ath9k: Fix LED blink pattern
[linux-2.6/verdex.git] / fs / btrfs / ctree.c
blob9e46c07768167f53f9ae0c9b6ffdb5ce8641f56e
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_key *ins_key,
30 struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 struct btrfs_root *root, struct extent_buffer *dst,
33 struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root,
36 struct extent_buffer *dst_buf,
37 struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 struct btrfs_path *path, int level, int slot);
41 inline void btrfs_init_path(struct btrfs_path *p)
43 memset(p, 0, sizeof(*p));
46 struct btrfs_path *btrfs_alloc_path(void)
48 struct btrfs_path *path;
49 path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
50 if (path) {
51 btrfs_init_path(path);
52 path->reada = 1;
54 return path;
57 /* this also releases the path */
58 void btrfs_free_path(struct btrfs_path *p)
60 btrfs_release_path(NULL, p);
61 kmem_cache_free(btrfs_path_cachep, p);
65 * path release drops references on the extent buffers in the path
66 * and it drops any locks held by this path
68 * It is safe to call this on paths that no locks or extent buffers held.
70 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
72 int i;
74 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
75 p->slots[i] = 0;
76 if (!p->nodes[i])
77 continue;
78 if (p->locks[i]) {
79 btrfs_tree_unlock(p->nodes[i]);
80 p->locks[i] = 0;
82 free_extent_buffer(p->nodes[i]);
83 p->nodes[i] = NULL;
88 * safely gets a reference on the root node of a tree. A lock
89 * is not taken, so a concurrent writer may put a different node
90 * at the root of the tree. See btrfs_lock_root_node for the
91 * looping required.
93 * The extent buffer returned by this has a reference taken, so
94 * it won't disappear. It may stop being the root of the tree
95 * at any time because there are no locks held.
97 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
99 struct extent_buffer *eb;
100 spin_lock(&root->node_lock);
101 eb = root->node;
102 extent_buffer_get(eb);
103 spin_unlock(&root->node_lock);
104 return eb;
107 /* loop around taking references on and locking the root node of the
108 * tree until you end up with a lock on the root. A locked buffer
109 * is returned, with a reference held.
111 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
113 struct extent_buffer *eb;
115 while (1) {
116 eb = btrfs_root_node(root);
117 btrfs_tree_lock(eb);
119 spin_lock(&root->node_lock);
120 if (eb == root->node) {
121 spin_unlock(&root->node_lock);
122 break;
124 spin_unlock(&root->node_lock);
126 btrfs_tree_unlock(eb);
127 free_extent_buffer(eb);
129 return eb;
132 /* cowonly root (everything not a reference counted cow subvolume), just get
133 * put onto a simple dirty list. transaction.c walks this to make sure they
134 * get properly updated on disk.
136 static void add_root_to_dirty_list(struct btrfs_root *root)
138 if (root->track_dirty && list_empty(&root->dirty_list)) {
139 list_add(&root->dirty_list,
140 &root->fs_info->dirty_cowonly_roots);
145 * used by snapshot creation to make a copy of a root for a tree with
146 * a given objectid. The buffer with the new root node is returned in
147 * cow_ret, and this func returns zero on success or a negative error code.
149 int btrfs_copy_root(struct btrfs_trans_handle *trans,
150 struct btrfs_root *root,
151 struct extent_buffer *buf,
152 struct extent_buffer **cow_ret, u64 new_root_objectid)
154 struct extent_buffer *cow;
155 u32 nritems;
156 int ret = 0;
157 int level;
158 struct btrfs_root *new_root;
160 new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
161 if (!new_root)
162 return -ENOMEM;
164 memcpy(new_root, root, sizeof(*new_root));
165 new_root->root_key.objectid = new_root_objectid;
167 WARN_ON(root->ref_cows && trans->transid !=
168 root->fs_info->running_transaction->transid);
169 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
171 level = btrfs_header_level(buf);
172 nritems = btrfs_header_nritems(buf);
174 cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
175 new_root_objectid, trans->transid,
176 level, buf->start, 0);
177 if (IS_ERR(cow)) {
178 kfree(new_root);
179 return PTR_ERR(cow);
182 copy_extent_buffer(cow, buf, 0, 0, cow->len);
183 btrfs_set_header_bytenr(cow, cow->start);
184 btrfs_set_header_generation(cow, trans->transid);
185 btrfs_set_header_owner(cow, new_root_objectid);
186 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
188 write_extent_buffer(cow, root->fs_info->fsid,
189 (unsigned long)btrfs_header_fsid(cow),
190 BTRFS_FSID_SIZE);
192 WARN_ON(btrfs_header_generation(buf) > trans->transid);
193 ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
194 kfree(new_root);
196 if (ret)
197 return ret;
199 btrfs_mark_buffer_dirty(cow);
200 *cow_ret = cow;
201 return 0;
205 * does the dirty work in cow of a single block. The parent block (if
206 * supplied) is updated to point to the new cow copy. The new buffer is marked
207 * dirty and returned locked. If you modify the block it needs to be marked
208 * dirty again.
210 * search_start -- an allocation hint for the new block
212 * empty_size -- a hint that you plan on doing more cow. This is the size in
213 * bytes the allocator should try to find free next to the block it returns.
214 * This is just a hint and may be ignored by the allocator.
216 * prealloc_dest -- if you have already reserved a destination for the cow,
217 * this uses that block instead of allocating a new one.
218 * btrfs_alloc_reserved_extent is used to finish the allocation.
220 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
221 struct btrfs_root *root,
222 struct extent_buffer *buf,
223 struct extent_buffer *parent, int parent_slot,
224 struct extent_buffer **cow_ret,
225 u64 search_start, u64 empty_size,
226 u64 prealloc_dest)
228 u64 parent_start;
229 struct extent_buffer *cow;
230 u32 nritems;
231 int ret = 0;
232 int level;
233 int unlock_orig = 0;
235 if (*cow_ret == buf)
236 unlock_orig = 1;
238 WARN_ON(!btrfs_tree_locked(buf));
240 if (parent)
241 parent_start = parent->start;
242 else
243 parent_start = 0;
245 WARN_ON(root->ref_cows && trans->transid !=
246 root->fs_info->running_transaction->transid);
247 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
249 level = btrfs_header_level(buf);
250 nritems = btrfs_header_nritems(buf);
252 if (prealloc_dest) {
253 struct btrfs_key ins;
255 ins.objectid = prealloc_dest;
256 ins.offset = buf->len;
257 ins.type = BTRFS_EXTENT_ITEM_KEY;
259 ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
260 root->root_key.objectid,
261 trans->transid, level, &ins);
262 BUG_ON(ret);
263 cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
264 buf->len);
265 } else {
266 cow = btrfs_alloc_free_block(trans, root, buf->len,
267 parent_start,
268 root->root_key.objectid,
269 trans->transid, level,
270 search_start, empty_size);
272 if (IS_ERR(cow))
273 return PTR_ERR(cow);
275 copy_extent_buffer(cow, buf, 0, 0, cow->len);
276 btrfs_set_header_bytenr(cow, cow->start);
277 btrfs_set_header_generation(cow, trans->transid);
278 btrfs_set_header_owner(cow, root->root_key.objectid);
279 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
281 write_extent_buffer(cow, root->fs_info->fsid,
282 (unsigned long)btrfs_header_fsid(cow),
283 BTRFS_FSID_SIZE);
285 WARN_ON(btrfs_header_generation(buf) > trans->transid);
286 if (btrfs_header_generation(buf) != trans->transid) {
287 u32 nr_extents;
288 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
289 if (ret)
290 return ret;
292 ret = btrfs_cache_ref(trans, root, buf, nr_extents);
293 WARN_ON(ret);
294 } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
296 * There are only two places that can drop reference to
297 * tree blocks owned by living reloc trees, one is here,
298 * the other place is btrfs_drop_subtree. In both places,
299 * we check reference count while tree block is locked.
300 * Furthermore, if reference count is one, it won't get
301 * increased by someone else.
303 u32 refs;
304 ret = btrfs_lookup_extent_ref(trans, root, buf->start,
305 buf->len, &refs);
306 BUG_ON(ret);
307 if (refs == 1) {
308 ret = btrfs_update_ref(trans, root, buf, cow,
309 0, nritems);
310 clean_tree_block(trans, root, buf);
311 } else {
312 ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
314 BUG_ON(ret);
315 } else {
316 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
317 if (ret)
318 return ret;
319 clean_tree_block(trans, root, buf);
322 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
323 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
324 WARN_ON(ret);
327 if (buf == root->node) {
328 WARN_ON(parent && parent != buf);
330 spin_lock(&root->node_lock);
331 root->node = cow;
332 extent_buffer_get(cow);
333 spin_unlock(&root->node_lock);
335 if (buf != root->commit_root) {
336 btrfs_free_extent(trans, root, buf->start,
337 buf->len, buf->start,
338 root->root_key.objectid,
339 btrfs_header_generation(buf),
340 level, 1);
342 free_extent_buffer(buf);
343 add_root_to_dirty_list(root);
344 } else {
345 btrfs_set_node_blockptr(parent, parent_slot,
346 cow->start);
347 WARN_ON(trans->transid == 0);
348 btrfs_set_node_ptr_generation(parent, parent_slot,
349 trans->transid);
350 btrfs_mark_buffer_dirty(parent);
351 WARN_ON(btrfs_header_generation(parent) != trans->transid);
352 btrfs_free_extent(trans, root, buf->start, buf->len,
353 parent_start, btrfs_header_owner(parent),
354 btrfs_header_generation(parent), level, 1);
356 if (unlock_orig)
357 btrfs_tree_unlock(buf);
358 free_extent_buffer(buf);
359 btrfs_mark_buffer_dirty(cow);
360 *cow_ret = cow;
361 return 0;
365 * cows a single block, see __btrfs_cow_block for the real work.
366 * This version of it has extra checks so that a block isn't cow'd more than
367 * once per transaction, as long as it hasn't been written yet
369 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
370 struct btrfs_root *root, struct extent_buffer *buf,
371 struct extent_buffer *parent, int parent_slot,
372 struct extent_buffer **cow_ret, u64 prealloc_dest)
374 u64 search_start;
375 int ret;
377 if (trans->transaction != root->fs_info->running_transaction) {
378 printk(KERN_CRIT "trans %llu running %llu\n",
379 (unsigned long long)trans->transid,
380 (unsigned long long)
381 root->fs_info->running_transaction->transid);
382 WARN_ON(1);
384 if (trans->transid != root->fs_info->generation) {
385 printk(KERN_CRIT "trans %llu running %llu\n",
386 (unsigned long long)trans->transid,
387 (unsigned long long)root->fs_info->generation);
388 WARN_ON(1);
391 spin_lock(&root->fs_info->hash_lock);
392 if (btrfs_header_generation(buf) == trans->transid &&
393 btrfs_header_owner(buf) == root->root_key.objectid &&
394 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
395 *cow_ret = buf;
396 spin_unlock(&root->fs_info->hash_lock);
397 WARN_ON(prealloc_dest);
398 return 0;
400 spin_unlock(&root->fs_info->hash_lock);
401 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
402 ret = __btrfs_cow_block(trans, root, buf, parent,
403 parent_slot, cow_ret, search_start, 0,
404 prealloc_dest);
405 return ret;
409 * helper function for defrag to decide if two blocks pointed to by a
410 * node are actually close by
412 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
414 if (blocknr < other && other - (blocknr + blocksize) < 32768)
415 return 1;
416 if (blocknr > other && blocknr - (other + blocksize) < 32768)
417 return 1;
418 return 0;
422 * compare two keys in a memcmp fashion
424 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
426 struct btrfs_key k1;
428 btrfs_disk_key_to_cpu(&k1, disk);
430 if (k1.objectid > k2->objectid)
431 return 1;
432 if (k1.objectid < k2->objectid)
433 return -1;
434 if (k1.type > k2->type)
435 return 1;
436 if (k1.type < k2->type)
437 return -1;
438 if (k1.offset > k2->offset)
439 return 1;
440 if (k1.offset < k2->offset)
441 return -1;
442 return 0;
446 * same as comp_keys only with two btrfs_key's
448 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
450 if (k1->objectid > k2->objectid)
451 return 1;
452 if (k1->objectid < k2->objectid)
453 return -1;
454 if (k1->type > k2->type)
455 return 1;
456 if (k1->type < k2->type)
457 return -1;
458 if (k1->offset > k2->offset)
459 return 1;
460 if (k1->offset < k2->offset)
461 return -1;
462 return 0;
466 * this is used by the defrag code to go through all the
467 * leaves pointed to by a node and reallocate them so that
468 * disk order is close to key order
470 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
471 struct btrfs_root *root, struct extent_buffer *parent,
472 int start_slot, int cache_only, u64 *last_ret,
473 struct btrfs_key *progress)
475 struct extent_buffer *cur;
476 u64 blocknr;
477 u64 gen;
478 u64 search_start = *last_ret;
479 u64 last_block = 0;
480 u64 other;
481 u32 parent_nritems;
482 int end_slot;
483 int i;
484 int err = 0;
485 int parent_level;
486 int uptodate;
487 u32 blocksize;
488 int progress_passed = 0;
489 struct btrfs_disk_key disk_key;
491 parent_level = btrfs_header_level(parent);
492 if (cache_only && parent_level != 1)
493 return 0;
495 if (trans->transaction != root->fs_info->running_transaction)
496 WARN_ON(1);
497 if (trans->transid != root->fs_info->generation)
498 WARN_ON(1);
500 parent_nritems = btrfs_header_nritems(parent);
501 blocksize = btrfs_level_size(root, parent_level - 1);
502 end_slot = parent_nritems;
504 if (parent_nritems == 1)
505 return 0;
507 for (i = start_slot; i < end_slot; i++) {
508 int close = 1;
510 if (!parent->map_token) {
511 map_extent_buffer(parent,
512 btrfs_node_key_ptr_offset(i),
513 sizeof(struct btrfs_key_ptr),
514 &parent->map_token, &parent->kaddr,
515 &parent->map_start, &parent->map_len,
516 KM_USER1);
518 btrfs_node_key(parent, &disk_key, i);
519 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
520 continue;
522 progress_passed = 1;
523 blocknr = btrfs_node_blockptr(parent, i);
524 gen = btrfs_node_ptr_generation(parent, i);
525 if (last_block == 0)
526 last_block = blocknr;
528 if (i > 0) {
529 other = btrfs_node_blockptr(parent, i - 1);
530 close = close_blocks(blocknr, other, blocksize);
532 if (!close && i < end_slot - 2) {
533 other = btrfs_node_blockptr(parent, i + 1);
534 close = close_blocks(blocknr, other, blocksize);
536 if (close) {
537 last_block = blocknr;
538 continue;
540 if (parent->map_token) {
541 unmap_extent_buffer(parent, parent->map_token,
542 KM_USER1);
543 parent->map_token = NULL;
546 cur = btrfs_find_tree_block(root, blocknr, blocksize);
547 if (cur)
548 uptodate = btrfs_buffer_uptodate(cur, gen);
549 else
550 uptodate = 0;
551 if (!cur || !uptodate) {
552 if (cache_only) {
553 free_extent_buffer(cur);
554 continue;
556 if (!cur) {
557 cur = read_tree_block(root, blocknr,
558 blocksize, gen);
559 } else if (!uptodate) {
560 btrfs_read_buffer(cur, gen);
563 if (search_start == 0)
564 search_start = last_block;
566 btrfs_tree_lock(cur);
567 err = __btrfs_cow_block(trans, root, cur, parent, i,
568 &cur, search_start,
569 min(16 * blocksize,
570 (end_slot - i) * blocksize), 0);
571 if (err) {
572 btrfs_tree_unlock(cur);
573 free_extent_buffer(cur);
574 break;
576 search_start = cur->start;
577 last_block = cur->start;
578 *last_ret = search_start;
579 btrfs_tree_unlock(cur);
580 free_extent_buffer(cur);
582 if (parent->map_token) {
583 unmap_extent_buffer(parent, parent->map_token,
584 KM_USER1);
585 parent->map_token = NULL;
587 return err;
591 * The leaf data grows from end-to-front in the node.
