swap: use an array for the LRU pagevecs
[linux-2.6/verdex.git] / mm / swap.c
blobe3045040dc3ec26eea087d065855a18aea429838
1 /*
2 * linux/mm/swap.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
34 /* How many pages do we try to swap or page in/out together? */
35 int page_cluster;
37 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
38 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41 * This path almost never happens for VM activity - pages are normally
42 * freed via pagevecs. But it gets used by networking.
44 static void __page_cache_release(struct page *page)
46 if (PageLRU(page)) {
47 unsigned long flags;
48 struct zone *zone = page_zone(page);
50 spin_lock_irqsave(&zone->lru_lock, flags);
51 VM_BUG_ON(!PageLRU(page));
52 __ClearPageLRU(page);
53 del_page_from_lru(zone, page);
54 spin_unlock_irqrestore(&zone->lru_lock, flags);
56 free_hot_page(page);
59 static void put_compound_page(struct page *page)
61 page = compound_head(page);
62 if (put_page_testzero(page)) {
63 compound_page_dtor *dtor;
65 dtor = get_compound_page_dtor(page);
66 (*dtor)(page);
70 void put_page(struct page *page)
72 if (unlikely(PageCompound(page)))
73 put_compound_page(page);
74 else if (put_page_testzero(page))
75 __page_cache_release(page);
77 EXPORT_SYMBOL(put_page);
79 /**
80 * put_pages_list() - release a list of pages
81 * @pages: list of pages threaded on page->lru
83 * Release a list of pages which are strung together on page.lru. Currently
84 * used by read_cache_pages() and related error recovery code.
86 void put_pages_list(struct list_head *pages)
88 while (!list_empty(pages)) {
89 struct page *victim;
91 victim = list_entry(pages->prev, struct page, lru);
92 list_del(&victim->lru);
93 page_cache_release(victim);
96 EXPORT_SYMBOL(put_pages_list);
99 * pagevec_move_tail() must be called with IRQ disabled.
100 * Otherwise this may cause nasty races.
102 static void pagevec_move_tail(struct pagevec *pvec)
104 int i;
105 int pgmoved = 0;
106 struct zone *zone = NULL;
108 for (i = 0; i < pagevec_count(pvec); i++) {
109 struct page *page = pvec->pages[i];
110 struct zone *pagezone = page_zone(page);
112 if (pagezone != zone) {
113 if (zone)
114 spin_unlock(&zone->lru_lock);
115 zone = pagezone;
116 spin_lock(&zone->lru_lock);
118 if (PageLRU(page) && !PageActive(page)) {
119 list_move_tail(&page->lru, &zone->lru[LRU_INACTIVE].list);
120 pgmoved++;
123 if (zone)
124 spin_unlock(&zone->lru_lock);
125 __count_vm_events(PGROTATED, pgmoved);
126 release_pages(pvec->pages, pvec->nr, pvec->cold);
127 pagevec_reinit(pvec);
131 * Writeback is about to end against a page which has been marked for immediate
132 * reclaim. If it still appears to be reclaimable, move it to the tail of the
133 * inactive list.
135 void rotate_reclaimable_page(struct page *page)
137 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
138 PageLRU(page)) {
139 struct pagevec *pvec;
140 unsigned long flags;
142 page_cache_get(page);
143 local_irq_save(flags);
144 pvec = &__get_cpu_var(lru_rotate_pvecs);
145 if (!pagevec_add(pvec, page))
146 pagevec_move_tail(pvec);
147 local_irq_restore(flags);
152 * FIXME: speed this up?
154 void activate_page(struct page *page)
156 struct zone *zone = page_zone(page);
158 spin_lock_irq(&zone->lru_lock);
159 if (PageLRU(page) && !PageActive(page)) {
160 del_page_from_inactive_list(zone, page);
161 SetPageActive(page);
162 add_page_to_active_list(zone, page);
163 __count_vm_event(PGACTIVATE);
164 mem_cgroup_move_lists(page, true);
166 spin_unlock_irq(&zone->lru_lock);
170 * Mark a page as having seen activity.
172 * inactive,unreferenced -> inactive,referenced
173 * inactive,referenced -> active,unreferenced
174 * active,unreferenced -> active,referenced
176 void mark_page_accessed(struct page *page)
178 if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
179 activate_page(page);
180 ClearPageReferenced(page);
181 } else if (!PageReferenced(page)) {
182 SetPageReferenced(page);
186 EXPORT_SYMBOL(mark_page_accessed);
188 void __lru_cache_add(struct page *page, enum lru_list lru)
190 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
192 page_cache_get(page);
193 if (!pagevec_add(pvec, page))
194 ____pagevec_lru_add(pvec, lru);
195 put_cpu_var(lru_add_pvecs);
199 * lru_cache_add_lru - add a page to a page list
200 * @page: the page to be added to the LRU.
