2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
28 #ifdef CONFIG_TREE_PREEMPT_RCU
30 struct rcu_state rcu_preempt_state
= RCU_STATE_INITIALIZER(rcu_preempt_state
);
31 DEFINE_PER_CPU(struct rcu_data
, rcu_preempt_data
);
34 * Tell them what RCU they are running.
36 static inline void rcu_bootup_announce(void)
39 "Experimental preemptable hierarchical RCU implementation.\n");
43 * Return the number of RCU-preempt batches processed thus far
44 * for debug and statistics.
46 long rcu_batches_completed_preempt(void)
48 return rcu_preempt_state
.completed
;
50 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt
);
53 * Return the number of RCU batches processed thus far for debug & stats.
55 long rcu_batches_completed(void)
57 return rcu_batches_completed_preempt();
59 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
62 * Record a preemptable-RCU quiescent state for the specified CPU. Note
63 * that this just means that the task currently running on the CPU is
64 * not in a quiescent state. There might be any number of tasks blocked
65 * while in an RCU read-side critical section.
67 static void rcu_preempt_qs_record(int cpu
)
69 struct rcu_data
*rdp
= &per_cpu(rcu_preempt_data
, cpu
);
70 rdp
->passed_quiesc
= 1;
71 rdp
->passed_quiesc_completed
= rdp
->completed
;
75 * We have entered the scheduler or are between softirqs in ksoftirqd.
76 * If we are in an RCU read-side critical section, we need to reflect
77 * that in the state of the rcu_node structure corresponding to this CPU.
78 * Caller must disable hardirqs.
80 static void rcu_preempt_qs(int cpu
)
82 struct task_struct
*t
= current
;
87 if (t
->rcu_read_lock_nesting
&&
88 (t
->rcu_read_unlock_special
& RCU_READ_UNLOCK_BLOCKED
) == 0) {
90 /* Possibly blocking in an RCU read-side critical section. */
91 rdp
= rcu_preempt_state
.rda
[cpu
];
93 spin_lock(&rnp
->lock
);
94 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_BLOCKED
;
95 t
->rcu_blocked_node
= rnp
;
98 * If this CPU has already checked in, then this task
99 * will hold up the next grace period rather than the
100 * current grace period. Queue the task accordingly.
101 * If the task is queued for the current grace period
102 * (i.e., this CPU has not yet passed through a quiescent
103 * state for the current grace period), then as long
104 * as that task remains queued, the current grace period
107 phase
= !(rnp
->qsmask
& rdp
->grpmask
) ^ (rnp
->gpnum
& 0x1);
108 list_add(&t
->rcu_node_entry
, &rnp
->blocked_tasks
[phase
]);
109 smp_mb(); /* Ensure later ctxt swtch seen after above. */
110 spin_unlock(&rnp
->lock
);
114 * Either we were not in an RCU read-side critical section to
115 * begin with, or we have now recorded that critical section
116 * globally. Either way, we can now note a quiescent state
117 * for this CPU. Again, if we were in an RCU read-side critical
118 * section, and if that critical section was blocking the current
119 * grace period, then the fact that the task has been enqueued
120 * means that we continue to block the current grace period.
122 rcu_preempt_qs_record(cpu
);
123 t
->rcu_read_unlock_special
&= ~(RCU_READ_UNLOCK_NEED_QS
|
124 RCU_READ_UNLOCK_GOT_QS
);
128 * Tree-preemptable RCU implementation for rcu_read_lock().
129 * Just increment ->rcu_read_lock_nesting, shared state will be updated
132 void __rcu_read_lock(void)
134 ACCESS_ONCE(current
->rcu_read_lock_nesting
)++;
135 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
137 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
139 static void rcu_read_unlock_special(struct task_struct
*t
)
144 struct rcu_node
*rnp
;
147 /* NMI handlers cannot block and cannot safely manipulate state. */
151 local_irq_save(flags
);
154 * If RCU core is waiting for this CPU to exit critical section,
155 * let it know that we have done so.
157 special
= t
->rcu_read_unlock_special
;
158 if (special
& RCU_READ_UNLOCK_NEED_QS
) {
159 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_NEED_QS
;
160 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_GOT_QS
;
163 /* Hardware IRQ handlers cannot block. */
165 local_irq_restore(flags
);
169 /* Clean up if blocked during RCU read-side critical section. */
170 if (special
& RCU_READ_UNLOCK_BLOCKED
) {
171 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_BLOCKED
;
174 * Remove this task from the list it blocked on. The
175 * task can migrate while we acquire the lock, but at
176 * most one time. So at most two passes through loop.
