fs_enet: Update for API changes
[linux-2.6/verdex.git] / drivers / net / fs_enet / fs_enet-main.c
blobf2a4d399a6e5137f63fab69a52677317d6d7c9c9
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
40 #include <linux/vmalloc.h>
41 #include <asm/pgtable.h>
42 #include <asm/irq.h>
43 #include <asm/uaccess.h>
45 #ifdef CONFIG_PPC_CPM_NEW_BINDING
46 #include <asm/of_platform.h>
47 #endif
49 #include "fs_enet.h"
51 /*************************************************/
53 #ifndef CONFIG_PPC_CPM_NEW_BINDING
54 static char version[] __devinitdata =
55 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
56 #endif
58 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
59 MODULE_DESCRIPTION("Freescale Ethernet Driver");
60 MODULE_LICENSE("GPL");
61 MODULE_VERSION(DRV_MODULE_VERSION);
63 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
64 module_param(fs_enet_debug, int, 0);
65 MODULE_PARM_DESC(fs_enet_debug,
66 "Freescale bitmapped debugging message enable value");
68 #ifdef CONFIG_NET_POLL_CONTROLLER
69 static void fs_enet_netpoll(struct net_device *dev);
70 #endif
72 static void fs_set_multicast_list(struct net_device *dev)
74 struct fs_enet_private *fep = netdev_priv(dev);
76 (*fep->ops->set_multicast_list)(dev);
79 static void skb_align(struct sk_buff *skb, int align)
81 int off = ((unsigned long)skb->data) & (align - 1);
83 if (off)
84 skb_reserve(skb, align - off);
87 /* NAPI receive function */
88 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
90 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
91 struct net_device *dev = fep->ndev;
92 const struct fs_platform_info *fpi = fep->fpi;
93 cbd_t __iomem *bdp;
94 struct sk_buff *skb, *skbn, *skbt;
95 int received = 0;
96 u16 pkt_len, sc;
97 int curidx;
99 if (!netif_running(dev))
100 return 0;
103 * First, grab all of the stats for the incoming packet.
104 * These get messed up if we get called due to a busy condition.
106 bdp = fep->cur_rx;
108 /* clear RX status bits for napi*/
109 (*fep->ops->napi_clear_rx_event)(dev);
111 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
112 curidx = bdp - fep->rx_bd_base;
115 * Since we have allocated space to hold a complete frame,
116 * the last indicator should be set.
118 if ((sc & BD_ENET_RX_LAST) == 0)
119 printk(KERN_WARNING DRV_MODULE_NAME
120 ": %s rcv is not +last\n",
121 dev->name);
124 * Check for errors.
126 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
127 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
128 fep->stats.rx_errors++;
129 /* Frame too long or too short. */
130 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
131 fep->stats.rx_length_errors++;
132 /* Frame alignment */
133 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
134 fep->stats.rx_frame_errors++;
135 /* CRC Error */
136 if (sc & BD_ENET_RX_CR)
137 fep->stats.rx_crc_errors++;
138 /* FIFO overrun */
139 if (sc & BD_ENET_RX_OV)
140 fep->stats.rx_crc_errors++;
142 skb = fep->rx_skbuff[curidx];
144 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
145 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
146 DMA_FROM_DEVICE);
148 skbn = skb;
150 } else {
151 skb = fep->rx_skbuff[curidx];
153 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
154 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
155 DMA_FROM_DEVICE);
158 * Process the incoming frame.
160 fep->stats.rx_packets++;
161 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
162 fep->stats.rx_bytes += pkt_len + 4;
164 if (pkt_len <= fpi->rx_copybreak) {
165 /* +2 to make IP header L1 cache aligned */
166 skbn = dev_alloc_skb(pkt_len + 2);
167 if (skbn != NULL) {
168 skb_reserve(skbn, 2); /* align IP header */
169 skb_copy_from_linear_data(skb,
170 skbn->data, pkt_len);
171 /* swap */
172 skbt = skb;
173 skb = skbn;
174 skbn = skbt;
176 } else {
177 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
179 if (skbn)
180 skb_align(skbn, ENET_RX_ALIGN);
183 if (skbn != NULL) {
184 skb_put(skb, pkt_len); /* Make room */
185 skb->protocol = eth_type_trans(skb, dev);
186 received++;
187 netif_receive_skb(skb);
188 } else {
189 printk(KERN_WARNING DRV_MODULE_NAME
190 ": %s Memory squeeze, dropping packet.\n",
191 dev->name);
192 fep->stats.rx_dropped++;
193 skbn = skb;
197 fep->rx_skbuff[curidx] = skbn;
198 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
199 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
200 DMA_FROM_DEVICE));
201 CBDW_DATLEN(bdp, 0);
202 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
205 * Update BD pointer to next entry.
