (read_slot_reset_state(pdn, rets) != 0)
321 rets[0] = -1; /* reset state unknown */
323 /* If we are here, then we hit an infinite loop. Stop. */
324 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
326 goto dn_unlock;
330 * Now test for an EEH failure. This is VERY expensive.
331 * Note that the eeh_config_addr may be a parent device
332 * in the case of a device behind a bridge, or it may be
333 * function zero of a multi-function device.
334 * In any case they must share a common PHB.
336 ret = read_slot_reset_state(pdn, rets);
338 /* If the call to firmware failed, punt */
339 if (ret != 0) {
340 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
341 ret, dn->full_name);
342 __get_cpu_var(false_positives)++;
343 rc = 0;
344 goto dn_unlock;
347 /* If EEH is not supported on this device, punt. */
348 if (rets[1] != 1) {
349 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
350 ret, dn->full_name);
351 __get_cpu_var(false_positives)++;
352 rc = 0;
353 goto dn_unlock;
356 /* If not the kind of error we know about, punt. */
357 if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
358 __get_cpu_var(false_positives)++;
359 rc = 0;
360 goto dn_unlock;
363 /* Note that config-io to empty slots may fail;
364 * we recognize empty because they don't have children. */
365 if ((rets[0] == 5) && (dn->child == NULL)) {
366 __get_cpu_var(false_positives)++;
367 rc = 0;
368 goto dn_unlock;
371 __get_cpu_var(slot_resets)++;
373 /* Avoid repeated reports of this failure, including problems
374 * with other functions on this device, and functions under
375 * bridges. */
376 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
377 spin_unlock_irqrestore(&confirm_error_lock, flags);
379 state = pci_channel_io_normal;
380 if ((rets[0] == 2) || (rets[0] == 4))
381 state = pci_channel_io_frozen;
382 if (rets[0] == 5)
383 state = pci_channel_io_perm_failure;
384 eeh_send_failure_event (dn, dev, state, rets[2]);
386 /* Most EEH events are due to device driver bugs. Having
387 * a stack trace will help the device-driver authors figure
388 * out what happened. So print that out. */
389 if (rets[0] != 5) dump_stack();
390 return 1;
392 dn_unlock:
393 spin_unlock_irqrestore(&confirm_error_lock, flags);
394 return rc;
397 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
400 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
401 * @token i/o token, should be address in the form 0xA....
402 * @val value, should be all 1's (XXX why do we need this arg??)
404 * Check for an EEH failure at the given token address. Call this
405 * routine if the result of a read was all 0xff's and you want to
406 * find out if this is due to an EEH slot freeze event. This routine
407 * will query firmware for the EEH status.
409 * Note this routine is safe to call in an interrupt context.
411 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
413 unsigned long addr;
414 struct pci_dev *dev;
415 struct device_node *dn;
417 /* Finding the phys addr + pci device; this is pretty quick. */
418 addr = eeh_token_to_phys((unsigned long __force) token);
419 dev = pci_get_device_by_addr(addr);
420 if (!dev) {
421 __get_cpu_var(no_device)++;
422 return val;
425 dn = pci_device_to_OF_node(dev);
426 eeh_dn_check_failure (dn, dev);
428 pci_dev_put(dev);
429 return val;
432 EXPORT_SYMBOL(eeh_check_failure);
434 /* ------------------------------------------------------------- */
435 /* The code below deals with error recovery */
437 /** Return negative value if a permanent error, else return
438 * a number of milliseconds to wait until the PCI slot is
439 * ready to be used.
