ALSA: Use usb_set/get_intfdata
[linux-2.6/verdex.git] / kernel / rcupreempt.c
blob04982659875a0fe67b4483874674ad862e3a6640
1 /*
2 * Read-Copy Update mechanism for mutual exclusion, realtime implementation
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2006
20 * Authors: Paul E. McKenney <paulmck@us.ibm.com>
21 * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar
22 * for pushing me away from locks and towards counters, and
23 * to Suparna Bhattacharya for pushing me completely away
24 * from atomic instructions on the read side.
26 * - Added handling of Dynamic Ticks
27 * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com>
28 * - Steven Rostedt <srostedt@redhat.com>
30 * Papers: http://www.rdrop.com/users/paulmck/RCU
32 * Design Document: http://lwn.net/Articles/253651/
34 * For detailed explanation of Read-Copy Update mechanism see -
35 * Documentation/RCU/ *.txt
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/init.h>
41 #include <linux/spinlock.h>
42 #include <linux/smp.h>
43 #include <linux/rcupdate.h>
44 #include <linux/interrupt.h>
45 #include <linux/sched.h>
46 #include <asm/atomic.h>
47 #include <linux/bitops.h>
48 #include <linux/module.h>
49 #include <linux/kthread.h>
50 #include <linux/completion.h>
51 #include <linux/moduleparam.h>
52 #include <linux/percpu.h>
53 #include <linux/notifier.h>
54 #include <linux/cpu.h>
55 #include <linux/random.h>
56 #include <linux/delay.h>
57 #include <linux/cpumask.h>
58 #include <linux/rcupreempt_trace.h>
59 #include <asm/byteorder.h>
62 * PREEMPT_RCU data structures.
66 * GP_STAGES specifies the number of times the state machine has
67 * to go through the all the rcu_try_flip_states (see below)
68 * in a single Grace Period.
70 * GP in GP_STAGES stands for Grace Period ;)
72 #define GP_STAGES 2
73 struct rcu_data {
74 spinlock_t lock; /* Protect rcu_data fields. */
75 long completed; /* Number of last completed batch. */
76 int waitlistcount;
77 struct rcu_head *nextlist;
78 struct rcu_head **nexttail;
79 struct rcu_head *waitlist[GP_STAGES];
80 struct rcu_head **waittail[GP_STAGES];
81 struct rcu_head *donelist; /* from waitlist & waitschedlist */
82 struct rcu_head **donetail;
83 long rcu_flipctr[2];
84 struct rcu_head *nextschedlist;
85 struct rcu_head **nextschedtail;
86 struct rcu_head *waitschedlist;
87 struct rcu_head **waitschedtail;
88 int rcu_sched_sleeping;
89 #ifdef CONFIG_RCU_TRACE
90 struct rcupreempt_trace trace;
91 #endif /* #ifdef CONFIG_RCU_TRACE */
95 * States for rcu_try_flip() and friends.
98 enum rcu_try_flip_states {
101 * Stay here if nothing is happening. Flip the counter if somthing
102 * starts happening. Denoted by "I"
104 rcu_try_flip_idle_state,
107 * Wait here for all CPUs to notice that the counter has flipped. This
108 * prevents the old set of counters from ever being incremented once
109 * we leave this state, which in turn is necessary because we cannot
110 * test any individual counter for zero -- we can only check the sum.
111 * Denoted by "A".
113 rcu_try_flip_waitack_state,
116 * Wait here for the sum of the old per-CPU counters to reach zero.
117 * Denoted by "Z".
119 rcu_try_flip_waitzero_state,
122 * Wait here for each of the other CPUs to execute a memory barrier.
123 * This is necessary to ensure that these other CPUs really have
124 * completed executing their RCU read-side critical sections, despite
125 * their CPUs wildly reordering memory. Denoted by "M".
127 rcu_try_flip_waitmb_state,
131 * States for rcu_ctrlblk.rcu_sched_sleep.
134 enum rcu_sched_sleep_states {
135 rcu_sched_not_sleeping, /* Not sleeping, callbacks need GP. */
136 rcu_sched_sleep_prep, /* Thinking of sleeping, rechecking. */
137 rcu_sched_sleeping, /* Sleeping, awaken if GP needed. */
140 struct rcu_ctrlblk {
141 spinlock_t fliplock; /* Protect state-machine transitions. */
142 long completed; /* Number of last completed batch. */
143 enum rcu_try_flip_states rcu_try_flip_state; /* The current state of
144 the rcu state machine */
145 spinlock_t schedlock; /* Protect rcu_sched sleep state. */
146 enum rcu_sched_sleep_states sched_sleep; /* rcu_sched state. */
147 wait_queue_head_t sched_wq; /* Place for rcu_sched to sleep. */
150 static DEFINE_PER_CPU(struct rcu_data, rcu_data);
151 static struct rcu_ctrlblk rcu_ctrlblk = {
152 .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock),
153 .completed = 0,
154 .rcu_try_flip_state = rcu_try_flip_idle_state,
155 .schedlock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.schedlock),
156 .sched_sleep = rcu_sched_not_sleeping,
157 .sched_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rcu_ctrlblk.sched_wq),
160 static struct task_struct *rcu_sched_grace_period_task;
162 #ifdef CONFIG_RCU_TRACE
163 static char *rcu_try_flip_state_names[] =
164 { "idle", "waitack", "waitzero", "waitmb" };
165 #endif /* #ifdef CONFIG_RCU_TRACE */
167 static cpumask_t rcu_cpu_online_map __read_mostly = CPU_MASK_NONE;
170 * Enum and per-CPU flag to determine when each CPU has seen
171 * the most recent counter flip.
174 enum rcu_flip_flag_values {
175 rcu_flip_seen, /* Steady/initial state, last flip seen. */
176 /* Only GP detector can update. */
177 rcu_flipped /* Flip just completed, need confirmation. */
178 /* Only corresponding CPU can update. */
180 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag)
181 = rcu_flip_seen;
184 * Enum and per-CPU flag to determine when each CPU has executed the
185 * needed memory barrier to fence in memory references from its last RCU
186 * read-side critical section in the just-completed grace period.
189 enum rcu_mb_flag_values {
190 rcu_mb_done, /* Steady/initial state, no mb()s required. */
191 /* Only GP detector can update. */
192 rcu_mb_needed /* Flip just completed, need an mb(). */
193 /* Only corresponding CPU can update. */
195 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag)
196 = rcu_mb_done;
199 * RCU_DATA_ME: find the current CPU's rcu_data structure.
200 * RCU_DATA_CPU: find the specified CPU's rcu_data structure.
202 #define RCU_DATA_ME() (&__get_cpu_var(rcu_data))
203 #define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu))
206 * Helper macro for tracing when the appropriate rcu_data is not
207 * cached in a local variable, but where the CPU number is so cached.
209 #define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace));
212 * Helper macro for tracing when the appropriate rcu_data is not
213 * cached in a local variable.
215 #define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace));
218 * Helper macro for tracing when the appropriate rcu_data is pointed
219 * to by a local variable.
221 #define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace));
223 #define RCU_SCHED_BATCH_TIME (HZ / 50)
226 * Return the number of RCU batches processed thus far. Useful
227 * for debug and statistics.
229 long rcu_batches_completed(void)
231 return rcu_ctrlblk.completed;
233 EXPORT_SYMBOL_GPL(rcu_batches_completed);
235 void __rcu_read_lock(void)
237 int idx;
238 struct task_struct *t = current;
239 int nesting;
241 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
242 if (nesting != 0) {
244 /* An earlier rcu_read_lock() covers us, just count it. */
246 t->rcu_read_lock_nesting = nesting + 1;
248 } else {
249 unsigned long flags;
252 * We disable interrupts for the following reasons:
253 * - If we get scheduling clock interrupt here, and we
254 * end up acking the counter flip, it's like a promise
255 * that we will never increment the old counter again.
256 * Thus we will break that promise if that
257 * scheduling clock interrupt happens between the time
258 * we pick the .completed field and the time that we
259 * increment our counter.
261 * - We don't want to be preempted out here.
263 * NMIs can still occur, of course, and might themselves
264 * contain rcu_read_lock().
267 local_irq_save(flags);
270 * Outermost nesting of rcu_read_lock(), so increment
271 * the current counter for the current CPU. Use volatile
272 * casts to prevent the compiler from reordering.
275 idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
276 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
279 * Now that the per-CPU counter has been incremented, we
280 * are protected from races with rcu_read_lock() invoked
281 * from NMI handlers on this CPU. We can therefore safely
282 * increment the nesting counter, relieving further NMIs
283 * of the need to increment the per-CPU counter.
286 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
289 * Now that we have preventing any NMIs from storing
290 * to the ->rcu_flipctr_idx, we can safely use it to
291 * remember which counter to decrement in the matching
292 * rcu_read_unlock().
295 ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
296 local_irq_restore(flags);
299 EXPORT_SYMBOL_GPL(__rcu_read_lock);
301 void __rcu_read_unlock(void)
303 int idx;
304 struct task_struct *t = current;
305 int nesting;
307 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
308 if (nesting > 1) {
311 * We are still protected by the enclosing rcu_read_lock(),
312 * so simply decrement the counter.
315 t->rcu_read_lock_nesting = nesting - 1;
317 } else {
318 unsigned long flags;
321 * Disable local interrupts to prevent the grace-period
322 * detection state machine from seeing us half-done.
323 * NMIs can still occur, of course, and might themselves
324 * contain rcu_read_lock() and rcu_read_unlock().
327 local_irq_save(flags);
330 * Outermost nesting of rcu_read_unlock(), so we must
331 * decrement the current counter for the current CPU.
332 * This must be done carefully, because NMIs can
333 * occur at any point in this code, and any rcu_read_lock()
334 * and rcu_read_unlock() pairs in the NMI handlers
335 * must interact non-destructively with this code.
336 * Lots of volatile casts, and -very- careful ordering.
338 * Changes to this code, including this one, must be
339 * inspected, validated, and tested extremely carefully!!!
343 * First, pick up the index.
346 idx = ACCESS_ONCE(t->rcu_flipctr_idx);
349 * Now that we have fetched the counter index, it is
350 * safe to decrement the per-task RCU nesting counter.
351 * After this, any interrupts or NMIs will increment and
352 * decrement the per-CPU counters.
354 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
357 * It is now safe to decrement this task's nesting count.
358 * NMIs that occur after this statement will route their
359 * rcu_read_lock() calls through this "else" clause, and
360 * will thus start incrementing the per-CPU counter on
361 * their own. They will also clobber ->rcu_flipctr_idx,
362 * but that is OK, since we have already fetched it.
365 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
366 local_irq_restore(flags);
369 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
372 * If a global counter flip has occurred since the last time that we
373 * advanced callbacks, advance them. Hardware interrupts must be
374 * disabled when calling this function.
376 static void __rcu_advance_callbacks(struct rcu_data *rdp)
378 int cpu;
379 int i;
380 int wlc = 0;
382 if (rdp->completed != rcu_ctrlblk.completed) {
383 if (rdp->waitlist[GP_STAGES - 1] != NULL) {
384 *rdp->donetail = rdp->waitlist[GP_STAGES - 1];
385 rdp->donetail = rdp->waittail[GP_STAGES - 1];
386 RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp);
388 for (i = GP_STAGES - 2; i >= 0; i--) {
389 if (rdp->waitlist[i] != NULL) {
390 rdp->waitlist[i + 1] = rdp->waitlist[i];
391 rdp->waittail[i + 1] = rdp->waittail[i];
392 wlc++;
393 } else {
394 rdp->waitlist[i + 1] = NULL;
395 rdp->waittail[i + 1] =
396 &rdp->waitlist[i + 1];
399 if (rdp->nextlist != NULL) {
400 rdp->waitlist[0] = rdp->nextlist;
401 rdp->waittail[0] = rdp->nexttail;
402 wlc++;
403 rdp->nextlist = NULL;
404 rdp->nexttail = &rdp->nextlist;
405 RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp);
406 } else {
407 rdp->waitlist[0] = NULL;
408 rdp->waittail[0] = &rdp->waitlist[0];
410 rdp->waitlistcount = wlc;
411 rdp->completed = rcu_ctrlblk.completed;
415 * Check to see if this CPU needs to report that it has seen
416 * the most recent counter flip, thereby declaring that all
417 * subsequent rcu_read_lock() invocations will respect this flip.
420 cpu = raw_smp_processor_id();
421 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
422 smp_mb(); /* Subsequent counter accesses must see new value */
423 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
424 smp_mb(); /* Subsequent RCU read-side critical sections */
425 /* seen -after- acknowledgement. */
429 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_dyntick_sched, rcu_dyntick_sched) = {
430 .dynticks = 1,
433 #ifdef CONFIG_NO_HZ
434 static DEFINE_PER_CPU(int, rcu_update_flag);
437 * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI.
439 * If the CPU was idle with dynamic ticks active, this updates the
440 * rcu_dyntick_sched.dynticks to let the RCU handling know that the
441 * CPU is active.
443 void rcu_irq_enter(void)
445 int cpu = smp_processor_id();
446 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
448 if (per_cpu(rcu_update_flag, cpu))
449 per_cpu(rcu_update_flag, cpu)++;
452 * Only update if we are coming from a stopped ticks mode
453 * (rcu_dyntick_sched.dynticks is even).
455 if (!in_interrupt() &&
456 (rdssp->dynticks & 0x1) == 0) {
458 * The following might seem like we could have a race
459 * with NMI/SMIs. But this really isn't a problem.
460 * Here we do a read/modify/write, and the race happens
461 * when an NMI/SMI comes in after the read and before
462 * the write. But NMI/SMIs will increment this counter
463 * twice before returning, so the zero bit will not
464 * be corrupted by the NMI/SMI which is the most important
465 * part.
467 * The only thing is that we would bring back the counter
468 * to a postion that it was in during the NMI/SMI.
469 * But the zero bit would be set, so the rest of the
470 * counter would again be ignored.
472 * On return from the IRQ, the counter may have the zero
473 * bit be 0 and the counter the same as the return from
474 * the NMI/SMI. If the state machine was so unlucky to
475 * see that, it still doesn't matter, since all
476 * RCU read-side critical sections on this CPU would
477 * have already completed.
479 rdssp->dynticks++;
481 * The following memory barrier ensures that any
482 * rcu_read_lock() primitives in the irq handler
483 * are seen by other CPUs to follow the above
484 * increment to rcu_dyntick_sched.dynticks. This is
485 * required in order for other CPUs to correctly
486 * determine when it is safe to advance the RCU
487 * grace-period state machine.
489 smp_mb(); /* see above block comment. */
491 * Since we can't determine the dynamic tick mode from
492 * the rcu_dyntick_sched.dynticks after this routine,
493 * we use a second flag to acknowledge that we came
494 * from an idle state with ticks stopped.
496 per_cpu(rcu_update_flag, cpu)++;
498 * If we take an NMI/SMI now, they will also increment
499 * the rcu_update_flag, and will not update the
500 * rcu_dyntick_sched.dynticks on exit. That is for
501 * this IRQ to do.
507 * rcu_irq_exit - Called from exiting Hard irq context.
509 * If the CPU was idle with dynamic ticks active, update the
510 * rcu_dyntick_sched.dynticks to put let the RCU handling be
511 * aware that the CPU is going back to idle with no ticks.
513 void rcu_irq_exit(void)
515 int cpu = smp_processor_id();
516 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
519 * rcu_update_flag is set if we interrupted the CPU
520 * when it was idle with ticks stopped.
521 * Once this occurs, we keep track of interrupt nesting
522 * because a NMI/SMI could also come in, and we still
523 * only want the IRQ that started the increment of the
524 * rcu_dyntick_sched.dynticks to be the one that modifies
525 * it on exit.
527 if (per_cpu(rcu_update_flag, cpu)) {
528 if (--per_cpu(rcu_update_flag, cpu))
529 return;
531 /* This must match the interrupt nesting */
532 WARN_ON(in_interrupt());
535 * If an NMI/SMI happens now we are still
536 * protected by the rcu_dyntick_sched.dynticks being odd.
540 * The following memory barrier ensures that any
541 * rcu_read_unlock() primitives in the irq handler
542 * are seen by other CPUs to preceed the following
543 * increment to rcu_dyntick_sched.dynticks. This
544 * is required in order for other CPUs to determine
545 * when it is safe to advance the RCU grace-period
546 * state machine.
548 smp_mb(); /* see above block comment. */
549 rdssp->dynticks++;
550 WARN_ON(rdssp->dynticks & 0x1);
554 void rcu_nmi_enter(void)
556 rcu_irq_enter();
559 void rcu_nmi_exit(void)
561 rcu_irq_exit();
564 static void dyntick_save_progress_counter(int cpu)
566 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
568 rdssp->dynticks_snap = rdssp->dynticks;
571 static inline int
572 rcu_try_flip_waitack_needed(int cpu)
574 long curr;
575 long snap;
576 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
578 curr = rdssp->dynticks;
579 snap = rdssp->dynticks_snap;
580 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
583 * If the CPU remained in dynticks mode for the entire time
584 * and didn't take any interrupts, NMIs, SMIs, or whatever,
585 * then it cannot be in the middle of an rcu_read_lock(), so
586 * the next rcu_read_lock() it executes must use the new value
587 * of the counter. So we can safely pretend that this CPU
588 * already acknowledged the counter.
591 if ((curr == snap) && ((curr & 0x1) == 0))
592 return 0;
595 * If the CPU passed through or entered a dynticks idle phase with
596 * no active irq handlers, then, as above, we can safely pretend
597 * that this CPU already acknowledged the counter.
600 if ((curr - snap) > 2 || (curr & 0x1) == 0)
601 return 0;
603 /* We need this CPU to explicitly acknowledge the counter flip. */
605 return 1;
608 static inline int
609 rcu_try_flip_waitmb_needed(int cpu)
611 long curr;
612 long snap;
613 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
615 curr = rdssp->dynticks;
616 snap = rdssp->dynticks_snap;
617 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
620 * If the CPU remained in dynticks mode for the entire time
621 * and didn't take any interrupts, NMIs, SMIs, or whatever,
622 * then it cannot have executed an RCU read-side critical section
623 * during that time, so there is no need for it to execute a
624 * memory barrier.
627 if ((curr == snap) && ((curr & 0x1) == 0))
628 return 0;
631 * If the CPU either entered or exited an outermost interrupt,
632 * SMI, NMI, or whatever handler, then we know that it executed
633 * a memory barrier when doing so. So we don't need another one.
635 if (curr != snap)
636 return 0;
638 /* We need the CPU to execute a memory barrier. */
640 return 1;
643 static void dyntick_save_progress_counter_sched(int cpu)
645 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
647 rdssp->sched_dynticks_snap = rdssp->dynticks;
650 static int rcu_qsctr_inc_needed_dyntick(int cpu)
652 long curr;
653 long snap;
654 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
656 curr = rdssp->dynticks;
657 snap = rdssp->sched_dynticks_snap;
658 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
661 * If the CPU remained in dynticks mode for the entire time
662 * and didn't take any interrupts, NMIs, SMIs, or whatever,
663 * then it cannot be in the middle of an rcu_read_lock(), so
664 * the next rcu_read_lock() it executes must use the new value
665 * of the counter. Therefore, this CPU has been in a quiescent
666 * state the entire time, and we don't need to wait for it.
669 if ((curr == snap) && ((curr & 0x1) == 0))
670 return 0;
673 * If the CPU passed through or entered a dynticks idle phase with
674 * no active irq handlers, then, as above, this CPU has already
675 * passed through a quiescent state.
678 if ((curr - snap) > 2 || (snap & 0x1) == 0)
679 return 0;
681 /* We need this CPU to go through a quiescent state. */
683 return 1;
686 #else /* !CONFIG_NO_HZ */
688 # define dyntick_save_progress_counter(cpu) do { } while (0)
689 # define rcu_try_flip_waitack_needed(cpu) (1)
690 # define rcu_try_flip_waitmb_needed(cpu) (1)
692 # define dyntick_save_progress_counter_sched(cpu) do { } while (0)
693 # define rcu_qsctr_inc_needed_dyntick(cpu) (1)
695 #endif /* CONFIG_NO_HZ */
697 static void save_qsctr_sched(int cpu)
699 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
701 rdssp->sched_qs_snap = rdssp->sched_qs;
704 static inline int rcu_qsctr_inc_needed(int cpu)
706 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
709 * If there has been a quiescent state, no more need to wait
710 * on this CPU.
713 if (rdssp->sched_qs != rdssp->sched_qs_snap) {
714 smp_mb(); /* force ordering with cpu entering schedule(). */
715 return 0;
718 /* We need this CPU to go through a quiescent state. */
720 return 1;
724 * Get here when RCU is idle. Decide whether we need to
725 * move out of idle state, and return non-zero if so.
726 * "Straightforward" approach for the moment, might later
727 * use callback-list lengths, grace-period duration, or
728 * some such to determine when to exit idle state.
729 * Might also need a pre-idle test that does not acquire
730 * the lock, but let's get the simple case working first...
733 static int
734 rcu_try_flip_idle(void)
736 int cpu;
738 RCU_TRACE_ME(rcupreempt_trace_try_flip_i1);
739 if (!rcu_pending(smp_processor_id())) {
740 RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1);
741 return 0;
745 * Do the flip.
748 RCU_TRACE_ME(rcupreempt_trace_try_flip_g1);
749 rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */
752 * Need a memory barrier so that other CPUs see the new
753 * counter value before they see the subsequent change of all
754 * the rcu_flip_flag instances to rcu_flipped.
757 smp_mb(); /* see above block comment. */
759 /* Now ask each CPU for acknowledgement of the flip. */
761 for_each_cpu_mask_nr(cpu, rcu_cpu_online_map) {
762 per_cpu(rcu_flip_flag, cpu) = rcu_flipped;
763 dyntick_save_progress_counter(cpu);
766 return 1;
770 * Wait for CPUs to acknowledge the flip.
773 static int
774 rcu_try_flip_waitack(void)
776 int cpu;
778 RCU_TRACE_ME(rcupreempt_trace_try_flip_a1);
779 for_each_cpu_mask_nr(cpu, rcu_cpu_online_map)
780 if (rcu_try_flip_waitack_needed(cpu) &&
781 per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) {
782 RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1);
783 return 0;
787 * Make sure our checks above don't bleed into subsequent
788 * waiting for the sum of the counters to reach zero.
791 smp_mb(); /* see above block comment. */
792 RCU_TRACE_ME(rcupreempt_trace_try_flip_a2);
793 return 1;
797 * Wait for collective ``last'' counter to reach zero,
798 * then tell all CPUs to do an end-of-grace-period memory barrier.
801 static int
802 rcu_try_flip_waitzero(void)
804 int cpu;
805 int lastidx = !(rcu_ctrlblk.completed & 0x1);
806 int sum = 0;
808 /* Check to see if the sum of the "last" counters is zero. */
810 RCU_TRACE_ME(rcupreempt_trace_try_flip_z1);
811 for_each_cpu_mask_nr(cpu, rcu_cpu_online_map)
812 sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx];
813 if (sum != 0) {
814 RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1);
815 return 0;
819 * This ensures that the other CPUs see the call for
820 * memory barriers -after- the sum to zero has been
821 * detected here
823 smp_mb(); /* ^^^^^^^^^^^^ */
825 /* Call for a memory barrier from each CPU. */
826 for_each_cpu_mask_nr(cpu, rcu_cpu_online_map) {
827 per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed;
828 dyntick_save_progress_counter(cpu);
831 RCU_TRACE_ME(rcupreempt_trace_try_flip_z2);
832 return 1;
836 * Wait for all CPUs to do their end-of-grace-period memory barrier.
837 * Return 0 once all CPUs have done so.
840 static int
841 rcu_try_flip_waitmb(void)
843 int cpu;
845 RCU_TRACE_ME(rcupreempt_trace_try_flip_m1);
846 for_each_cpu_mask_nr(cpu, rcu_cpu_online_map)
847 if (rcu_try_flip_waitmb_needed(cpu) &&
848 per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) {
849 RCU_TRACE_ME(rcupreempt_trace_try_flip_me1);
850 return 0;
853 smp_mb(); /* Ensure that the above checks precede any following flip. */
854 RCU_TRACE_ME(rcupreempt_trace_try_flip_m2);
855 return 1;
859 * Attempt a single flip of the counters. Remember, a single flip does
860 * -not- constitute a grace period. Instead, the interval between
861 * at least GP_STAGES consecutive flips is a grace period.
863 * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation
864 * on a large SMP, they might want to use a hierarchical organization of
865 * the per-CPU-counter pairs.
867 static void rcu_try_flip(void)
869 unsigned long flags;
871 RCU_TRACE_ME(rcupreempt_trace_try_flip_1);
872 if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) {
873 RCU_TRACE_ME(rcupreempt_trace_try_flip_e1);
874 return;
878 * Take the next transition(s) through the RCU grace-period
879 * flip-counter state machine.
882 switch (rcu_ctrlblk.rcu_try_flip_state) {
883 case rcu_try_flip_idle_state:
884 if (rcu_try_flip_idle())
885 rcu_ctrlblk.rcu_try_flip_state =
886 rcu_try_flip_waitack_state;
887 break;
888 case rcu_try_flip_waitack_state:
889 if (rcu_try_flip_waitack())
890 rcu_ctrlblk.rcu_try_flip_state =
891 rcu_try_flip_waitzero_state;
892 break;
893 case rcu_try_flip_waitzero_state:
894 if (rcu_try_flip_waitzero())
895 rcu_ctrlblk.rcu_try_flip_state =
896 rcu_try_flip_waitmb_state;
897 break;
898 case rcu_try_flip_waitmb_state:
899 if (rcu_try_flip_waitmb())
900 rcu_ctrlblk.rcu_try_flip_state =
901 rcu_try_flip_idle_state;
903 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
907 * Check to see if this CPU needs to do a memory barrier in order to
908 * ensure that any prior RCU read-side critical sections have committed
909 * their counter manipulations and critical-section memory references
910 * before declaring the grace period to be completed.
912 static void rcu_check_mb(int cpu)
914 if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) {
915 smp_mb(); /* Ensure RCU read-side accesses are visible. */
916 per_cpu(rcu_mb_flag, cpu) = rcu_mb_done;
920 void rcu_check_callbacks(int cpu, int user)
922 unsigned long flags;
923 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
926 * If this CPU took its interrupt from user mode or from the
927 * idle loop, and this is not a nested interrupt, then
928 * this CPU has to have exited all prior preept-disable
929 * sections of code. So increment the counter to note this.
931 * The memory barrier is needed to handle the case where
932 * writes from a preempt-disable section of code get reordered
933 * into schedule() by this CPU's write buffer. So the memory
934 * barrier makes sure that the rcu_qsctr_inc() is seen by other
935 * CPUs to happen after any such write.
938 if (user ||
939 (idle_cpu(cpu) && !in_softirq() &&
940 hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
941 smp_mb(); /* Guard against aggressive schedule(). */
942 rcu_qsctr_inc(cpu);
945 rcu_check_mb(cpu);
946 if (rcu_ctrlblk.completed == rdp->completed)
947 rcu_try_flip();
948 spin_lock_irqsave(&rdp->lock, flags);
949 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
950 __rcu_advance_callbacks(rdp);
951 if (rdp->donelist == NULL) {
952 spin_unlock_irqrestore(&rdp->lock, flags);
953 } else {
954 spin_unlock_irqrestore(&rdp->lock, flags);
955 raise_softirq(RCU_SOFTIRQ);
960 * Needed by dynticks, to make sure all RCU processing has finished
961 * when we go idle:
963 void rcu_advance_callbacks(int cpu, int user)
965 unsigned long flags;
966 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
968 if (rcu_ctrlblk.completed == rdp->completed) {
969 rcu_try_flip();
970 if (rcu_ctrlblk.completed == rdp->completed)
971 return;
973 spin_lock_irqsave(&rdp->lock, flags);
974 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
975 __rcu_advance_callbacks(rdp);
976 spin_unlock_irqrestore(&rdp->lock, flags);
979 #ifdef CONFIG_HOTPLUG_CPU
980 #define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \
981 *dsttail = srclist; \
982 if (srclist != NULL) { \
983 dsttail = srctail; \
984 srclist = NULL; \
985 srctail = &srclist;\
987 } while (0)
989 void rcu_offline_cpu(int cpu)
991 int i;
992 struct rcu_head *list = NULL;
993 unsigned long flags;
994 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
995 struct rcu_head *schedlist = NULL;
996 struct rcu_head **schedtail = &schedlist;
997 struct rcu_head **tail = &list;
1000 * Remove all callbacks from the newly dead CPU, retaining order.
1001 * Otherwise rcu_barrier() will fail
1004 spin_lock_irqsave(&rdp->lock, flags);
1005 rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail);
1006 for (i = GP_STAGES - 1; i >= 0; i--)
1007 rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i],
1008 list, tail);
1009 rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail);
1010 rcu_offline_cpu_enqueue(rdp->waitschedlist, rdp->waitschedtail,
1011 schedlist, schedtail);
1012 rcu_offline_cpu_enqueue(rdp->nextschedlist, rdp->nextschedtail,
1013 schedlist, schedtail);
1014 rdp->rcu_sched_sleeping = 0;
1015 spin_unlock_irqrestore(&rdp->lock, flags);
1016 rdp->waitlistcount = 0;
1018 /* Disengage the newly dead CPU from the grace-period computation. */
1020 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
1021 rcu_check_mb(cpu);
1022 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
1023 smp_mb(); /* Subsequent counter accesses must see new value */
1024 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
1025 smp_mb(); /* Subsequent RCU read-side critical sections */
1026 /* seen -after- acknowledgement. */
1029 RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0];
1030 RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1];
1032 RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0;
1033 RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0;
1035 cpu_clear(cpu, rcu_cpu_online_map);
1037 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
1040 * Place the removed callbacks on the current CPU's queue.
1041 * Make them all start a new grace period: simple approach,
1042 * in theory could starve a given set of callbacks, but
1043 * you would need to be doing some serious CPU hotplugging
1044 * to make this happen. If this becomes a problem, adding
1045 * a synchronize_rcu() to the hotplug path would be a simple
1046 * fix.
1049 local_irq_save(flags); /* disable preempt till we know what lock. */
1050 rdp = RCU_DATA_ME();
1051 spin_lock(&rdp->lock);
1052 *rdp->nexttail = list;
1053 if (list)
1054 rdp->nexttail = tail;
1055 *rdp->nextschedtail = schedlist;
1056 if (schedlist)
1057 rdp->nextschedtail = schedtail;
1058 spin_unlock_irqrestore(&rdp->lock, flags);
1061 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1063 void rcu_offline_cpu(int cpu)
1067 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1069 void __cpuinit rcu_online_cpu(int cpu)
1071 unsigned long flags;
1072 struct rcu_data *rdp;
1074 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
1075 cpu_set(cpu, rcu_cpu_online_map);
1076 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
1079 * The rcu_sched grace-period processing might have bypassed
1080 * this CPU, given that it was not in the rcu_cpu_online_map
1081 * when the grace-period scan started. This means that the
1082 * grace-period task might sleep. So make sure that if this
1083 * should happen, the first callback posted to this CPU will
1084 * wake up the grace-period task if need be.