179 rnp
= t
->rcu_blocked_node
;
180 spin_lock(&rnp
->lock
);
181 if (rnp
== t
->rcu_blocked_node
)
183 spin_unlock(&rnp
->lock
);
185 empty
= list_empty(&rnp
->blocked_tasks
[rnp
->gpnum
& 0x1]);
186 list_del_init(&t
->rcu_node_entry
);
187 t
->rcu_blocked_node
= NULL
;
190 * If this was the last task on the current list, and if
191 * we aren't waiting on any CPUs, report the quiescent state.
192 * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk()
193 * drop rnp->lock and restore irq.
195 if (!empty
&& rnp
->qsmask
== 0 &&
196 list_empty(&rnp
->blocked_tasks
[rnp
->gpnum
& 0x1])) {
197 t
->rcu_read_unlock_special
&=
198 ~(RCU_READ_UNLOCK_NEED_QS
|
199 RCU_READ_UNLOCK_GOT_QS
);
200 if (rnp
->parent
== NULL
) {
201 /* Only one rcu_node in the tree. */
202 cpu_quiet_msk_finish(&rcu_preempt_state
, flags
);
205 /* Report up the rest of the hierarchy. */
207 spin_unlock_irqrestore(&rnp
->lock
, flags
);
209 spin_lock_irqsave(&rnp
->lock
, flags
);
210 cpu_quiet_msk(mask
, &rcu_preempt_state
, rnp
, flags
);
213 spin_unlock(&rnp
->lock
);
215 local_irq_restore(flags
);
219 * Tree-preemptable RCU implementation for rcu_read_unlock().
220 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
221 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
222 * invoke rcu_read_unlock_special() to clean up after a context switch
223 * in an RCU read-side critical section and other special cases.
225 void __rcu_read_unlock(void)
227 struct task_struct
*t
= current
;
229 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
230 if (--ACCESS_ONCE(t
->rcu_read_lock_nesting
) == 0 &&
231 unlikely(ACCESS_ONCE(t
->rcu_read_unlock_special
)))
232 rcu_read_unlock_special(t
);
234 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
236 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
239 * Scan the current list of tasks blocked within RCU read-side critical
240 * sections, printing out the tid of each.
242 static void rcu_print_task_stall(struct rcu_node
*rnp
)
245 struct list_head
*lp
;
246 int phase
= rnp
->gpnum
& 0x1;
247 struct task_struct
*t
;
249 if (!list_empty(&rnp
->blocked_tasks
[phase
])) {
250 spin_lock_irqsave(&rnp
->lock
, flags
);
251 phase
= rnp
->gpnum
& 0x1; /* re-read under lock. */
252 lp
= &rnp
->blocked_tasks
[phase
];
253 list_for_each_entry(t
, lp
, rcu_node_entry
)
254 printk(" P%d", t
->pid
);
255 spin_unlock_irqrestore(&rnp
->lock
, flags
);
259 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
262 * Check for preempted RCU readers for the specified rcu_node structure.
263 * If the caller needs a reliable answer, it must hold the rcu_node's
266 static int rcu_preempted_readers(struct rcu_node
*rnp
)
268 return !list_empty(&rnp
->blocked_tasks
[rnp
->gpnum
& 0x1]);
271 #ifdef CONFIG_HOTPLUG_CPU
274 * Handle tasklist migration for case in which all CPUs covered by the
275 * specified rcu_node have gone offline. Move them up to the root
276 * rcu_node. The reason for not just moving them to the immediate
277 * parent is to remove the need for rcu_read_unlock_special() to
278 * make more than two attempts to acquire the target rcu_node's lock.
280 * The caller must hold rnp->lock with irqs disabled.
282 static void rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
283 struct rcu_node
*rnp
)
286 struct list_head
*lp
;
287 struct list_head
*lp_root
;
288 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
289 struct task_struct
*tp
;
291 if (rnp
== rnp_root
) {
292 WARN_ONCE(1, "Last CPU thought to be offlined?");
293 return; /* Shouldn't happen: at least one CPU online. */
297 * Move tasks up to root rcu_node. Rely on the fact that the
298 * root rcu_node can be at most one ahead of the rest of the
299 * rcu_nodes in terms of gp_num value. This fact allows us to
300 * move the blocked_tasks[] array directly, element by element.
302 for (i
= 0; i
< 2; i
++) {
303 lp
= &rnp
->blocked_tasks
[i
];
304 lp_root
= &rnp_root
->blocked_tasks
[i
];
305 while (!list_empty(lp
)) {
306 tp
= list_entry(lp
->next
, typeof(*tp
), rcu_node_entry
);
307 spin_lock(&rnp_root
->lock
); /* irqs already disabled */
308 list_del(&tp
->rcu_node_entry
);
309 tp
->rcu_blocked_node
= rnp_root
;
310 list_add(&tp
->rcu_node_entry
, lp_root
);
311 spin_unlock(&rnp_root
->lock
); /* irqs remain disabled */
317 * Do CPU-offline processing for preemptable RCU.