201 * @lru: the LRU list to which the page is added.
203 void lru_cache_add_lru(struct page *page, enum lru_list lru)
205 if (PageActive(page)) {
206 ClearPageActive(page);
209 VM_BUG_ON(PageLRU(page) || PageActive(page));
210 __lru_cache_add(page, lru);
214 * Drain pages out of the cpu's pagevecs.
215 * Either "cpu" is the current CPU, and preemption has already been
216 * disabled; or "cpu" is being hot-unplugged, and is already dead.
218 static void drain_cpu_pagevecs(int cpu)
220 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
221 struct pagevec *pvec;
222 int lru;
224 for_each_lru(lru) {
225 pvec = &pvecs[lru - LRU_BASE];
226 if (pagevec_count(pvec))
227 ____pagevec_lru_add(pvec, lru);
230 pvec = &per_cpu(lru_rotate_pvecs, cpu);
231 if (pagevec_count(pvec)) {
232 unsigned long flags;
234 /* No harm done if a racing interrupt already did this */
235 local_irq_save(flags);
236 pagevec_move_tail(pvec);
237 local_irq_restore(flags);
241 void lru_add_drain(void)
243 drain_cpu_pagevecs(get_cpu());
244 put_cpu();
247 #ifdef CONFIG_NUMA
248 static void lru_add_drain_per_cpu(struct work_struct *dummy)
250 lru_add_drain();
254 * Returns 0 for success
256 int lru_add_drain_all(void)
258 return schedule_on_each_cpu(lru_add_drain_per_cpu);
261 #else
264 * Returns 0 for success
266 int lru_add_drain_all(void)
268 lru_add_drain();
269 return 0;
271 #endif
274 * Batched page_cache_release(). Decrement the reference count on all the
275 * passed pages. If it fell to zero then remove the page from the LRU and
276 * free it.
278 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
279 * for the remainder of the operation.
281 * The locking in this function is against shrink_inactive_list(): we recheck
282 * the page count inside the lock to see whether shrink_inactive_list()
283 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
284 * will free it.
286 void release_pages(struct page **pages, int nr, int cold)
288 int i;
289 struct pagevec pages_to_free;
290 struct zone *zone = NULL;
291 unsigned long uninitialized_var(flags);
293 pagevec_init(&pages_to_free, cold);
294 for (i = 0; i < nr; i++) {
295 struct page *page = pages[i];
297 if (unlikely(PageCompound(page))) {
298 if (zone) {
299 spin_unlock_irqrestore(&zone->lru_lock, flags);
300 zone = NULL;
302 put_compound_page(page);
303 continue;
306 if (!put_page_testzero(page))
307 continue;
309 if (PageLRU(page)) {
310 struct zone *pagezone = page_zone(page);
311 if (pagezone != zone) {
312 if (zone)
313 spin_unlock_irqrestore(&zone->lru_lock,
314 flags);
315 zone = pagezone;
316 spin_lock_irqsave(&zone->lru_lock, flags);
318 VM_BUG_ON(!PageLRU(page));
319 __ClearPageLRU(page);
320 del_page_from_lru(zone, page);
323 if (!pagevec_add(&pages_to_free, page)) {
324 if (zone) {
325 spin_unlock_irqrestore(&zone->lru_lock, flags);
326 zone = NULL;
328 __pagevec_free(&pages_to_free);
329 pagevec_reinit(&pages_to_free);
332 if (zone)
333 spin_unlock_irqrestore(&zone->lru_lock, flags);
335 pagevec_free(&pages_to_free);
339 * The pages which we're about to release may be in the deferred lru-addition
340 * queues. That would prevent them from really being freed right now. That's
341 * OK from a correctness point of view but is inefficient - those pages may be
342 * cache-warm and we want to give them back to the page allocator ASAP.
344 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
345 * and __pagevec_lru_add_active() call release_pages() directly to avoid
346 * mutual recursion.
348 void __pagevec_release(struct pagevec *pvec)
350 lru_add_drain();
351 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
352 pagevec_reinit(pvec);
355 EXPORT_SYMBOL(__pagevec_release);
358 * pagevec_release() for pages which are known to not be on the LRU
360 * This function reinitialises the caller's pagevec.