592 * this returns the address of the start of the last item,
593 * which is the stop of the leaf data stack
595 static inline unsigned int leaf_data_end(struct btrfs_root *root,
596 struct extent_buffer *leaf)
598 u32 nr = btrfs_header_nritems(leaf);
599 if (nr == 0)
600 return BTRFS_LEAF_DATA_SIZE(root);
601 return btrfs_item_offset_nr(leaf, nr - 1);
605 * extra debugging checks to make sure all the items in a key are
606 * well formed and in the proper order
608 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
609 int level)
611 struct extent_buffer *parent = NULL;
612 struct extent_buffer *node = path->nodes[level];
613 struct btrfs_disk_key parent_key;
614 struct btrfs_disk_key node_key;
615 int parent_slot;
616 int slot;
617 struct btrfs_key cpukey;
618 u32 nritems = btrfs_header_nritems(node);
620 if (path->nodes[level + 1])
621 parent = path->nodes[level + 1];
623 slot = path->slots[level];
624 BUG_ON(nritems == 0);
625 if (parent) {
626 parent_slot = path->slots[level + 1];
627 btrfs_node_key(parent, &parent_key, parent_slot);
628 btrfs_node_key(node, &node_key, 0);
629 BUG_ON(memcmp(&parent_key, &node_key,
630 sizeof(struct btrfs_disk_key)));
631 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
632 btrfs_header_bytenr(node));
634 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
635 if (slot != 0) {
636 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
637 btrfs_node_key(node, &node_key, slot);
638 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
640 if (slot < nritems - 1) {
641 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
642 btrfs_node_key(node, &node_key, slot);
643 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
645 return 0;
649 * extra checking to make sure all the items in a leaf are
650 * well formed and in the proper order
652 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
653 int level)
655 struct extent_buffer *leaf = path->nodes[level];
656 struct extent_buffer *parent = NULL;
657 int parent_slot;
658 struct btrfs_key cpukey;
659 struct btrfs_disk_key parent_key;
660 struct btrfs_disk_key leaf_key;
661 int slot = path->slots[0];
663 u32 nritems = btrfs_header_nritems(leaf);
665 if (path->nodes[level + 1])
666 parent = path->nodes[level + 1];
668 if (nritems == 0)
669 return 0;
671 if (parent) {
672 parent_slot = path->slots[level + 1];
673 btrfs_node_key(parent, &parent_key, parent_slot);
674 btrfs_item_key(leaf, &leaf_key, 0);
676 BUG_ON(memcmp(&parent_key, &leaf_key,
677 sizeof(struct btrfs_disk_key)));
678 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
679 btrfs_header_bytenr(leaf));
681 if (slot != 0 && slot < nritems - 1) {
682 btrfs_item_key(leaf, &leaf_key, slot);
683 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
684 if (comp_keys(&leaf_key, &cpukey) <= 0) {
685 btrfs_print_leaf(root, leaf);
686 printk(KERN_CRIT "slot %d offset bad key\n", slot);
687 BUG_ON(1);
689 if (btrfs_item_offset_nr(leaf, slot - 1) !=
690 btrfs_item_end_nr(leaf, slot)) {
691 btrfs_print_leaf(root, leaf);
692 printk(KERN_CRIT "slot %d offset bad\n", slot);
693 BUG_ON(1);
696 if (slot < nritems - 1) {
697 btrfs_item_key(leaf, &leaf_key, slot);
698 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
699 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
700 if (btrfs_item_offset_nr(leaf, slot) !=
701 btrfs_item_end_nr(leaf, slot + 1)) {
702 btrfs_print_leaf(root, leaf);
703 printk(KERN_CRIT "slot %d offset bad\n", slot);
704 BUG_ON(1);
707 BUG_ON(btrfs_item_offset_nr(leaf, 0) +
708 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
709 return 0;
712 static noinline int check_block(struct btrfs_root *root,
713 struct btrfs_path *path, int level)
715 return 0;
716 if (level == 0)
717 return check_leaf(root, path, level);
718 return check_node(root, path, level);
722 * search for key in the extent_buffer. The items start at offset p,
723 * and they are item_size apart. There are 'max' items in p.
725 * the slot in the array is returned via slot, and it points to
726 * the place where you would insert key if it is not found in
727 * the array.
729 * slot may point to max if the key is bigger than all of the keys
731 static noinline int generic_bin_search(struct extent_buffer *eb,
732 unsigned long p,
733 int item_size, struct btrfs_key *key,
734 int max, int *slot)
736 int low = 0;
737 int high = max;
738 int mid;
739 int ret;
740 struct btrfs_disk_key *tmp = NULL;
741 struct btrfs_disk_key unaligned;
742 unsigned long offset;
743 char *map_token = NULL;
744 char *kaddr = NULL;
745 unsigned long map_start = 0;
746 unsigned long map_len = 0;
747 int err;
749 while (low < high) {
750 mid = (low + high) / 2;
751 offset = p + mid * item_size;
753 if (!map_token || offset < map_start ||
754 (offset + sizeof(struct btrfs_disk_key)) >
755 map_start + map_len) {
756 if (map_token) {
757 unmap_extent_buffer(eb, map_token, KM_USER0);
758 map_token = NULL;
761 err = map_private_extent_buffer(eb, offset,
762 sizeof(struct btrfs_disk_key),
763 &map_token, &kaddr,
764 &map_start, &map_len, KM_USER0);
766 if (!err) {
767 tmp = (struct btrfs_disk_key *)(kaddr + offset -
768 map_start);
769 } else {
770 read_extent_buffer(eb, &unaligned,
771 offset, sizeof(unaligned));
772 tmp = &unaligned;
775 } else {
776 tmp = (struct btrfs_disk_key *)(kaddr + offset -
777 map_start);
779 ret = comp_keys(tmp, key);
781 if (ret < 0)
782 low = mid + 1;
783 else if (ret > 0)
784 high = mid;
785 else {
786 *slot = mid;
787 if (map_token)
788 unmap_extent_buffer(eb, map_token, KM_USER0);
789 return 0;
792 *slot = low;
793 if (map_token)
794 unmap_extent_buffer(eb, map_token, KM_USER0);
795 return 1;
799 * simple bin_search frontend that does the right thing for
800 * leaves vs nodes
802 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
803 int level, int *slot)
805 if (level == 0) {
806 return generic_bin_search(eb,
807 offsetof(struct btrfs_leaf, items),
808 sizeof(struct btrfs_item),
809 key, btrfs_header_nritems(eb),
810 slot);
811 } else {
812 return generic_bin_search(eb,
813 offsetof(struct btrfs_node, ptrs),
814 sizeof(struct btrfs_key_ptr),
815 key, btrfs_header_nritems(eb),
816 slot);
818 return -1;
821 /* given a node and slot number, this reads the blocks it points to. The
822 * extent buffer is returned with a reference taken (but unlocked).
823 * NULL is returned on error.
825 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
826 struct extent_buffer *parent, int slot)
828 int level = btrfs_header_level(parent);
829 if (slot < 0)
830 return NULL;
831 if (slot >= btrfs_header_nritems(parent))
832 return NULL;
834 BUG_ON(level == 0);
836 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
837 btrfs_level_size(root, level - 1),
838 btrfs_node_ptr_generation(parent, slot));
842 * node level balancing, used to make sure nodes are in proper order for
843 * item deletion. We balance from the top down, so we have to make sure
844 * that a deletion won't leave an node completely empty later on.
846 static noinline int balance_level(struct btrfs_trans_handle *trans,
847 struct btrfs_root *root,
848 struct btrfs_path *path, int level)
850 struct extent_buffer *right = NULL;
851 struct extent_buffer *mid;
852 struct extent_buffer *left = NULL;
853 struct extent_buffer *parent = NULL;
854 int ret = 0;
855 int wret;
856 int pslot;
857 int orig_slot = path->slots[level];
858 int err_on_enospc = 0;
859 u64 orig_ptr;
861 if (level == 0)
862 return 0;
864 mid = path->nodes[level];
865 WARN_ON(!path->locks[level]);
866 WARN_ON(btrfs_header_generation(mid) != trans->transid);
868 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
870 if (level < BTRFS_MAX_LEVEL - 1)
871 parent = path->nodes[level + 1];
872 pslot = path->slots[level + 1];
875 * deal with the case where there is only one pointer in the root
876 * by promoting the node below to a root
878 if (!parent) {
879 struct extent_buffer *child;
881 if (btrfs_header_nritems(mid) != 1)
882 return 0;
884 /* promote the child to a root */
885 child = read_node_slot(root, mid, 0);
886 btrfs_tree_lock(child);
887 BUG_ON(!child);
888 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
889 BUG_ON(ret);
891 spin_lock(&root->node_lock);
892 root->node = child;
893 spin_unlock(&root->node_lock);
895 ret = btrfs_update_extent_ref(trans, root, child->start,
896 mid->start, child->start,
897 root->root_key.objectid,
898 trans->transid, level - 1);
899 BUG_ON(ret);
901 add_root_to_dirty_list(root);
902 btrfs_tree_unlock(child);
903 path->locks[level] = 0;
904 path->nodes[level] = NULL;
905 clean_tree_block(trans, root, mid);
906 btrfs_tree_unlock(mid);
907 /* once for the path */
908 free_extent_buffer(mid);
909 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
910 mid->start, root->root_key.objectid,
911 btrfs_header_generation(mid),
912 level, 1);
913 /* once for the root ptr */
914 free_extent_buffer(mid);
915 return ret;
917 if (btrfs_header_nritems(mid) >
918 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
919 return 0;
921 if (btrfs_header_nritems(mid) < 2)
922 err_on_enospc = 1;
924 left = read_node_slot(root, parent, pslot - 1);
925 if (left) {
926 btrfs_tree_lock(left);
927 wret = btrfs_cow_block(trans, root, left,
928 parent, pslot - 1, &left, 0);
929 if (wret) {
930 ret = wret;
931 goto enospc;
934 right = read_node_slot(root, parent, pslot + 1);
935 if (right) {
936 btrfs_tree_lock(right);
937 wret = btrfs_cow_block(trans, root, right,
938 parent, pslot + 1, &right, 0);
939 if (wret) {
940 ret = wret;
941 goto enospc;
945 /* first, try to make some room in the middle buffer */
946 if (left) {
947 orig_slot += btrfs_header_nritems(left);
948 wret = push_node_left(trans, root, left, mid, 1);
949 if (wret < 0)
950 ret = wret;
951 if (btrfs_header_nritems(mid) < 2)
952 err_on_enospc = 1;
956 * then try to empty the right most buffer into the middle
958 if (right) {
959 wret = push_node_left(trans, root, mid, right, 1);
960 if (wret < 0 && wret != -ENOSPC)
961 ret = wret;
962 if (btrfs_header_nritems(right) == 0) {
963 u64 bytenr = right->start;
964 u64 generation = btrfs_header_generation(parent);
965 u32 blocksize = right->len;
967 clean_tree_block(trans, root, right);
968 btrfs_tree_unlock(right);
969 free_extent_buffer(right);
970 right = NULL;
971 wret = del_ptr(trans, root, path, level + 1, pslot +
973 if (wret)
974 ret = wret;
975 wret = btrfs_free_extent(trans, root, bytenr,
976 blocksize, parent->start,
977 btrfs_header_owner(parent),
978 generation, level, 1);
979 if (wret)
980 ret = wret;
981 } else {
982 struct btrfs_disk_key right_key;
983 btrfs_node_key(right, &right_key, 0);
984 btrfs_set_node_key(parent, &right_key, pslot + 1);
985 btrfs_mark_buffer_dirty(parent);
988 if (btrfs_header_nritems(mid) == 1) {
990 * we're not allowed to leave a node with one item in the
991 * tree during a delete. A deletion from lower in the tree
992 * could try to delete the only pointer in this node.
993 * So, pull some keys from the left.