441 static int
442 eeh_slot_availability(struct pci_dn *pdn)
444 int rc;
445 int rets[3];
447 rc = read_slot_reset_state(pdn, rets);
449 if (rc) return rc;
451 if (rets[1] == 0) return -1; /* EEH is not supported */
452 if (rets[0] == 0) return 0; /* Oll Korrect */
453 if (rets[0] == 5) {
454 if (rets[2] == 0) return -1; /* permanently unavailable */
455 return rets[2]; /* number of millisecs to wait */
457 return -1;
460 /** rtas_pci_slot_reset raises/lowers the pci #RST line
461 * state: 1/0 to raise/lower the #RST
463 * Clear the EEH-frozen condition on a slot. This routine
464 * asserts the PCI #RST line if the 'state' argument is '1',
465 * and drops the #RST line if 'state is '0'. This routine is
466 * safe to call in an interrupt context.
470 static void
471 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
473 int config_addr;
474 int rc;
476 BUG_ON (pdn==NULL);
478 if (!pdn->phb) {
479 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
480 pdn->node->full_name);
481 return;
484 /* Use PE configuration address, if present */
485 config_addr = pdn->eeh_config_addr;
486 if (pdn->eeh_pe_config_addr)
487 config_addr = pdn->eeh_pe_config_addr;
489 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
490 config_addr,
491 BUID_HI(pdn->phb->buid),
492 BUID_LO(pdn->phb->buid),
493 state);
494 if (rc) {
495 printk (KERN_WARNING "EEH: Unable to reset the failed slot, (%d) #RST=%d dn=%s\n",
496 rc, state, pdn->node->full_name);
497 return;
501 /** rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
502 * dn -- device node to be reset.
505 void
506 rtas_set_slot_reset(struct pci_dn *pdn)
508 int i, rc;
510 rtas_pci_slot_reset (pdn, 1);
512 /* The PCI bus requires that the reset be held high for at least
513 * a 100 milliseconds. We wait a bit longer 'just in case'. */
515 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
516 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
518 /* We might get hit with another EEH freeze as soon as the
519 * pci slot reset line is dropped. Make sure we don't miss
520 * these, and clear the flag now. */
521 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
523 rtas_pci_slot_reset (pdn, 0);
525 /* After a PCI slot has been reset, the PCI Express spec requires
526 * a 1.5 second idle time for the bus to stabilize, before starting
527 * up traffic. */
528 #define PCI_BUS_SETTLE_TIME_MSEC 1800
529 msleep (PCI_BUS_SETTLE_TIME_MSEC);
531 /* Now double check with the firmware to make sure the device is
532 * ready to be used; if not, wait for recovery. */
533 for (i=0; i<10; i++) {
534 rc = eeh_slot_availability (pdn);
535 if (rc <= 0) break;
537 msleep (rc+100);
541 /* ------------------------------------------------------- */
542 /** Save and restore of PCI BARs
544 * Although firmware will set up BARs during boot, it doesn't
545 * set up device BAR's after a device reset, although it will,
546 * if requested, set up bridge configuration. Thus, we need to
547 * configure the PCI devices ourselves.
551 * __restore_bars - Restore the Base Address Registers
552 * Loads the PCI configuration space base address registers,
553 * the expansion ROM base address, the latency timer, and etc.
554 * from the saved values in the device node.
556 static inline void __restore_bars (struct pci_dn *pdn)
558 int i;
560 if (NULL==pdn->phb) return;
561 for (i=4; i<10; i++) {
562 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
565 /* 12 == Expansion ROM Address */
566 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
568 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
569 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
571 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
572 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
574 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
575 SAVED_BYTE(PCI_LATENCY_TIMER));
577 /* max latency, min grant, interrupt pin and line */
578 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
582 * eeh_restore_bars - restore the PCI config space info
584 * This routine performs a recursive walk to the children
585 * of this device as well.
587 void eeh_restore_bars(struct pci_dn *pdn)
589 struct device_node *dn;
590 if (!pdn)
591 return;
593 if (! pdn->eeh_is_bridge)
594 __restore_bars (pdn);
596 dn = pdn->node->child;
597 while (dn) {
598 eeh_restore_bars (PCI_DN(dn));
599 dn = dn->sibling;
604 * eeh_save_bars - save device bars
606 * Save the values of the device bars. Unlike the restore
607 * routine, this routine is *not* recursive. This is because
608 * PCI devices are added individuallly; but, for the restore,
609 * an entire slot is reset at a time.