362 void __pagevec_release_nonlru(struct pagevec *pvec)
364 int i;
365 struct pagevec pages_to_free;
367 pagevec_init(&pages_to_free, pvec->cold);
368 for (i = 0; i < pagevec_count(pvec); i++) {
369 struct page *page = pvec->pages[i];
371 VM_BUG_ON(PageLRU(page));
372 if (put_page_testzero(page))
373 pagevec_add(&pages_to_free, page);
375 pagevec_free(&pages_to_free);
376 pagevec_reinit(pvec);
380 * Add the passed pages to the LRU, then drop the caller's refcount
381 * on them. Reinitialises the caller's pagevec.
383 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
385 int i;
386 struct zone *zone = NULL;
388 for (i = 0; i < pagevec_count(pvec); i++) {
389 struct page *page = pvec->pages[i];
390 struct zone *pagezone = page_zone(page);
392 if (pagezone != zone) {
393 if (zone)
394 spin_unlock_irq(&zone->lru_lock);
395 zone = pagezone;
396 spin_lock_irq(&zone->lru_lock);
398 VM_BUG_ON(PageLRU(page));
399 SetPageLRU(page);
400 if (is_active_lru(lru))
401 SetPageActive(page);
402 add_page_to_lru_list(zone, page, lru);
404 if (zone)
405 spin_unlock_irq(&zone->lru_lock);
406 release_pages(pvec->pages, pvec->nr, pvec->cold);
407 pagevec_reinit(pvec);
410 EXPORT_SYMBOL(____pagevec_lru_add);
413 * Try to drop buffers from the pages in a pagevec
415 void pagevec_strip(struct pagevec *pvec)
417 int i;
419 for (i = 0; i < pagevec_count(pvec); i++) {
420 struct page *page = pvec->pages[i];
422 if (PagePrivate(page) && trylock_page(page)) {
423 if (PagePrivate(page))
424 try_to_release_page(page, 0);
425 unlock_page(page);
431 * pagevec_lookup - gang pagecache lookup
432 * @pvec: Where the resulting pages are placed
433 * @mapping: The address_space to search
434 * @start: The starting page index
435 * @nr_pages: The maximum number of pages
437 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
438 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
439 * reference against the pages in @pvec.
441 * The search returns a group of mapping-contiguous pages with ascending
442 * indexes. There may be holes in the indices due to not-present pages.
444 * pagevec_lookup() returns the number of pages which were found.
446 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
447 pgoff_t start, unsigned nr_pages)
449 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
450 return pagevec_count(pvec);
453 EXPORT_SYMBOL(pagevec_lookup);
455 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
456 pgoff_t *index, int tag, unsigned nr_pages)
458 pvec->nr = find_get_pages_tag(mapping, index, tag,
459 nr_pages, pvec->pages);
460 return pagevec_count(pvec);
463 EXPORT_SYMBOL(pagevec_lookup_tag);
465 #ifdef CONFIG_SMP
467 * We tolerate a little inaccuracy to avoid ping-ponging the counter between
468 * CPUs
470 #define ACCT_THRESHOLD max(16, NR_CPUS * 2)
472 static DEFINE_PER_CPU(long, committed_space);
474 void vm_acct_memory(long pages)
476 long *local;
478 preempt_disable();
479 local = &__get_cpu_var(committed_space);
480 *local += pages;
481 if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
482 atomic_long_add(*local, &vm_committed_space);
483 *local = 0;
485 preempt_enable();
488 #ifdef CONFIG_HOTPLUG_CPU
490 /* Drop the CPU's cached committed space back into the central pool. */
491 static int cpu_swap_callback(struct notifier_block *nfb,
492 unsigned long action,
493 void *hcpu)
495 long *committed;
497 committed = &per_cpu(committed_space, (long)hcpu);
498 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
499 atomic_long_add(*committed, &vm_committed_space);
500 *committed = 0;
501 drain_cpu_pagevecs((long)hcpu);
503 return NOTIFY_OK;
505 #endif /* CONFIG_HOTPLUG_CPU */
506 #endif /* CONFIG_SMP */
509 * Perform any setup for the swap system
511 void __init swap_setup(void)
513 unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
515 #ifdef CONFIG_SWAP
516 bdi_init(swapper_space.backing_dev_info);
517 #endif
519 /* Use a smaller cluster for small-memory machines */
520 if (megs < 16)
521 page_cluster = 2;
522 else
523 page_cluster = 3;
525 * Right now other parts of the system means that we
526 * _really_ don't want to cluster much more
528 #ifdef CONFIG_HOTPLUG_CPU
529 hotcpu_notifier(cpu_swap_callback, 0);
530 #endif