994 * There has to be a left pointer at this point because
995 * otherwise we would have pulled some pointers from the
996 * right
998 BUG_ON(!left);
999 wret = balance_node_right(trans, root, mid, left);
1000 if (wret < 0) {
1001 ret = wret;
1002 goto enospc;
1004 if (wret == 1) {
1005 wret = push_node_left(trans, root, left, mid, 1);
1006 if (wret < 0)
1007 ret = wret;
1009 BUG_ON(wret == 1);
1011 if (btrfs_header_nritems(mid) == 0) {
1012 /* we've managed to empty the middle node, drop it */
1013 u64 root_gen = btrfs_header_generation(parent);
1014 u64 bytenr = mid->start;
1015 u32 blocksize = mid->len;
1017 clean_tree_block(trans, root, mid);
1018 btrfs_tree_unlock(mid);
1019 free_extent_buffer(mid);
1020 mid = NULL;
1021 wret = del_ptr(trans, root, path, level + 1, pslot);
1022 if (wret)
1023 ret = wret;
1024 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1025 parent->start,
1026 btrfs_header_owner(parent),
1027 root_gen, level, 1);
1028 if (wret)
1029 ret = wret;
1030 } else {
1031 /* update the parent key to reflect our changes */
1032 struct btrfs_disk_key mid_key;
1033 btrfs_node_key(mid, &mid_key, 0);
1034 btrfs_set_node_key(parent, &mid_key, pslot);
1035 btrfs_mark_buffer_dirty(parent);
1038 /* update the path */
1039 if (left) {
1040 if (btrfs_header_nritems(left) > orig_slot) {
1041 extent_buffer_get(left);
1042 /* left was locked after cow */
1043 path->nodes[level] = left;
1044 path->slots[level + 1] -= 1;
1045 path->slots[level] = orig_slot;
1046 if (mid) {
1047 btrfs_tree_unlock(mid);
1048 free_extent_buffer(mid);
1050 } else {
1051 orig_slot -= btrfs_header_nritems(left);
1052 path->slots[level] = orig_slot;
1055 /* double check we haven't messed things up */
1056 check_block(root, path, level);
1057 if (orig_ptr !=
1058 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1059 BUG();
1060 enospc:
1061 if (right) {
1062 btrfs_tree_unlock(right);
1063 free_extent_buffer(right);
1065 if (left) {
1066 if (path->nodes[level] != left)
1067 btrfs_tree_unlock(left);
1068 free_extent_buffer(left);
1070 return ret;
1073 /* Node balancing for insertion. Here we only split or push nodes around
1074 * when they are completely full. This is also done top down, so we
1075 * have to be pessimistic.
1077 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1078 struct btrfs_root *root,
1079 struct btrfs_path *path, int level)
1081 struct extent_buffer *right = NULL;
1082 struct extent_buffer *mid;
1083 struct extent_buffer *left = NULL;
1084 struct extent_buffer *parent = NULL;
1085 int ret = 0;
1086 int wret;
1087 int pslot;
1088 int orig_slot = path->slots[level];
1089 u64 orig_ptr;
1091 if (level == 0)
1092 return 1;
1094 mid = path->nodes[level];
1095 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1096 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1098 if (level < BTRFS_MAX_LEVEL - 1)
1099 parent = path->nodes[level + 1];
1100 pslot = path->slots[level + 1];
1102 if (!parent)
1103 return 1;
1105 left = read_node_slot(root, parent, pslot - 1);
1107 /* first, try to make some room in the middle buffer */
1108 if (left) {
1109 u32 left_nr;
1111 btrfs_tree_lock(left);
1112 left_nr = btrfs_header_nritems(left);
1113 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1114 wret = 1;
1115 } else {
1116 ret = btrfs_cow_block(trans, root, left, parent,
1117 pslot - 1, &left, 0);
1118 if (ret)
1119 wret = 1;
1120 else {
1121 wret = push_node_left(trans, root,
1122 left, mid, 0);
1125 if (wret < 0)
1126 ret = wret;
1127 if (wret == 0) {
1128 struct btrfs_disk_key disk_key;
1129 orig_slot += left_nr;
1130 btrfs_node_key(mid, &disk_key, 0);
1131 btrfs_set_node_key(parent, &disk_key, pslot);
1132 btrfs_mark_buffer_dirty(parent);
1133 if (btrfs_header_nritems(left) > orig_slot) {
1134 path->nodes[level] = left;
1135 path->slots[level + 1] -= 1;
1136 path->slots[level] = orig_slot;
1137 btrfs_tree_unlock(mid);
1138 free_extent_buffer(mid);
1139 } else {
1140 orig_slot -=
1141 btrfs_header_nritems(left);
1142 path->slots[level] = orig_slot;
1143 btrfs_tree_unlock(left);
1144 free_extent_buffer(left);
1146 return 0;
1148 btrfs_tree_unlock(left);
1149 free_extent_buffer(left);
1151 right = read_node_slot(root, parent, pslot + 1);
1154 * then try to empty the right most buffer into the middle
1156 if (right) {
1157 u32 right_nr;
1158 btrfs_tree_lock(right);
1159 right_nr = btrfs_header_nritems(right);
1160 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1161 wret = 1;
1162 } else {
1163 ret = btrfs_cow_block(trans, root, right,
1164 parent, pslot + 1,
1165 &right, 0);
1166 if (ret)
1167 wret = 1;
1168 else {
1169 wret = balance_node_right(trans, root,
1170 right, mid);
1173 if (wret < 0)
1174 ret = wret;
1175 if (wret == 0) {
1176 struct btrfs_disk_key disk_key;
1178 btrfs_node_key(right, &disk_key, 0);
1179 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1180 btrfs_mark_buffer_dirty(parent);
1182 if (btrfs_header_nritems(mid) <= orig_slot) {
1183 path->nodes[level] = right;
1184 path->slots[level + 1] += 1;
1185 path->slots[level] = orig_slot -
1186 btrfs_header_nritems(mid);
1187 btrfs_tree_unlock(mid);
1188 free_extent_buffer(mid);
1189 } else {
1190 btrfs_tree_unlock(right);
1191 free_extent_buffer(right);
1193 return 0;
1195 btrfs_tree_unlock(right);
1196 free_extent_buffer(right);
1198 return 1;
1202 * readahead one full node of leaves, finding things that are close
1203 * to the block in 'slot', and triggering ra on them.
1205 static noinline void reada_for_search(struct btrfs_root *root,
1206 struct btrfs_path *path,
1207 int level, int slot, u64 objectid)
1209 struct extent_buffer *node;
1210 struct btrfs_disk_key disk_key;
1211 u32 nritems;
1212 u64 search;
1213 u64 lowest_read;
1214 u64 highest_read;
1215 u64 nread = 0;
1216 int direction = path->reada;
1217 struct extent_buffer *eb;
1218 u32 nr;
1219 u32 blocksize;
1220 u32 nscan = 0;
1222 if (level != 1)
1223 return;
1225 if (!path->nodes[level])
1226 return;
1228 node = path->nodes[level];
1230 search = btrfs_node_blockptr(node, slot);
1231 blocksize = btrfs_level_size(root, level - 1);
1232 eb = btrfs_find_tree_block(root, search, blocksize);
1233 if (eb) {
1234 free_extent_buffer(eb);
1235 return;
1238 highest_read = search;
1239 lowest_read = search;
1241 nritems = btrfs_header_nritems(node);
1242 nr = slot;
1243 while (1) {
1244 if (direction < 0) {
1245 if (nr == 0)
1246 break;
1247 nr--;
1248 } else if (direction > 0) {
1249 nr++;
1250 if (nr >= nritems)
1251 break;
1253 if (path->reada < 0 && objectid) {
1254 btrfs_node_key(node, &disk_key, nr);
1255 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1256 break;
1258 search = btrfs_node_blockptr(node, nr);
1259 if ((search >= lowest_read && search <= highest_read) ||
1260 (search < lowest_read && lowest_read - search <= 16384) ||
1261 (search > highest_read && search - highest_read <= 16384)) {
1262 readahead_tree_block(root, search, blocksize,
1263 btrfs_node_ptr_generation(node, nr));
1264 nread += blocksize;
1266 nscan++;
1267 if (path->reada < 2 && (nread > (64 * 1024) || nscan > 32))
1268 break;
1270 if (nread > (256 * 1024) || nscan > 128)
1271 break;
1273 if (search < lowest_read)
1274 lowest_read = search;
1275 if (search > highest_read)
1276 highest_read = search;
1281 * when we walk down the tree, it is usually safe to unlock the higher layers
1282 * in the tree. The exceptions are when our path goes through slot 0, because
1283 * operations on the tree might require changing key pointers higher up in the
1284 * tree.
1286 * callers might also have set path->keep_locks, which tells this code to keep
1287 * the lock if the path points to the last slot in the block. This is part of
1288 * walking through the tree, and selecting the next slot in the higher block.
1290 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1291 * if lowest_unlock is 1, level 0 won't be unlocked
1293 static noinline void unlock_up(struct btrfs_path *path, int level,
1294 int lowest_unlock)
1296 int i;
1297 int skip_level = level;
1298 int no_skips = 0;
1299 struct extent_buffer *t;
1301 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1302 if (!path->nodes[i])
1303 break;
1304 if (!path->locks[i])
1305 break;
1306 if (!no_skips && path->slots[i] == 0) {
1307 skip_level = i + 1;
1308 continue;
1310 if (!no_skips && path->keep_locks) {
1311 u32 nritems;
1312 t = path->nodes[i];
1313 nritems = btrfs_header_nritems(t);
1314 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1315 skip_level = i + 1;
1316 continue;
1319 if (skip_level < i && i >= lowest_unlock)
1320 no_skips = 1;
1322 t = path->nodes[i];
1323 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1324 btrfs_tree_unlock(t);
1325 path->locks[i] = 0;
1331 * look for key in the tree. path is filled in with nodes along the way
1332 * if key is found, we return zero and you can find the item in the leaf
1333 * level of the path (level 0)
1335 * If the key isn't found, the path points to the slot where it should
1336 * be inserted, and 1 is returned. If there are other errors during the
1337 * search a negative error number is returned.
1339 * if ins_len > 0, nodes and leaves will be split as we walk down the
1340 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1341 * possible)
1343 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1344 *root, struct btrfs_key *key, struct btrfs_path *p, int
1345 ins_len, int cow)
1347 struct extent_buffer *b;
1348 struct extent_buffer *tmp;
1349 int slot;
1350 int ret;
1351 int level;
1352 int should_reada = p->reada;
1353 int lowest_unlock = 1;
1354 int blocksize;
1355 u8 lowest_level = 0;
1356 u64 blocknr;
1357 u64 gen;
1358 struct btrfs_key prealloc_block;
1360 lowest_level = p->lowest_level;
1361 WARN_ON(lowest_level && ins_len > 0);
1362 WARN_ON(p->nodes[0] != NULL);
1364 if (ins_len < 0)
1365 lowest_unlock = 2;
1367 prealloc_block.objectid = 0;
1369 again:
1370 if (p->skip_locking)
1371 b = btrfs_root_node(root);
1372 else
1373 b = btrfs_lock_root_node(root);
1375 while (b) {
1376 level = btrfs_header_level(b);
1379 * setup the path here so we can release it under lock
1380 * contention with the cow code
1382 p->nodes[level] = b;
1383 if (!p->skip_locking)
1384 p->locks[level] = 1;
1386 if (cow) {
1387 int wret;
1389 /* is a cow on this block not required */
1390 spin_lock(&root->fs_info->hash_lock);
1391 if (btrfs_header_generation(b) == trans->transid &&
1392 btrfs_header_owner(b) == root->root_key.objectid &&
1393 !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1394 spin_unlock(&root->fs_info->hash_lock);
1395 goto cow_done;
1397 spin_unlock(&root->fs_info->hash_lock);
1399 /* ok, we have to cow, is our old prealloc the right
1400 * size?
1402 if (prealloc_block.objectid &&
1403 prealloc_block.offset != b->len) {
1404 btrfs_free_reserved_extent(root,
1405 prealloc_block.objectid,
1406 prealloc_block.offset);
1407 prealloc_block.objectid = 0;
1411 * for higher level blocks, try not to allocate blocks
1412 * with the block and the parent locks held.
1414 if (level > 1 && !prealloc_block.objectid &&
1415 btrfs_path_lock_waiting(p, level)) {
1416 u32 size = b->len;
1417 u64 hint = b->start;
1419 btrfs_release_path(root, p);
1420 ret = btrfs_reserve_extent(trans, root,
1421 size, size, 0,
1422 hint, (u64)-1,
1423 &prealloc_block, 0);
1424 BUG_ON(ret);
1425 goto again;
1428 wret = btrfs_cow_block(trans, root, b,
1429 p->nodes[level + 1],
1430 p->slots[level + 1],
1431 &b, prealloc_block.objectid);
1432 prealloc_block.objectid = 0;
1433 if (wret) {
1434 free_extent_buffer(b);
1435 ret = wret;
1436 goto done;
1439 cow_done:
1440 BUG_ON(!cow && ins_len);
1441 if (level != btrfs_header_level(b))
1442 WARN_ON(1);
1443 level = btrfs_header_level(b);
1445 p->nodes[level] = b;
1446 if (!p->skip_locking)
1447 p->locks[level] = 1;
1449 ret = check_block(root, p, level);
1450 if (ret) {
1451 ret = -1;
1452 goto done;
1455 ret = bin_search(b, key, level, &slot);
1456 if (level != 0) {
1457 if (ret && slot > 0)
1458 slot -= 1;
1459 p->slots[level] = slot;
1460 if ((p->search_for_split || ins_len > 0) &&
1461 btrfs_header_nritems(b) >=
1462 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1463 int sret = split_node(trans, root, p, level);
1464 BUG_ON(sret > 0);
1465 if (sret) {
1466 ret = sret;
1467 goto done;
1469 b = p->nodes[level];
1470 slot = p->slots[level];
1471 } else if (ins_len < 0) {
1472 int sret = balance_level(trans, root, p,
1473 level);
1474 if (sret) {
1475 ret = sret;
1476 goto done;
1478 b = p->nodes[level];
1479 if (!b) {
1480 btrfs_release_path(NULL, p);
1481 goto again;
1483 slot = p->slots[level];
1484 BUG_ON(btrfs_header_nritems(b) == 1);
1486 unlock_up(p, level, lowest_unlock);
1488 /* this is only true while dropping a snapshot */
1489 if (level == lowest_level) {
1490 ret = 0;
1491 goto done;
1494 blocknr = btrfs_node_blockptr(b, slot);
1495 gen = btrfs_node_ptr_generation(b, slot);
1496 blocksize = btrfs_level_size(root, level - 1);
1498 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1499 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1500 b = tmp;
1501 } else {
1503 * reduce lock contention at high levels
1504 * of the btree by dropping locks before
1505 * we read.
1507 if (level > 1) {
1508 btrfs_release_path(NULL, p);
1509 if (tmp)
1510 free_extent_buffer(tmp);
1511 if (should_reada)
1512 reada_for_search(root, p,
1513 level, slot,
1514 key->objectid);
1516 tmp = read_tree_block(root, blocknr,
1517 blocksize, gen);
1518 if (tmp)
1519 free_extent_buffer(tmp);
1520 goto again;
1521 } else {
1522 if (tmp)
1523 free_extent_buffer(tmp);
1524 if (should_reada)
1525 reada_for_search(root, p,
1526 level, slot,
1527 key->objectid);
1528 b = read_node_slot(root, b, slot);
1531 if (!p->skip_locking)
1532 btrfs_tree_lock(b);
1533 } else {
1534 p->slots[level] = slot;
1535 if (ins_len > 0 &&
1536 btrfs_leaf_free_space(root, b) < ins_len) {
1537 int sret = split_leaf(trans, root, key,
1538 p, ins_len, ret == 0);
1539 BUG_ON(sret > 0);
1540 if (sret) {
1541 ret = sret;
1542 goto done;
1545 if (!p->search_for_split)
1546 unlock_up(p, level, lowest_unlock);
1547 goto done;
1550 ret = 1;
1551 done:
1552 if (prealloc_block.objectid) {
1553 btrfs_free_reserved_extent(root,
1554 prealloc_block.objectid,
1555 prealloc_block.offset);
1558 return ret;
1561 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1562 struct btrfs_root *root,
1563 struct btrfs_key *node_keys,
1564 u64 *nodes, int lowest_level)
1566 struct extent_buffer *eb;
1567 struct extent_buffer *parent;
1568 struct btrfs_key key;
1569 u64 bytenr;
1570 u64 generation;
1571 u32 blocksize;
1572 int level;
1573 int slot;
1574 int key_match;
1575 int ret;
1577 eb = btrfs_lock_root_node(root);
1578 ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
1579 BUG_ON(ret);
1581 parent = eb;
1582 while (1) {
1583 level = btrfs_header_level(parent);
1584 if (level == 0 || level <= lowest_level)
1585 break;
1587 ret = bin_search(parent, &node_keys[lowest_level], level,
1588 &slot);
1589 if (ret && slot > 0)
1590 slot--;
1592 bytenr = btrfs_node_blockptr(parent, slot);
1593 if (nodes[level - 1] == bytenr)
1594 break;
1596 blocksize = btrfs_level_size(root, level - 1);
1597 generation = btrfs_node_ptr_generation(parent, slot);
1598 btrfs_node_key_to_cpu(eb, &key, slot);
1599 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1601 if (generation == trans->transid) {
1602 eb = read_tree_block(root, bytenr, blocksize,
1603 generation);
1604 btrfs_tree_lock(eb);
1608 * if node keys match and node pointer hasn't been modified
1609 * in the running transaction, we can merge the path. for
1610 * blocks owened by reloc trees, the node pointer check is
1611 * skipped, this is because these blocks are fully controlled
1612 * by the space balance code, no one else can modify them.
1614 if (!nodes[level - 1] || !key_match ||
1615 (generation == trans->transid &&
1616 btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1617 if (level == 1 || level == lowest_level + 1) {
1618 if (generation == trans->transid) {
1619 btrfs_tree_unlock(eb);
1620 free_extent_buffer(eb);
1622 break;
1625 if (generation != trans->transid) {
1626 eb = read_tree_block(root, bytenr, blocksize,
1627 generation);
1628 btrfs_tree_lock(eb);
1631 ret = btrfs_cow_block(trans, root, eb, parent, slot,
1632 &eb, 0);
1633 BUG_ON(ret);
1635 if (root->root_key.objectid ==
1636 BTRFS_TREE_RELOC_OBJECTID) {
1637 if (!nodes[level - 1]) {
1638 nodes[level - 1] = eb->start;
1639 memcpy(&node_keys[level - 1], &key,
1640 sizeof(node_keys[0]));
1641 } else {
1642 WARN_ON(1);
1646 btrfs_tree_unlock(parent);
1647 free_extent_buffer(parent);
1648 parent = eb;
1649 continue;
1652 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1653 btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1654 btrfs_mark_buffer_dirty(parent);
1656 ret = btrfs_inc_extent_ref(trans, root,
1657 nodes[level - 1],
1658 blocksize, parent->start,
1659 btrfs_header_owner(parent),
1660 btrfs_header_generation(parent),
1661 level - 1);
1662 BUG_ON(ret);
1665 * If the block was created in the running transaction,
1666 * it's possible this is the last reference to it, so we
1667 * should drop the subtree.
1669 if (generation == trans->transid) {
1670 ret = btrfs_drop_subtree(trans, root, eb, parent);
1671 BUG_ON(ret);
1672 btrfs_tree_unlock(eb);
1673 free_extent_buffer(eb);
1674 } else {
1675 ret = btrfs_free_extent(trans, root, bytenr,
1676 blocksize, parent->start,
1677 btrfs_header_owner(parent),
1678 btrfs_header_generation(parent),
1679 level - 1, 1);
1680 BUG_ON(ret);
1682 break;
1684 btrfs_tree_unlock(parent);
1685 free_extent_buffer(parent);
1686 return 0;
1690 * adjust the pointers going up the tree, starting at level
1691 * making sure the right key of each node is points to 'key'.
1692 * This is used after shifting pointers to the left, so it stops
1693 * fixing up pointers when a given leaf/node is not in slot 0 of the
1694 * higher levels
1696 * If this fails to write a tree block, it returns -1, but continues
1697 * fixing up the blocks in ram so the tree is consistent.
1699 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1700 struct btrfs_root *root, struct btrfs_path *path,
1701 struct btrfs_disk_key *key, int level)
1703 int i;
1704 int ret = 0;
1705 struct extent_buffer *t;
1707 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1708 int tslot = path->slots[i];
1709 if (!path->nodes[i])
1710 break;
1711 t = path->nodes[i];
1712 btrfs_set_node_key(t, key, tslot);
1713 btrfs_mark_buffer_dirty(path->nodes[i]);
1714 if (tslot != 0)
1715 break;
1717 return ret;
1721 * update item key.
1723 * This function isn't completely safe. It's the caller's responsibility
1724 * that the new key won't break the order
1726 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1727 struct btrfs_root *root, struct btrfs_path *path,
1728 struct btrfs_key *new_key)
1730 struct btrfs_disk_key disk_key;
1731 struct extent_buffer *eb;
1732 int slot;
1734 eb = path->nodes[0];
1735 slot = path->slots[0];
1736 if (slot > 0) {
1737 btrfs_item_key(eb, &disk_key, slot - 1);
1738 if (comp_keys(&disk_key, new_key) >= 0)
1739 return -1;
1741 if (slot < btrfs_header_nritems(eb) - 1) {
1742 btrfs_item_key(eb, &disk_key, slot + 1);
1743 if (comp_keys(&disk_key, new_key) <= 0)
1744 return -1;
1747 btrfs_cpu_key_to_disk(&disk_key, new_key);
1748 btrfs_set_item_key(eb, &disk_key, slot);
1749 btrfs_mark_buffer_dirty(eb);
1750 if (slot == 0)
1751 fixup_low_keys(trans, root, path, &disk_key, 1);
1752 return 0;
1756 * try to push data from one node into the next node left in the
1757 * tree.
1759 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1760 * error, and > 0 if there was no room in the left hand block.
1762 static int push_node_left(struct btrfs_trans_handle *trans,
1763 struct btrfs_root *root, struct extent_buffer *dst,
1764 struct extent_buffer *src, int empty)
1766 int push_items = 0;
1767 int src_nritems;
1768 int dst_nritems;
1769 int ret = 0;
1771 src_nritems = btrfs_header_nritems(src);
1772 dst_nritems = btrfs_header_nritems(dst);
1773 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1774 WARN_ON(btrfs_header_generation(src) != trans->transid);
1775 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1777 if (!empty && src_nritems <= 8)
1778 return 1;
1780 if (push_items <= 0)
1781 return 1;
1783 if (empty) {
1784 push_items = min(src_nritems, push_items);
1785 if (push_items < src_nritems) {
1786 /* leave at least 8 pointers in the node if
1787 * we aren't going to empty it
1789 if (src_nritems - push_items < 8) {
1790 if (push_items <= 8)
1791 return 1;
1792 push_items -= 8;
1795 } else
1796 push_items = min(src_nritems - 8, push_items);
1798 copy_extent_buffer(dst, src,
1799 btrfs_node_key_ptr_offset(dst_nritems),
1800 btrfs_node_key_ptr_offset(0),
1801 push_items * sizeof(struct btrfs_key_ptr));
1803 if (push_items < src_nritems) {
1804 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1805 btrfs_node_key_ptr_offset(push_items),
1806 (src_nritems - push_items) *
1807 sizeof(struct btrfs_key_ptr));
1809 btrfs_set_header_nritems(src, src_nritems - push_items);
1810 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1811 btrfs_mark_buffer_dirty(src);
1812 btrfs_mark_buffer_dirty(dst);
1814 ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
1815 BUG_ON(ret);
1817 return ret;
1821 * try to push data from one node into the next node right in the
1822 * tree.
1824 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1825 * error, and > 0 if there was no room in the right hand block.
1827 * this will only push up to 1/2 the contents of the left node over
1829 static int balance_node_right(struct btrfs_trans_handle *trans,
1830 struct btrfs_root *root,
1831 struct extent_buffer *dst,
1832 struct extent_buffer *src)
1834 int push_items = 0;
1835 int max_push;
1836 int src_nritems;
1837 int dst_nritems;
1838 int ret = 0;
1840 WARN_ON(btrfs_header_generation(src) != trans->transid);
1841 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1843 src_nritems = btrfs_header_nritems(src);
1844 dst_nritems = btrfs_header_nritems(dst);
1845 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1846 if (push_items <= 0)
1847 return 1;
1849 if (src_nritems < 4)
1850 return 1;
1852 max_push = src_nritems / 2 + 1;
1853 /* don't try to empty the node */
1854 if (max_push >= src_nritems)
1855 return 1;
1857 if (max_push < push_items)
1858 push_items = max_push;
1860 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
1861 btrfs_node_key_ptr_offset(0),
1862 (dst_nritems) *
1863 sizeof(struct btrfs_key_ptr));
1865 copy_extent_buffer(dst, src,
1866 btrfs_node_key_ptr_offset(0),
1867 btrfs_node_key_ptr_offset(src_nritems - push_items),
1868 push_items * sizeof(struct btrfs_key_ptr));
1870 btrfs_set_header_nritems(src, src_nritems - push_items);
1871 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1873 btrfs_mark_buffer_dirty(src);
1874 btrfs_mark_buffer_dirty(dst);
1876 ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
1877 BUG_ON(ret);
1879 return ret;
1883 * helper function to insert a new root level in the tree.
1884 * A new node is allocated, and a single item is inserted to
1885 * point to the existing root
1887 * returns zero on success or < 0 on failure.
1889 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
1890 struct btrfs_root *root,
1891 struct btrfs_path *path, int level)
1893 u64 lower_gen;
1894 struct extent_buffer *lower;
1895 struct extent_buffer *c;
1896 struct extent_buffer *old;
1897 struct btrfs_disk_key lower_key;
1898 int ret;
1900 BUG_ON(path->nodes[level]);
1901 BUG_ON(path->nodes[level-1] != root->node);
1903 lower = path->nodes[level-1];
1904 if (level == 1)
1905 btrfs_item_key(lower, &lower_key, 0);
1906 else
1907 btrfs_node_key(lower, &lower_key, 0);
1909 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
1910 root->root_key.objectid, trans->transid,
1911 level, root->node->start, 0);
1912 if (IS_ERR(c))
1913 return PTR_ERR(c);
1915 memset_extent_buffer(c, 0, 0, root->nodesize);
1916 btrfs_set_header_nritems(c, 1);
1917 btrfs_set_header_level(c, level);
1918 btrfs_set_header_bytenr(c, c->start);
1919 btrfs_set_header_generation(c, trans->transid);
1920 btrfs_set_header_owner(c, root->root_key.objectid);
1922 write_extent_buffer(c, root->fs_info->fsid,
1923 (unsigned long)btrfs_header_fsid(c),
1924 BTRFS_FSID_SIZE);
1926 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
1927 (unsigned long)btrfs_header_chunk_tree_uuid(c),
1928 BTRFS_UUID_SIZE);
1930 btrfs_set_node_key(c, &lower_key, 0);
1931 btrfs_set_node_blockptr(c, 0, lower->start);
1932 lower_gen = btrfs_header_generation(lower);
1933 WARN_ON(lower_gen != trans->transid);
1935 btrfs_set_node_ptr_generation(c, 0, lower_gen);
1937 btrfs_mark_buffer_dirty(c);
1939 spin_lock(&root->node_lock);
1940 old = root->node;
1941 root->node = c;
1942 spin_unlock(&root->node_lock);
1944 ret = btrfs_update_extent_ref(trans, root, lower->start,
1945 lower->start, c->start,
1946 root->root_key.objectid,
1947 trans->transid, level - 1);
1948 BUG_ON(ret);
1950 /* the super has an extra ref to root->node */
1951 free_extent_buffer(old);
1953 add_root_to_dirty_list(root);
1954 extent_buffer_get(c);
1955 path->nodes[level] = c;
1956 path->locks[level] = 1;
1957 path->slots[level] = 0;
1958 return 0;
1962 * worker function to insert a single pointer in a node.
1963 * the node should have enough room for the pointer already
1965 * slot and level indicate where you want the key to go, and
1966 * blocknr is the block the key points to.
1968 * returns zero on success and < 0 on any error
1970 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
1971 *root, struct btrfs_path *path, struct btrfs_disk_key
1972 *key, u64 bytenr, int slot, int level)
1974 struct extent_buffer *lower;
1975 int nritems;
1977 BUG_ON(!path->nodes[level]);
1978 lower = path->nodes[level];
1979 nritems = btrfs_header_nritems(lower);
1980 if (slot > nritems)
1981 BUG();
1982 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
1983 BUG();
1984 if (slot != nritems) {
1985 memmove_extent_buffer(lower,
1986 btrfs_node_key_ptr_offset(slot + 1),
1987 btrfs_node_key_ptr_offset(slot),
1988 (nritems - slot) * sizeof(struct btrfs_key_ptr));
1990 btrfs_set_node_key(lower, key, slot);
1991 btrfs_set_node_blockptr(lower, slot, bytenr);
1992 WARN_ON(trans->transid == 0);
1993 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
1994 btrfs_set_header_nritems(lower, nritems + 1);
1995 btrfs_mark_buffer_dirty(lower);
1996 return 0;
2000 * split the node at the specified level in path in two.
2001 * The path is corrected to point to the appropriate node after the split
2003 * Before splitting this tries to make some room in the node by pushing
2004 * left and right, if either one works, it returns right away.
2006 * returns 0 on success and < 0 on failure
2008 static noinline int split_node(struct btrfs_trans_handle *trans,
2009 struct btrfs_root *root,
2010 struct btrfs_path *path, int level)
2012 struct extent_buffer *c;
2013 struct extent_buffer *split;
2014 struct btrfs_disk_key disk_key;
2015 int mid;
2016 int ret;
2017 int wret;
2018 u32 c_nritems;
2020 c = path->nodes[level];
2021 WARN_ON(btrfs_header_generation(c) != trans->transid);
2022 if (c == root->node) {
2023 /* trying to split the root, lets make a new one */
2024 ret = insert_new_root(trans, root, path, level + 1);
2025 if (ret)
2026 return ret;
2027 } else {
2028 ret = push_nodes_for_insert(trans, root, path, level);
2029 c = path->nodes[level];
2030 if (!ret && btrfs_header_nritems(c) <
2031 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2032 return 0;
2033 if (ret < 0)
2034 return ret;
2037 c_nritems = btrfs_header_nritems(c);
2039 split = btrfs_alloc_free_block(trans, root, root->nodesize,
2040 path->nodes[level + 1]->start,
2041 root->root_key.objectid,
2042 trans->transid, level, c->start, 0);
2043 if (IS_ERR(split))
2044 return PTR_ERR(split);
2046 btrfs_set_header_flags(split, btrfs_header_flags(c));
2047 btrfs_set_header_level(split, btrfs_header_level(c));
2048 btrfs_set_header_bytenr(split, split->start);
2049 btrfs_set_header_generation(split, trans->transid);
2050 btrfs_set_header_owner(split, root->root_key.objectid);
2051 btrfs_set_header_flags(split, 0);
2052 write_extent_buffer(split, root->fs_info->fsid,
2053 (unsigned long)btrfs_header_fsid(split),
2054 BTRFS_FSID_SIZE);
2055 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2056 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2057 BTRFS_UUID_SIZE);
2059 mid = (c_nritems + 1) / 2;
2061 copy_extent_buffer(split, c,
2062 btrfs_node_key_ptr_offset(0),
2063 btrfs_node_key_ptr_offset(mid),
2064 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2065 btrfs_set_header_nritems(split, c_nritems - mid);
2066 btrfs_set_header_nritems(c, mid);
2067 ret = 0;
2069 btrfs_mark_buffer_dirty(c);
2070 btrfs_mark_buffer_dirty(split);
2072 btrfs_node_key(split, &disk_key, 0);
2073 wret = insert_ptr(trans, root, path, &disk_key, split->start,
2074 path->slots[level + 1] + 1,
2075 level + 1);
2076 if (wret)
2077 ret = wret;
2079 ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2080 BUG_ON(ret);
2082 if (path->slots[level] >= mid) {
2083 path->slots[level] -= mid;
2084 btrfs_tree_unlock(c);
2085 free_extent_buffer(c);
2086 path->nodes[level] = split;
2087 path->slots[level + 1] += 1;
2088 } else {
2089 btrfs_tree_unlock(split);
2090 free_extent_buffer(split);
2092 return ret;
2096 * how many bytes are required to store the items in a leaf. start
2097 * and nr indicate which items in the leaf to check. This totals up the
2098 * space used both by the item structs and the item data
2100 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2102 int data_len;
2103 int nritems = btrfs_header_nritems(l);
2104 int end = min(nritems, start + nr) - 1;
2106 if (!nr)
2107 return 0;
2108 data_len = btrfs_item_end_nr(l, start);
2109 data_len = data_len - btrfs_item_offset_nr(l, end);
2110 data_len += sizeof(struct btrfs_item) * nr;
2111 WARN_ON(data_len < 0);
2112 return data_len;
2116 * The space between the end of the leaf items and
2117 * the start of the leaf data. IOW, how much room
2118 * the leaf has left for both items and data
2120 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2121 struct extent_buffer *leaf)
2123 int nritems = btrfs_header_nritems(leaf);
2124 int ret;
2125 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2126 if (ret < 0) {
2127 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2128 "used %d nritems %d\n",
2129 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2130 leaf_space_used(leaf, 0, nritems), nritems);
2132 return ret;
2136 * push some data in the path leaf to the right, trying to free up at
2137 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2139 * returns 1 if the push failed because the other node didn't have enough
2140 * room, 0 if everything worked out and < 0 if there were major errors.
2142 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2143 *root, struct btrfs_path *path, int data_size,
2144 int empty)
2146 struct extent_buffer *left = path->nodes[0];
2147 struct extent_buffer *right;
2148 struct extent_buffer *upper;
2149 struct btrfs_disk_key disk_key;
2150 int slot;
2151 u32 i;
2152 int free_space;
2153 int push_space = 0;
2154 int push_items = 0;
2155 struct btrfs_item *item;
2156 u32 left_nritems;
2157 u32 nr;
2158 u32 right_nritems;
2159 u32 data_end;
2160 u32 this_item_size;
2161 int ret;
2163 slot = path->slots[1];
2164 if (!path->nodes[1])
2165 return 1;
2167 upper = path->nodes[1];
2168 if (slot >= btrfs_header_nritems(upper) - 1)
2169 return 1;
2171 WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2173 right = read_node_slot(root, upper, slot + 1);
2174 btrfs_tree_lock(right);
2175 free_space = btrfs_leaf_free_space(root, right);
2176 if (free_space < data_size)
2177 goto out_unlock;
2179 /* cow and double check */
2180 ret = btrfs_cow_block(trans, root, right, upper,
2181 slot + 1, &right, 0);
2182 if (ret)
2183 goto out_unlock;
2185 free_space = btrfs_leaf_free_space(root, right);
2186 if (free_space < data_size)
2187 goto out_unlock;
2189 left_nritems = btrfs_header_nritems(left);
2190 if (left_nritems == 0)
2191 goto out_unlock;
2193 if (empty)
2194 nr = 0;
2195 else
2196 nr = 1;
2198 if (path->slots[0] >= left_nritems)
2199 push_space += data_size;
2201 i = left_nritems - 1;
2202 while (i >= nr) {
2203 item = btrfs_item_nr(left, i);
2205 if (!empty && push_items > 0) {
2206 if (path->slots[0] > i)
2207 break;
2208 if (path->slots[0] == i) {
2209 int space = btrfs_leaf_free_space(root, left);
2210 if (space + push_space * 2 > free_space)
2211 break;
2215 if (path->slots[0] == i)
2216 push_space += data_size;
2218 if (!left->map_token) {
2219 map_extent_buffer(left, (unsigned long)item,
2220 sizeof(struct btrfs_item),
2221 &left->map_token, &left->kaddr,
2222 &left->map_start, &left->map_len,
2223 KM_USER1);
2226 this_item_size = btrfs_item_size(left, item);
2227 if (this_item_size + sizeof(*item) + push_space > free_space)
2228 break;
2230 push_items++;
2231 push_space += this_item_size + sizeof(*item);
2232 if (i == 0)
2233 break;
2234 i--;
2236 if (left->map_token) {
2237 unmap_extent_buffer(left, left->map_token, KM_USER1);
2238 left->map_token = NULL;
2241 if (push_items == 0)
2242 goto out_unlock;
2244 if (!empty && push_items == left_nritems)
2245 WARN_ON(1);
2247 /* push left to right */
2248 right_nritems = btrfs_header_nritems(right);
2250 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2251 push_space -= leaf_data_end(root, left);
2253 /* make room in the right data area */
2254 data_end = leaf_data_end(root, right);
2255 memmove_extent_buffer(right,
2256 btrfs_leaf_data(right) + data_end - push_space,
2257 btrfs_leaf_data(right) + data_end,
2258 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2260 /* copy from the left data area */
2261 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2262 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2263 btrfs_leaf_data(left) + leaf_data_end(root, left),
2264 push_space);
2266 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2267 btrfs_item_nr_offset(0),
2268 right_nritems * sizeof(struct btrfs_item));
2270 /* copy the items from left to right */
2271 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2272 btrfs_item_nr_offset(left_nritems - push_items),
2273 push_items * sizeof(struct btrfs_item));
2275 /* update the item pointers */
2276 right_nritems += push_items;
2277 btrfs_set_header_nritems(right, right_nritems);
2278 push_space = BTRFS_LEAF_DATA_SIZE(root);
2279 for (i = 0; i < right_nritems; i++) {
2280 item = btrfs_item_nr(right, i);
2281 if (!right->map_token) {
2282 map_extent_buffer(right, (unsigned long)item,
2283 sizeof(struct btrfs_item),
2284 &right->map_token, &right->kaddr,
2285 &right->map_start, &right->map_len,
2286 KM_USER1);
2288 push_space -= btrfs_item_size(right, item);
2289 btrfs_set_item_offset(right, item, push_space);
2292 if (right->map_token) {
2293 unmap_extent_buffer(right, right->map_token, KM_USER1);
2294 right->map_token = NULL;
2296 left_nritems -= push_items;
2297 btrfs_set_header_nritems(left, left_nritems);
2299 if (left_nritems)
2300 btrfs_mark_buffer_dirty(left);
2301 btrfs_mark_buffer_dirty(right);
2303 ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2304 BUG_ON(ret);
2306 btrfs_item_key(right, &disk_key, 0);
2307 btrfs_set_node_key(upper, &disk_key, slot + 1);
2308 btrfs_mark_buffer_dirty(upper);
2310 /* then fixup the leaf pointer in the path */
2311 if (path->slots[0] >= left_nritems) {
2312 path->slots[0] -= left_nritems;
2313 if (btrfs_header_nritems(path->nodes[0]) == 0)
2314 clean_tree_block(trans, root, path->nodes[0]);
2315 btrfs_tree_unlock(path->nodes[0]);
2316 free_extent_buffer(path->nodes[0]);
2317 path->nodes[0] = right;
2318 path->slots[1] += 1;
2319 } else {
2320 btrfs_tree_unlock(right);
2321 free_extent_buffer(right);
2323 return 0;
2325 out_unlock:
2326 btrfs_tree_unlock(right);
2327 free_extent_buffer(right);
2328 return 1;
2332 * push some data in the path leaf to the left, trying to free up at
2333 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2335 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2336 *root, struct btrfs_path *path, int data_size,
2337 int empty)
2339 struct btrfs_disk_key disk_key;
2340 struct extent_buffer *right = path->nodes[0];
2341 struct extent_buffer *left;
2342 int slot;
2343 int i;
2344 int free_space;
2345 int push_space = 0;
2346 int push_items = 0;
2347 struct btrfs_item *item;
2348 u32 old_left_nritems;
2349 u32 right_nritems;
2350 u32 nr;
2351 int ret = 0;
2352 int wret;
2353 u32 this_item_size;
2354 u32 old_left_item_size;
2356 slot = path->slots[1];
2357 if (slot == 0)
2358 return 1;
2359 if (!path->nodes[1])
2360 return 1;
2362 right_nritems = btrfs_header_nritems(right);
2363 if (right_nritems == 0)
2364 return 1;
2366 WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2368 left = read_node_slot(root, path->nodes[1], slot - 1);
2369 btrfs_tree_lock(left);
2370 free_space = btrfs_leaf_free_space(root, left);
2371 if (free_space < data_size) {
2372 ret = 1;
2373 goto out;
2376 /* cow and double check */
2377 ret = btrfs_cow_block(trans, root, left,
2378 path->nodes[1], slot - 1, &left, 0);
2379 if (ret) {
2380 /* we hit -ENOSPC, but it isn't fatal here */
2381 ret = 1;
2382 goto out;
2385 free_space = btrfs_leaf_free_space(root, left);
2386 if (free_space < data_size) {
2387 ret = 1;
2388 goto out;
2391 if (empty)
2392 nr = right_nritems;
2393 else
2394 nr = right_nritems - 1;
2396 for (i = 0; i < nr; i++) {
2397 item = btrfs_item_nr(right, i);
2398 if (!right->map_token) {
2399 map_extent_buffer(right, (unsigned long)item,
2400 sizeof(struct btrfs_item),
2401 &right->map_token, &right->kaddr,
2402 &right->map_start, &right->map_len,
2403 KM_USER1);
2406 if (!empty && push_items > 0) {
2407 if (path->slots[0] < i)
2408 break;
2409 if (path->slots[0] == i) {
2410 int space = btrfs_leaf_free_space(root, right);
2411 if (space + push_space * 2 > free_space)
2412 break;
2416 if (path->slots[0] == i)
2417 push_space += data_size;
2419 this_item_size = btrfs_item_size(right, item);
2420 if (this_item_size + sizeof(*item) + push_space > free_space)
2421 break;
2423 push_items++;
2424 push_space += this_item_size + sizeof(*item);
2427 if (right->map_token) {
2428 unmap_extent_buffer(right, right->map_token, KM_USER1);
2429 right->map_token = NULL;
2432 if (push_items == 0) {
2433 ret = 1;
2434 goto out;
2436 if (!empty && push_items == btrfs_header_nritems(right))
2437 WARN_ON(1);
2439 /* push data from right to left */
2440 copy_extent_buffer(left, right,
2441 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2442 btrfs_item_nr_offset(0),
2443 push_items * sizeof(struct btrfs_item));
2445 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2446 btrfs_item_offset_nr(right, push_items - 1);
2448 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2449 leaf_data_end(root, left) - push_space,
2450 btrfs_leaf_data(right) +
2451 btrfs_item_offset_nr(right, push_items - 1),
2452 push_space);
2453 old_left_nritems = btrfs_header_nritems(left);
2454 BUG_ON(old_left_nritems <= 0);
2456 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2457 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2458 u32 ioff;
2460 item = btrfs_item_nr(left, i);
2461 if (!left->map_token) {
2462 map_extent_buffer(left, (unsigned long)item,
2463 sizeof(struct btrfs_item),
2464 &left->map_token, &left->kaddr,
2465 &left->map_start, &left->map_len,
2466 KM_USER1);
2469 ioff = btrfs_item_offset(left, item);
2470 btrfs_set_item_offset(left, item,
2471 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2473 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2474 if (left->map_token) {
2475 unmap_extent_buffer(left, left->map_token, KM_USER1);
2476 left->map_token = NULL;
2479 /* fixup right node */
2480 if (push_items > right_nritems) {
2481 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2482 right_nritems);
2483 WARN_ON(1);
2486 if (push_items < right_nritems) {
2487 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2488 leaf_data_end(root, right);
2489 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2490 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2491 btrfs_leaf_data(right) +
2492 leaf_data_end(root, right), push_space);
2494 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2495 btrfs_item_nr_offset(push_items),
2496 (btrfs_header_nritems(right) - push_items) *
2497 sizeof(struct btrfs_item));
2499 right_nritems -= push_items;
2500 btrfs_set_header_nritems(right, right_nritems);
2501 push_space = BTRFS_LEAF_DATA_SIZE(root);
2502 for (i = 0; i < right_nritems; i++) {
2503 item = btrfs_item_nr(right, i);
2505 if (!right->map_token) {
2506 map_extent_buffer(right, (unsigned long)item,
2507 sizeof(struct btrfs_item),
2508 &right->map_token, &right->kaddr,
2509 &right->map_start, &right->map_len,
2510 KM_USER1);
2513 push_space = push_space - btrfs_item_size(right, item);
2514 btrfs_set_item_offset(right, item, push_space);
2516 if (right->map_token) {
2517 unmap_extent_buffer(right, right->map_token, KM_USER1);
2518 right->map_token = NULL;
2521 btrfs_mark_buffer_dirty(left);
2522 if (right_nritems)
2523 btrfs_mark_buffer_dirty(right);
2525 ret = btrfs_update_ref(trans, root, right, left,
2526 old_left_nritems, push_items);
2527 BUG_ON(ret);
2529 btrfs_item_key(right, &disk_key, 0);
2530 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2531 if (wret)
2532 ret = wret;
2534 /* then fixup the leaf pointer in the path */
2535 if (path->slots[0] < push_items) {
2536 path->slots[0] += old_left_nritems;
2537 if (btrfs_header_nritems(path->nodes[0]) == 0)
2538 clean_tree_block(trans, root, path->nodes[0]);
2539 btrfs_tree_unlock(path->nodes[0]);
2540 free_extent_buffer(path->nodes[0]);
2541 path->nodes[0] = left;
2542 path->slots[1] -= 1;
2543 } else {
2544 btrfs_tree_unlock(left);
2545 free_extent_buffer(left);
2546 path->slots[0] -= push_items;
2548 BUG_ON(path->slots[0] < 0);
2549 return ret;
2550 out:
2551 btrfs_tree_unlock(left);
2552 free_extent_buffer(left);
2553 return ret;
2557 * split the path's leaf in two, making sure there is at least data_size
2558 * available for the resulting leaf level of the path.
2560 * returns 0 if all went well and < 0 on failure.
2562 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2563 struct btrfs_root *root,
2564 struct btrfs_key *ins_key,
2565 struct btrfs_path *path, int data_size,
2566 int extend)
2568 struct extent_buffer *l;
2569 u32 nritems;
2570 int mid;
2571 int slot;
2572 struct extent_buffer *right;
2573 int data_copy_size;
2574 int rt_data_off;
2575 int i;
2576 int ret = 0;
2577 int wret;
2578 int double_split;
2579 int num_doubles = 0;
2580 struct btrfs_disk_key disk_key;
2582 /* first try to make some room by pushing left and right */
2583 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2584 wret = push_leaf_right(trans, root, path, data_size, 0);
2585 if (wret < 0)
2586 return wret;
2587 if (wret) {
2588 wret = push_leaf_left(trans, root, path, data_size, 0);
2589 if (wret < 0)
2590 return wret;
2592 l = path->nodes[0];
2594 /* did the pushes work? */
2595 if (btrfs_leaf_free_space(root, l) >= data_size)
2596 return 0;
2599 if (!path->nodes[1]) {
2600 ret = insert_new_root(trans, root, path, 1);
2601 if (ret)
2602 return ret;
2604 again:
2605 double_split = 0;
2606 l = path->nodes[0];
2607 slot = path->slots[0];
2608 nritems = btrfs_header_nritems(l);
2609 mid = (nritems + 1) / 2;
2611 right = btrfs_alloc_free_block(trans, root, root->leafsize,
2612 path->nodes[1]->start,
2613 root->root_key.objectid,
2614 trans->transid, 0, l->start, 0);
2615 if (IS_ERR(right)) {
2616 BUG_ON(1);
2617 return PTR_ERR(right);
2620 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2621 btrfs_set_header_bytenr(right, right->start);
2622 btrfs_set_header_generation(right, trans->transid);
2623 btrfs_set_header_owner(right, root->root_key.objectid);
2624 btrfs_set_header_level(right, 0);
2625 write_extent_buffer(right, root->fs_info->fsid,
2626 (unsigned long)btrfs_header_fsid(right),
2627 BTRFS_FSID_SIZE);
2629 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2630 (unsigned long)btrfs_header_chunk_tree_uuid(right),
2631 BTRFS_UUID_SIZE);
2632 if (mid <= slot) {
2633 if (nritems == 1 ||
2634 leaf_space_used(l, mid, nritems - mid) + data_size >
2635 BTRFS_LEAF_DATA_SIZE(root)) {
2636 if (slot >= nritems) {
2637 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2638 btrfs_set_header_nritems(right, 0);
2639 wret = insert_ptr(trans, root, path,
2640 &disk_key, right->start,
2641 path->slots[1] + 1, 1);
2642 if (wret)
2643 ret = wret;
2645 btrfs_tree_unlock(path->nodes[0]);
2646 free_extent_buffer(path->nodes[0]);
2647 path->nodes[0] = right;
2648 path->slots[0] = 0;
2649 path->slots[1] += 1;
2650 btrfs_mark_buffer_dirty(right);
2651 return ret;
2653 mid = slot;
2654 if (mid != nritems &&
2655 leaf_space_used(l, mid, nritems - mid) +
2656 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2657 double_split = 1;
2660 } else {
2661 if (leaf_space_used(l, 0, mid) + data_size >
2662 BTRFS_LEAF_DATA_SIZE(root)) {
2663 if (!extend && data_size && slot == 0) {
2664 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2665 btrfs_set_header_nritems(right, 0);
2666 wret = insert_ptr(trans, root, path,
2667 &disk_key,
2668 right->start,
2669 path->slots[1], 1);
2670 if (wret)
2671 ret = wret;
2672 btrfs_tree_unlock(path->nodes[0]);
2673 free_extent_buffer(path->nodes[0]);
2674 path->nodes[0] = right;
2675 path->slots[0] = 0;
2676 if (path->slots[1] == 0) {
2677 wret = fixup_low_keys(trans, root,
2678 path, &disk_key, 1);
2679 if (wret)
2680 ret = wret;
2682 btrfs_mark_buffer_dirty(right);
2683 return ret;
2684 } else if ((extend || !data_size) && slot == 0) {
2685 mid = 1;
2686 } else {
2687 mid = slot;
2688 if (mid != nritems &&
2689 leaf_space_used(l, mid, nritems - mid) +
2690 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2691 double_split = 1;
2696 nritems = nritems - mid;
2697 btrfs_set_header_nritems(right, nritems);
2698 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2700 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2701 btrfs_item_nr_offset(mid),
2702 nritems * sizeof(struct btrfs_item));
2704 copy_extent_buffer(right, l,
2705 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2706 data_copy_size, btrfs_leaf_data(l) +
2707 leaf_data_end(root, l), data_copy_size);
2709 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2710 btrfs_item_end_nr(l, mid);
2712 for (i = 0; i < nritems; i++) {
2713 struct btrfs_item *item = btrfs_item_nr(right, i);
2714 u32 ioff;
2716 if (!right->map_token) {
2717 map_extent_buffer(right, (unsigned long)item,
2718 sizeof(struct btrfs_item),
2719 &right->map_token, &right->kaddr,
2720 &right->map_start, &right->map_len,
2721 KM_USER1);
2724 ioff = btrfs_item_offset(right, item);
2725 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2728 if (right->map_token) {
2729 unmap_extent_buffer(right, right->map_token, KM_USER1);
2730 right->map_token = NULL;
2733 btrfs_set_header_nritems(l, mid);
2734 ret = 0;
2735 btrfs_item_key(right, &disk_key, 0);
2736 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2737 path->slots[1] + 1, 1);
2738 if (wret)
2739 ret = wret;
2741 btrfs_mark_buffer_dirty(right);
2742 btrfs_mark_buffer_dirty(l);
2743 BUG_ON(path->slots[0] != slot);
2745 ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2746 BUG_ON(ret);
2748 if (mid <= slot) {
2749 btrfs_tree_unlock(path->nodes[0]);
2750 free_extent_buffer(path->nodes[0]);
2751 path->nodes[0] = right;
2752 path->slots[0] -= mid;
2753 path->slots[1] += 1;
2754 } else {
2755 btrfs_tree_unlock(right);
2756 free_extent_buffer(right);
2759 BUG_ON(path->slots[0] < 0);
2761 if (double_split) {
2762 BUG_ON(num_doubles != 0);
2763 num_doubles++;
2764 goto again;
2766 return ret;
2770 * This function splits a single item into two items,
2771 * giving 'new_key' to the new item and splitting the
2772 * old one at split_offset (from the start of the item).
2774 * The path may be released by this operation. After
2775 * the split, the path is pointing to the old item. The
2776 * new item is going to be in the same node as the old one.
2778 * Note, the item being split must be smaller enough to live alone on
2779 * a tree block with room for one extra struct btrfs_item
2781 * This allows us to split the item in place, keeping a lock on the
2782 * leaf the entire time.
2784 int btrfs_split_item(struct btrfs_trans_handle *trans,
2785 struct btrfs_root *root,
2786 struct btrfs_path *path,
2787 struct btrfs_key *new_key,
2788 unsigned long split_offset)
2790 u32 item_size;
2791 struct extent_buffer *leaf;
2792 struct btrfs_key orig_key;
2793 struct btrfs_item *item;
2794 struct btrfs_item *new_item;
2795 int ret = 0;
2796 int slot;
2797 u32 nritems;
2798 u32 orig_offset;
2799 struct btrfs_disk_key disk_key;
2800 char *buf;
2802 leaf = path->nodes[0];
2803 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
2804 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
2805 goto split;
2807 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2808 btrfs_release_path(root, path);
2810 path->search_for_split = 1;
2811 path->keep_locks = 1;
2813 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
2814 path->search_for_split = 0;
2816 /* if our item isn't there or got smaller, return now */
2817 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
2818 path->slots[0])) {
2819 path->keep_locks = 0;
2820 return -EAGAIN;
2823 ret = split_leaf(trans, root, &orig_key, path,
2824 sizeof(struct btrfs_item), 1);
2825 path->keep_locks = 0;
2826 BUG_ON(ret);
2828 leaf = path->nodes[0];
2829 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
2831 split:
2832 item = btrfs_item_nr(leaf, path->slots[0]);
2833 orig_offset = btrfs_item_offset(leaf, item);
2834 item_size = btrfs_item_size(leaf, item);
2837 buf = kmalloc(item_size, GFP_NOFS);
2838 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
2839 path->slots[0]), item_size);
2840 slot = path->slots[0] + 1;
2841 leaf = path->nodes[0];
2843 nritems = btrfs_header_nritems(leaf);
2845 if (slot != nritems) {
2846 /* shift the items */
2847 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
2848 btrfs_item_nr_offset(slot),
2849 (nritems - slot) * sizeof(struct btrfs_item));
2853 btrfs_cpu_key_to_disk(&disk_key, new_key);
2854 btrfs_set_item_key(leaf, &disk_key, slot);
2856 new_item = btrfs_item_nr(leaf, slot);
2858 btrfs_set_item_offset(leaf, new_item, orig_offset);
2859 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
2861 btrfs_set_item_offset(leaf, item,
2862 orig_offset + item_size - split_offset);
2863 btrfs_set_item_size(leaf, item, split_offset);
2865 btrfs_set_header_nritems(leaf, nritems + 1);
2867 /* write the data for the start of the original item */
2868 write_extent_buffer(leaf, buf,
2869 btrfs_item_ptr_offset(leaf, path->slots[0]),
2870 split_offset);
2872 /* write the data for the new item */
2873 write_extent_buffer(leaf, buf + split_offset,
2874 btrfs_item_ptr_offset(leaf, slot),
2875 item_size - split_offset);
2876 btrfs_mark_buffer_dirty(leaf);
2878 ret = 0;
2879 if (btrfs_leaf_free_space(root, leaf) < 0) {
2880 btrfs_print_leaf(root, leaf);
2881 BUG();
2883 kfree(buf);
2884 return ret;
2888 * make the item pointed to by the path smaller. new_size indicates
2889 * how small to make it, and from_end tells us if we just chop bytes
2890 * off the end of the item or if we shift the item to chop bytes off
2891 * the front.
2893 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
2894 struct btrfs_root *root,
2895 struct btrfs_path *path,
2896 u32 new_size, int from_end)
2898 int ret = 0;
2899 int slot;
2900 int slot_orig;
2901 struct extent_buffer *leaf;
2902 struct btrfs_item *item;
2903 u32 nritems;
2904 unsigned int data_end;
2905 unsigned int old_data_start;
2906 unsigned int old_size;
2907 unsigned int size_diff;
2908 int i;
2910 slot_orig = path->slots[0];
2911 leaf = path->nodes[0];
2912 slot = path->slots[0];
2914 old_size = btrfs_item_size_nr(leaf, slot);
2915 if (old_size == new_size)
2916 return 0;
2918 nritems = btrfs_header_nritems(leaf);
2919 data_end = leaf_data_end(root, leaf);
2921 old_data_start = btrfs_item_offset_nr(leaf, slot);
2923 size_diff = old_size - new_size;
2925 BUG_ON(slot < 0);
2926 BUG_ON(slot >= nritems);
2929 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2931 /* first correct the data pointers */
2932 for (i = slot; i < nritems; i++) {
2933 u32 ioff;
2934 item = btrfs_item_nr(leaf, i);
2936 if (!leaf->map_token) {
2937 map_extent_buffer(leaf, (unsigned long)item,
2938 sizeof(struct btrfs_item),
2939 &leaf->map_token, &leaf->kaddr,
2940 &leaf->map_start, &leaf->map_len,
2941 KM_USER1);
2944 ioff = btrfs_item_offset(leaf, item);
2945 btrfs_set_item_offset(leaf, item, ioff + size_diff);
2948 if (leaf->map_token) {
2949 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2950 leaf->map_token = NULL;
2953 /* shift the data */
2954 if (from_end) {
2955 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2956 data_end + size_diff, btrfs_leaf_data(leaf) +
2957 data_end, old_data_start + new_size - data_end);
2958 } else {
2959 struct btrfs_disk_key disk_key;
2960 u64 offset;
2962 btrfs_item_key(leaf, &disk_key, slot);
2964 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
2965 unsigned long ptr;
2966 struct btrfs_file_extent_item *fi;
2968 fi = btrfs_item_ptr(leaf, slot,
2969 struct btrfs_file_extent_item);
2970 fi = (struct btrfs_file_extent_item *)(
2971 (unsigned long)fi - size_diff);
2973 if (btrfs_file_extent_type(leaf, fi) ==
2974 BTRFS_FILE_EXTENT_INLINE) {
2975 ptr = btrfs_item_ptr_offset(leaf, slot);
2976 memmove_extent_buffer(leaf, ptr,
2977 (unsigned long)fi,
2978 offsetof(struct btrfs_file_extent_item,
2979 disk_bytenr));
2983 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2984 data_end + size_diff, btrfs_leaf_data(leaf) +
2985 data_end, old_data_start - data_end);
2987 offset = btrfs_disk_key_offset(&disk_key);
2988 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
2989 btrfs_set_item_key(leaf, &disk_key, slot);
2990 if (slot == 0)
2991 fixup_low_keys(trans, root, path, &disk_key, 1);
2994 item = btrfs_item_nr(leaf, slot);
2995 btrfs_set_item_size(leaf, item, new_size);
2996 btrfs_mark_buffer_dirty(leaf);
2998 ret = 0;
2999 if (btrfs_leaf_free_space(root, leaf) < 0) {
3000 btrfs_print_leaf(root, leaf);
3001 BUG();
3003 return ret;
3007 * make the item pointed to by the path bigger, data_size is the new size.
3009 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3010 struct btrfs_root *root, struct btrfs_path *path,
3011 u32 data_size)
3013 int ret = 0;
3014 int slot;
3015 int slot_orig;
3016 struct extent_buffer *leaf;
3017 struct btrfs_item *item;
3018 u32 nritems;
3019 unsigned int data_end;
3020 unsigned int old_data;
3021 unsigned int old_size;
3022 int i;
3024 slot_orig = path->slots[0];
3025 leaf = path->nodes[0];
3027 nritems = btrfs_header_nritems(leaf);
3028 data_end = leaf_data_end(root, leaf);
3030 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3031 btrfs_print_leaf(root, leaf);
3032 BUG();
3034 slot = path->slots[0];
3035 old_data = btrfs_item_end_nr(leaf, slot);
3037 BUG_ON(slot < 0);
3038 if (slot >= nritems) {
3039 btrfs_print_leaf(root, leaf);
3040 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3041 slot, nritems);
3042 BUG_ON(1);
3046 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3048 /* first correct the data pointers */
3049 for (i = slot; i < nritems; i++) {
3050 u32 ioff;
3051 item = btrfs_item_nr(leaf, i);
3053 if (!leaf->map_token) {
3054 map_extent_buffer(leaf, (unsigned long)item,
3055 sizeof(struct btrfs_item),
3056 &leaf->map_token, &leaf->kaddr,
3057 &leaf->map_start, &leaf->map_len,
3058 KM_USER1);
3060 ioff = btrfs_item_offset(leaf, item);
3061 btrfs_set_item_offset(leaf, item, ioff - data_size);
3064 if (leaf->map_token) {
3065 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3066 leaf->map_token = NULL;
3069 /* shift the data */
3070 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3071 data_end - data_size, btrfs_leaf_data(leaf) +
3072 data_end, old_data - data_end);
3074 data_end = old_data;
3075 old_size = btrfs_item_size_nr(leaf, slot);
3076 item = btrfs_item_nr(leaf, slot);
3077 btrfs_set_item_size(leaf, item, old_size + data_size);
3078 btrfs_mark_buffer_dirty(leaf);
3080 ret = 0;
3081 if (btrfs_leaf_free_space(root, leaf) < 0) {
3082 btrfs_print_leaf(root, leaf);
3083 BUG();
3085 return ret;
3089 * Given a key and some data, insert items into the tree.
3090 * This does all the path init required, making room in the tree if needed.
3091 * Returns the number of keys that were inserted.
3093 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3094 struct btrfs_root *root,
3095 struct btrfs_path *path,
3096 struct btrfs_key *cpu_key, u32 *data_size,
3097 int nr)
3099 struct extent_buffer *leaf;
3100 struct btrfs_item *item;
3101 int ret = 0;
3102 int slot;
3103 int i;
3104 u32 nritems;
3105 u32 total_data = 0;
3106 u32 total_size = 0;
3107 unsigned int data_end;
3108 struct btrfs_disk_key disk_key;
3109 struct btrfs_key found_key;
3111 for (i = 0; i < nr; i++) {
3112 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3113 BTRFS_LEAF_DATA_SIZE(root)) {
3114 break;
3115 nr = i;
3117 total_data += data_size[i];
3118 total_size += data_size[i] + sizeof(struct btrfs_item);
3120 BUG_ON(nr == 0);
3122 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3123 if (ret == 0)
3124 return -EEXIST;
3125 if (ret < 0)
3126 goto out;
3128 leaf = path->nodes[0];
3130 nritems = btrfs_header_nritems(leaf);
3131 data_end = leaf_data_end(root, leaf);
3133 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3134 for (i = nr; i >= 0; i--) {
3135 total_data -= data_size[i];
3136 total_size -= data_size[i] + sizeof(struct btrfs_item);
3137 if (total_size < btrfs_leaf_free_space(root, leaf))
3138 break;
3140 nr = i;
3143 slot = path->slots[0];
3144 BUG_ON(slot < 0);
3146 if (slot != nritems) {
3147 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3149 item = btrfs_item_nr(leaf, slot);
3150 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3152 /* figure out how many keys we can insert in here */
3153 total_data = data_size[0];
3154 for (i = 1; i < nr; i++) {
3155 if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3156 break;
3157 total_data += data_size[i];
3159 nr = i;
3161 if (old_data < data_end) {
3162 btrfs_print_leaf(root, leaf);
3163 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3164 slot, old_data, data_end);
3165 BUG_ON(1);
3168 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3170 /* first correct the data pointers */
3171 WARN_ON(leaf->map_token);
3172 for (i = slot; i < nritems; i++) {
3173 u32 ioff;
3175 item = btrfs_item_nr(leaf, i);
3176 if (!leaf->map_token) {
3177 map_extent_buffer(leaf, (unsigned long)item,
3178 sizeof(struct btrfs_item),
3179 &leaf->map_token, &leaf->kaddr,
3180 &leaf->map_start, &leaf->map_len,
3181 KM_USER1);
3184 ioff = btrfs_item_offset(leaf, item);
3185 btrfs_set_item_offset(leaf, item, ioff - total_data);
3187 if (leaf->map_token) {
3188 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3189 leaf->map_token = NULL;
3192 /* shift the items */
3193 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3194 btrfs_item_nr_offset(slot),
3195 (nritems - slot) * sizeof(struct btrfs_item));
3197 /* shift the data */
3198 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3199 data_end - total_data, btrfs_leaf_data(leaf) +
3200 data_end, old_data - data_end);
3201 data_end = old_data;
3202 } else {
3204 * this sucks but it has to be done, if we are inserting at
3205 * the end of the leaf only insert 1 of the items, since we
3206 * have no way of knowing whats on the next leaf and we'd have
3207 * to drop our current locks to figure it out
3209 nr = 1;
3212 /* setup the item for the new data */
3213 for (i = 0; i < nr; i++) {
3214 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3215 btrfs_set_item_key(leaf, &disk_key, slot + i);
3216 item = btrfs_item_nr(leaf, slot + i);
3217 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3218 data_end -= data_size[i];
3219 btrfs_set_item_size(leaf, item, data_size[i]);
3221 btrfs_set_header_nritems(leaf, nritems + nr);
3222 btrfs_mark_buffer_dirty(leaf);
3224 ret = 0;
3225 if (slot == 0) {
3226 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3227 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3230 if (btrfs_leaf_free_space(root, leaf) < 0) {
3231 btrfs_print_leaf(root, leaf);
3232 BUG();
3234 out:
3235 if (!ret)
3236 ret = nr;
3237 return ret;
3241 * Given a key and some data, insert items into the tree.
3242 * This does all the path init required, making room in the tree if needed.
3244 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3245 struct btrfs_root *root,
3246 struct btrfs_path *path,
3247 struct btrfs_key *cpu_key, u32 *data_size,
3248 int nr)
3250 struct extent_buffer *leaf;
3251 struct btrfs_item *item;
3252 int ret = 0;
3253 int slot;
3254 int slot_orig;
3255 int i;
3256 u32 nritems;
3257 u32 total_size = 0;
3258 u32 total_data = 0;
3259 unsigned int data_end;
3260 struct btrfs_disk_key disk_key;
3262 for (i = 0; i < nr; i++)
3263 total_data += data_size[i];
3265 total_size = total_data + (nr * sizeof(struct btrfs_item));
3266 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3267 if (ret == 0)
3268 return -EEXIST;
3269 if (ret < 0)
3270 goto out;
3272 slot_orig = path->slots[0];
3273 leaf = path->nodes[0];
3275 nritems = btrfs_header_nritems(leaf);
3276 data_end = leaf_data_end(root, leaf);
3278 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3279 btrfs_print_leaf(root, leaf);
3280 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3281 total_size, btrfs_leaf_free_space(root, leaf));
3282 BUG();
3285 slot = path->slots[0];
3286 BUG_ON(slot < 0);
3288 if (slot != nritems) {
3289 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3291 if (old_data < data_end) {
3292 btrfs_print_leaf(root, leaf);
3293 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3294 slot, old_data, data_end);
3295 BUG_ON(1);
3298 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3300 /* first correct the data pointers */
3301 WARN_ON(leaf->map_token);
3302 for (i = slot; i < nritems; i++) {
3303 u32 ioff;
3305 item = btrfs_item_nr(leaf, i);
3306 if (!leaf->map_token) {
3307 map_extent_buffer(leaf, (unsigned long)item,
3308 sizeof(struct btrfs_item),
3309 &leaf->map_token, &leaf->kaddr,
3310 &leaf->map_start, &leaf->map_len,
3311 KM_USER1);
3314 ioff = btrfs_item_offset(leaf, item);
3315 btrfs_set_item_offset(leaf, item, ioff - total_data);
3317 if (leaf->map_token) {
3318 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3319 leaf->map_token = NULL;
3322 /* shift the items */
3323 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3324 btrfs_item_nr_offset(slot),
3325 (nritems - slot) * sizeof(struct btrfs_item));
3327 /* shift the data */
3328 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3329 data_end - total_data, btrfs_leaf_data(leaf) +
3330 data_end, old_data - data_end);
3331 data_end = old_data;
3334 /* setup the item for the new data */
3335 for (i = 0; i < nr; i++) {
3336 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3337 btrfs_set_item_key(leaf, &disk_key, slot + i);
3338 item = btrfs_item_nr(leaf, slot + i);
3339 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3340 data_end -= data_size[i];
3341 btrfs_set_item_size(leaf, item, data_size[i]);
3343 btrfs_set_header_nritems(leaf, nritems + nr);
3344 btrfs_mark_buffer_dirty(leaf);
3346 ret = 0;
3347 if (slot == 0) {
3348 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3349 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3352 if (btrfs_leaf_free_space(root, leaf) < 0) {
3353 btrfs_print_leaf(root, leaf);
3354 BUG();
3356 out:
3357 return ret;
3361 * Given a key and some data, insert an item into the tree.
3362 * This does all the path init required, making room in the tree if needed.
3364 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3365 *root, struct btrfs_key *cpu_key, void *data, u32
3366 data_size)
3368 int ret = 0;
3369 struct btrfs_path *path;
3370 struct extent_buffer *leaf;
3371 unsigned long ptr;
3373 path = btrfs_alloc_path();
3374 BUG_ON(!path);
3375 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3376 if (!ret) {
3377 leaf = path->nodes[0];
3378 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3379 write_extent_buffer(leaf, data, ptr, data_size);
3380 btrfs_mark_buffer_dirty(leaf);
3382 btrfs_free_path(path);
3383 return ret;
3387 * delete the pointer from a given node.
3389 * the tree should have been previously balanced so the deletion does not
3390 * empty a node.
3392 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3393 struct btrfs_path *path, int level, int slot)
3395 struct extent_buffer *parent = path->nodes[level];
3396 u32 nritems;
3397 int ret = 0;
3398 int wret;
3400 nritems = btrfs_header_nritems(parent);
3401 if (slot != nritems - 1) {
3402 memmove_extent_buffer(parent,
3403 btrfs_node_key_ptr_offset(slot),
3404 btrfs_node_key_ptr_offset(slot + 1),
3405 sizeof(struct btrfs_key_ptr) *
3406 (nritems - slot - 1));
3408 nritems--;
3409 btrfs_set_header_nritems(parent, nritems);
3410 if (nritems == 0 && parent == root->node) {
3411 BUG_ON(btrfs_header_level(root->node) != 1);
3412 /* just turn the root into a leaf and break */
3413 btrfs_set_header_level(root->node, 0);
3414 } else if (slot == 0) {
3415 struct btrfs_disk_key disk_key;
3417 btrfs_node_key(parent, &disk_key, 0);
3418 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3419 if (wret)
3420 ret = wret;
3422 btrfs_mark_buffer_dirty(parent);
3423 return ret;
3427 * a helper function to delete the leaf pointed to by path->slots[1] and
3428 * path->nodes[1]. bytenr is the node block pointer, but since the callers
3429 * already know it, it is faster to have them pass it down than to
3430 * read it out of the node again.
3432 * This deletes the pointer in path->nodes[1] and frees the leaf
3433 * block extent. zero is returned if it all worked out, < 0 otherwise.
3435 * The path must have already been setup for deleting the leaf, including
3436 * all the proper balancing. path->nodes[1] must be locked.
3438 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3439 struct btrfs_root *root,
3440 struct btrfs_path *path, u64 bytenr)
3442 int ret;
3443 u64 root_gen = btrfs_header_generation(path->nodes[1]);
3445 ret = del_ptr(trans, root, path, 1, path->slots[1]);
3446 if (ret)
3447 return ret;
3449 ret = btrfs_free_extent(trans, root, bytenr,
3450 btrfs_level_size(root, 0),
3451 path->nodes[1]->start,
3452 btrfs_header_owner(path->nodes[1]),
3453 root_gen, 0, 1);
3454 return ret;
3457 * delete the item at the leaf level in path. If that empties
3458 * the leaf, remove it from the tree
3460 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3461 struct btrfs_path *path, int slot, int nr)
3463 struct extent_buffer *leaf;
3464 struct btrfs_item *item;
3465 int last_off;
3466 int dsize = 0;
3467 int ret = 0;
3468 int wret;
3469 int i;
3470 u32 nritems;
3472 leaf = path->nodes[0];
3473 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3475 for (i = 0; i < nr; i++)
3476 dsize += btrfs_item_size_nr(leaf, slot + i);
3478 nritems = btrfs_header_nritems(leaf);
3480 if (slot + nr != nritems) {
3481 int data_end = leaf_data_end(root, leaf);
3483 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3484 data_end + dsize,
3485 btrfs_leaf_data(leaf) + data_end,
3486 last_off - data_end);
3488 for (i = slot + nr; i < nritems; i++) {
3489 u32 ioff;
3491 item = btrfs_item_nr(leaf, i);
3492 if (!leaf->map_token) {
3493 map_extent_buffer(leaf, (unsigned long)item,
3494 sizeof(struct btrfs_item),
3495 &leaf->map_token, &leaf->kaddr,
3496 &leaf->map_start, &leaf->map_len,
3497 KM_USER1);
3499 ioff = btrfs_item_offset(leaf, item);
3500 btrfs_set_item_offset(leaf, item, ioff + dsize);
3503 if (leaf->map_token) {
3504 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3505 leaf->map_token = NULL;
3508 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3509 btrfs_item_nr_offset(slot + nr),
3510 sizeof(struct btrfs_item) *
3511 (nritems - slot - nr));
3513 btrfs_set_header_nritems(leaf, nritems - nr);
3514 nritems -= nr;
3516 /* delete the leaf if we've emptied it */
3517 if (nritems == 0) {
3518 if (leaf == root->node) {
3519 btrfs_set_header_level(leaf, 0);
3520 } else {
3521 ret = btrfs_del_leaf(trans, root, path, leaf->start);
3522 BUG_ON(ret);
3524 } else {
3525 int used = leaf_space_used(leaf, 0, nritems);
3526 if (slot == 0) {
3527 struct btrfs_disk_key disk_key;
3529 btrfs_item_key(leaf, &disk_key, 0);
3530 wret = fixup_low_keys(trans, root, path,
3531 &disk_key, 1);
3532 if (wret)
3533 ret = wret;
3536 /* delete the leaf if it is mostly empty */
3537 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
3538 /* push_leaf_left fixes the path.
3539 * make sure the path still points to our leaf
3540 * for possible call to del_ptr below
3542 slot = path->slots[1];
3543 extent_buffer_get(leaf);
3545 wret = push_leaf_left(trans, root, path, 1, 1);
3546 if (wret < 0 && wret != -ENOSPC)
3547 ret = wret;
3549 if (path->nodes[0] == leaf &&
3550 btrfs_header_nritems(leaf)) {
3551 wret = push_leaf_right(trans, root, path, 1, 1);
3552 if (wret < 0 && wret != -ENOSPC)
3553 ret = wret;
3556 if (btrfs_header_nritems(leaf) == 0) {
3557 path->slots[1] = slot;
3558 ret = btrfs_del_leaf(trans, root, path,
3559 leaf->start);
3560 BUG_ON(ret);
3561 free_extent_buffer(leaf);
3562 } else {
3563 /* if we're still in the path, make sure
3564 * we're dirty. Otherwise, one of the
3565 * push_leaf functions must have already
3566 * dirtied this buffer
3568 if (path->nodes[0] == leaf)
3569 btrfs_mark_buffer_dirty(leaf);
3570 free_extent_buffer(leaf);
3572 } else {
3573 btrfs_mark_buffer_dirty(leaf);
3576 return ret;
3580 * search the tree again to find a leaf with lesser keys
3581 * returns 0 if it found something or 1 if there are no lesser leaves.
3582 * returns < 0 on io errors.
3584 * This may release the path, and so you may lose any locks held at the
3585 * time you call it.
3587 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3589 struct btrfs_key key;
3590 struct btrfs_disk_key found_key;
3591 int ret;
3593 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3595 if (key.offset > 0)
3596 key.offset--;
3597 else if (key.type > 0)
3598 key.type--;
3599 else if (key.objectid > 0)
3600 key.objectid--;
3601 else
3602 return 1;
3604 btrfs_release_path(root, path);
3605 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3606 if (ret < 0)
3607 return ret;
3608 btrfs_item_key(path->nodes[0], &found_key, 0);
3609 ret = comp_keys(&found_key, &key);
3610 if (ret < 0)
3611 return 0;
3612 return 1;
3616 * A helper function to walk down the tree starting at min_key, and looking
3617 * for nodes or leaves that are either in cache or have a minimum
3618 * transaction id. This is used by the btree defrag code, and tree logging
3620 * This does not cow, but it does stuff the starting key it finds back
3621 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3622 * key and get a writable path.
3624 * This does lock as it descends, and path->keep_locks should be set
3625 * to 1 by the caller.
3627 * This honors path->lowest_level to prevent descent past a given level
3628 * of the tree.
3630 * min_trans indicates the oldest transaction that you are interested
3631 * in walking through. Any nodes or leaves older than min_trans are
3632 * skipped over (without reading them).
3634 * returns zero if something useful was found, < 0 on error and 1 if there
3635 * was nothing in the tree that matched the search criteria.
3637 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3638 struct btrfs_key *max_key,
3639 struct btrfs_path *path, int cache_only,
3640 u64 min_trans)
3642 struct extent_buffer *cur;
3643 struct btrfs_key found_key;
3644 int slot;
3645 int sret;
3646 u32 nritems;
3647 int level;
3648 int ret = 1;
3650 WARN_ON(!path->keep_locks);
3651 again:
3652 cur = btrfs_lock_root_node(root);
3653 level = btrfs_header_level(cur);
3654 WARN_ON(path->nodes[level]);
3655 path->nodes[level] = cur;
3656 path->locks[level] = 1;
3658 if (btrfs_header_generation(cur) < min_trans) {
3659 ret = 1;
3660 goto out;
3662 while (1) {
3663 nritems = btrfs_header_nritems(cur);
3664 level = btrfs_header_level(cur);
3665 sret = bin_search(cur, min_key, level, &slot);
3667 /* at the lowest level, we're done, setup the path and exit */
3668 if (level == path->lowest_level) {
3669 if (slot >= nritems)
3670 goto find_next_key;
3671 ret = 0;
3672 path->slots[level] = slot;
3673 btrfs_item_key_to_cpu(cur, &found_key, slot);
3674 goto out;
3676 if (sret && slot > 0)
3677 slot--;
3679 * check this node pointer against the cache_only and
3680 * min_trans parameters. If it isn't in cache or is too
3681 * old, skip to the next one.
3683 while (slot < nritems) {
3684 u64 blockptr;
3685 u64 gen;
3686 struct extent_buffer *tmp;
3687 struct btrfs_disk_key disk_key;
3689 blockptr = btrfs_node_blockptr(cur, slot);
3690 gen = btrfs_node_ptr_generation(cur, slot);
3691 if (gen < min_trans) {
3692 slot++;
3693 continue;
3695 if (!cache_only)
3696 break;
3698 if (max_key) {
3699 btrfs_node_key(cur, &disk_key, slot);
3700 if (comp_keys(&disk_key, max_key) >= 0) {
3701 ret = 1;
3702 goto out;
3706 tmp = btrfs_find_tree_block(root, blockptr,
3707 btrfs_level_size(root, level - 1));
3709 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3710 free_extent_buffer(tmp);
3711 break;
3713 if (tmp)
3714 free_extent_buffer(tmp);
3715 slot++;
3717 find_next_key:
3719 * we didn't find a candidate key in this node, walk forward
3720 * and find another one
3722 if (slot >= nritems) {
3723 path->slots[level] = slot;
3724 sret = btrfs_find_next_key(root, path, min_key, level,
3725 cache_only, min_trans);
3726 if (sret == 0) {
3727 btrfs_release_path(root, path);
3728 goto again;
3729 } else {
3730 goto out;
3733 /* save our key for returning back */
3734 btrfs_node_key_to_cpu(cur, &found_key, slot);
3735 path->slots[level] = slot;
3736 if (level == path->lowest_level) {
3737 ret = 0;
3738 unlock_up(path, level, 1);
3739 goto out;
3741 cur = read_node_slot(root, cur, slot);
3743 btrfs_tree_lock(cur);
3744 path->locks[level - 1] = 1;
3745 path->nodes[level - 1] = cur;
3746 unlock_up(path, level, 1);
3748 out:
3749 if (ret == 0)
3750 memcpy(min_key, &found_key, sizeof(found_key));
3751 return ret;
3755 * this is similar to btrfs_next_leaf, but does not try to preserve
3756 * and fixup the path. It looks for and returns the next key in the
3757 * tree based on the current path and the cache_only and min_trans
3758 * parameters.
3760 * 0 is returned if another key is found, < 0 if there are any errors
3761 * and 1 is returned if there are no higher keys in the tree
3763 * path->keep_locks should be set to 1 on the search made before
3764 * calling this function.
3766 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3767 struct btrfs_key *key, int lowest_level,
3768 int cache_only, u64 min_trans)
3770 int level = lowest_level;
3771 int slot;
3772 struct extent_buffer *c;
3774 WARN_ON(!path->keep_locks);
3775 while (level < BTRFS_MAX_LEVEL) {
3776 if (!path->nodes[level])
3777 return 1;
3779 slot = path->slots[level] + 1;
3780 c = path->nodes[level];
3781 next:
3782 if (slot >= btrfs_header_nritems(c)) {
3783 level++;
3784 if (level == BTRFS_MAX_LEVEL)
3785 return 1;
3786 continue;
3788 if (level == 0)
3789 btrfs_item_key_to_cpu(c, key, slot);
3790 else {
3791 u64 blockptr = btrfs_node_blockptr(c, slot);
3792 u64 gen = btrfs_node_ptr_generation(c, slot);
3794 if (cache_only) {
3795 struct extent_buffer *cur;
3796 cur = btrfs_find_tree_block(root, blockptr,
3797 btrfs_level_size(root, level - 1));
3798 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
3799 slot++;
3800 if (cur)
3801 free_extent_buffer(cur);
3802 goto next;
3804 free_extent_buffer(cur);
3806 if (gen < min_trans) {
3807 slot++;
3808 goto next;
3810 btrfs_node_key_to_cpu(c, key, slot);
3812 return 0;
3814 return 1;
3818 * search the tree again to find a leaf with greater keys
3819 * returns 0 if it found something or 1 if there are no greater leaves.
3820 * returns < 0 on io errors.
3822 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3824 int slot;
3825 int level = 1;
3826 struct extent_buffer *c;
3827 struct extent_buffer *next = NULL;
3828 struct btrfs_key key;
3829 u32 nritems;
3830 int ret;
3832 nritems = btrfs_header_nritems(path->nodes[0]);
3833 if (nritems == 0)
3834 return 1;
3836 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
3838 btrfs_release_path(root, path);
3839 path->keep_locks = 1;
3840 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3841 path->keep_locks = 0;
3843 if (ret < 0)
3844 return ret;
3846 nritems = btrfs_header_nritems(path->nodes[0]);
3848 * by releasing the path above we dropped all our locks. A balance
3849 * could have added more items next to the key that used to be
3850 * at the very end of the block. So, check again here and
3851 * advance the path if there are now more items available.
3853 if (nritems > 0 && path->slots[0] < nritems - 1) {
3854 path->slots[0]++;
3855 goto done;
3858 while (level < BTRFS_MAX_LEVEL) {
3859 if (!path->nodes[level])
3860 return 1;
3862 slot = path->slots[level] + 1;
3863 c = path->nodes[level];
3864 if (slot >= btrfs_header_nritems(c)) {
3865 level++;
3866 if (level == BTRFS_MAX_LEVEL)
3867 return 1;
3868 continue;
3871 if (next) {
3872 btrfs_tree_unlock(next);
3873 free_extent_buffer(next);
3876 if (level == 1 && (path->locks[1] || path->skip_locking) &&
3877 path->reada)
3878 reada_for_search(root, path, level, slot, 0);
3880 next = read_node_slot(root, c, slot);
3881 if (!path->skip_locking) {
3882 WARN_ON(!btrfs_tree_locked(c));
3883 btrfs_tree_lock(next);
3885 break;
3887 path->slots[level] = slot;
3888 while (1) {
3889 level--;
3890 c = path->nodes[level];
3891 if (path->locks[level])
3892 btrfs_tree_unlock(c);
3893 free_extent_buffer(c);
3894 path->nodes[level] = next;
3895 path->slots[level] = 0;
3896 if (!path->skip_locking)
3897 path->locks[level] = 1;
3898 if (!level)
3899 break;
3900 if (level == 1 && path->locks[1] && path->reada)
3901 reada_for_search(root, path, level, slot, 0);
3902 next = read_node_slot(root, next, 0);
3903 if (!path->skip_locking) {
3904 WARN_ON(!btrfs_tree_locked(path->nodes[level]));
3905 btrfs_tree_lock(next);
3908 done:
3909 unlock_up(path, 0, 1);
3910 return 0;
3914 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
3915 * searching until it gets past min_objectid or finds an item of 'type'
3917 * returns 0 if something is found, 1 if nothing was found and < 0 on error
3919 int btrfs_previous_item(struct btrfs_root *root,
3920 struct btrfs_path *path, u64 min_objectid,
3921 int type)
3923 struct btrfs_key found_key;
3924 struct extent_buffer *leaf;
3925 u32 nritems;
3926 int ret;
3928 while (1) {
3929 if (path->slots[0] == 0) {
3930 ret = btrfs_prev_leaf(root, path);
3931 if (ret != 0)
3932 return ret;
3933 } else {
3934 path->slots[0]--;
3936 leaf = path->nodes[0];
3937 nritems = btrfs_header_nritems(leaf);
3938 if (nritems == 0)
3939 return 1;
3940 if (path->slots[0] == nritems)
3941 path->slots[0]--;
3943 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3944 if (found_key.type == type)
3945 return 0;
3946 if (found_key.objectid < min_objectid)
3947 break;
3948 if (found_key.objectid == min_objectid &&
3949 found_key.type < type)
3950 break;
3952 return 1;