611 void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
613 int i;
615 if (!pdev || !pdn )
616 return;
618 for (i = 0; i < 16; i++)
619 pci_read_config_dword(pdev, i * 4, &pdn->config_space[i]);
621 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
622 pdn->eeh_is_bridge = 1;
625 void
626 rtas_configure_bridge(struct pci_dn *pdn)
628 int config_addr;
629 int token = rtas_token ("ibm,configure-bridge");
630 int rc;
632 if (token == RTAS_UNKNOWN_SERVICE)
633 return;
635 /* Use PE configuration address, if present */
636 config_addr = pdn->eeh_config_addr;
637 if (pdn->eeh_pe_config_addr)
638 config_addr = pdn->eeh_pe_config_addr;
640 rc = rtas_call(token,3,1, NULL,
641 config_addr,
642 BUID_HI(pdn->phb->buid),
643 BUID_LO(pdn->phb->buid));
644 if (rc) {
645 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
646 rc, pdn->node->full_name);
650 /* ------------------------------------------------------------- */
651 /* The code below deals with enabling EEH for devices during the
652 * early boot sequence. EEH must be enabled before any PCI probing
653 * can be done.
656 #define EEH_ENABLE 1
658 struct eeh_early_enable_info {
659 unsigned int buid_hi;
660 unsigned int buid_lo;
663 /* Enable eeh for the given device node. */
664 static void *early_enable_eeh(struct device_node *dn, void *data)
666 struct eeh_early_enable_info *info = data;
667 int ret;
668 char *status = get_property(dn, "status", NULL);
669 u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
670 u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
671 u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
672 u32 *regs;
673 int enable;
674 struct pci_dn *pdn = PCI_DN(dn);
676 pdn->eeh_mode = 0;
677 pdn->eeh_check_count = 0;
678 pdn->eeh_freeze_count = 0;
680 if (status && strcmp(status, "ok") != 0)
681 return NULL; /* ignore devices with bad status */
683 /* Ignore bad nodes. */
684 if (!class_code || !vendor_id || !device_id)
685 return NULL;
687 /* There is nothing to check on PCI to ISA bridges */
688 if (dn->type && !strcmp(dn->type, "isa")) {
689 pdn->eeh_mode |= EEH_MODE_NOCHECK;
690 return NULL;
694 * Now decide if we are going to "Disable" EEH checking
695 * for this device. We still run with the EEH hardware active,
696 * but we won't be checking for ff's. This means a driver
697 * could return bad data (very bad!), an interrupt handler could
698 * hang waiting on status bits that won't change, etc.
699 * But there are a few cases like display devices that make sense.
701 enable = 1; /* i.e. we will do checking */
702 #if 0
703 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
704 enable = 0;
705 #endif
707 if (!enable)
708 pdn->eeh_mode |= EEH_MODE_NOCHECK;
710 /* Ok... see if this device supports EEH. Some do, some don't,
711 * and the only way to find out is to check each and every one. */
712 regs = (u32 *)get_property(dn, "reg", NULL);
713 if (regs) {
714 /* First register entry is addr (00BBSS00) */
715 /* Try to enable eeh */
716 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
717 regs[0], info->buid_hi, info->buid_lo,
718 EEH_ENABLE);
720 if (ret == 0) {
721 eeh_subsystem_enabled = 1;
722 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
723 pdn->eeh_config_addr = regs[0];
725 /* If the newer, better, ibm,get-config-addr-info is supported,
726 * then use that instead. */
727 pdn->eeh_pe_config_addr = 0;
728 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
729 unsigned int rets[2];
730 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
731 pdn->eeh_config_addr,
732 info->buid_hi, info->buid_lo,
734 if (ret == 0)
735 pdn->eeh_pe_config_addr = rets[0];
737 #ifdef DEBUG
738 printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
739 dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
740 #endif
741 } else {
743 /* This device doesn't support EEH, but it may have an
744 * EEH parent, in which case we mark it as supported. */
745 if (dn->parent && PCI_DN(dn->parent)
746 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
747 /* Parent supports EEH. */
748 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
749 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
750 return NULL;
753 } else {
754 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
755 dn->full_name);
758 return NULL;
762 * Initialize EEH by trying to enable it for all of the adapters in the system.