207 if ((sc & BD_ENET_RX_WRAP) == 0)
208 bdp++;
209 else
210 bdp = fep->rx_bd_base;
212 (*fep->ops->rx_bd_done)(dev);
214 if (received >= budget)
215 break;
218 fep->cur_rx = bdp;
220 if (received < budget) {
221 /* done */
222 netif_rx_complete(dev, napi);
223 (*fep->ops->napi_enable_rx)(dev);
225 return received;
228 /* non NAPI receive function */
229 static int fs_enet_rx_non_napi(struct net_device *dev)
231 struct fs_enet_private *fep = netdev_priv(dev);
232 const struct fs_platform_info *fpi = fep->fpi;
233 cbd_t __iomem *bdp;
234 struct sk_buff *skb, *skbn, *skbt;
235 int received = 0;
236 u16 pkt_len, sc;
237 int curidx;
239 * First, grab all of the stats for the incoming packet.
240 * These get messed up if we get called due to a busy condition.
242 bdp = fep->cur_rx;
244 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
246 curidx = bdp - fep->rx_bd_base;
249 * Since we have allocated space to hold a complete frame,
250 * the last indicator should be set.
252 if ((sc & BD_ENET_RX_LAST) == 0)
253 printk(KERN_WARNING DRV_MODULE_NAME
254 ": %s rcv is not +last\n",
255 dev->name);
258 * Check for errors.
260 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
261 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
262 fep->stats.rx_errors++;
263 /* Frame too long or too short. */
264 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
265 fep->stats.rx_length_errors++;
266 /* Frame alignment */
267 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
268 fep->stats.rx_frame_errors++;
269 /* CRC Error */
270 if (sc & BD_ENET_RX_CR)
271 fep->stats.rx_crc_errors++;
272 /* FIFO overrun */
273 if (sc & BD_ENET_RX_OV)
274 fep->stats.rx_crc_errors++;
276 skb = fep->rx_skbuff[curidx];
278 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
279 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
280 DMA_FROM_DEVICE);
282 skbn = skb;
284 } else {
286 skb = fep->rx_skbuff[curidx];
288 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
289 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
290 DMA_FROM_DEVICE);
293 * Process the incoming frame.
295 fep->stats.rx_packets++;
296 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
297 fep->stats.rx_bytes += pkt_len + 4;
299 if (pkt_len <= fpi->rx_copybreak) {
300 /* +2 to make IP header L1 cache aligned */
301 skbn = dev_alloc_skb(pkt_len + 2);
302 if (skbn != NULL) {
303 skb_reserve(skbn, 2); /* align IP header */
304 skb_copy_from_linear_data(skb,
305 skbn->data, pkt_len);
306 /* swap */
307 skbt = skb;
308 skb = skbn;
309 skbn = skbt;
311 } else {
312 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
314 if (skbn)
315 skb_align(skbn, ENET_RX_ALIGN);
318 if (skbn != NULL) {
319 skb_put(skb, pkt_len); /* Make room */
320 skb->protocol = eth_type_trans(skb, dev);
321 received++;
322 netif_rx(skb);
323 } else {
324 printk(KERN_WARNING DRV_MODULE_NAME
325 ": %s Memory squeeze, dropping packet.\n",
326 dev->name);
327 fep->stats.rx_dropped++;
328 skbn = skb;
332 fep->rx_skbuff[curidx] = skbn;
333 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
334 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
335 DMA_FROM_DEVICE));
336 CBDW_DATLEN(bdp, 0);
337 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
340 * Update BD pointer to next entry.
342 if ((sc & BD_ENET_RX_WRAP) == 0)
343 bdp++;
344 else
345 bdp = fep->rx_bd_base;
347 (*fep->ops->rx_bd_done)(dev);
350 fep->cur_rx = bdp;
352 return 0;
355 static void fs_enet_tx(struct net_device *dev)
357 struct fs_enet_private *fep = netdev_priv(dev);
358 cbd_t __iomem *bdp;
359 struct sk_buff *skb;
360 int dirtyidx, do_wake, do_restart;
361 u16 sc;
363 spin_lock(&fep->tx_lock);
364 bdp = fep->dirty_tx;
366 do_wake = do_restart = 0;
367 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
368 dirtyidx = bdp - fep->tx_bd_base;
370 if (fep->tx_free == fep->tx_ring)
371 break;
373 skb = fep->tx_skbuff[dirtyidx];
376 * Check for errors.
378 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
379 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
381 if (sc & BD_ENET_TX_HB) /* No heartbeat */
382 fep->stats.tx_heartbeat_errors++;
383 if (sc & BD_ENET_TX_LC) /* Late collision */
384 fep->stats.tx_window_errors++;
385 if (sc & BD_ENET_TX_RL) /* Retrans limit */
386 fep->stats.tx_aborted_errors++;
387 if (sc & BD_ENET_TX_UN) /* Underrun */
388 fep->stats.tx_fifo_errors++;
389 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
390 fep->stats.tx_carrier_errors++;
392 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
393 fep->stats.tx_errors++;
394 do_restart = 1;
396 } else
397 fep->stats.tx_packets++;
399 if (sc & BD_ENET_TX_READY)
400 printk(KERN_WARNING DRV_MODULE_NAME
401 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
402 dev->name);
405 * Deferred means some collisions occurred during transmit,
406 * but we eventually sent the packet OK.
408 if (sc & BD_ENET_TX_DEF)
409 fep->stats.collisions++;
411 /* unmap */
412 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
413 skb->len, DMA_TO_DEVICE);
416 * Free the sk buffer associated with this last transmit.