1087 rdp = RCU_DATA_CPU(cpu);
1088 spin_lock_irqsave(&rdp->lock, flags);
1089 rdp->rcu_sched_sleeping = 1;
1090 spin_unlock_irqrestore(&rdp->lock, flags);
1093 static void rcu_process_callbacks(struct softirq_action *unused)
1095 unsigned long flags;
1096 struct rcu_head *next, *list;
1097 struct rcu_data *rdp;
1099 local_irq_save(flags);
1100 rdp = RCU_DATA_ME();
1101 spin_lock(&rdp->lock);
1102 list = rdp->donelist;
1103 if (list == NULL) {
1104 spin_unlock_irqrestore(&rdp->lock, flags);
1105 return;
1107 rdp->donelist = NULL;
1108 rdp->donetail = &rdp->donelist;
1109 RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp);
1110 spin_unlock_irqrestore(&rdp->lock, flags);
1111 while (list) {
1112 next = list->next;
1113 list->func(list);
1114 list = next;
1115 RCU_TRACE_ME(rcupreempt_trace_invoke);
1119 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1121 unsigned long flags;
1122 struct rcu_data *rdp;
1124 head->func = func;
1125 head->next = NULL;
1126 local_irq_save(flags);
1127 rdp = RCU_DATA_ME();
1128 spin_lock(&rdp->lock);
1129 __rcu_advance_callbacks(rdp);
1130 *rdp->nexttail = head;
1131 rdp->nexttail = &head->next;
1132 RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp);
1133 spin_unlock_irqrestore(&rdp->lock, flags);
1135 EXPORT_SYMBOL_GPL(call_rcu);
1137 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1139 unsigned long flags;
1140 struct rcu_data *rdp;
1141 int wake_gp = 0;
1143 head->func = func;
1144 head->next = NULL;
1145 local_irq_save(flags);
1146 rdp = RCU_DATA_ME();
1147 spin_lock(&rdp->lock);
1148 *rdp->nextschedtail = head;
1149 rdp->nextschedtail = &head->next;
1150 if (rdp->rcu_sched_sleeping) {
1152 /* Grace-period processing might be sleeping... */
1154 rdp->rcu_sched_sleeping = 0;
1155 wake_gp = 1;
1157 spin_unlock_irqrestore(&rdp->lock, flags);
1158 if (wake_gp) {
1160 /* Wake up grace-period processing, unless someone beat us. */
1162 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
1163 if (rcu_ctrlblk.sched_sleep != rcu_sched_sleeping)
1164 wake_gp = 0;
1165 rcu_ctrlblk.sched_sleep = rcu_sched_not_sleeping;
1166 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1167 if (wake_gp)
1168 wake_up_interruptible(&rcu_ctrlblk.sched_wq);
1171 EXPORT_SYMBOL_GPL(call_rcu_sched);
1174 * Wait until all currently running preempt_disable() code segments
1175 * (including hardware-irq-disable segments) complete. Note that
1176 * in -rt this does -not- necessarily result in all currently executing
1177 * interrupt -handlers- having completed.
1179 synchronize_rcu_xxx(__synchronize_sched, call_rcu_sched)
1180 EXPORT_SYMBOL_GPL(__synchronize_sched);
1183 * kthread function that manages call_rcu_sched grace periods.
1185 static int rcu_sched_grace_period(void *arg)
1187 int couldsleep; /* might sleep after current pass. */
1188 int couldsleepnext = 0; /* might sleep after next pass. */
1189 int cpu;
1190 unsigned long flags;
1191 struct rcu_data *rdp;
1192 int ret;
1195 * Each pass through the following loop handles one
1196 * rcu_sched grace period cycle.
1198 do {
1199 /* Save each CPU's current state. */
1201 for_each_online_cpu(cpu) {
1202 dyntick_save_progress_counter_sched(cpu);
1203 save_qsctr_sched(cpu);
1207 * Sleep for about an RCU grace-period's worth to
1208 * allow better batching and to consume less CPU.
1210 schedule_timeout_interruptible(RCU_SCHED_BATCH_TIME);
1213 * If there was nothing to do last time, prepare to
1214 * sleep at the end of the current grace period cycle.
1216 couldsleep = couldsleepnext;
1217 couldsleepnext = 1;
1218 if (couldsleep) {
1219 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
1220 rcu_ctrlblk.sched_sleep = rcu_sched_sleep_prep;
1221 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1225 * Wait on each CPU in turn to have either visited
1226 * a quiescent state or been in dynticks-idle mode.
1228 for_each_online_cpu(cpu) {
1229 while (rcu_qsctr_inc_needed(cpu) &&
1230 rcu_qsctr_inc_needed_dyntick(cpu)) {
1231 /* resched_cpu(cpu); @@@ */
1232 schedule_timeout_interruptible(1);
1236 /* Advance callbacks for each CPU. */
1238 for_each_online_cpu(cpu) {
1240 rdp = RCU_DATA_CPU(cpu);
1241 spin_lock_irqsave(&rdp->lock, flags);
1244 * We are running on this CPU irq-disabled, so no
1245 * CPU can go offline until we re-enable irqs.
1246 * The current CPU might have already gone
1247 * offline (between the for_each_offline_cpu and
1248 * the spin_lock_irqsave), but in that case all its
1249 * callback lists will be empty, so no harm done.
1251 * Advance the callbacks! We share normal RCU's
1252 * donelist, since callbacks are invoked the
1253 * same way in either case.
1255 if (rdp->waitschedlist != NULL) {
1256 *rdp->donetail = rdp->waitschedlist;
1257 rdp->donetail = rdp->waitschedtail;
1260 * Next rcu_check_callbacks() will
1261 * do the required raise_softirq().
1264 if (rdp->nextschedlist != NULL) {
1265 rdp->waitschedlist = rdp->nextschedlist;
1266 rdp->waitschedtail = rdp->nextschedtail;
1267 couldsleep = 0;
1268 couldsleepnext = 0;
1269 } else {
1270 rdp->waitschedlist = NULL;
1271 rdp->waitschedtail = &rdp->waitschedlist;
1273 rdp->nextschedlist = NULL;
1274 rdp->nextschedtail = &rdp->nextschedlist;
1276 /* Mark sleep intention. */
1278 rdp->rcu_sched_sleeping = couldsleep;
1280 spin_unlock_irqrestore(&rdp->lock, flags);
1283 /* If we saw callbacks on the last scan, go deal with them. */
1285 if (!couldsleep)
1286 continue;
1288 /* Attempt to block... */
1290 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
1291 if (rcu_ctrlblk.sched_sleep != rcu_sched_sleep_prep) {
1294 * Someone posted a callback after we scanned.
1295 * Go take care of it.
1297 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1298 couldsleepnext = 0;
1299 continue;
1302 /* Block until the next person posts a callback. */
1304 rcu_ctrlblk.sched_sleep = rcu_sched_sleeping;
1305 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1306 ret = 0;
1307 __wait_event_interruptible(rcu_ctrlblk.sched_wq,
1308 rcu_ctrlblk.sched_sleep != rcu_sched_sleeping,
1309 ret);
1312 * Signals would prevent us from sleeping, and we cannot
1313 * do much with them in any case. So flush them.
1315 if (ret)
1316 flush_signals(current);
1317 couldsleepnext = 0;
1319 } while (!kthread_should_stop());
1321 return (0);
1325 * Check to see if any future RCU-related work will need to be done
1326 * by the current CPU, even if none need be done immediately, returning
1327 * 1 if so. Assumes that notifiers would take care of handling any
1328 * outstanding requests from the RCU core.
1330 * This function is part of the RCU implementation; it is -not-
1331 * an exported member of the RCU API.
1333 int rcu_needs_cpu(int cpu)
1335 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1337 return (rdp->donelist != NULL ||
1338 !!rdp->waitlistcount ||
1339 rdp->nextlist != NULL ||
1340 rdp->nextschedlist != NULL ||
1341 rdp->waitschedlist != NULL);
1344 int rcu_pending(int cpu)
1346 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1348 /* The CPU has at least one callback queued somewhere. */
1350 if (rdp->donelist != NULL ||
1351 !!rdp->waitlistcount ||
1352 rdp->nextlist != NULL ||
1353 rdp->nextschedlist != NULL ||
1354 rdp->waitschedlist != NULL)
1355 return 1;
1357 /* The RCU core needs an acknowledgement from this CPU. */
1359 if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) ||
1360 (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed))
1361 return 1;
1363 /* This CPU has fallen behind the global grace-period number. */
1365 if (rdp->completed != rcu_ctrlblk.completed)
1366 return 1;
1368 /* Nothing needed from this CPU. */
1370 return 0;
1373 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1374 unsigned long action, void *hcpu)
1376 long cpu = (long)hcpu;
1378 switch (action) {
1379 case CPU_UP_PREPARE:
1380 case CPU_UP_PREPARE_FROZEN:
1381 rcu_online_cpu(cpu);
1382 break;
1383 case CPU_UP_CANCELED:
1384 case CPU_UP_CANCELED_FROZEN:
1385 case CPU_DEAD:
1386 case CPU_DEAD_FROZEN:
1387 rcu_offline_cpu(cpu);
1388 break;
1389 default:
1390 break;
1392 return NOTIFY_OK;
1395 static struct notifier_block __cpuinitdata rcu_nb = {
1396 .notifier_call = rcu_cpu_notify,
1399 void __init __rcu_init(void)
1401 int cpu;
1402 int i;
1403 struct rcu_data *rdp;
1405 printk(KERN_NOTICE "Preemptible RCU implementation.\n");
1406 for_each_possible_cpu(cpu) {
1407 rdp = RCU_DATA_CPU(cpu);
1408 spin_lock_init(&rdp->lock);
1409 rdp->completed = 0;
1410 rdp->waitlistcount = 0;
1411 rdp->nextlist = NULL;
1412 rdp->nexttail = &rdp->nextlist;
1413 for (i = 0; i < GP_STAGES; i++) {
1414 rdp->waitlist[i] = NULL;
1415 rdp->waittail[i] = &rdp->waitlist[i];
1417 rdp->donelist = NULL;
1418 rdp->donetail = &rdp->donelist;
1419 rdp->rcu_flipctr[0] = 0;
1420 rdp->rcu_flipctr[1] = 0;
1421 rdp->nextschedlist = NULL;
1422 rdp->nextschedtail = &rdp->nextschedlist;
1423 rdp->waitschedlist = NULL;
1424 rdp->waitschedtail = &rdp->waitschedlist;
1425 rdp->rcu_sched_sleeping = 0;
1427 register_cpu_notifier(&rcu_nb);
1430 * We don't need protection against CPU-Hotplug here
1431 * since
1432 * a) If a CPU comes online while we are iterating over the
1433 * cpu_online_map below, we would only end up making a
1434 * duplicate call to rcu_online_cpu() which sets the corresponding
1435 * CPU's mask in the rcu_cpu_online_map.
1437 * b) A CPU cannot go offline at this point in time since the user
1438 * does not have access to the sysfs interface, nor do we
1439 * suspend the system.
1441 for_each_online_cpu(cpu)
1442 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu);
1444 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1448 * Late-boot-time RCU initialization that must wait until after scheduler
1449 * has been initialized.
1451 void __init rcu_init_sched(void)
1453 rcu_sched_grace_period_task = kthread_run(rcu_sched_grace_period,
1454 NULL,
1455 "rcu_sched_grace_period");
1456 WARN_ON(IS_ERR(rcu_sched_grace_period_task));
1459 #ifdef CONFIG_RCU_TRACE
1460 long *rcupreempt_flipctr(int cpu)
1462 return &RCU_DATA_CPU(cpu)->rcu_flipctr[0];
1464 EXPORT_SYMBOL_GPL(rcupreempt_flipctr);
1466 int rcupreempt_flip_flag(int cpu)
1468 return per_cpu(rcu_flip_flag, cpu);
1470 EXPORT_SYMBOL_GPL(rcupreempt_flip_flag);
1472 int rcupreempt_mb_flag(int cpu)
1474 return per_cpu(rcu_mb_flag, cpu);
1476 EXPORT_SYMBOL_GPL(rcupreempt_mb_flag);
1478 char *rcupreempt_try_flip_state_name(void)
1480 return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state];
1482 EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name);
1484 struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu)
1486 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1488 return &rdp->trace;
1490 EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu);
1492 #endif /* #ifdef RCU_TRACE */