763 * As a side effect we can determine here if eeh is supported at all.
764 * Note that we leave EEH on so failed config cycles won't cause a machine
765 * check. If a user turns off EEH for a particular adapter they are really
766 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
767 * grant access to a slot if EEH isn't enabled, and so we always enable
768 * EEH for all slots/all devices.
770 * The eeh-force-off option disables EEH checking globally, for all slots.
771 * Even if force-off is set, the EEH hardware is still enabled, so that
772 * newer systems can boot.
774 void __init eeh_init(void)
776 struct device_node *phb, *np;
777 struct eeh_early_enable_info info;
779 spin_lock_init(&confirm_error_lock);
780 spin_lock_init(&slot_errbuf_lock);
782 np = of_find_node_by_path("/rtas");
783 if (np == NULL)
784 return;
786 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
787 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
788 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
789 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
790 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
791 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
793 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
794 return;
796 eeh_error_buf_size = rtas_token("rtas-error-log-max");
797 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
798 eeh_error_buf_size = 1024;
800 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
801 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
802 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
803 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
806 /* Enable EEH for all adapters. Note that eeh requires buid's */
807 for (phb = of_find_node_by_name(NULL, "pci"); phb;
808 phb = of_find_node_by_name(phb, "pci")) {
809 unsigned long buid;
811 buid = get_phb_buid(phb);
812 if (buid == 0 || PCI_DN(phb) == NULL)
813 continue;
815 info.buid_lo = BUID_LO(buid);
816 info.buid_hi = BUID_HI(buid);
817 traverse_pci_devices(phb, early_enable_eeh, &info);
820 if (eeh_subsystem_enabled)
821 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
822 else
823 printk(KERN_WARNING "EEH: No capable adapters found\n");
827 * eeh_add_device_early - enable EEH for the indicated device_node
828 * @dn: device node for which to set up EEH
830 * This routine must be used to perform EEH initialization for PCI
831 * devices that were added after system boot (e.g. hotplug, dlpar).
832 * This routine must be called before any i/o is performed to the
833 * adapter (inluding any config-space i/o).
834 * Whether this actually enables EEH or not for this device depends
835 * on the CEC architecture, type of the device, on earlier boot
836 * command-line arguments & etc.
838 void eeh_add_device_early(struct device_node *dn)
840 struct pci_controller *phb;
841 struct eeh_early_enable_info info;
843 if (!dn || !PCI_DN(dn))
844 return;
845 phb = PCI_DN(dn)->phb;
847 /* USB Bus children of PCI devices will not have BUID's */
848 if (NULL == phb || 0 == phb->buid)
849 return;
851 info.buid_hi = BUID_HI(phb->buid);
852 info.buid_lo = BUID_LO(phb->buid);
853 early_enable_eeh(dn, &info);
855 EXPORT_SYMBOL_GPL(eeh_add_device_early);
857 void eeh_add_device_tree_early(struct device_node *dn)
859 struct device_node *sib;
860 for (sib = dn->child; sib; sib = sib->sibling)
861 eeh_add_device_tree_early(sib);
862 eeh_add_device_early(dn);
864 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
867 * eeh_add_device_late - perform EEH initialization for the indicated pci device
868 * @dev: pci device for which to set up EEH
870 * This routine must be used to complete EEH initialization for PCI
871 * devices that were added after system boot (e.g. hotplug, dlpar).