418 dev_kfree_skb_irq(skb);
419 fep->tx_skbuff[dirtyidx] = NULL;
422 * Update pointer to next buffer descriptor to be transmitted.
424 if ((sc & BD_ENET_TX_WRAP) == 0)
425 bdp++;
426 else
427 bdp = fep->tx_bd_base;
430 * Since we have freed up a buffer, the ring is no longer
431 * full.
433 if (!fep->tx_free++)
434 do_wake = 1;
437 fep->dirty_tx = bdp;
439 if (do_restart)
440 (*fep->ops->tx_restart)(dev);
442 spin_unlock(&fep->tx_lock);
444 if (do_wake)
445 netif_wake_queue(dev);
449 * The interrupt handler.
450 * This is called from the MPC core interrupt.
452 static irqreturn_t
453 fs_enet_interrupt(int irq, void *dev_id)
455 struct net_device *dev = dev_id;
456 struct fs_enet_private *fep;
457 const struct fs_platform_info *fpi;
458 u32 int_events;
459 u32 int_clr_events;
460 int nr, napi_ok;
461 int handled;
463 fep = netdev_priv(dev);
464 fpi = fep->fpi;
466 nr = 0;
467 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
468 nr++;
470 int_clr_events = int_events;
471 if (fpi->use_napi)
472 int_clr_events &= ~fep->ev_napi_rx;
474 (*fep->ops->clear_int_events)(dev, int_clr_events);
476 if (int_events & fep->ev_err)
477 (*fep->ops->ev_error)(dev, int_events);
479 if (int_events & fep->ev_rx) {
480 if (!fpi->use_napi)
481 fs_enet_rx_non_napi(dev);
482 else {
483 napi_ok = napi_schedule_prep(&fep->napi);
485 (*fep->ops->napi_disable_rx)(dev);
486 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
488 /* NOTE: it is possible for FCCs in NAPI mode */
489 /* to submit a spurious interrupt while in poll */
490 if (napi_ok)
491 __netif_rx_schedule(dev, &fep->napi);
495 if (int_events & fep->ev_tx)
496 fs_enet_tx(dev);
499 handled = nr > 0;
500 return IRQ_RETVAL(handled);
503 void fs_init_bds(struct net_device *dev)
505 struct fs_enet_private *fep = netdev_priv(dev);
506 cbd_t __iomem *bdp;
507 struct sk_buff *skb;
508 int i;
510 fs_cleanup_bds(dev);
512 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
513 fep->tx_free = fep->tx_ring;
514 fep->cur_rx = fep->rx_bd_base;
517 * Initialize the receive buffer descriptors.
519 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
520 skb = dev_alloc_skb(ENET_RX_FRSIZE);
521 if (skb == NULL) {
522 printk(KERN_WARNING DRV_MODULE_NAME
523 ": %s Memory squeeze, unable to allocate skb\n",
524 dev->name);
525 break;
527 skb_align(skb, ENET_RX_ALIGN);
528 fep->rx_skbuff[i] = skb;
529 CBDW_BUFADDR(bdp,
530 dma_map_single(fep->dev, skb->data,
531 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
532 DMA_FROM_DEVICE));
533 CBDW_DATLEN(bdp, 0); /* zero */
534 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
535 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
538 * if we failed, fillup remainder
540 for (; i < fep->rx_ring; i++, bdp++) {
541 fep->rx_skbuff[i] = NULL;
542 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
546 * ...and the same for transmit.
548 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
549 fep->tx_skbuff[i] = NULL;
550 CBDW_BUFADDR(bdp, 0);
551 CBDW_DATLEN(bdp, 0);
552 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
556 void fs_cleanup_bds(struct net_device *dev)
558 struct fs_enet_private *fep = netdev_priv(dev);
559 struct sk_buff *skb;
560 cbd_t __iomem *bdp;
561 int i;
564 * Reset SKB transmit buffers.
566 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
567 if ((skb = fep->tx_skbuff[i]) == NULL)
568 continue;
570 /* unmap */
571 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
572 skb->len, DMA_TO_DEVICE);
574 fep->tx_skbuff[i] = NULL;
575 dev_kfree_skb(skb);
579 * Reset SKB receive buffers
581 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
582 if ((skb = fep->rx_skbuff[i]) == NULL)
583 continue;
585 /* unmap */
586 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
587 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
588 DMA_FROM_DEVICE);
590 fep->rx_skbuff[i] = NULL;
592 dev_kfree_skb(skb);
596 /**********************************************************************************/
598 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
600 struct fs_enet_private *fep = netdev_priv(dev);
601 cbd_t __iomem *bdp;
602 int curidx;
603 u16 sc;
604 unsigned long flags;
606 spin_lock_irqsave(&fep->tx_lock, flags);
609 * Fill in a Tx ring entry
611 bdp = fep->cur_tx;
613 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
614 netif_stop_queue(dev);
615 spin_unlock_irqrestore(&fep->tx_lock, flags);
618 * Ooops. All transmit buffers are full. Bail out.
619 * This should not happen, since the tx queue should be stopped.
621 printk(KERN_WARNING DRV_MODULE_NAME
622 ": %s tx queue full!.\n", dev->name);
623 return NETDEV_TX_BUSY;
626 curidx = bdp - fep->tx_bd_base;
628 * Clear all of the status flags.
630 CBDC_SC(bdp, BD_ENET_TX_STATS);
633 * Save skb pointer.
635 fep->tx_skbuff[curidx] = skb;
637 fep->stats.tx_bytes += skb->len;
640 * Push the data cache so the CPM does not get stale memory data.
642 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
643 skb->data, skb->len, DMA_TO_DEVICE));
644 CBDW_DATLEN(bdp, skb->len);
646 dev->trans_start = jiffies;
649 * If this was the last BD in the ring, start at the beginning again.
651 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
652 fep->cur_tx++;
653 else
654 fep->cur_tx = fep->tx_bd_base;
656 if (!--fep->tx_free)
657 netif_stop_queue(dev);
659 /* Trigger transmission start */
660 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
661 BD_ENET_TX_LAST | BD_ENET_TX_TC;
663 /* note that while FEC does not have this bit
664 * it marks it as available for software use
665 * yay for hw reuse :) */
666 if (skb->len <= 60)
667 sc |= BD_ENET_TX_PAD;
668 CBDS_SC(bdp, sc);
670 (*fep->ops->tx_kickstart)(dev);
672 spin_unlock_irqrestore(&fep->tx_lock, flags);
674 return NETDEV_TX_OK;
677 static int fs_request_irq(struct net_device *dev, int irq, const char *name,
678 irq_handler_t irqf)
680 struct fs_enet_private *fep = netdev_priv(dev);
682 (*fep->ops->pre_request_irq)(dev, irq);
683 return request_irq(irq, irqf, IRQF_SHARED, name, dev);
686 static void fs_free_irq(struct net_device *dev, int irq)
688 struct fs_enet_private *fep = netdev_priv(dev);
690 free_irq(irq, dev);
691 (*fep->ops->post_free_irq)(dev, irq);
694 static void fs_timeout(struct net_device *dev)
696 struct fs_enet_private *fep = netdev_priv(dev);
697 unsigned long flags;
698 int wake = 0;
700 fep->stats.tx_errors++;
702 spin_lock_irqsave(&fep->lock, flags);
704 if (dev->flags & IFF_UP) {
705 phy_stop(fep->phydev);
706 (*fep->ops->stop)(dev);
707 (*fep->ops->restart)(dev);
708 phy_start(fep->phydev);
711 phy_start(fep->phydev);
712 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
713 spin_unlock_irqrestore(&fep->lock, flags);
715 if (wake)
716 netif_wake_queue(dev);
719 /*-----------------------------------------------------------------------------
720 * generic link-change handler - should be sufficient for most cases
721 *-----------------------------------------------------------------------------*/
722 static void generic_adjust_link(struct net_device *dev)
724 struct fs_enet_private *fep = netdev_priv(dev);
725 struct phy_device *phydev = fep->phydev;
726 int new_state = 0;
728 if (phydev->link) {
729 /* adjust to duplex mode */
730 if (phydev->duplex != fep->oldduplex) {
731 new_state = 1;
732 fep->oldduplex = phydev->duplex;
735 if (phydev->speed != fep->oldspeed) {
736 new_state = 1;
737 fep->oldspeed = phydev->speed;
740 if (!fep->oldlink) {
741 new_state = 1;
742 fep->oldlink = 1;
743 netif_schedule(dev);
744 netif_carrier_on(dev);
745 netif_start_queue(dev);
748 if (new_state)
749 fep->ops->restart(dev);
750 } else if (fep->oldlink) {
751 new_state = 1;
752 fep->oldlink = 0;
753 fep->oldspeed = 0;
754 fep->oldduplex = -1;
755 netif_carrier_off(dev);
756 netif_stop_queue(dev);
759 if (new_state && netif_msg_link(fep))
760 phy_print_status(phydev);
764 static void fs_adjust_link(struct net_device *dev)
766 struct fs_enet_private *fep = netdev_priv(dev);
767 unsigned long flags;
769 spin_lock_irqsave(&fep->lock, flags);
771 if(fep->ops->adjust_link)
772 fep->ops->adjust_link(dev);
773 else
774 generic_adjust_link(dev);
776 spin_unlock_irqrestore(&fep->lock, flags);
779 static int fs_init_phy(struct net_device *dev)
781 struct fs_enet_private *fep = netdev_priv(dev);
782 struct phy_device *phydev;
784 fep->oldlink = 0;
785 fep->oldspeed = 0;
786 fep->oldduplex = -1;
787 if(fep->fpi->bus_id)
788 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
789 PHY_INTERFACE_MODE_MII);
790 else {
791 printk("No phy bus ID specified in BSP code\n");
792 return -EINVAL;
794 if (IS_ERR(phydev)) {
795 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
796 return PTR_ERR(phydev);
799 fep->phydev = phydev;
801 return 0;
804 static int fs_enet_open(struct net_device *dev)
806 struct fs_enet_private *fep = netdev_priv(dev);
807 int r;
808 int err;
810 if (fep->fpi->use_napi)
811 napi_enable(&fep->napi);
813 /* Install our interrupt handler. */
814 r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
815 if (r != 0) {
816 printk(KERN_ERR DRV_MODULE_NAME
817 ": %s Could not allocate FS_ENET IRQ!", dev->name);
818 if (fep->fpi->use_napi)
819 napi_disable(&fep->napi);
820 return -EINVAL;
823 err = fs_init_phy(dev);
824 if (err) {
825 if (fep->fpi->use_napi)
826 napi_disable(&fep->napi);
827 return err;
829 phy_start(fep->phydev);
831 return 0;
834 static int fs_enet_close(struct net_device *dev)
836 struct fs_enet_private *fep = netdev_priv(dev);
837 unsigned long flags;
839 netif_stop_queue(dev);
840 netif_carrier_off(dev);
841 napi_disable(&fep->napi);
842 phy_stop(fep->phydev);
844 spin_lock_irqsave(&fep->lock, flags);
845 spin_lock(&fep->tx_lock);
846 (*fep->ops->stop)(dev);
847 spin_unlock(&fep->tx_lock);
848 spin_unlock_irqrestore(&fep->lock, flags);
850 /* release any irqs */
851 phy_disconnect(fep->phydev);
852 fep->phydev = NULL;
853 fs_free_irq(dev, fep->interrupt);
855 return 0;
858 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
860 struct fs_enet_private *fep = netdev_priv(dev);
861 return &fep->stats;
864 /*************************************************************************/
866 static void fs_get_drvinfo(struct net_device *dev,
867 struct ethtool_drvinfo *info)
869 strcpy(info->driver, DRV_MODULE_NAME);
870 strcpy(info->version, DRV_MODULE_VERSION);
873 static int fs_get_regs_len(struct net_device *dev)
875 struct fs_enet_private *fep = netdev_priv(dev);
877 return (*fep->ops->get_regs_len)(dev);
880 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
881 void *p)
883 struct fs_enet_private *fep = netdev_priv(dev);
884 unsigned long flags;
885 int r, len;
887 len = regs->len;
889 spin_lock_irqsave(&fep->lock, flags);
890 r = (*fep->ops->get_regs)(dev, p, &len);
891 spin_unlock_irqrestore(&fep->lock, flags);
893 if (r == 0)
894 regs->version = 0;
897 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
899 struct fs_enet_private *fep = netdev_priv(dev);
900 return phy_ethtool_gset(fep->phydev, cmd);
903 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
905 struct fs_enet_private *fep = netdev_priv(dev);
906 phy_ethtool_sset(fep->phydev, cmd);
907 return 0;
910 static int fs_nway_reset(struct net_device *dev)
912 return 0;
915 static u32 fs_get_msglevel(struct net_device *dev)
917 struct fs_enet_private *fep = netdev_priv(dev);
918 return fep->msg_enable;
921 static void fs_set_msglevel(struct net_device *dev, u32 value)
923 struct fs_enet_private *fep = netdev_priv(dev);
924 fep->msg_enable = value;
927 static const struct ethtool_ops fs_ethtool_ops = {
928 .get_drvinfo = fs_get_drvinfo,
929 .get_regs_len = fs_get_regs_len,
930 .get_settings = fs_get_settings,
931 .set_settings = fs_set_settings,
932 .nway_reset = fs_nway_reset,
933 .get_link = ethtool_op_get_link,
934 .get_msglevel = fs_get_msglevel,
935 .set_msglevel = fs_set_msglevel,
936 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
937 .set_sg = ethtool_op_set_sg,
938 .get_regs = fs_get_regs,
941 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
943 struct fs_enet_private *fep = netdev_priv(dev);
944 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
945 unsigned long flags;
946 int rc;
948 if (!netif_running(dev))
949 return -EINVAL;
951 spin_lock_irqsave(&fep->lock, flags);
952 rc = phy_mii_ioctl(fep->phydev, mii, cmd);
953 spin_unlock_irqrestore(&fep->lock, flags);
954 return rc;
957 extern int fs_mii_connect(struct net_device *dev);
958 extern void fs_mii_disconnect(struct net_device *dev);
960 #ifndef CONFIG_PPC_CPM_NEW_BINDING
961 static struct net_device *fs_init_instance(struct device *dev,
962 struct fs_platform_info *fpi)
964 struct net_device *ndev = NULL;
965 struct fs_enet_private *fep = NULL;
966 int privsize, i, r, err = 0, registered = 0;
968 fpi->fs_no = fs_get_id(fpi);
969 /* guard */
970 if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
971 return ERR_PTR(-EINVAL);
973 privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
974 (fpi->rx_ring + fpi->tx_ring));
976 ndev = alloc_etherdev(privsize);
977 if (!ndev) {
978 err = -ENOMEM;
979 goto err;
982 fep = netdev_priv(ndev);
984 fep->dev = dev;
985 dev_set_drvdata(dev, ndev);
986 fep->fpi = fpi;
987 if (fpi->init_ioports)
988 fpi->init_ioports((struct fs_platform_info *)fpi);
990 #ifdef CONFIG_FS_ENET_HAS_FEC
991 if (fs_get_fec_index(fpi->fs_no) >= 0)
992 fep->ops = &fs_fec_ops;
993 #endif
995 #ifdef CONFIG_FS_ENET_HAS_SCC
996 if (fs_get_scc_index(fpi->fs_no) >=0)
997 fep->ops = &fs_scc_ops;
998 #endif
1000 #ifdef CONFIG_FS_ENET_HAS_FCC
1001 if (fs_get_fcc_index(fpi->fs_no) >= 0)
1002 fep->ops = &fs_fcc_ops;
1003 #endif
1005 if (fep->ops == NULL) {
1006 printk(KERN_ERR DRV_MODULE_NAME
1007 ": %s No matching ops found (%d).\n",
1008 ndev->name, fpi->fs_no);
1009 err = -EINVAL;
1010 goto err;
1013 r = (*fep->ops->setup_data)(ndev);
1014 if (r != 0) {
1015 printk(KERN_ERR DRV_MODULE_NAME
1016 ": %s setup_data failed\n",
1017 ndev->name);
1018 err = r;
1019 goto err;
1022 /* point rx_skbuff, tx_skbuff */
1023 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1024 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1026 /* init locks */
1027 spin_lock_init(&fep->lock);
1028 spin_lock_init(&fep->tx_lock);
1031 * Set the Ethernet address.
1033 for (i = 0; i < 6; i++)
1034 ndev->dev_addr[i] = fpi->macaddr[i];
1036 r = (*fep->ops->allocate_bd)(ndev);
1038 if (fep->ring_base == NULL) {
1039 printk(KERN_ERR DRV_MODULE_NAME
1040 ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
1041 err = r;
1042 goto err;
1046 * Set receive and transmit descriptor base.
1048 fep->rx_bd_base = fep->ring_base;
1049 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1051 /* initialize ring size variables */
1052 fep->tx_ring = fpi->tx_ring;
1053 fep->rx_ring = fpi->rx_ring;
1056 * The FEC Ethernet specific entries in the device structure.
1058 ndev->open = fs_enet_open;
1059 ndev->hard_start_xmit = fs_enet_start_xmit;
1060 ndev->tx_timeout = fs_timeout;
1061 ndev->watchdog_timeo = 2 * HZ;
1062 ndev->stop = fs_enet_close;
1063 ndev->get_stats = fs_enet_get_stats;
1064 ndev->set_multicast_list = fs_set_multicast_list;
1066 #ifdef CONFIG_NET_POLL_CONTROLLER
1067 ndev->poll_controller = fs_enet_netpoll;
1068 #endif
1070 netif_napi_add(ndev, &fep->napi,
1071 fs_enet_rx_napi, fpi->napi_weight);
1073 ndev->ethtool_ops = &fs_ethtool_ops;
1074 ndev->do_ioctl = fs_ioctl;
1076 init_timer(&fep->phy_timer_list);
1078 netif_carrier_off(ndev);
1080 err = register_netdev(ndev);
1081 if (err != 0) {
1082 printk(KERN_ERR DRV_MODULE_NAME
1083 ": %s register_netdev failed.\n", ndev->name);
1084 goto err;
1086 registered = 1;
1089 return ndev;
1091 err:
1092 if (ndev != NULL) {
1093 if (registered)
1094 unregister_netdev(ndev);
1096 if (fep != NULL) {
1097 (*fep->ops->free_bd)(ndev);
1098 (*fep->ops->cleanup_data)(ndev);
1101 free_netdev(ndev);
1104 dev_set_drvdata(dev, NULL);
1106 return ERR_PTR(err);
1109 static int fs_cleanup_instance(struct net_device *ndev)
1111 struct fs_enet_private *fep;
1112 const struct fs_platform_info *fpi;
1113 struct device *dev;
1115 if (ndev == NULL)
1116 return -EINVAL;
1118 fep = netdev_priv(ndev);
1119 if (fep == NULL)
1120 return -EINVAL;
1122 fpi = fep->fpi;
1124 unregister_netdev(ndev);
1126 dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1127 (void __force *)fep->ring_base, fep->ring_mem_addr);
1129 /* reset it */
1130 (*fep->ops->cleanup_data)(ndev);
1132 dev = fep->dev;
1133 if (dev != NULL) {
1134 dev_set_drvdata(dev, NULL);
1135 fep->dev = NULL;
1138 free_netdev(ndev);
1140 return 0;
1142 #endif
1144 /**************************************************************************************/
1146 /* handy pointer to the immap */
1147 void __iomem *fs_enet_immap = NULL;
1149 static int setup_immap(void)
1151 #ifdef CONFIG_CPM1
1152 fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
1153 WARN_ON(!fs_enet_immap);
1154 #elif defined(CONFIG_CPM2)
1155 fs_enet_immap = cpm2_immr;
1156 #endif
1158 return 0;
1161 static void cleanup_immap(void)
1163 #if defined(CONFIG_CPM1)
1164 iounmap(fs_enet_immap);
1165 #endif
1168 /**************************************************************************************/
1170 #ifdef CONFIG_PPC_CPM_NEW_BINDING
1171 static int __devinit find_phy(struct device_node *np,
1172 struct fs_platform_info *fpi)
1174 struct device_node *phynode, *mdionode;
1175 struct resource res;
1176 int ret = 0, len;
1178 const u32 *data = of_get_property(np, "phy-handle", &len);
1179 if (!data || len != 4)
1180 return -EINVAL;
1182 phynode = of_find_node_by_phandle(*data);
1183 if (!phynode)
1184 return -EINVAL;
1186 mdionode = of_get_parent(phynode);
1187 if (!mdionode)
1188 goto out_put_phy;
1190 ret = of_address_to_resource(mdionode, 0, &res);
1191 if (ret)
1192 goto out_put_mdio;
1194 data = of_get_property(phynode, "reg", &len);
1195 if (!data || len != 4)
1196 goto out_put_mdio;
1198 snprintf(fpi->bus_id, 16, PHY_ID_FMT, res.start, *data);
1200 out_put_mdio:
1201 of_node_put(mdionode);
1202 out_put_phy:
1203 of_node_put(phynode);
1204 return ret;
1207 #ifdef CONFIG_FS_ENET_HAS_FEC
1208 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
1209 #else
1210 #define IS_FEC(match) 0
1211 #endif
1213 static int __devinit fs_enet_probe(struct of_device *ofdev,
1214 const struct of_device_id *match)
1216 struct net_device *ndev;
1217 struct fs_enet_private *fep;
1218 struct fs_platform_info *fpi;
1219 const u32 *data;
1220 const u8 *mac_addr;
1221 int privsize, len, ret = -ENODEV;
1223 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1224 if (!fpi)
1225 return -ENOMEM;
1227 if (!IS_FEC(match)) {
1228 data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
1229 if (!data || len != 4)
1230 goto out_free_fpi;
1232 fpi->cp_command = *data;
1235 fpi->rx_ring = 32;
1236 fpi->tx_ring = 32;
1237 fpi->rx_copybreak = 240;
1238 fpi->use_napi = 1;
1239 fpi->napi_weight = 17;
1241 ret = find_phy(ofdev->node, fpi);
1242 if (ret)
1243 goto out_free_fpi;
1245 privsize = sizeof(*fep) +
1246 sizeof(struct sk_buff **) *
1247 (fpi->rx_ring + fpi->tx_ring);
1249 ndev = alloc_etherdev(privsize);
1250 if (!ndev) {
1251 ret = -ENOMEM;
1252 goto out_free_fpi;
1255 dev_set_drvdata(&ofdev->dev, ndev);
1257 fep = netdev_priv(ndev);
1258 fep->dev = &ofdev->dev;
1259 fep->ndev = ndev;
1260 fep->fpi = fpi;
1261 fep->ops = match->data;
1263 ret = fep->ops->setup_data(ndev);
1264 if (ret)
1265 goto out_free_dev;
1267 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1268 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1270 spin_lock_init(&fep->lock);
1271 spin_lock_init(&fep->tx_lock);
1273 mac_addr = of_get_mac_address(ofdev->node);
1274 if (mac_addr)
1275 memcpy(ndev->dev_addr, mac_addr, 6);
1277 ret = fep->ops->allocate_bd(ndev);
1278 if (ret)
1279 goto out_cleanup_data;
1281 fep->rx_bd_base = fep->ring_base;
1282 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1284 fep->tx_ring = fpi->tx_ring;
1285 fep->rx_ring = fpi->rx_ring;
1287 ndev->open = fs_enet_open;
1288 ndev->hard_start_xmit = fs_enet_start_xmit;
1289 ndev->tx_timeout = fs_timeout;
1290 ndev->watchdog_timeo = 2 * HZ;
1291 ndev->stop = fs_enet_close;
1292 ndev->get_stats = fs_enet_get_stats;
1293 ndev->set_multicast_list = fs_set_multicast_list;
1295 if (fpi->use_napi)
1296 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1297 fpi->napi_weight);
1299 ndev->ethtool_ops = &fs_ethtool_ops;
1300 ndev->do_ioctl = fs_ioctl;
1302 init_timer(&fep->phy_timer_list);
1304 netif_carrier_off(ndev);
1306 ret = register_netdev(ndev);
1307 if (ret)
1308 goto out_free_bd;
1310 printk(KERN_INFO "%s: fs_enet: %02x:%02x:%02x:%02x:%02x:%02x\n",
1311 ndev->name,
1312 ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
1313 ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
1315 return 0;
1317 out_free_bd:
1318 fep->ops->free_bd(ndev);
1319 out_cleanup_data:
1320 fep->ops->cleanup_data(ndev);
1321 out_free_dev:
1322 free_netdev(ndev);
1323 dev_set_drvdata(&ofdev->dev, NULL);
1324 out_free_fpi:
1325 kfree(fpi);
1326 return ret;
1329 static int fs_enet_remove(struct of_device *ofdev)
1331 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1332 struct fs_enet_private *fep = netdev_priv(ndev);
1334 unregister_netdev(ndev);
1336 fep->ops->free_bd(ndev);
1337 fep->ops->cleanup_data(ndev);
1338 dev_set_drvdata(fep->dev, NULL);
1340 free_netdev(ndev);
1341 return 0;
1344 static struct of_device_id fs_enet_match[] = {
1345 #ifdef CONFIG_FS_ENET_HAS_SCC
1347 .compatible = "fsl,cpm1-scc-enet",
1348 .data = (void *)&fs_scc_ops,
1350 #endif
1351 #ifdef CONFIG_FS_ENET_HAS_FCC
1353 .compatible = "fsl,cpm2-fcc-enet",
1354 .data = (void *)&fs_fcc_ops,
1356 #endif
1357 #ifdef CONFIG_FS_ENET_HAS_FEC
1359 .compatible = "fsl,pq1-fec-enet",
1360 .data = (void *)&fs_fec_ops,
1362 #endif
1366 static struct of_platform_driver fs_enet_driver = {
1367 .name = "fs_enet",
1368 .match_table = fs_enet_match,
1369 .probe = fs_enet_probe,
1370 .remove = fs_enet_remove,
1373 static int __init fs_init(void)
1375 int r = setup_immap();
1376 if (r != 0)
1377 return r;
1379 r = of_register_platform_driver(&fs_enet_driver);
1380 if (r != 0)
1381 goto out;
1383 return 0;
1385 out:
1386 cleanup_immap();
1387 return r;
1390 static void __exit fs_cleanup(void)
1392 of_unregister_platform_driver(&fs_enet_driver);
1393 cleanup_immap();
1395 #else
1396 static int __devinit fs_enet_probe(struct device *dev)
1398 struct net_device *ndev;
1400 /* no fixup - no device */
1401 if (dev->platform_data == NULL) {
1402 printk(KERN_INFO "fs_enet: "
1403 "probe called with no platform data; "
1404 "remove unused devices\n");
1405 return -ENODEV;
1408 ndev = fs_init_instance(dev, dev->platform_data);
1409 if (IS_ERR(ndev))
1410 return PTR_ERR(ndev);
1411 return 0;
1414 static int fs_enet_remove(struct device *dev)
1416 return fs_cleanup_instance(dev_get_drvdata(dev));
1419 static struct device_driver fs_enet_fec_driver = {
1420 .name = "fsl-cpm-fec",
1421 .bus = &platform_bus_type,
1422 .probe = fs_enet_probe,
1423 .remove = fs_enet_remove,
1424 #ifdef CONFIG_PM
1425 /* .suspend = fs_enet_suspend, TODO */
1426 /* .resume = fs_enet_resume, TODO */
1427 #endif
1430 static struct device_driver fs_enet_scc_driver = {
1431 .name = "fsl-cpm-scc",
1432 .bus = &platform_bus_type,
1433 .probe = fs_enet_probe,
1434 .remove = fs_enet_remove,
1435 #ifdef CONFIG_PM
1436 /* .suspend = fs_enet_suspend, TODO */
1437 /* .resume = fs_enet_resume, TODO */
1438 #endif
1441 static struct device_driver fs_enet_fcc_driver = {
1442 .name = "fsl-cpm-fcc",
1443 .bus = &platform_bus_type,
1444 .probe = fs_enet_probe,
1445 .remove = fs_enet_remove,
1446 #ifdef CONFIG_PM
1447 /* .suspend = fs_enet_suspend, TODO */
1448 /* .resume = fs_enet_resume, TODO */
1449 #endif
1452 static int __init fs_init(void)
1454 int r;
1456 printk(KERN_INFO
1457 "%s", version);
1459 r = setup_immap();
1460 if (r != 0)
1461 return r;
1463 #ifdef CONFIG_FS_ENET_HAS_FCC
1464 /* let's insert mii stuff */
1465 r = fs_enet_mdio_bb_init();
1467 if (r != 0) {
1468 printk(KERN_ERR DRV_MODULE_NAME
1469 "BB PHY init failed.\n");
1470 return r;
1472 r = driver_register(&fs_enet_fcc_driver);
1473 if (r != 0)
1474 goto err;
1475 #endif
1477 #ifdef CONFIG_FS_ENET_HAS_FEC
1478 r = fs_enet_mdio_fec_init();
1479 if (r != 0) {
1480 printk(KERN_ERR DRV_MODULE_NAME
1481 "FEC PHY init failed.\n");
1482 return r;
1485 r = driver_register(&fs_enet_fec_driver);
1486 if (r != 0)
1487 goto err;
1488 #endif
1490 #ifdef CONFIG_FS_ENET_HAS_SCC
1491 r = driver_register(&fs_enet_scc_driver);
1492 if (r != 0)
1493 goto err;
1494 #endif
1496 return 0;
1497 err:
1498 cleanup_immap();
1499 return r;
1502 static void __exit fs_cleanup(void)
1504 driver_unregister(&fs_enet_fec_driver);
1505 driver_unregister(&fs_enet_fcc_driver);
1506 driver_unregister(&fs_enet_scc_driver);
1507 cleanup_immap();
1509 #endif
1511 #ifdef CONFIG_NET_POLL_CONTROLLER
1512 static void fs_enet_netpoll(struct net_device *dev)
1514 disable_irq(dev->irq);
1515 fs_enet_interrupt(dev->irq, dev, NULL);
1516 enable_irq(dev->irq);
1518 #endif
1520 /**************************************************************************************/
1522 module_init(fs_init);
1523 module_exit(fs_cleanup);