319 static void rcu_preempt_offline_cpu(int cpu
)
321 __rcu_offline_cpu(cpu
, &rcu_preempt_state
);
324 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
327 * Check for a quiescent state from the current CPU. When a task blocks,
328 * the task is recorded in the corresponding CPU's rcu_node structure,
329 * which is checked elsewhere.
331 * Caller must disable hard irqs.
333 static void rcu_preempt_check_callbacks(int cpu
)
335 struct task_struct
*t
= current
;
337 if (t
->rcu_read_lock_nesting
== 0) {
338 t
->rcu_read_unlock_special
&=
339 ~(RCU_READ_UNLOCK_NEED_QS
| RCU_READ_UNLOCK_GOT_QS
);
340 rcu_preempt_qs_record(cpu
);
343 if (per_cpu(rcu_preempt_data
, cpu
).qs_pending
) {
344 if (t
->rcu_read_unlock_special
& RCU_READ_UNLOCK_GOT_QS
) {
345 rcu_preempt_qs_record(cpu
);
346 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_GOT_QS
;
347 } else if (!(t
->rcu_read_unlock_special
&
348 RCU_READ_UNLOCK_NEED_QS
)) {
349 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_NEED_QS
;
355 * Process callbacks for preemptable RCU.
357 static void rcu_preempt_process_callbacks(void)
359 __rcu_process_callbacks(&rcu_preempt_state
,
360 &__get_cpu_var(rcu_preempt_data
));
364 * Queue a preemptable-RCU callback for invocation after a grace period.
366 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
368 __call_rcu(head
, func
, &rcu_preempt_state
);
370 EXPORT_SYMBOL_GPL(call_rcu
);
373 * Check to see if there is any immediate preemptable-RCU-related work
376 static int rcu_preempt_pending(int cpu
)
378 return __rcu_pending(&rcu_preempt_state
,
379 &per_cpu(rcu_preempt_data
, cpu
));
383 * Does preemptable RCU need the CPU to stay out of dynticks mode?
385 static int rcu_preempt_needs_cpu(int cpu
)
387 return !!per_cpu(rcu_preempt_data
, cpu
).nxtlist
;
391 * Initialize preemptable RCU's per-CPU data.
393 static void __cpuinit
rcu_preempt_init_percpu_data(int cpu
)
395 rcu_init_percpu_data(cpu
, &rcu_preempt_state
, 1);
399 * Check for a task exiting while in a preemptable-RCU read-side
400 * critical section, clean up if so. No need to issue warnings,
401 * as debug_check_no_locks_held() already does this if lockdep
406 struct task_struct
*t
= current
;
408 if (t
->rcu_read_lock_nesting
== 0)
410 t
->rcu_read_lock_nesting
= 1;
414 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
417 * Tell them what RCU they are running.
419 static inline void rcu_bootup_announce(void)
421 printk(KERN_INFO
"Hierarchical RCU implementation.\n");
425 * Return the number of RCU batches processed thus far for debug & stats.
427 long rcu_batches_completed(void)
429 return rcu_batches_completed_sched();
431 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
434 * Because preemptable RCU does not exist, we never have to check for
435 * CPUs being in quiescent states.
437 static void rcu_preempt_qs(int cpu
)
441 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
444 * Because preemptable RCU does not exist, we never have to check for
445 * tasks blocked within RCU read-side critical sections.
447 static void rcu_print_task_stall(struct rcu_node
*rnp
)
451 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
454 * Because preemptable RCU does not exist, there are never any preempted
457 static int rcu_preempted_readers(struct rcu_node
*rnp
)
462 #ifdef CONFIG_HOTPLUG_CPU
465 * Because preemptable RCU does not exist, it never needs to migrate
466 * tasks that were blocked within RCU read-side critical sections.
468 static void rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
469 struct rcu_node
*rnp
)
474 * Because preemptable RCU does not exist, it never needs CPU-offline
477 static void rcu_preempt_offline_cpu(int cpu
)
481 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
484 * Because preemptable RCU does not exist, it never has any callbacks
487 void rcu_preempt_check_callbacks(int cpu
)
492 * Because preemptable RCU does not exist, it never has any callbacks
495 void rcu_preempt_process_callbacks(void)
500 * In classic RCU, call_rcu() is just call_rcu_sched().
502 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
504 call_rcu_sched(head
, func
);
506 EXPORT_SYMBOL_GPL(call_rcu
);
509 * Because preemptable RCU does not exist, it never has any work to do.
511 static int rcu_preempt_pending(int cpu
)
517 * Because preemptable RCU does not exist, it never needs any CPU.
519 static int rcu_preempt_needs_cpu(int cpu
)
525 * Because preemptable RCU does not exist, there is no per-CPU
526 * data to initialize.
528 static void __cpuinit
rcu_preempt_init_percpu_data(int cpu
)
532 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */