2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
32 * The slab_lock protects operations on the object of a particular
33 * slab and its metadata in the page struct. If the slab lock
34 * has been taken then no allocations nor frees can be performed
35 * on the objects in the slab nor can the slab be added or removed
36 * from the partial or full lists since this would mean modifying
37 * the page_struct of the slab.
39 * The list_lock protects the partial and full list on each node and
40 * the partial slab counter. If taken then no new slabs may be added or
41 * removed from the lists nor make the number of partial slabs be modified.
42 * (Note that the total number of slabs is an atomic value that may be
43 * modified without taking the list lock).
45 * The list_lock is a centralized lock and thus we avoid taking it as
46 * much as possible. As long as SLUB does not have to handle partial
47 * slabs, operations can continue without any centralized lock. F.e.
48 * allocating a long series of objects that fill up slabs does not require
51 * The lock order is sometimes inverted when we are trying to get a slab
52 * off a list. We take the list_lock and then look for a page on the list
53 * to use. While we do that objects in the slabs may be freed. We can
54 * only operate on the slab if we have also taken the slab_lock. So we use
55 * a slab_trylock() on the slab. If trylock was successful then no frees
56 * can occur anymore and we can use the slab for allocations etc. If the
57 * slab_trylock() does not succeed then frees are in progress in the slab and
58 * we must stay away from it for a while since we may cause a bouncing
59 * cacheline if we try to acquire the lock. So go onto the next slab.
60 * If all pages are busy then we may allocate a new slab instead of reusing
61 * a partial slab. A new slab has noone operating on it and thus there is
62 * no danger of cacheline contention.
64 * Interrupts are disabled during allocation and deallocation in order to
65 * make the slab allocator safe to use in the context of an irq. In addition
66 * interrupts are disabled to ensure that the processor does not change
67 * while handling per_cpu slabs, due to kernel preemption.
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
82 * Overloading of page flags that are otherwise used for LRU management.
84 * PageActive The slab is frozen and exempt from list processing.
85 * This means that the slab is dedicated to a purpose
86 * such as satisfying allocations for a specific
87 * processor. Objects may be freed in the slab while
88 * it is frozen but slab_free will then skip the usual
89 * list operations. It is up to the processor holding
90 * the slab to integrate the slab into the slab lists
91 * when the slab is no longer needed.
93 * One use of this flag is to mark slabs that are
94 * used for allocations. Then such a slab becomes a cpu
95 * slab. The cpu slab may be equipped with an additional
96 * freelist that allows lockless access to
97 * free objects in addition to the regular freelist
98 * that requires the slab lock.
100 * PageError Slab requires special handling due to debug
101 * options set. This moves slab handling out of
102 * the fast path and disables lockless freelists.
105 #ifdef CONFIG_SLUB_DEBUG
112 * Issues still to be resolved:
114 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
116 * - Variable sizing of the per node arrays
119 /* Enable to test recovery from slab corruption on boot */
120 #undef SLUB_RESILIENCY_TEST
123 * Mininum number of partial slabs. These will be left on the partial
124 * lists even if they are empty. kmem_cache_shrink may reclaim them.
126 #define MIN_PARTIAL 5
129 * Maximum number of desirable partial slabs.
130 * The existence of more partial slabs makes kmem_cache_shrink
131 * sort the partial list by the number of objects in the.
133 #define MAX_PARTIAL 10
135 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
136 SLAB_POISON | SLAB_STORE_USER)
139 * Set of flags that will prevent slab merging
141 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
142 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
144 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
147 #ifndef ARCH_KMALLOC_MINALIGN
148 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
151 #ifndef ARCH_SLAB_MINALIGN
152 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
155 /* Internal SLUB flags */
156 #define __OBJECT_POISON 0x80000000 /* Poison object */
157 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
159 static int kmem_size
= sizeof(struct kmem_cache
);
162 static struct notifier_block slab_notifier
;
166 DOWN
, /* No slab functionality available */
167 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
168 UP
, /* Everything works but does not show up in sysfs */
172 /* A list of all slab caches on the system */
173 static DECLARE_RWSEM(slub_lock
);
174 static LIST_HEAD(slab_caches
);
177 * Tracking user of a slab.
180 void *addr
; /* Called from address */
181 int cpu
; /* Was running on cpu */
182 int pid
; /* Pid context */
183 unsigned long when
; /* When did the operation occur */
186 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
188 #ifdef CONFIG_SLUB_DEBUG
189 static int sysfs_slab_add(struct kmem_cache
*);
190 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
191 static void sysfs_slab_remove(struct kmem_cache
*);
194 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
195 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
197 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
204 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
206 #ifdef CONFIG_SLUB_STATS
211 /********************************************************************
212 * Core slab cache functions
213 *******************************************************************/
215 int slab_is_available(void)
217 return slab_state
>= UP
;
220 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
223 return s
->node
[node
];
225 return &s
->local_node
;
229 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
232 return s
->cpu_slab
[cpu
];
238 /* Verify that a pointer has an address that is valid within a slab page */
239 static inline int check_valid_pointer(struct kmem_cache
*s
,
240 struct page
*page
, const void *object
)
247 base
= page_address(page
);
248 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
249 (object
- base
) % s
->size
) {
257 * Slow version of get and set free pointer.
259 * This version requires touching the cache lines of kmem_cache which
260 * we avoid to do in the fast alloc free paths. There we obtain the offset
261 * from the page struct.
263 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
265 return *(void **)(object
+ s
->offset
);
268 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
270 *(void **)(object
+ s
->offset
) = fp
;
273 /* Loop over all objects in a slab */
274 #define for_each_object(__p, __s, __addr, __objects) \
275 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
279 #define for_each_free_object(__p, __s, __free) \
280 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
282 /* Determine object index from a given position */
283 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
285 return (p
- addr
) / s
->size
;
288 static inline struct kmem_cache_order_objects
oo_make(int order
,
291 struct kmem_cache_order_objects x
= {
292 (order
<< 16) + (PAGE_SIZE
<< order
) / size
298 static inline int oo_order(struct kmem_cache_order_objects x
)
303 static inline int oo_objects(struct kmem_cache_order_objects x
)
305 return x
.x
& ((1 << 16) - 1);
308 #ifdef CONFIG_SLUB_DEBUG
312 #ifdef CONFIG_SLUB_DEBUG_ON
313 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
315 static int slub_debug
;
318 static char *slub_debug_slabs
;
323 static void print_section(char *text
, u8
*addr
, unsigned int length
)
331 for (i
= 0; i
< length
; i
++) {
333 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
336 printk(KERN_CONT
" %02x", addr
[i
]);
338 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
340 printk(KERN_CONT
" %s\n", ascii
);
347 printk(KERN_CONT
" ");
351 printk(KERN_CONT
" %s\n", ascii
);
355 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
356 enum track_item alloc
)
361 p
= object
+ s
->offset
+ sizeof(void *);
363 p
= object
+ s
->inuse
;
368 static void set_track(struct kmem_cache
*s
, void *object
,
369 enum track_item alloc
, void *addr
)
374 p
= object
+ s
->offset
+ sizeof(void *);
376 p
= object
+ s
->inuse
;
381 p
->cpu
= smp_processor_id();
382 p
->pid
= current
->pid
;
385 memset(p
, 0, sizeof(struct track
));
388 static void init_tracking(struct kmem_cache
*s
, void *object
)
390 if (!(s
->flags
& SLAB_STORE_USER
))
393 set_track(s
, object
, TRACK_FREE
, NULL
);
394 set_track(s
, object
, TRACK_ALLOC
, NULL
);
397 static void print_track(const char *s
, struct track
*t
)
402 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
403 s
, t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
406 static void print_tracking(struct kmem_cache
*s
, void *object
)
408 if (!(s
->flags
& SLAB_STORE_USER
))
411 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
412 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
415 static void print_page_info(struct page
*page
)
417 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
418 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
422 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
428 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
430 printk(KERN_ERR
"========================================"
431 "=====================================\n");
432 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
433 printk(KERN_ERR
"----------------------------------------"
434 "-------------------------------------\n\n");
437 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
443 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
445 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
448 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
450 unsigned int off
; /* Offset of last byte */
451 u8
*addr
= page_address(page
);
453 print_tracking(s
, p
);
455 print_page_info(page
);
457 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
458 p
, p
- addr
, get_freepointer(s
, p
));
461 print_section("Bytes b4", p
- 16, 16);
463 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
465 if (s
->flags
& SLAB_RED_ZONE
)
466 print_section("Redzone", p
+ s
->objsize
,
467 s
->inuse
- s
->objsize
);
470 off
= s
->offset
+ sizeof(void *);
474 if (s
->flags
& SLAB_STORE_USER
)
475 off
+= 2 * sizeof(struct track
);
478 /* Beginning of the filler is the free pointer */
479 print_section("Padding", p
+ off
, s
->size
- off
);
484 static void object_err(struct kmem_cache
*s
, struct page
*page
,
485 u8
*object
, char *reason
)
487 slab_bug(s
, "%s", reason
);
488 print_trailer(s
, page
, object
);
491 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
497 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
499 slab_bug(s
, "%s", buf
);
500 print_page_info(page
);
504 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
508 if (s
->flags
& __OBJECT_POISON
) {
509 memset(p
, POISON_FREE
, s
->objsize
- 1);
510 p
[s
->objsize
- 1] = POISON_END
;
513 if (s
->flags
& SLAB_RED_ZONE
)
514 memset(p
+ s
->objsize
,
515 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
516 s
->inuse
- s
->objsize
);
519 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
522 if (*start
!= (u8
)value
)
530 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
531 void *from
, void *to
)
533 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
534 memset(from
, data
, to
- from
);
537 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
538 u8
*object
, char *what
,
539 u8
*start
, unsigned int value
, unsigned int bytes
)
544 fault
= check_bytes(start
, value
, bytes
);
549 while (end
> fault
&& end
[-1] == value
)
552 slab_bug(s
, "%s overwritten", what
);
553 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
554 fault
, end
- 1, fault
[0], value
);
555 print_trailer(s
, page
, object
);
557 restore_bytes(s
, what
, value
, fault
, end
);
565 * Bytes of the object to be managed.
566 * If the freepointer may overlay the object then the free
567 * pointer is the first word of the object.
569 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
572 * object + s->objsize
573 * Padding to reach word boundary. This is also used for Redzoning.
574 * Padding is extended by another word if Redzoning is enabled and
577 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
578 * 0xcc (RED_ACTIVE) for objects in use.
581 * Meta data starts here.
583 * A. Free pointer (if we cannot overwrite object on free)
584 * B. Tracking data for SLAB_STORE_USER
585 * C. Padding to reach required alignment boundary or at mininum
586 * one word if debugging is on to be able to detect writes
587 * before the word boundary.
589 * Padding is done using 0x5a (POISON_INUSE)
592 * Nothing is used beyond s->size.
594 * If slabcaches are merged then the objsize and inuse boundaries are mostly
595 * ignored. And therefore no slab options that rely on these boundaries
596 * may be used with merged slabcaches.
599 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
601 unsigned long off
= s
->inuse
; /* The end of info */
604 /* Freepointer is placed after the object. */
605 off
+= sizeof(void *);
607 if (s
->flags
& SLAB_STORE_USER
)
608 /* We also have user information there */
609 off
+= 2 * sizeof(struct track
);
614 return check_bytes_and_report(s
, page
, p
, "Object padding",
615 p
+ off
, POISON_INUSE
, s
->size
- off
);
618 /* Check the pad bytes at the end of a slab page */
619 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
627 if (!(s
->flags
& SLAB_POISON
))
630 start
= page_address(page
);
631 length
= (PAGE_SIZE
<< compound_order(page
));
632 end
= start
+ length
;
633 remainder
= length
% s
->size
;
637 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
640 while (end
> fault
&& end
[-1] == POISON_INUSE
)
643 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
644 print_section("Padding", end
- remainder
, remainder
);
646 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
650 static int check_object(struct kmem_cache
*s
, struct page
*page
,
651 void *object
, int active
)
654 u8
*endobject
= object
+ s
->objsize
;
656 if (s
->flags
& SLAB_RED_ZONE
) {
658 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
660 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
661 endobject
, red
, s
->inuse
- s
->objsize
))
664 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
665 check_bytes_and_report(s
, page
, p
, "Alignment padding",
666 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
670 if (s
->flags
& SLAB_POISON
) {
671 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
672 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
673 POISON_FREE
, s
->objsize
- 1) ||
674 !check_bytes_and_report(s
, page
, p
, "Poison",
675 p
+ s
->objsize
- 1, POISON_END
, 1)))
678 * check_pad_bytes cleans up on its own.
680 check_pad_bytes(s
, page
, p
);
683 if (!s
->offset
&& active
)
685 * Object and freepointer overlap. Cannot check
686 * freepointer while object is allocated.
690 /* Check free pointer validity */
691 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
692 object_err(s
, page
, p
, "Freepointer corrupt");
694 * No choice but to zap it and thus loose the remainder
695 * of the free objects in this slab. May cause
696 * another error because the object count is now wrong.
698 set_freepointer(s
, p
, NULL
);
704 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
708 VM_BUG_ON(!irqs_disabled());
710 if (!PageSlab(page
)) {
711 slab_err(s
, page
, "Not a valid slab page");
715 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
716 if (page
->objects
> maxobj
) {
717 slab_err(s
, page
, "objects %u > max %u",
718 s
->name
, page
->objects
, maxobj
);
721 if (page
->inuse
> page
->objects
) {
722 slab_err(s
, page
, "inuse %u > max %u",
723 s
->name
, page
->inuse
, page
->objects
);
726 /* Slab_pad_check fixes things up after itself */
727 slab_pad_check(s
, page
);
732 * Determine if a certain object on a page is on the freelist. Must hold the
733 * slab lock to guarantee that the chains are in a consistent state.
735 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
738 void *fp
= page
->freelist
;
740 unsigned long max_objects
;
742 while (fp
&& nr
<= page
->objects
) {
745 if (!check_valid_pointer(s
, page
, fp
)) {
747 object_err(s
, page
, object
,
748 "Freechain corrupt");
749 set_freepointer(s
, object
, NULL
);
752 slab_err(s
, page
, "Freepointer corrupt");
753 page
->freelist
= NULL
;
754 page
->inuse
= page
->objects
;
755 slab_fix(s
, "Freelist cleared");
761 fp
= get_freepointer(s
, object
);
765 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
766 if (max_objects
> 65535)
769 if (page
->objects
!= max_objects
) {
770 slab_err(s
, page
, "Wrong number of objects. Found %d but "
771 "should be %d", page
->objects
, max_objects
);
772 page
->objects
= max_objects
;
773 slab_fix(s
, "Number of objects adjusted.");
775 if (page
->inuse
!= page
->objects
- nr
) {
776 slab_err(s
, page
, "Wrong object count. Counter is %d but "
777 "counted were %d", page
->inuse
, page
->objects
- nr
);
778 page
->inuse
= page
->objects
- nr
;
779 slab_fix(s
, "Object count adjusted.");
781 return search
== NULL
;
784 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
787 if (s
->flags
& SLAB_TRACE
) {
788 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
790 alloc
? "alloc" : "free",
795 print_section("Object", (void *)object
, s
->objsize
);
802 * Tracking of fully allocated slabs for debugging purposes.
804 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
806 spin_lock(&n
->list_lock
);
807 list_add(&page
->lru
, &n
->full
);
808 spin_unlock(&n
->list_lock
);
811 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
813 struct kmem_cache_node
*n
;
815 if (!(s
->flags
& SLAB_STORE_USER
))
818 n
= get_node(s
, page_to_nid(page
));
820 spin_lock(&n
->list_lock
);
821 list_del(&page
->lru
);
822 spin_unlock(&n
->list_lock
);
825 /* Tracking of the number of slabs for debugging purposes */
826 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
828 struct kmem_cache_node
*n
= get_node(s
, node
);
830 return atomic_long_read(&n
->nr_slabs
);
833 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
835 struct kmem_cache_node
*n
= get_node(s
, node
);
838 * May be called early in order to allocate a slab for the
839 * kmem_cache_node structure. Solve the chicken-egg
840 * dilemma by deferring the increment of the count during
841 * bootstrap (see early_kmem_cache_node_alloc).
843 if (!NUMA_BUILD
|| n
) {
844 atomic_long_inc(&n
->nr_slabs
);
845 atomic_long_add(objects
, &n
->total_objects
);
848 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
850 struct kmem_cache_node
*n
= get_node(s
, node
);
852 atomic_long_dec(&n
->nr_slabs
);
853 atomic_long_sub(objects
, &n
->total_objects
);
856 /* Object debug checks for alloc/free paths */
857 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
860 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
863 init_object(s
, object
, 0);
864 init_tracking(s
, object
);
867 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
868 void *object
, void *addr
)
870 if (!check_slab(s
, page
))
873 if (!on_freelist(s
, page
, object
)) {
874 object_err(s
, page
, object
, "Object already allocated");
878 if (!check_valid_pointer(s
, page
, object
)) {
879 object_err(s
, page
, object
, "Freelist Pointer check fails");
883 if (!check_object(s
, page
, object
, 0))
886 /* Success perform special debug activities for allocs */
887 if (s
->flags
& SLAB_STORE_USER
)
888 set_track(s
, object
, TRACK_ALLOC
, addr
);
889 trace(s
, page
, object
, 1);
890 init_object(s
, object
, 1);
894 if (PageSlab(page
)) {
896 * If this is a slab page then lets do the best we can
897 * to avoid issues in the future. Marking all objects
898 * as used avoids touching the remaining objects.
900 slab_fix(s
, "Marking all objects used");
901 page
->inuse
= page
->objects
;
902 page
->freelist
= NULL
;
907 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
908 void *object
, void *addr
)
910 if (!check_slab(s
, page
))
913 if (!check_valid_pointer(s
, page
, object
)) {
914 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
918 if (on_freelist(s
, page
, object
)) {
919 object_err(s
, page
, object
, "Object already free");
923 if (!check_object(s
, page
, object
, 1))
926 if (unlikely(s
!= page
->slab
)) {
927 if (!PageSlab(page
)) {
928 slab_err(s
, page
, "Attempt to free object(0x%p) "
929 "outside of slab", object
);
930 } else if (!page
->slab
) {
932 "SLUB <none>: no slab for object 0x%p.\n",
936 object_err(s
, page
, object
,
937 "page slab pointer corrupt.");
941 /* Special debug activities for freeing objects */
942 if (!PageSlubFrozen(page
) && !page
->freelist
)
943 remove_full(s
, page
);
944 if (s
->flags
& SLAB_STORE_USER
)
945 set_track(s
, object
, TRACK_FREE
, addr
);
946 trace(s
, page
, object
, 0);
947 init_object(s
, object
, 0);
951 slab_fix(s
, "Object at 0x%p not freed", object
);
955 static int __init
setup_slub_debug(char *str
)
957 slub_debug
= DEBUG_DEFAULT_FLAGS
;
958 if (*str
++ != '=' || !*str
)
960 * No options specified. Switch on full debugging.
966 * No options but restriction on slabs. This means full
967 * debugging for slabs matching a pattern.
974 * Switch off all debugging measures.
979 * Determine which debug features should be switched on
981 for (; *str
&& *str
!= ','; str
++) {
982 switch (tolower(*str
)) {
984 slub_debug
|= SLAB_DEBUG_FREE
;
987 slub_debug
|= SLAB_RED_ZONE
;
990 slub_debug
|= SLAB_POISON
;
993 slub_debug
|= SLAB_STORE_USER
;
996 slub_debug
|= SLAB_TRACE
;
999 printk(KERN_ERR
"slub_debug option '%c' "
1000 "unknown. skipped\n", *str
);
1006 slub_debug_slabs
= str
+ 1;
1011 __setup("slub_debug", setup_slub_debug
);
1013 static unsigned long kmem_cache_flags(unsigned long objsize
,
1014 unsigned long flags
, const char *name
,
1015 void (*ctor
)(void *))
1018 * Enable debugging if selected on the kernel commandline.
1020 if (slub_debug
&& (!slub_debug_slabs
||
1021 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1022 flags
|= slub_debug
;
1027 static inline void setup_object_debug(struct kmem_cache
*s
,
1028 struct page
*page
, void *object
) {}
1030 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1031 struct page
*page
, void *object
, void *addr
) { return 0; }
1033 static inline int free_debug_processing(struct kmem_cache
*s
,
1034 struct page
*page
, void *object
, void *addr
) { return 0; }
1036 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1038 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1039 void *object
, int active
) { return 1; }
1040 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1041 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1042 unsigned long flags
, const char *name
,
1043 void (*ctor
)(void *))
1047 #define slub_debug 0
1049 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1051 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1053 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1058 * Slab allocation and freeing
1060 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1061 struct kmem_cache_order_objects oo
)
1063 int order
= oo_order(oo
);
1066 return alloc_pages(flags
, order
);
1068 return alloc_pages_node(node
, flags
, order
);
1071 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1074 struct kmem_cache_order_objects oo
= s
->oo
;
1076 flags
|= s
->allocflags
;
1078 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1080 if (unlikely(!page
)) {
1083 * Allocation may have failed due to fragmentation.
1084 * Try a lower order alloc if possible
1086 page
= alloc_slab_page(flags
, node
, oo
);
1090 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1092 page
->objects
= oo_objects(oo
);
1093 mod_zone_page_state(page_zone(page
),
1094 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1095 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1101 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1104 setup_object_debug(s
, page
, object
);
1105 if (unlikely(s
->ctor
))
1109 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1116 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1118 page
= allocate_slab(s
,
1119 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1123 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1125 page
->flags
|= 1 << PG_slab
;
1126 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1127 SLAB_STORE_USER
| SLAB_TRACE
))
1128 __SetPageSlubDebug(page
);
1130 start
= page_address(page
);
1132 if (unlikely(s
->flags
& SLAB_POISON
))
1133 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1136 for_each_object(p
, s
, start
, page
->objects
) {
1137 setup_object(s
, page
, last
);
1138 set_freepointer(s
, last
, p
);
1141 setup_object(s
, page
, last
);
1142 set_freepointer(s
, last
, NULL
);
1144 page
->freelist
= start
;
1150 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1152 int order
= compound_order(page
);
1153 int pages
= 1 << order
;
1155 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1158 slab_pad_check(s
, page
);
1159 for_each_object(p
, s
, page_address(page
),
1161 check_object(s
, page
, p
, 0);
1162 __ClearPageSlubDebug(page
);
1165 mod_zone_page_state(page_zone(page
),
1166 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1167 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1170 __ClearPageSlab(page
);
1171 reset_page_mapcount(page
);
1172 __free_pages(page
, order
);
1175 static void rcu_free_slab(struct rcu_head
*h
)
1179 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1180 __free_slab(page
->slab
, page
);
1183 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1185 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1187 * RCU free overloads the RCU head over the LRU
1189 struct rcu_head
*head
= (void *)&page
->lru
;
1191 call_rcu(head
, rcu_free_slab
);
1193 __free_slab(s
, page
);
1196 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1198 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1203 * Per slab locking using the pagelock
1205 static __always_inline
void slab_lock(struct page
*page
)
1207 bit_spin_lock(PG_locked
, &page
->flags
);
1210 static __always_inline
void slab_unlock(struct page
*page
)
1212 __bit_spin_unlock(PG_locked
, &page
->flags
);
1215 static __always_inline
int slab_trylock(struct page
*page
)
1219 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1224 * Management of partially allocated slabs
1226 static void add_partial(struct kmem_cache_node
*n
,
1227 struct page
*page
, int tail
)
1229 spin_lock(&n
->list_lock
);
1232 list_add_tail(&page
->lru
, &n
->partial
);
1234 list_add(&page
->lru
, &n
->partial
);
1235 spin_unlock(&n
->list_lock
);
1238 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1240 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1242 spin_lock(&n
->list_lock
);
1243 list_del(&page
->lru
);
1245 spin_unlock(&n
->list_lock
);
1249 * Lock slab and remove from the partial list.
1251 * Must hold list_lock.
1253 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1256 if (slab_trylock(page
)) {
1257 list_del(&page
->lru
);
1259 __SetPageSlubFrozen(page
);
1266 * Try to allocate a partial slab from a specific node.
1268 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1273 * Racy check. If we mistakenly see no partial slabs then we
1274 * just allocate an empty slab. If we mistakenly try to get a
1275 * partial slab and there is none available then get_partials()
1278 if (!n
|| !n
->nr_partial
)
1281 spin_lock(&n
->list_lock
);
1282 list_for_each_entry(page
, &n
->partial
, lru
)
1283 if (lock_and_freeze_slab(n
, page
))
1287 spin_unlock(&n
->list_lock
);
1292 * Get a page from somewhere. Search in increasing NUMA distances.
1294 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1297 struct zonelist
*zonelist
;
1300 enum zone_type high_zoneidx
= gfp_zone(flags
);
1304 * The defrag ratio allows a configuration of the tradeoffs between
1305 * inter node defragmentation and node local allocations. A lower
1306 * defrag_ratio increases the tendency to do local allocations
1307 * instead of attempting to obtain partial slabs from other nodes.
1309 * If the defrag_ratio is set to 0 then kmalloc() always
1310 * returns node local objects. If the ratio is higher then kmalloc()
1311 * may return off node objects because partial slabs are obtained
1312 * from other nodes and filled up.
1314 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1315 * defrag_ratio = 1000) then every (well almost) allocation will
1316 * first attempt to defrag slab caches on other nodes. This means
1317 * scanning over all nodes to look for partial slabs which may be
1318 * expensive if we do it every time we are trying to find a slab
1319 * with available objects.
1321 if (!s
->remote_node_defrag_ratio
||
1322 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1325 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1326 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1327 struct kmem_cache_node
*n
;
1329 n
= get_node(s
, zone_to_nid(zone
));
1331 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1332 n
->nr_partial
> n
->min_partial
) {
1333 page
= get_partial_node(n
);
1343 * Get a partial page, lock it and return it.
1345 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1348 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1350 page
= get_partial_node(get_node(s
, searchnode
));
1351 if (page
|| (flags
& __GFP_THISNODE
))
1354 return get_any_partial(s
, flags
);
1358 * Move a page back to the lists.
1360 * Must be called with the slab lock held.
1362 * On exit the slab lock will have been dropped.
1364 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1366 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1367 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1369 __ClearPageSlubFrozen(page
);
1372 if (page
->freelist
) {
1373 add_partial(n
, page
, tail
);
1374 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1376 stat(c
, DEACTIVATE_FULL
);
1377 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1378 (s
->flags
& SLAB_STORE_USER
))
1383 stat(c
, DEACTIVATE_EMPTY
);
1384 if (n
->nr_partial
< n
->min_partial
) {
1386 * Adding an empty slab to the partial slabs in order
1387 * to avoid page allocator overhead. This slab needs
1388 * to come after the other slabs with objects in
1389 * so that the others get filled first. That way the
1390 * size of the partial list stays small.
1392 * kmem_cache_shrink can reclaim any empty slabs from
1395 add_partial(n
, page
, 1);
1399 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1400 discard_slab(s
, page
);
1406 * Remove the cpu slab
1408 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1410 struct page
*page
= c
->page
;
1414 stat(c
, DEACTIVATE_REMOTE_FREES
);
1416 * Merge cpu freelist into slab freelist. Typically we get here
1417 * because both freelists are empty. So this is unlikely
1420 while (unlikely(c
->freelist
)) {
1423 tail
= 0; /* Hot objects. Put the slab first */
1425 /* Retrieve object from cpu_freelist */
1426 object
= c
->freelist
;
1427 c
->freelist
= c
->freelist
[c
->offset
];
1429 /* And put onto the regular freelist */
1430 object
[c
->offset
] = page
->freelist
;
1431 page
->freelist
= object
;
1435 unfreeze_slab(s
, page
, tail
);
1438 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1440 stat(c
, CPUSLAB_FLUSH
);
1442 deactivate_slab(s
, c
);
1448 * Called from IPI handler with interrupts disabled.
1450 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1452 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1454 if (likely(c
&& c
->page
))
1458 static void flush_cpu_slab(void *d
)
1460 struct kmem_cache
*s
= d
;
1462 __flush_cpu_slab(s
, smp_processor_id());
1465 static void flush_all(struct kmem_cache
*s
)
1467 on_each_cpu(flush_cpu_slab
, s
, 1);
1471 * Check if the objects in a per cpu structure fit numa
1472 * locality expectations.
1474 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1477 if (node
!= -1 && c
->node
!= node
)
1484 * Slow path. The lockless freelist is empty or we need to perform
1487 * Interrupts are disabled.
1489 * Processing is still very fast if new objects have been freed to the
1490 * regular freelist. In that case we simply take over the regular freelist
1491 * as the lockless freelist and zap the regular freelist.
1493 * If that is not working then we fall back to the partial lists. We take the
1494 * first element of the freelist as the object to allocate now and move the
1495 * rest of the freelist to the lockless freelist.
1497 * And if we were unable to get a new slab from the partial slab lists then
1498 * we need to allocate a new slab. This is the slowest path since it involves
1499 * a call to the page allocator and the setup of a new slab.
1501 static void *__slab_alloc(struct kmem_cache
*s
,
1502 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1507 /* We handle __GFP_ZERO in the caller */
1508 gfpflags
&= ~__GFP_ZERO
;
1514 if (unlikely(!node_match(c
, node
)))
1517 stat(c
, ALLOC_REFILL
);
1520 object
= c
->page
->freelist
;
1521 if (unlikely(!object
))
1523 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1526 c
->freelist
= object
[c
->offset
];
1527 c
->page
->inuse
= c
->page
->objects
;
1528 c
->page
->freelist
= NULL
;
1529 c
->node
= page_to_nid(c
->page
);
1531 slab_unlock(c
->page
);
1532 stat(c
, ALLOC_SLOWPATH
);
1536 deactivate_slab(s
, c
);
1539 new = get_partial(s
, gfpflags
, node
);
1542 stat(c
, ALLOC_FROM_PARTIAL
);
1546 if (gfpflags
& __GFP_WAIT
)
1549 new = new_slab(s
, gfpflags
, node
);
1551 if (gfpflags
& __GFP_WAIT
)
1552 local_irq_disable();
1555 c
= get_cpu_slab(s
, smp_processor_id());
1556 stat(c
, ALLOC_SLAB
);
1560 __SetPageSlubFrozen(new);
1566 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1570 c
->page
->freelist
= object
[c
->offset
];
1576 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1577 * have the fastpath folded into their functions. So no function call
1578 * overhead for requests that can be satisfied on the fastpath.
1580 * The fastpath works by first checking if the lockless freelist can be used.
1581 * If not then __slab_alloc is called for slow processing.
1583 * Otherwise we can simply pick the next object from the lockless free list.
1585 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1586 gfp_t gfpflags
, int node
, void *addr
)
1589 struct kmem_cache_cpu
*c
;
1590 unsigned long flags
;
1591 unsigned int objsize
;
1593 local_irq_save(flags
);
1594 c
= get_cpu_slab(s
, smp_processor_id());
1595 objsize
= c
->objsize
;
1596 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1598 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1601 object
= c
->freelist
;
1602 c
->freelist
= object
[c
->offset
];
1603 stat(c
, ALLOC_FASTPATH
);
1605 local_irq_restore(flags
);
1607 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1608 memset(object
, 0, objsize
);
1613 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1615 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1617 EXPORT_SYMBOL(kmem_cache_alloc
);
1620 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1622 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1624 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1628 * Slow patch handling. This may still be called frequently since objects
1629 * have a longer lifetime than the cpu slabs in most processing loads.
1631 * So we still attempt to reduce cache line usage. Just take the slab
1632 * lock and free the item. If there is no additional partial page
1633 * handling required then we can return immediately.
1635 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1636 void *x
, void *addr
, unsigned int offset
)
1639 void **object
= (void *)x
;
1640 struct kmem_cache_cpu
*c
;
1642 c
= get_cpu_slab(s
, raw_smp_processor_id());
1643 stat(c
, FREE_SLOWPATH
);
1646 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1650 prior
= object
[offset
] = page
->freelist
;
1651 page
->freelist
= object
;
1654 if (unlikely(PageSlubFrozen(page
))) {
1655 stat(c
, FREE_FROZEN
);
1659 if (unlikely(!page
->inuse
))
1663 * Objects left in the slab. If it was not on the partial list before
1666 if (unlikely(!prior
)) {
1667 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1668 stat(c
, FREE_ADD_PARTIAL
);
1678 * Slab still on the partial list.
1680 remove_partial(s
, page
);
1681 stat(c
, FREE_REMOVE_PARTIAL
);
1685 discard_slab(s
, page
);
1689 if (!free_debug_processing(s
, page
, x
, addr
))
1695 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1696 * can perform fastpath freeing without additional function calls.
1698 * The fastpath is only possible if we are freeing to the current cpu slab
1699 * of this processor. This typically the case if we have just allocated
1702 * If fastpath is not possible then fall back to __slab_free where we deal
1703 * with all sorts of special processing.