873 void eeh_add_device_late(struct pci_dev *dev)
875 struct device_node *dn;
876 struct pci_dn *pdn;
878 if (!dev || !eeh_subsystem_enabled)
879 return;
881 #ifdef DEBUG
882 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
883 #endif
885 pci_dev_get (dev);
886 dn = pci_device_to_OF_node(dev);
887 pdn = PCI_DN(dn);
888 pdn->pcidev = dev;
890 pci_addr_cache_insert_device (dev);
891 eeh_save_bars(dev, pdn);
893 EXPORT_SYMBOL_GPL(eeh_add_device_late);
896 * eeh_remove_device - undo EEH setup for the indicated pci device
897 * @dev: pci device to be removed
899 * This routine should be when a device is removed from a running
900 * system (e.g. by hotplug or dlpar).
902 void eeh_remove_device(struct pci_dev *dev)
904 struct device_node *dn;
905 if (!dev || !eeh_subsystem_enabled)
906 return;
908 /* Unregister the device with the EEH/PCI address search system */
909 #ifdef DEBUG
910 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
911 #endif
912 pci_addr_cache_remove_device(dev);
914 dn = pci_device_to_OF_node(dev);
915 PCI_DN(dn)->pcidev = NULL;
916 pci_dev_put (dev);
918 EXPORT_SYMBOL_GPL(eeh_remove_device);
920 void eeh_remove_bus_device(struct pci_dev *dev)
922 eeh_remove_device(dev);
923 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
924 struct pci_bus *bus = dev->subordinate;
925 struct list_head *ln;
926 if (!bus)
927 return;
928 for (ln = bus->devices.next; ln != &bus->devices; ln = ln->next) {
929 struct pci_dev *pdev = pci_dev_b(ln);
930 if (pdev)
931 eeh_remove_bus_device(pdev);
935 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
937 static int proc_eeh_show(struct seq_file *m, void *v)
939 unsigned int cpu;
940 unsigned long ffs = 0, positives = 0, failures = 0;
941 unsigned long resets = 0;
942 unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
944 for_each_cpu(cpu) {
945 ffs += per_cpu(total_mmio_ffs, cpu);
946 positives += per_cpu(false_positives, cpu);
947 failures += per_cpu(ignored_failures, cpu);
948 resets += per_cpu(slot_resets, cpu);
949 no_dev += per_cpu(no_device, cpu);
950 no_dn += per_cpu(no_dn, cpu);
951 no_cfg += per_cpu(no_cfg_addr, cpu);
952 no_check += per_cpu(ignored_check, cpu);
955 if (0 == eeh_subsystem_enabled) {
956 seq_printf(m, "EEH Subsystem is globally disabled\n");
957 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
958 } else {
959 seq_printf(m, "EEH Subsystem is enabled\n");
960 seq_printf(m,
961 "no device=%ld\n"
962 "no device node=%ld\n"
963 "no config address=%ld\n"
964 "check not wanted=%ld\n"
965 "eeh_total_mmio_ffs=%ld\n"
966 "eeh_false_positives=%ld\n"
967 "eeh_ignored_failures=%ld\n"
968 "eeh_slot_resets=%ld\n",
969 no_dev, no_dn, no_cfg, no_check,
970 ffs, positives, failures, resets);
973 return 0;
976 static int proc_eeh_open(struct inode *inode, struct file *file)
978 return single_open(file, proc_eeh_show, NULL);
981 static struct file_operations proc_eeh_operations = {
982 .open = proc_eeh_open,
983 .read = seq_read,
984 .llseek = seq_lseek,
985 .release = single_release,
988 static int __init eeh_init_proc(void)
990 struct proc_dir_entry *e;
992 if (platform_is_pseries()) {
993 e = create_proc_entry("ppc64/eeh", 0, NULL);
994 if (e)
995 e->proc_fops = &proc_eeh_operations;
998 return 0;
1000 __initcall(eeh_init_proc);