1705 static __always_inline
void slab_free(struct kmem_cache
*s
,
1706 struct page
*page
, void *x
, void *addr
)
1708 void **object
= (void *)x
;
1709 struct kmem_cache_cpu
*c
;
1710 unsigned long flags
;
1712 local_irq_save(flags
);
1713 c
= get_cpu_slab(s
, smp_processor_id());
1714 debug_check_no_locks_freed(object
, c
->objsize
);
1715 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1716 debug_check_no_obj_freed(object
, s
->objsize
);
1717 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1718 object
[c
->offset
] = c
->freelist
;
1719 c
->freelist
= object
;
1720 stat(c
, FREE_FASTPATH
);
1722 __slab_free(s
, page
, x
, addr
, c
->offset
);
1724 local_irq_restore(flags
);
1727 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1731 page
= virt_to_head_page(x
);
1733 slab_free(s
, page
, x
, __builtin_return_address(0));
1735 EXPORT_SYMBOL(kmem_cache_free
);
1737 /* Figure out on which slab object the object resides */
1738 static struct page
*get_object_page(const void *x
)
1740 struct page
*page
= virt_to_head_page(x
);
1742 if (!PageSlab(page
))
1749 * Object placement in a slab is made very easy because we always start at
1750 * offset 0. If we tune the size of the object to the alignment then we can
1751 * get the required alignment by putting one properly sized object after
1754 * Notice that the allocation order determines the sizes of the per cpu
1755 * caches. Each processor has always one slab available for allocations.
1756 * Increasing the allocation order reduces the number of times that slabs
1757 * must be moved on and off the partial lists and is therefore a factor in
1762 * Mininum / Maximum order of slab pages. This influences locking overhead
1763 * and slab fragmentation. A higher order reduces the number of partial slabs
1764 * and increases the number of allocations possible without having to
1765 * take the list_lock.
1767 static int slub_min_order
;
1768 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1769 static int slub_min_objects
;
1772 * Merge control. If this is set then no merging of slab caches will occur.
1773 * (Could be removed. This was introduced to pacify the merge skeptics.)
1775 static int slub_nomerge
;
1778 * Calculate the order of allocation given an slab object size.
1780 * The order of allocation has significant impact on performance and other
1781 * system components. Generally order 0 allocations should be preferred since
1782 * order 0 does not cause fragmentation in the page allocator. Larger objects
1783 * be problematic to put into order 0 slabs because there may be too much
1784 * unused space left. We go to a higher order if more than 1/16th of the slab
1787 * In order to reach satisfactory performance we must ensure that a minimum
1788 * number of objects is in one slab. Otherwise we may generate too much
1789 * activity on the partial lists which requires taking the list_lock. This is
1790 * less a concern for large slabs though which are rarely used.
1792 * slub_max_order specifies the order where we begin to stop considering the
1793 * number of objects in a slab as critical. If we reach slub_max_order then
1794 * we try to keep the page order as low as possible. So we accept more waste
1795 * of space in favor of a small page order.
1797 * Higher order allocations also allow the placement of more objects in a
1798 * slab and thereby reduce object handling overhead. If the user has
1799 * requested a higher mininum order then we start with that one instead of
1800 * the smallest order which will fit the object.
1802 static inline int slab_order(int size
, int min_objects
,
1803 int max_order
, int fract_leftover
)
1807 int min_order
= slub_min_order
;
1809 if ((PAGE_SIZE
<< min_order
) / size
> 65535)
1810 return get_order(size
* 65535) - 1;
1812 for (order
= max(min_order
,
1813 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1814 order
<= max_order
; order
++) {
1816 unsigned long slab_size
= PAGE_SIZE
<< order
;
1818 if (slab_size
< min_objects
* size
)
1821 rem
= slab_size
% size
;
1823 if (rem
<= slab_size
/ fract_leftover
)
1831 static inline int calculate_order(int size
)
1838 * Attempt to find best configuration for a slab. This
1839 * works by first attempting to generate a layout with
1840 * the best configuration and backing off gradually.
1842 * First we reduce the acceptable waste in a slab. Then
1843 * we reduce the minimum objects required in a slab.
1845 min_objects
= slub_min_objects
;
1847 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1848 while (min_objects
> 1) {
1850 while (fraction
>= 4) {
1851 order
= slab_order(size
, min_objects
,
1852 slub_max_order
, fraction
);
1853 if (order
<= slub_max_order
)
1861 * We were unable to place multiple objects in a slab. Now
1862 * lets see if we can place a single object there.
1864 order
= slab_order(size
, 1, slub_max_order
, 1);
1865 if (order
<= slub_max_order
)
1869 * Doh this slab cannot be placed using slub_max_order.
1871 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1872 if (order
<= MAX_ORDER
)
1878 * Figure out what the alignment of the objects will be.
1880 static unsigned long calculate_alignment(unsigned long flags
,
1881 unsigned long align
, unsigned long size
)
1884 * If the user wants hardware cache aligned objects then follow that
1885 * suggestion if the object is sufficiently large.
1887 * The hardware cache alignment cannot override the specified
1888 * alignment though. If that is greater then use it.
1890 if (flags
& SLAB_HWCACHE_ALIGN
) {
1891 unsigned long ralign
= cache_line_size();
1892 while (size
<= ralign
/ 2)
1894 align
= max(align
, ralign
);
1897 if (align
< ARCH_SLAB_MINALIGN
)
1898 align
= ARCH_SLAB_MINALIGN
;
1900 return ALIGN(align
, sizeof(void *));
1903 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1904 struct kmem_cache_cpu
*c
)
1909 c
->offset
= s
->offset
/ sizeof(void *);
1910 c
->objsize
= s
->objsize
;
1911 #ifdef CONFIG_SLUB_STATS
1912 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1917 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
1922 * The larger the object size is, the more pages we want on the partial
1923 * list to avoid pounding the page allocator excessively.
1925 n
->min_partial
= ilog2(s
->size
);
1926 if (n
->min_partial
< MIN_PARTIAL
)
1927 n
->min_partial
= MIN_PARTIAL
;
1928 else if (n
->min_partial
> MAX_PARTIAL
)
1929 n
->min_partial
= MAX_PARTIAL
;
1931 spin_lock_init(&n
->list_lock
);
1932 INIT_LIST_HEAD(&n
->partial
);
1933 #ifdef CONFIG_SLUB_DEBUG
1934 atomic_long_set(&n
->nr_slabs
, 0);
1935 INIT_LIST_HEAD(&n
->full
);
1941 * Per cpu array for per cpu structures.
1943 * The per cpu array places all kmem_cache_cpu structures from one processor
1944 * close together meaning that it becomes possible that multiple per cpu
1945 * structures are contained in one cacheline. This may be particularly
1946 * beneficial for the kmalloc caches.
1948 * A desktop system typically has around 60-80 slabs. With 100 here we are
1949 * likely able to get per cpu structures for all caches from the array defined
1950 * here. We must be able to cover all kmalloc caches during bootstrap.
1952 * If the per cpu array is exhausted then fall back to kmalloc
1953 * of individual cachelines. No sharing is possible then.
1955 #define NR_KMEM_CACHE_CPU 100
1957 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1958 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1960 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1961 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
1963 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1964 int cpu
, gfp_t flags
)
1966 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1969 per_cpu(kmem_cache_cpu_free
, cpu
) =
1970 (void *)c
->freelist
;
1972 /* Table overflow: So allocate ourselves */
1974 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
1975 flags
, cpu_to_node(cpu
));
1980 init_kmem_cache_cpu(s
, c
);
1984 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
1986 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
1987 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
1991 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
1992 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
1995 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
1999 for_each_online_cpu(cpu
) {
2000 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2003 s
->cpu_slab
[cpu
] = NULL
;
2004 free_kmem_cache_cpu(c
, cpu
);
2009 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2013 for_each_online_cpu(cpu
) {
2014 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2019 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2021 free_kmem_cache_cpus(s
);
2024 s
->cpu_slab
[cpu
] = c
;
2030 * Initialize the per cpu array.
2032 static void init_alloc_cpu_cpu(int cpu
)
2036 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
2039 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2040 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2042 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
2045 static void __init
init_alloc_cpu(void)
2049 for_each_online_cpu(cpu
)
2050 init_alloc_cpu_cpu(cpu
);
2054 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2055 static inline void init_alloc_cpu(void) {}
2057 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2059 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2066 * No kmalloc_node yet so do it by hand. We know that this is the first
2067 * slab on the node for this slabcache. There are no concurrent accesses
2070 * Note that this function only works on the kmalloc_node_cache
2071 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2072 * memory on a fresh node that has no slab structures yet.
2074 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2078 struct kmem_cache_node
*n
;
2079 unsigned long flags
;
2081 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2083 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2086 if (page_to_nid(page
) != node
) {
2087 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2089 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2090 "in order to be able to continue\n");
2095 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2097 kmalloc_caches
->node
[node
] = n
;
2098 #ifdef CONFIG_SLUB_DEBUG
2099 init_object(kmalloc_caches
, n
, 1);
2100 init_tracking(kmalloc_caches
, n
);
2102 init_kmem_cache_node(n
, kmalloc_caches
);
2103 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2106 * lockdep requires consistent irq usage for each lock
2107 * so even though there cannot be a race this early in
2108 * the boot sequence, we still disable irqs.
2110 local_irq_save(flags
);
2111 add_partial(n
, page
, 0);
2112 local_irq_restore(flags
);
2116 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2120 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2121 struct kmem_cache_node
*n
= s
->node
[node
];
2122 if (n
&& n
!= &s
->local_node
)
2123 kmem_cache_free(kmalloc_caches
, n
);
2124 s
->node
[node
] = NULL
;
2128 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2133 if (slab_state
>= UP
)
2134 local_node
= page_to_nid(virt_to_page(s
));
2138 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2139 struct kmem_cache_node
*n
;
2141 if (local_node
== node
)
2144 if (slab_state
== DOWN
) {
2145 n
= early_kmem_cache_node_alloc(gfpflags
,
2149 n
= kmem_cache_alloc_node(kmalloc_caches
,
2153 free_kmem_cache_nodes(s
);
2159 init_kmem_cache_node(n
, s
);
2164 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2168 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2170 init_kmem_cache_node(&s
->local_node
, s
);
2176 * calculate_sizes() determines the order and the distribution of data within
2179 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2181 unsigned long flags
= s
->flags
;
2182 unsigned long size
= s
->objsize
;
2183 unsigned long align
= s
->align
;
2187 * Round up object size to the next word boundary. We can only
2188 * place the free pointer at word boundaries and this determines
2189 * the possible location of the free pointer.
2191 size
= ALIGN(size
, sizeof(void *));
2193 #ifdef CONFIG_SLUB_DEBUG
2195 * Determine if we can poison the object itself. If the user of
2196 * the slab may touch the object after free or before allocation
2197 * then we should never poison the object itself.
2199 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2201 s
->flags
|= __OBJECT_POISON
;
2203 s
->flags
&= ~__OBJECT_POISON
;
2207 * If we are Redzoning then check if there is some space between the
2208 * end of the object and the free pointer. If not then add an
2209 * additional word to have some bytes to store Redzone information.
2211 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2212 size
+= sizeof(void *);
2216 * With that we have determined the number of bytes in actual use
2217 * by the object. This is the potential offset to the free pointer.
2221 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2224 * Relocate free pointer after the object if it is not
2225 * permitted to overwrite the first word of the object on
2228 * This is the case if we do RCU, have a constructor or
2229 * destructor or are poisoning the objects.
2232 size
+= sizeof(void *);
2235 #ifdef CONFIG_SLUB_DEBUG
2236 if (flags
& SLAB_STORE_USER
)
2238 * Need to store information about allocs and frees after
2241 size
+= 2 * sizeof(struct track
);
2243 if (flags
& SLAB_RED_ZONE
)
2245 * Add some empty padding so that we can catch
2246 * overwrites from earlier objects rather than let
2247 * tracking information or the free pointer be
2248 * corrupted if an user writes before the start
2251 size
+= sizeof(void *);
2255 * Determine the alignment based on various parameters that the
2256 * user specified and the dynamic determination of cache line size
2259 align
= calculate_alignment(flags
, align
, s
->objsize
);
2262 * SLUB stores one object immediately after another beginning from
2263 * offset 0. In order to align the objects we have to simply size
2264 * each object to conform to the alignment.
2266 size
= ALIGN(size
, align
);
2268 if (forced_order
>= 0)
2269 order
= forced_order
;
2271 order
= calculate_order(size
);
2278 s
->allocflags
|= __GFP_COMP
;
2280 if (s
->flags
& SLAB_CACHE_DMA
)
2281 s
->allocflags
|= SLUB_DMA
;
2283 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2284 s
->allocflags
|= __GFP_RECLAIMABLE
;
2287 * Determine the number of objects per slab
2289 s
->oo
= oo_make(order
, size
);
2290 s
->min
= oo_make(get_order(size
), size
);
2291 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2294 return !!oo_objects(s
->oo
);
2298 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2299 const char *name
, size_t size
,
2300 size_t align
, unsigned long flags
,
2301 void (*ctor
)(void *))
2303 memset(s
, 0, kmem_size
);
2308 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2310 if (!calculate_sizes(s
, -1))
2315 s
->remote_node_defrag_ratio
= 1000;
2317 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2320 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2322 free_kmem_cache_nodes(s
);
2324 if (flags
& SLAB_PANIC
)
2325 panic("Cannot create slab %s size=%lu realsize=%u "
2326 "order=%u offset=%u flags=%lx\n",
2327 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2333 * Check if a given pointer is valid
2335 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2339 page
= get_object_page(object
);
2341 if (!page
|| s
!= page
->slab
)
2342 /* No slab or wrong slab */
2345 if (!check_valid_pointer(s
, page
, object
))
2349 * We could also check if the object is on the slabs freelist.
2350 * But this would be too expensive and it seems that the main
2351 * purpose of kmem_ptr_valid() is to check if the object belongs
2352 * to a certain slab.
2356 EXPORT_SYMBOL(kmem_ptr_validate
);
2359 * Determine the size of a slab object
2361 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2365 EXPORT_SYMBOL(kmem_cache_size
);
2367 const char *kmem_cache_name(struct kmem_cache
*s
)
2371 EXPORT_SYMBOL(kmem_cache_name
);
2373 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2376 #ifdef CONFIG_SLUB_DEBUG
2377 void *addr
= page_address(page
);
2379 DECLARE_BITMAP(map
, page
->objects
);
2381 bitmap_zero(map
, page
->objects
);
2382 slab_err(s
, page
, "%s", text
);
2384 for_each_free_object(p
, s
, page
->freelist
)
2385 set_bit(slab_index(p
, s
, addr
), map
);
2387 for_each_object(p
, s
, addr
, page
->objects
) {
2389 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2390 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2392 print_tracking(s
, p
);
2400 * Attempt to free all partial slabs on a node.
2402 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2404 unsigned long flags
;
2405 struct page
*page
, *h
;
2407 spin_lock_irqsave(&n
->list_lock
, flags
);
2408 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2410 list_del(&page
->lru
);
2411 discard_slab(s
, page
);
2414 list_slab_objects(s
, page
,
2415 "Objects remaining on kmem_cache_close()");
2418 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2422 * Release all resources used by a slab cache.
2424 static inline int kmem_cache_close(struct kmem_cache
*s
)
2430 /* Attempt to free all objects */
2431 free_kmem_cache_cpus(s
);
2432 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2433 struct kmem_cache_node
*n
= get_node(s
, node
);
2436 if (n
->nr_partial
|| slabs_node(s
, node
))
2439 free_kmem_cache_nodes(s
);
2444 * Close a cache and release the kmem_cache structure
2445 * (must be used for caches created using kmem_cache_create)
2447 void kmem_cache_destroy(struct kmem_cache
*s
)
2449 down_write(&slub_lock
);
2453 up_write(&slub_lock
);
2454 if (kmem_cache_close(s
)) {
2455 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2456 "still has objects.\n", s
->name
, __func__
);
2459 sysfs_slab_remove(s
);
2461 up_write(&slub_lock
);
2463 EXPORT_SYMBOL(kmem_cache_destroy
);
2465 /********************************************************************
2467 *******************************************************************/
2469 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
+ 1] __cacheline_aligned
;
2470 EXPORT_SYMBOL(kmalloc_caches
);
2472 static int __init
setup_slub_min_order(char *str
)
2474 get_option(&str
, &slub_min_order
);
2479 __setup("slub_min_order=", setup_slub_min_order
);
2481 static int __init
setup_slub_max_order(char *str
)
2483 get_option(&str
, &slub_max_order
);
2488 __setup("slub_max_order=", setup_slub_max_order
);
2490 static int __init
setup_slub_min_objects(char *str
)
2492 get_option(&str
, &slub_min_objects
);
2497 __setup("slub_min_objects=", setup_slub_min_objects
);
2499 static int __init
setup_slub_nomerge(char *str
)
2505 __setup("slub_nomerge", setup_slub_nomerge
);
2507 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2508 const char *name
, int size
, gfp_t gfp_flags
)
2510 unsigned int flags
= 0;
2512 if (gfp_flags
& SLUB_DMA
)
2513 flags
= SLAB_CACHE_DMA
;
2515 down_write(&slub_lock
);
2516 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2520 list_add(&s
->list
, &slab_caches
);
2521 up_write(&slub_lock
);
2522 if (sysfs_slab_add(s
))
2527 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2530 #ifdef CONFIG_ZONE_DMA
2531 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
+ 1];
2533 static void sysfs_add_func(struct work_struct
*w
)
2535 struct kmem_cache
*s
;
2537 down_write(&slub_lock
);
2538 list_for_each_entry(s
, &slab_caches
, list
) {
2539 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2540 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2544 up_write(&slub_lock
);
2547 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2549 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2551 struct kmem_cache
*s
;
2555 s
= kmalloc_caches_dma
[index
];
2559 /* Dynamically create dma cache */
2560 if (flags
& __GFP_WAIT
)
2561 down_write(&slub_lock
);
2563 if (!down_write_trylock(&slub_lock
))
2567 if (kmalloc_caches_dma
[index
])
2570 realsize
= kmalloc_caches
[index
].objsize
;
2571 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2572 (unsigned int)realsize
);
2573 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2575 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2576 realsize
, ARCH_KMALLOC_MINALIGN
,
2577 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2583 list_add(&s
->list
, &slab_caches
);
2584 kmalloc_caches_dma
[index
] = s
;
2586 schedule_work(&sysfs_add_work
);
2589 up_write(&slub_lock
);
2591 return kmalloc_caches_dma
[index
];
2596 * Conversion table for small slabs sizes / 8 to the index in the
2597 * kmalloc array. This is necessary for slabs < 192 since we have non power
2598 * of two cache sizes there. The size of larger slabs can be determined using
2601 static s8 size_index
[24] = {
2628 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2634 return ZERO_SIZE_PTR
;
2636 index
= size_index
[(size
- 1) / 8];
2638 index
= fls(size
- 1);
2640 #ifdef CONFIG_ZONE_DMA
2641 if (unlikely((flags
& SLUB_DMA
)))
2642 return dma_kmalloc_cache(index
, flags
);
2645 return &kmalloc_caches
[index
];
2648 void *__kmalloc(size_t size
, gfp_t flags
)
2650 struct kmem_cache
*s
;
2652 if (unlikely(size
> PAGE_SIZE
))
2653 return kmalloc_large(size
, flags
);
2655 s
= get_slab(size
, flags
);
2657 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2660 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2662 EXPORT_SYMBOL(__kmalloc
);
2664 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2666 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2670 return page_address(page
);
2676 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2678 struct kmem_cache
*s
;
2680 if (unlikely(size
> PAGE_SIZE
))
2681 return kmalloc_large_node(size
, flags
, node
);
2683 s
= get_slab(size
, flags
);
2685 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2688 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2690 EXPORT_SYMBOL(__kmalloc_node
);
2693 size_t ksize(const void *object
)
2696 struct kmem_cache
*s
;
2698 if (unlikely(object
== ZERO_SIZE_PTR
))
2701 page
= virt_to_head_page(object
);
2703 if (unlikely(!PageSlab(page
))) {
2704 WARN_ON(!PageCompound(page
));
2705 return PAGE_SIZE
<< compound_order(page
);
2709 #ifdef CONFIG_SLUB_DEBUG
2711 * Debugging requires use of the padding between object
2712 * and whatever may come after it.
2714 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2719 * If we have the need to store the freelist pointer
2720 * back there or track user information then we can
2721 * only use the space before that information.
2723 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2726 * Else we can use all the padding etc for the allocation
2731 void kfree(const void *x
)
2734 void *object
= (void *)x
;
2736 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2739 page
= virt_to_head_page(x
);
2740 if (unlikely(!PageSlab(page
))) {
2741 BUG_ON(!PageCompound(page
));
2745 slab_free(page
->slab
, page
, object
, __builtin_return_address(0));
2747 EXPORT_SYMBOL(kfree
);
2750 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2751 * the remaining slabs by the number of items in use. The slabs with the
2752 * most items in use come first. New allocations will then fill those up
2753 * and thus they can be removed from the partial lists.
2755 * The slabs with the least items are placed last. This results in them
2756 * being allocated from last increasing the chance that the last objects
2757 * are freed in them.
2759 int kmem_cache_shrink(struct kmem_cache
*s
)
2763 struct kmem_cache_node
*n
;
2766 int objects
= oo_objects(s
->max
);
2767 struct list_head
*slabs_by_inuse
=
2768 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2769 unsigned long flags
;
2771 if (!slabs_by_inuse
)
2775 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2776 n
= get_node(s
, node
);
2781 for (i
= 0; i
< objects
; i
++)
2782 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2784 spin_lock_irqsave(&n
->list_lock
, flags
);
2787 * Build lists indexed by the items in use in each slab.
2789 * Note that concurrent frees may occur while we hold the
2790 * list_lock. page->inuse here is the upper limit.
2792 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2793 if (!page
->inuse
&& slab_trylock(page
)) {
2795 * Must hold slab lock here because slab_free
2796 * may have freed the last object and be
2797 * waiting to release the slab.
2799 list_del(&page
->lru
);
2802 discard_slab(s
, page
);
2804 list_move(&page
->lru
,
2805 slabs_by_inuse
+ page
->inuse
);
2810 * Rebuild the partial list with the slabs filled up most
2811 * first and the least used slabs at the end.
2813 for (i
= objects
- 1; i
>= 0; i
--)
2814 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2816 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2819 kfree(slabs_by_inuse
);
2822 EXPORT_SYMBOL(kmem_cache_shrink
);
2824 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2825 static int slab_mem_going_offline_callback(void *arg
)
2827 struct kmem_cache
*s
;
2829 down_read(&slub_lock
);
2830 list_for_each_entry(s
, &slab_caches
, list
)
2831 kmem_cache_shrink(s
);
2832 up_read(&slub_lock
);
2837 static void slab_mem_offline_callback(void *arg
)
2839 struct kmem_cache_node
*n
;
2840 struct kmem_cache
*s
;
2841 struct memory_notify
*marg
= arg
;
2844 offline_node
= marg
->status_change_nid
;
2847 * If the node still has available memory. we need kmem_cache_node
2850 if (offline_node
< 0)
2853 down_read(&slub_lock
);
2854 list_for_each_entry(s
, &slab_caches
, list
) {
2855 n
= get_node(s
, offline_node
);
2858 * if n->nr_slabs > 0, slabs still exist on the node
2859 * that is going down. We were unable to free them,
2860 * and offline_pages() function shoudn't call this
2861 * callback. So, we must fail.
2863 BUG_ON(slabs_node(s
, offline_node
));
2865 s
->node
[offline_node
] = NULL
;
2866 kmem_cache_free(kmalloc_caches
, n
);
2869 up_read(&slub_lock
);
2872 static int slab_mem_going_online_callback(void *arg
)
2874 struct kmem_cache_node
*n
;
2875 struct kmem_cache
*s
;
2876 struct memory_notify
*marg
= arg
;
2877 int nid
= marg
->status_change_nid
;
2881 * If the node's memory is already available, then kmem_cache_node is
2882 * already created. Nothing to do.
2888 * We are bringing a node online. No memory is available yet. We must
2889 * allocate a kmem_cache_node structure in order to bring the node
2892 down_read(&slub_lock
);
2893 list_for_each_entry(s
, &slab_caches
, list
) {
2895 * XXX: kmem_cache_alloc_node will fallback to other nodes
2896 * since memory is not yet available from the node that
2899 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2904 init_kmem_cache_node(n
, s
);
2908 up_read(&slub_lock
);
2912 static int slab_memory_callback(struct notifier_block
*self
,
2913 unsigned long action
, void *arg
)
2918 case MEM_GOING_ONLINE
:
2919 ret
= slab_mem_going_online_callback(arg
);
2921 case MEM_GOING_OFFLINE
:
2922 ret
= slab_mem_going_offline_callback(arg
);
2925 case MEM_CANCEL_ONLINE
:
2926 slab_mem_offline_callback(arg
);
2929 case MEM_CANCEL_OFFLINE
:
2933 ret
= notifier_from_errno(ret
);
2937 #endif /* CONFIG_MEMORY_HOTPLUG */
2939 /********************************************************************
2940 * Basic setup of slabs
2941 *******************************************************************/
2943 void __init
kmem_cache_init(void)
2952 * Must first have the slab cache available for the allocations of the
2953 * struct kmem_cache_node's. There is special bootstrap code in
2954 * kmem_cache_open for slab_state == DOWN.
2956 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2957 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2958 kmalloc_caches
[0].refcount
= -1;
2961 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
2964 /* Able to allocate the per node structures */
2965 slab_state
= PARTIAL
;
2967 /* Caches that are not of the two-to-the-power-of size */
2968 if (KMALLOC_MIN_SIZE
<= 64) {
2969 create_kmalloc_cache(&kmalloc_caches
[1],
2970 "kmalloc-96", 96, GFP_KERNEL
);
2972 create_kmalloc_cache(&kmalloc_caches
[2],
2973 "kmalloc-192", 192, GFP_KERNEL
);
2977 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++) {
2978 create_kmalloc_cache(&kmalloc_caches
[i
],
2979 "kmalloc", 1 << i
, GFP_KERNEL
);
2985 * Patch up the size_index table if we have strange large alignment
2986 * requirements for the kmalloc array. This is only the case for
2987 * MIPS it seems. The standard arches will not generate any code here.
2989 * Largest permitted alignment is 256 bytes due to the way we
2990 * handle the index determination for the smaller caches.
2992 * Make sure that nothing crazy happens if someone starts tinkering
2993 * around with ARCH_KMALLOC_MINALIGN
2995 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
2996 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
2998 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
2999 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3001 if (KMALLOC_MIN_SIZE
== 128) {
3003 * The 192 byte sized cache is not used if the alignment
3004 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3007 for (i
= 128 + 8; i
<= 192; i
+= 8)
3008 size_index
[(i
- 1) / 8] = 8;
3013 /* Provide the correct kmalloc names now that the caches are up */
3014 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++)
3015 kmalloc_caches
[i
]. name
=
3016 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3019 register_cpu_notifier(&slab_notifier
);
3020 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3021 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3023 kmem_size
= sizeof(struct kmem_cache
);
3027 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3028 " CPUs=%d, Nodes=%d\n",
3029 caches
, cache_line_size(),
3030 slub_min_order
, slub_max_order
, slub_min_objects
,
3031 nr_cpu_ids
, nr_node_ids
);
3035 * Find a mergeable slab cache
3037 static int slab_unmergeable(struct kmem_cache
*s
)
3039 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3046 * We may have set a slab to be unmergeable during bootstrap.
3048 if (s
->refcount
< 0)
3054 static struct kmem_cache
*find_mergeable(size_t size
,
3055 size_t align
, unsigned long flags
, const char *name
,
3056 void (*ctor
)(void *))
3058 struct kmem_cache
*s
;
3060 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3066 size
= ALIGN(size
, sizeof(void *));
3067 align
= calculate_alignment(flags
, align
, size
);
3068 size
= ALIGN(size
, align
);
3069 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3071 list_for_each_entry(s
, &slab_caches
, list
) {
3072 if (slab_unmergeable(s
))
3078 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3081 * Check if alignment is compatible.
3082 * Courtesy of Adrian Drzewiecki
3084 if ((s
->size
& ~(align
- 1)) != s
->size
)
3087 if (s
->size
- size
>= sizeof(void *))
3095 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3096 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3098 struct kmem_cache
*s
;
3100 down_write(&slub_lock
);
3101 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3107 * Adjust the object sizes so that we clear
3108 * the complete object on kzalloc.
3110 s
->objsize
= max(s
->objsize
, (int)size
);
3113 * And then we need to update the object size in the
3114 * per cpu structures
3116 for_each_online_cpu(cpu
)
3117 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3119 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3120 up_write(&slub_lock
);
3122 if (sysfs_slab_alias(s
, name
))
3127 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3129 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3130 size
, align
, flags
, ctor
)) {
3131 list_add(&s
->list
, &slab_caches
);
3132 up_write(&slub_lock
);
3133 if (sysfs_slab_add(s
))
3139 up_write(&slub_lock
);
3142 if (flags
& SLAB_PANIC
)
3143 panic("Cannot create slabcache %s\n", name
);
3148 EXPORT_SYMBOL(kmem_cache_create
);
3152 * Use the cpu notifier to insure that the cpu slabs are flushed when
3155 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3156 unsigned long action
, void *hcpu
)
3158 long cpu
= (long)hcpu
;
3159 struct kmem_cache
*s
;
3160 unsigned long flags
;
3163 case CPU_UP_PREPARE
:
3164 case CPU_UP_PREPARE_FROZEN
:
3165 init_alloc_cpu_cpu(cpu
);
3166 down_read(&slub_lock
);
3167 list_for_each_entry(s
, &slab_caches
, list
)
3168 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3170 up_read(&slub_lock
);
3173 case CPU_UP_CANCELED
:
3174 case CPU_UP_CANCELED_FROZEN
:
3176 case CPU_DEAD_FROZEN
:
3177 down_read(&slub_lock
);
3178 list_for_each_entry(s
, &slab_caches
, list
) {
3179 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3181 local_irq_save(flags
);
3182 __flush_cpu_slab(s
, cpu
);
3183 local_irq_restore(flags
);
3184 free_kmem_cache_cpu(c
, cpu
);
3185 s
->cpu_slab
[cpu
] = NULL
;
3187 up_read(&slub_lock
);
3195 static struct notifier_block __cpuinitdata slab_notifier
= {
3196 .notifier_call
= slab_cpuup_callback
3201 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
3203 struct kmem_cache
*s
;
3205 if (unlikely(size
> PAGE_SIZE
))
3206 return kmalloc_large(size
, gfpflags
);
3208 s
= get_slab(size
, gfpflags
);
3210 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3213 return slab_alloc(s
, gfpflags
, -1, caller
);
3216 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3217 int node
, void *caller
)
3219 struct kmem_cache
*s
;
3221 if (unlikely(size
> PAGE_SIZE
))
3222 return kmalloc_large_node(size
, gfpflags
, node
);
3224 s
= get_slab(size
, gfpflags
);
3226 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3229 return slab_alloc(s
, gfpflags
, node
, caller
);
3232 #ifdef CONFIG_SLUB_DEBUG
3233 static unsigned long count_partial(struct kmem_cache_node
*n
,
3234 int (*get_count
)(struct page
*))
3236 unsigned long flags
;
3237 unsigned long x
= 0;
3240 spin_lock_irqsave(&n
->list_lock
, flags
);
3241 list_for_each_entry(page
, &n
->partial
, lru
)
3242 x
+= get_count(page
);
3243 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3247 static int count_inuse(struct page
*page
)
3252 static int count_total(struct page
*page
)
3254 return page
->objects
;
3257 static int count_free(struct page
*page
)
3259 return page
->objects
- page
->inuse
;
3262 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3266 void *addr
= page_address(page
);
3268 if (!check_slab(s
, page
) ||
3269 !on_freelist(s
, page
, NULL
))
3272 /* Now we know that a valid freelist exists */
3273 bitmap_zero(map
, page
->objects
);
3275 for_each_free_object(p
, s
, page
->freelist
) {
3276 set_bit(slab_index(p
, s
, addr
), map
);
3277 if (!check_object(s
, page
, p
, 0))
3281 for_each_object(p
, s
, addr
, page
->objects
)
3282 if (!test_bit(slab_index(p
, s
, addr
), map
))
3283 if (!check_object(s
, page
, p
, 1))
3288 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3291 if (slab_trylock(page
)) {
3292 validate_slab(s
, page
, map
);
3295 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3298 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3299 if (!PageSlubDebug(page
))
3300 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3301 "on slab 0x%p\n", s
->name
, page
);
3303 if (PageSlubDebug(page
))
3304 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3305 "slab 0x%p\n", s
->name
, page
);
3309 static int validate_slab_node(struct kmem_cache
*s
,
3310 struct kmem_cache_node
*n
, unsigned long *map
)
3312 unsigned long count
= 0;
3314 unsigned long flags
;
3316 spin_lock_irqsave(&n
->list_lock
, flags
);
3318 list_for_each_entry(page
, &n
->partial
, lru
) {
3319 validate_slab_slab(s
, page
, map
);
3322 if (count
!= n
->nr_partial
)
3323 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3324 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3326 if (!(s
->flags
& SLAB_STORE_USER
))
3329 list_for_each_entry(page
, &n
->full
, lru
) {
3330 validate_slab_slab(s
, page
, map
);
3333 if (count
!= atomic_long_read(&n
->nr_slabs
))
3334 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3335 "counter=%ld\n", s
->name
, count
,
3336 atomic_long_read(&n
->nr_slabs
));
3339 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3343 static long validate_slab_cache(struct kmem_cache
*s
)
3346 unsigned long count
= 0;
3347 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3348 sizeof(unsigned long), GFP_KERNEL
);
3354 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3355 struct kmem_cache_node
*n
= get_node(s
, node
);
3357 count
+= validate_slab_node(s
, n
, map
);
3363 #ifdef SLUB_RESILIENCY_TEST
3364 static void resiliency_test(void)
3368 printk(KERN_ERR
"SLUB resiliency testing\n");
3369 printk(KERN_ERR
"-----------------------\n");
3370 printk(KERN_ERR
"A. Corruption after allocation\n");
3372 p
= kzalloc(16, GFP_KERNEL
);
3374 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3375 " 0x12->0x%p\n\n", p
+ 16);
3377 validate_slab_cache(kmalloc_caches
+ 4);
3379 /* Hmmm... The next two are dangerous */
3380 p
= kzalloc(32, GFP_KERNEL
);
3381 p
[32 + sizeof(void *)] = 0x34;
3382 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3383 " 0x34 -> -0x%p\n", p
);
3385 "If allocated object is overwritten then not detectable\n\n");
3387 validate_slab_cache(kmalloc_caches
+ 5);
3388 p
= kzalloc(64, GFP_KERNEL
);
3389 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3391 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3394 "If allocated object is overwritten then not detectable\n\n");
3395 validate_slab_cache(kmalloc_caches
+ 6);
3397 printk(KERN_ERR
"\nB. Corruption after free\n");
3398 p
= kzalloc(128, GFP_KERNEL
);
3401 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3402 validate_slab_cache(kmalloc_caches
+ 7);
3404 p
= kzalloc(256, GFP_KERNEL
);
3407 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3409 validate_slab_cache(kmalloc_caches
+ 8);
3411 p
= kzalloc(512, GFP_KERNEL
);
3414 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3415 validate_slab_cache(kmalloc_caches
+ 9);
3418 static void resiliency_test(void) {};
3422 * Generate lists of code addresses where slabcache objects are allocated
3427 unsigned long count
;
3440 unsigned long count
;
3441 struct location
*loc
;
3444 static void free_loc_track(struct loc_track
*t
)
3447 free_pages((unsigned long)t
->loc
,
3448 get_order(sizeof(struct location
) * t
->max
));
3451 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3456 order
= get_order(sizeof(struct location
) * max
);
3458 l
= (void *)__get_free_pages(flags
, order
);
3463 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3471 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3472 const struct track
*track
)
3474 long start
, end
, pos
;
3477 unsigned long age
= jiffies
- track
->when
;
3483 pos
= start
+ (end
- start
+ 1) / 2;
3486 * There is nothing at "end". If we end up there
3487 * we need to add something to before end.
3492 caddr
= t
->loc
[pos
].addr
;
3493 if (track
->addr
== caddr
) {
3499 if (age
< l
->min_time
)
3501 if (age
> l
->max_time
)
3504 if (track
->pid
< l
->min_pid
)
3505 l
->min_pid
= track
->pid
;
3506 if (track
->pid
> l
->max_pid
)
3507 l
->max_pid
= track
->pid
;
3509 cpu_set(track
->cpu
, l
->cpus
);
3511 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3515 if (track
->addr
< caddr
)
3522 * Not found. Insert new tracking element.
3524 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3530 (t
->count
- pos
) * sizeof(struct location
));
3533 l
->addr
= track
->addr
;
3537 l
->min_pid
= track
->pid
;
3538 l
->max_pid
= track
->pid
;
3539 cpus_clear(l
->cpus
);
3540 cpu_set(track
->cpu
, l
->cpus
);
3541 nodes_clear(l
->nodes
);
3542 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3546 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3547 struct page
*page
, enum track_item alloc
)
3549 void *addr
= page_address(page
);
3550 DECLARE_BITMAP(map
, page
->objects
);
3553 bitmap_zero(map
, page
->objects
);
3554 for_each_free_object(p
, s
, page
->freelist
)
3555 set_bit(slab_index(p
, s
, addr
), map
);
3557 for_each_object(p
, s
, addr
, page
->objects
)
3558 if (!test_bit(slab_index(p
, s
, addr
), map
))
3559 add_location(t
, s
, get_track(s
, p
, alloc
));
3562 static int list_locations(struct kmem_cache
*s
, char *buf
,
3563 enum track_item alloc
)
3567 struct loc_track t
= { 0, 0, NULL
};
3570 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3572 return sprintf(buf
, "Out of memory\n");
3574 /* Push back cpu slabs */
3577 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3578 struct kmem_cache_node
*n
= get_node(s
, node
);
3579 unsigned long flags
;
3582 if (!atomic_long_read(&n
->nr_slabs
))
3585 spin_lock_irqsave(&n
->list_lock
, flags
);
3586 list_for_each_entry(page
, &n
->partial
, lru
)
3587 process_slab(&t
, s
, page
, alloc
);
3588 list_for_each_entry(page
, &n
->full
, lru
)
3589 process_slab(&t
, s
, page
, alloc
);
3590 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3593 for (i
= 0; i
< t
.count
; i
++) {
3594 struct location
*l
= &t
.loc
[i
];
3596 if (len
> PAGE_SIZE
- 100)
3598 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3601 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3603 len
+= sprintf(buf
+ len
, "<not-available>");
3605 if (l
->sum_time
!= l
->min_time
) {
3606 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3608 (long)div_u64(l
->sum_time
, l
->count
),
3611 len
+= sprintf(buf
+ len
, " age=%ld",
3614 if (l
->min_pid
!= l
->max_pid
)
3615 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3616 l
->min_pid
, l
->max_pid
);
3618 len
+= sprintf(buf
+ len
, " pid=%ld",
3621 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3622 len
< PAGE_SIZE
- 60) {
3623 len
+= sprintf(buf
+ len
, " cpus=");
3624 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3628 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3629 len
< PAGE_SIZE
- 60) {
3630 len
+= sprintf(buf
+ len
, " nodes=");
3631 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3635 len
+= sprintf(buf
+ len
, "\n");
3640 len
+= sprintf(buf
, "No data\n");
3644 enum slab_stat_type
{
3645 SL_ALL
, /* All slabs */
3646 SL_PARTIAL
, /* Only partially allocated slabs */
3647 SL_CPU
, /* Only slabs used for cpu caches */
3648 SL_OBJECTS
, /* Determine allocated objects not slabs */
3649 SL_TOTAL
/* Determine object capacity not slabs */
3652 #define SO_ALL (1 << SL_ALL)
3653 #define SO_PARTIAL (1 << SL_PARTIAL)
3654 #define SO_CPU (1 << SL_CPU)
3655 #define SO_OBJECTS (1 << SL_OBJECTS)
3656 #define SO_TOTAL (1 << SL_TOTAL)
3658 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3659 char *buf
, unsigned long flags
)
3661 unsigned long total
= 0;
3664 unsigned long *nodes
;
3665 unsigned long *per_cpu
;
3667 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3670 per_cpu
= nodes
+ nr_node_ids
;
3672 if (flags
& SO_CPU
) {
3675 for_each_possible_cpu(cpu
) {
3676 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3678 if (!c
|| c
->node
< 0)
3682 if (flags
& SO_TOTAL
)
3683 x
= c
->page
->objects
;
3684 else if (flags
& SO_OBJECTS
)
3690 nodes
[c
->node
] += x
;
3696 if (flags
& SO_ALL
) {
3697 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3698 struct kmem_cache_node
*n
= get_node(s
, node
);
3700 if (flags
& SO_TOTAL
)
3701 x
= atomic_long_read(&n
->total_objects
);
3702 else if (flags
& SO_OBJECTS
)
3703 x
= atomic_long_read(&n
->total_objects
) -
3704 count_partial(n
, count_free
);
3707 x
= atomic_long_read(&n
->nr_slabs
);
3712 } else if (flags
& SO_PARTIAL
) {
3713 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3714 struct kmem_cache_node
*n
= get_node(s
, node
);
3716 if (flags
& SO_TOTAL
)
3717 x
= count_partial(n
, count_total
);
3718 else if (flags
& SO_OBJECTS
)
3719 x
= count_partial(n
, count_inuse
);
3726 x
= sprintf(buf
, "%lu", total
);
3728 for_each_node_state(node
, N_NORMAL_MEMORY
)
3730 x
+= sprintf(buf
+ x
, " N%d=%lu",
3734 return x
+ sprintf(buf
+ x
, "\n");
3737 static int any_slab_objects(struct kmem_cache
*s
)
3741 for_each_online_node(node
) {
3742 struct kmem_cache_node
*n
= get_node(s
, node
);
3747 if (atomic_long_read(&n
->total_objects
))
3753 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3754 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3756 struct slab_attribute
{
3757 struct attribute attr
;
3758 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3759 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3762 #define SLAB_ATTR_RO(_name) \
3763 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3765 #define SLAB_ATTR(_name) \
3766 static struct slab_attribute _name##_attr = \
3767 __ATTR(_name, 0644, _name##_show, _name##_store)
3769 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3771 return sprintf(buf
, "%d\n", s
->size
);
3773 SLAB_ATTR_RO(slab_size
);
3775 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3777 return sprintf(buf
, "%d\n", s
->align
);
3779 SLAB_ATTR_RO(align
);
3781 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3783 return sprintf(buf
, "%d\n", s
->objsize
);
3785 SLAB_ATTR_RO(object_size
);
3787 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3789 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3791 SLAB_ATTR_RO(objs_per_slab
);
3793 static ssize_t
order_store(struct kmem_cache
*s
,
3794 const char *buf
, size_t length
)
3796 unsigned long order
;
3799 err
= strict_strtoul(buf
, 10, &order
);
3803 if (order
> slub_max_order
|| order
< slub_min_order
)
3806 calculate_sizes(s
, order
);
3810 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3812 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3816 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3819 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3821 return n
+ sprintf(buf
+ n
, "\n");
3827 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3829 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3831 SLAB_ATTR_RO(aliases
);
3833 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3835 return show_slab_objects(s
, buf
, SO_ALL
);
3837 SLAB_ATTR_RO(slabs
);
3839 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3841 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3843 SLAB_ATTR_RO(partial
);
3845 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3847 return show_slab_objects(s
, buf
, SO_CPU
);
3849 SLAB_ATTR_RO(cpu_slabs
);
3851 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3853 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3855 SLAB_ATTR_RO(objects
);
3857 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3859 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3861 SLAB_ATTR_RO(objects_partial
);
3863 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3865 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3867 SLAB_ATTR_RO(total_objects
);
3869 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3871 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3874 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3875 const char *buf
, size_t length
)
3877 s
->flags
&= ~SLAB_DEBUG_FREE
;
3879 s
->flags
|= SLAB_DEBUG_FREE
;
3882 SLAB_ATTR(sanity_checks
);
3884 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3886 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3889 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3892 s
->flags
&= ~SLAB_TRACE
;
3894 s
->flags
|= SLAB_TRACE
;
3899 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3901 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3904 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3905 const char *buf
, size_t length
)
3907 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3909 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3912 SLAB_ATTR(reclaim_account
);
3914 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3916 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3918 SLAB_ATTR_RO(hwcache_align
);
3920 #ifdef CONFIG_ZONE_DMA
3921 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3923 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3925 SLAB_ATTR_RO(cache_dma
);
3928 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3930 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3932 SLAB_ATTR_RO(destroy_by_rcu
);
3934 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3936 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3939 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3940 const char *buf
, size_t length
)
3942 if (any_slab_objects(s
))
3945 s
->flags
&= ~SLAB_RED_ZONE
;
3947 s
->flags
|= SLAB_RED_ZONE
;
3948 calculate_sizes(s
, -1);
3951 SLAB_ATTR(red_zone
);
3953 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3955 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3958 static ssize_t
poison_store(struct kmem_cache
*s
,
3959 const char *buf
, size_t length
)
3961 if (any_slab_objects(s
))
3964 s
->flags
&= ~SLAB_POISON
;
3966 s
->flags
|= SLAB_POISON
;
3967 calculate_sizes(s
, -1);
3972 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3974 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3977 static ssize_t
store_user_store(struct kmem_cache
*s
,
3978 const char *buf
, size_t length
)
3980 if (any_slab_objects(s
))
3983 s
->flags
&= ~SLAB_STORE_USER
;
3985 s
->flags
|= SLAB_STORE_USER
;
3986 calculate_sizes(s
, -1);
3989 SLAB_ATTR(store_user
);
3991 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
3996 static ssize_t
validate_store(struct kmem_cache
*s
,
3997 const char *buf
, size_t length
)
4001 if (buf
[0] == '1') {
4002 ret
= validate_slab_cache(s
);
4008 SLAB_ATTR(validate
);
4010 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4015 static ssize_t
shrink_store(struct kmem_cache
*s
,
4016 const char *buf
, size_t length
)
4018 if (buf
[0] == '1') {
4019 int rc
= kmem_cache_shrink(s
);
4029 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4031 if (!(s
->flags
& SLAB_STORE_USER
))
4033 return list_locations(s
, buf
, TRACK_ALLOC
);
4035 SLAB_ATTR_RO(alloc_calls
);
4037 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4039 if (!(s
->flags
& SLAB_STORE_USER
))
4041 return list_locations(s
, buf
, TRACK_FREE
);
4043 SLAB_ATTR_RO(free_calls
);
4046 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4048 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4051 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4052 const char *buf
, size_t length
)
4054 unsigned long ratio
;
4057 err
= strict_strtoul(buf
, 10, &ratio
);
4062 s
->remote_node_defrag_ratio
= ratio
* 10;
4066 SLAB_ATTR(remote_node_defrag_ratio
);
4069 #ifdef CONFIG_SLUB_STATS
4070 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4072 unsigned long sum
= 0;
4075 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4080 for_each_online_cpu(cpu
) {
4081 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4087 len
= sprintf(buf
, "%lu", sum
);
4090 for_each_online_cpu(cpu
) {
4091 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4092 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4096 return len
+ sprintf(buf
+ len
, "\n");
4099 #define STAT_ATTR(si, text) \
4100 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4102 return show_stat(s, buf, si); \
4104 SLAB_ATTR_RO(text); \
4106 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4107 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4108 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4109 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4110 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4111 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4112 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4113 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4114 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4115 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4116 STAT_ATTR(FREE_SLAB
, free_slab
);
4117 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4118 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4119 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4120 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4121 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4122 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4123 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4126 static struct attribute
*slab_attrs
[] = {
4127 &slab_size_attr
.attr
,
4128 &object_size_attr
.attr
,
4129 &objs_per_slab_attr
.attr
,
4132 &objects_partial_attr
.attr
,
4133 &total_objects_attr
.attr
,
4136 &cpu_slabs_attr
.attr
,
4140 &sanity_checks_attr
.attr
,
4142 &hwcache_align_attr
.attr
,
4143 &reclaim_account_attr
.attr
,
4144 &destroy_by_rcu_attr
.attr
,
4145 &red_zone_attr
.attr
,
4147 &store_user_attr
.attr
,
4148 &validate_attr
.attr
,
4150 &alloc_calls_attr
.attr
,
4151 &free_calls_attr
.attr
,
4152 #ifdef CONFIG_ZONE_DMA
4153 &cache_dma_attr
.attr
,
4156 &remote_node_defrag_ratio_attr
.attr
,
4158 #ifdef CONFIG_SLUB_STATS
4159 &alloc_fastpath_attr
.attr
,
4160 &alloc_slowpath_attr
.attr
,
4161 &free_fastpath_attr
.attr
,
4162 &free_slowpath_attr
.attr
,
4163 &free_frozen_attr
.attr
,
4164 &free_add_partial_attr
.attr
,
4165 &free_remove_partial_attr
.attr
,
4166 &alloc_from_partial_attr
.attr
,
4167 &alloc_slab_attr
.attr
,
4168 &alloc_refill_attr
.attr
,
4169 &free_slab_attr
.attr
,
4170 &cpuslab_flush_attr
.attr
,
4171 &deactivate_full_attr
.attr
,
4172 &deactivate_empty_attr
.attr
,
4173 &deactivate_to_head_attr
.attr
,
4174 &deactivate_to_tail_attr
.attr
,
4175 &deactivate_remote_frees_attr
.attr
,
4176 &order_fallback_attr
.attr
,
4181 static struct attribute_group slab_attr_group
= {
4182 .attrs
= slab_attrs
,
4185 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4186 struct attribute
*attr
,
4189 struct slab_attribute
*attribute
;
4190 struct kmem_cache
*s
;
4193 attribute
= to_slab_attr(attr
);
4196 if (!attribute
->show
)
4199 err
= attribute
->show(s
, buf
);
4204 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4205 struct attribute
*attr
,
4206 const char *buf
, size_t len
)
4208 struct slab_attribute
*attribute
;
4209 struct kmem_cache
*s
;
4212 attribute
= to_slab_attr(attr
);
4215 if (!attribute
->store
)
4218 err
= attribute
->store(s
, buf
, len
);
4223 static void kmem_cache_release(struct kobject
*kobj
)
4225 struct kmem_cache
*s
= to_slab(kobj
);
4230 static struct sysfs_ops slab_sysfs_ops
= {
4231 .show
= slab_attr_show
,
4232 .store
= slab_attr_store
,
4235 static struct kobj_type slab_ktype
= {
4236 .sysfs_ops
= &slab_sysfs_ops
,
4237 .release
= kmem_cache_release
4240 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4242 struct kobj_type
*ktype
= get_ktype(kobj
);
4244 if (ktype
== &slab_ktype
)
4249 static struct kset_uevent_ops slab_uevent_ops
= {
4250 .filter
= uevent_filter
,
4253 static struct kset
*slab_kset
;
4255 #define ID_STR_LENGTH 64
4257 /* Create a unique string id for a slab cache:
4259 * Format :[flags-]size
4261 static char *create_unique_id(struct kmem_cache
*s
)
4263 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4270 * First flags affecting slabcache operations. We will only
4271 * get here for aliasable slabs so we do not need to support
4272 * too many flags. The flags here must cover all flags that
4273 * are matched during merging to guarantee that the id is
4276 if (s
->flags
& SLAB_CACHE_DMA
)
4278 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4280 if (s
->flags
& SLAB_DEBUG_FREE
)
4284 p
+= sprintf(p
, "%07d", s
->size
);
4285 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4289 static int sysfs_slab_add(struct kmem_cache
*s
)
4295 if (slab_state
< SYSFS
)
4296 /* Defer until later */
4299 unmergeable
= slab_unmergeable(s
);
4302 * Slabcache can never be merged so we can use the name proper.
4303 * This is typically the case for debug situations. In that
4304 * case we can catch duplicate names easily.
4306 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4310 * Create a unique name for the slab as a target
4313 name
= create_unique_id(s
);
4316 s
->kobj
.kset
= slab_kset
;
4317 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4319 kobject_put(&s
->kobj
);
4323 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4326 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4328 /* Setup first alias */
4329 sysfs_slab_alias(s
, s
->name
);
4335 static void sysfs_slab_remove(struct kmem_cache
*s
)
4337 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4338 kobject_del(&s
->kobj
);
4339 kobject_put(&s
->kobj
);
4343 * Need to buffer aliases during bootup until sysfs becomes
4344 * available lest we loose that information.
4346 struct saved_alias
{
4347 struct kmem_cache
*s
;
4349 struct saved_alias
*next
;
4352 static struct saved_alias
*alias_list
;
4354 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4356 struct saved_alias
*al
;
4358 if (slab_state
== SYSFS
) {
4360 * If we have a leftover link then remove it.
4362 sysfs_remove_link(&slab_kset
->kobj
, name
);
4363 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4366 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4372 al
->next
= alias_list
;
4377 static int __init
slab_sysfs_init(void)
4379 struct kmem_cache
*s
;
4382 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4384 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4390 list_for_each_entry(s
, &slab_caches
, list
) {
4391 err
= sysfs_slab_add(s
);
4393 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4394 " to sysfs\n", s
->name
);
4397 while (alias_list
) {
4398 struct saved_alias
*al
= alias_list
;
4400 alias_list
= alias_list
->next
;
4401 err
= sysfs_slab_alias(al
->s
, al
->name
);
4403 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4404 " %s to sysfs\n", s
->name
);
4412 __initcall(slab_sysfs_init
);
4416 * The /proc/slabinfo ABI
4418 #ifdef CONFIG_SLABINFO
4420 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4421 size_t count
, loff_t
*ppos
)
4427 static void print_slabinfo_header(struct seq_file
*m
)
4429 seq_puts(m
, "slabinfo - version: 2.1\n");
4430 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4431 "<objperslab> <pagesperslab>");
4432 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4433 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4437 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4441 down_read(&slub_lock
);
4443 print_slabinfo_header(m
);
4445 return seq_list_start(&slab_caches
, *pos
);
4448 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4450 return seq_list_next(p
, &slab_caches
, pos
);
4453 static void s_stop(struct seq_file
*m
, void *p
)
4455 up_read(&slub_lock
);
4458 static int s_show(struct seq_file
*m
, void *p
)
4460 unsigned long nr_partials
= 0;
4461 unsigned long nr_slabs
= 0;
4462 unsigned long nr_inuse
= 0;
4463 unsigned long nr_objs
= 0;
4464 unsigned long nr_free
= 0;
4465 struct kmem_cache
*s
;
4468 s
= list_entry(p
, struct kmem_cache
, list
);
4470 for_each_online_node(node
) {
4471 struct kmem_cache_node
*n
= get_node(s
, node
);
4476 nr_partials
+= n
->nr_partial
;
4477 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4478 nr_objs
+= atomic_long_read(&n
->total_objects
);
4479 nr_free
+= count_partial(n
, count_free
);
4482 nr_inuse
= nr_objs
- nr_free
;
4484 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4485 nr_objs
, s
->size
, oo_objects(s
->oo
),
4486 (1 << oo_order(s
->oo
)));
4487 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4488 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4494 const struct seq_operations slabinfo_op
= {
4501 #endif /* CONFIG_SLABINFO */