2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
44 static int ext3_writepage_trans_blocks(struct inode
*inode
);
47 * Test whether an inode is a fast symlink.
49 static int ext3_inode_is_fast_symlink(struct inode
*inode
)
51 int ea_blocks
= EXT3_I(inode
)->i_file_acl
?
52 (inode
->i_sb
->s_blocksize
>> 9) : 0;
54 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
58 * The ext3 forget function must perform a revoke if we are freeing data
59 * which has been journaled. Metadata (eg. indirect blocks) must be
60 * revoked in all cases.
62 * "bh" may be NULL: a metadata block may have been freed from memory
63 * but there may still be a record of it in the journal, and that record
64 * still needs to be revoked.
66 int ext3_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
67 struct buffer_head
*bh
, ext3_fsblk_t blocknr
)
73 BUFFER_TRACE(bh
, "enter");
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
77 bh
, is_metadata
, inode
->i_mode
,
78 test_opt(inode
->i_sb
, DATA_FLAGS
));
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
85 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT3_MOUNT_JOURNAL_DATA
||
86 (!is_metadata
&& !ext3_should_journal_data(inode
))) {
88 BUFFER_TRACE(bh
, "call journal_forget");
89 return ext3_journal_forget(handle
, bh
);
95 * data!=journal && (is_metadata || should_journal_data(inode))
97 BUFFER_TRACE(bh
, "call ext3_journal_revoke");
98 err
= ext3_journal_revoke(handle
, blocknr
, bh
);
100 ext3_abort(inode
->i_sb
, __func__
,
101 "error %d when attempting revoke", err
);
102 BUFFER_TRACE(bh
, "exit");
107 * Work out how many blocks we need to proceed with the next chunk of a
108 * truncate transaction.
110 static unsigned long blocks_for_truncate(struct inode
*inode
)
112 unsigned long needed
;
114 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
116 /* Give ourselves just enough room to cope with inodes in which
117 * i_blocks is corrupt: we've seen disk corruptions in the past
118 * which resulted in random data in an inode which looked enough
119 * like a regular file for ext3 to try to delete it. Things
120 * will go a bit crazy if that happens, but at least we should
121 * try not to panic the whole kernel. */
125 /* But we need to bound the transaction so we don't overflow the
127 if (needed
> EXT3_MAX_TRANS_DATA
)
128 needed
= EXT3_MAX_TRANS_DATA
;
130 return EXT3_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
134 * Truncate transactions can be complex and absolutely huge. So we need to
135 * be able to restart the transaction at a conventient checkpoint to make
136 * sure we don't overflow the journal.
138 * start_transaction gets us a new handle for a truncate transaction,
139 * and extend_transaction tries to extend the existing one a bit. If
140 * extend fails, we need to propagate the failure up and restart the
141 * transaction in the top-level truncate loop. --sct
143 static handle_t
*start_transaction(struct inode
*inode
)
147 result
= ext3_journal_start(inode
, blocks_for_truncate(inode
));
151 ext3_std_error(inode
->i_sb
, PTR_ERR(result
));
156 * Try to extend this transaction for the purposes of truncation.
158 * Returns 0 if we managed to create more room. If we can't create more
159 * room, and the transaction must be restarted we return 1.
161 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
163 if (handle
->h_buffer_credits
> EXT3_RESERVE_TRANS_BLOCKS
)
165 if (!ext3_journal_extend(handle
, blocks_for_truncate(inode
)))
171 * Restart the transaction associated with *handle. This does a commit,
172 * so before we call here everything must be consistently dirtied against
175 static int ext3_journal_test_restart(handle_t
*handle
, struct inode
*inode
)
177 jbd_debug(2, "restarting handle %p\n", handle
);
178 return ext3_journal_restart(handle
, blocks_for_truncate(inode
));
182 * Called at the last iput() if i_nlink is zero.
184 void ext3_delete_inode (struct inode
* inode
)
188 truncate_inode_pages(&inode
->i_data
, 0);
190 if (is_bad_inode(inode
))
193 handle
= start_transaction(inode
);
194 if (IS_ERR(handle
)) {
196 * If we're going to skip the normal cleanup, we still need to
197 * make sure that the in-core orphan linked list is properly
200 ext3_orphan_del(NULL
, inode
);
208 ext3_truncate(inode
);
210 * Kill off the orphan record which ext3_truncate created.
211 * AKPM: I think this can be inside the above `if'.
212 * Note that ext3_orphan_del() has to be able to cope with the
213 * deletion of a non-existent orphan - this is because we don't
214 * know if ext3_truncate() actually created an orphan record.
215 * (Well, we could do this if we need to, but heck - it works)
217 ext3_orphan_del(handle
, inode
);
218 EXT3_I(inode
)->i_dtime
= get_seconds();
221 * One subtle ordering requirement: if anything has gone wrong
222 * (transaction abort, IO errors, whatever), then we can still
223 * do these next steps (the fs will already have been marked as
224 * having errors), but we can't free the inode if the mark_dirty
227 if (ext3_mark_inode_dirty(handle
, inode
))
228 /* If that failed, just do the required in-core inode clear. */
231 ext3_free_inode(handle
, inode
);
232 ext3_journal_stop(handle
);
235 clear_inode(inode
); /* We must guarantee clearing of inode... */
241 struct buffer_head
*bh
;
244 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
246 p
->key
= *(p
->p
= v
);
250 static int verify_chain(Indirect
*from
, Indirect
*to
)
252 while (from
<= to
&& from
->key
== *from
->p
)
258 * ext3_block_to_path - parse the block number into array of offsets
259 * @inode: inode in question (we are only interested in its superblock)
260 * @i_block: block number to be parsed
261 * @offsets: array to store the offsets in
262 * @boundary: set this non-zero if the referred-to block is likely to be
263 * followed (on disk) by an indirect block.
265 * To store the locations of file's data ext3 uses a data structure common
266 * for UNIX filesystems - tree of pointers anchored in the inode, with
267 * data blocks at leaves and indirect blocks in intermediate nodes.
268 * This function translates the block number into path in that tree -
269 * return value is the path length and @offsets[n] is the offset of
270 * pointer to (n+1)th node in the nth one. If @block is out of range
271 * (negative or too large) warning is printed and zero returned.
273 * Note: function doesn't find node addresses, so no IO is needed. All
274 * we need to know is the capacity of indirect blocks (taken from the
279 * Portability note: the last comparison (check that we fit into triple
280 * indirect block) is spelled differently, because otherwise on an
281 * architecture with 32-bit longs and 8Kb pages we might get into trouble
282 * if our filesystem had 8Kb blocks. We might use long long, but that would
283 * kill us on x86. Oh, well, at least the sign propagation does not matter -
284 * i_block would have to be negative in the very beginning, so we would not
288 static int ext3_block_to_path(struct inode
*inode
,
289 long i_block
, int offsets
[4], int *boundary
)
291 int ptrs
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
292 int ptrs_bits
= EXT3_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
293 const long direct_blocks
= EXT3_NDIR_BLOCKS
,
294 indirect_blocks
= ptrs
,
295 double_blocks
= (1 << (ptrs_bits
* 2));
300 ext3_warning (inode
->i_sb
, "ext3_block_to_path", "block < 0");
301 } else if (i_block
< direct_blocks
) {
302 offsets
[n
++] = i_block
;
303 final
= direct_blocks
;
304 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
305 offsets
[n
++] = EXT3_IND_BLOCK
;
306 offsets
[n
++] = i_block
;
308 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
309 offsets
[n
++] = EXT3_DIND_BLOCK
;
310 offsets
[n
++] = i_block
>> ptrs_bits
;
311 offsets
[n
++] = i_block
& (ptrs
- 1);
313 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
314 offsets
[n
++] = EXT3_TIND_BLOCK
;
315 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
316 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
317 offsets
[n
++] = i_block
& (ptrs
- 1);
320 ext3_warning(inode
->i_sb
, "ext3_block_to_path", "block > big");
323 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
328 * ext3_get_branch - read the chain of indirect blocks leading to data
329 * @inode: inode in question
330 * @depth: depth of the chain (1 - direct pointer, etc.)
331 * @offsets: offsets of pointers in inode/indirect blocks
332 * @chain: place to store the result
333 * @err: here we store the error value
335 * Function fills the array of triples <key, p, bh> and returns %NULL
336 * if everything went OK or the pointer to the last filled triple
337 * (incomplete one) otherwise. Upon the return chain[i].key contains
338 * the number of (i+1)-th block in the chain (as it is stored in memory,
339 * i.e. little-endian 32-bit), chain[i].p contains the address of that
340 * number (it points into struct inode for i==0 and into the bh->b_data
341 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
342 * block for i>0 and NULL for i==0. In other words, it holds the block
343 * numbers of the chain, addresses they were taken from (and where we can
344 * verify that chain did not change) and buffer_heads hosting these
347 * Function stops when it stumbles upon zero pointer (absent block)
348 * (pointer to last triple returned, *@err == 0)
349 * or when it gets an IO error reading an indirect block
350 * (ditto, *@err == -EIO)
351 * or when it notices that chain had been changed while it was reading
352 * (ditto, *@err == -EAGAIN)
353 * or when it reads all @depth-1 indirect blocks successfully and finds
354 * the whole chain, all way to the data (returns %NULL, *err == 0).
356 static Indirect
*ext3_get_branch(struct inode
*inode
, int depth
, int *offsets
,
357 Indirect chain
[4], int *err
)
359 struct super_block
*sb
= inode
->i_sb
;
361 struct buffer_head
*bh
;
364 /* i_data is not going away, no lock needed */
365 add_chain (chain
, NULL
, EXT3_I(inode
)->i_data
+ *offsets
);
369 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
372 /* Reader: pointers */
373 if (!verify_chain(chain
, p
))
375 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
393 * ext3_find_near - find a place for allocation with sufficient locality
395 * @ind: descriptor of indirect block.
397 * This function returns the preferred place for block allocation.
398 * It is used when heuristic for sequential allocation fails.
400 * + if there is a block to the left of our position - allocate near it.
401 * + if pointer will live in indirect block - allocate near that block.
402 * + if pointer will live in inode - allocate in the same
405 * In the latter case we colour the starting block by the callers PID to
406 * prevent it from clashing with concurrent allocations for a different inode
407 * in the same block group. The PID is used here so that functionally related
408 * files will be close-by on-disk.
410 * Caller must make sure that @ind is valid and will stay that way.
412 static ext3_fsblk_t
ext3_find_near(struct inode
*inode
, Indirect
*ind
)
414 struct ext3_inode_info
*ei
= EXT3_I(inode
);
415 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
417 ext3_fsblk_t bg_start
;
418 ext3_grpblk_t colour
;
420 /* Try to find previous block */
421 for (p
= ind
->p
- 1; p
>= start
; p
--) {
423 return le32_to_cpu(*p
);
426 /* No such thing, so let's try location of indirect block */
428 return ind
->bh
->b_blocknr
;
431 * It is going to be referred to from the inode itself? OK, just put it
432 * into the same cylinder group then.
434 bg_start
= ext3_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
435 colour
= (current
->pid
% 16) *
436 (EXT3_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
437 return bg_start
+ colour
;
441 * ext3_find_goal - find a preferred place for allocation.
443 * @block: block we want
444 * @partial: pointer to the last triple within a chain
446 * Normally this function find the preferred place for block allocation,
450 static ext3_fsblk_t
ext3_find_goal(struct inode
*inode
, long block
,
453 struct ext3_block_alloc_info
*block_i
;
455 block_i
= EXT3_I(inode
)->i_block_alloc_info
;
458 * try the heuristic for sequential allocation,
459 * failing that at least try to get decent locality.
461 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
462 && (block_i
->last_alloc_physical_block
!= 0)) {
463 return block_i
->last_alloc_physical_block
+ 1;
466 return ext3_find_near(inode
, partial
);
470 * ext3_blks_to_allocate: Look up the block map and count the number
471 * of direct blocks need to be allocated for the given branch.
473 * @branch: chain of indirect blocks
474 * @k: number of blocks need for indirect blocks
475 * @blks: number of data blocks to be mapped.
476 * @blocks_to_boundary: the offset in the indirect block
478 * return the total number of blocks to be allocate, including the
479 * direct and indirect blocks.
481 static int ext3_blks_to_allocate(Indirect
*branch
, int k
, unsigned long blks
,
482 int blocks_to_boundary
)
484 unsigned long count
= 0;
487 * Simple case, [t,d]Indirect block(s) has not allocated yet
488 * then it's clear blocks on that path have not allocated
491 /* right now we don't handle cross boundary allocation */
492 if (blks
< blocks_to_boundary
+ 1)
495 count
+= blocks_to_boundary
+ 1;
500 while (count
< blks
&& count
<= blocks_to_boundary
&&
501 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
508 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
509 * @indirect_blks: the number of blocks need to allocate for indirect
512 * @new_blocks: on return it will store the new block numbers for
513 * the indirect blocks(if needed) and the first direct block,
514 * @blks: on return it will store the total number of allocated
517 static int ext3_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
518 ext3_fsblk_t goal
, int indirect_blks
, int blks
,
519 ext3_fsblk_t new_blocks
[4], int *err
)
522 unsigned long count
= 0;
524 ext3_fsblk_t current_block
= 0;
528 * Here we try to allocate the requested multiple blocks at once,
529 * on a best-effort basis.
530 * To build a branch, we should allocate blocks for
531 * the indirect blocks(if not allocated yet), and at least
532 * the first direct block of this branch. That's the
533 * minimum number of blocks need to allocate(required)
535 target
= blks
+ indirect_blks
;
539 /* allocating blocks for indirect blocks and direct blocks */
540 current_block
= ext3_new_blocks(handle
,inode
,goal
,&count
,err
);
545 /* allocate blocks for indirect blocks */
546 while (index
< indirect_blks
&& count
) {
547 new_blocks
[index
++] = current_block
++;
555 /* save the new block number for the first direct block */
556 new_blocks
[index
] = current_block
;
558 /* total number of blocks allocated for direct blocks */
563 for (i
= 0; i
<index
; i
++)
564 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
569 * ext3_alloc_branch - allocate and set up a chain of blocks.
571 * @indirect_blks: number of allocated indirect blocks
572 * @blks: number of allocated direct blocks
573 * @offsets: offsets (in the blocks) to store the pointers to next.
574 * @branch: place to store the chain in.
576 * This function allocates blocks, zeroes out all but the last one,
577 * links them into chain and (if we are synchronous) writes them to disk.
578 * In other words, it prepares a branch that can be spliced onto the
579 * inode. It stores the information about that chain in the branch[], in
580 * the same format as ext3_get_branch() would do. We are calling it after
581 * we had read the existing part of chain and partial points to the last
582 * triple of that (one with zero ->key). Upon the exit we have the same
583 * picture as after the successful ext3_get_block(), except that in one
584 * place chain is disconnected - *branch->p is still zero (we did not
585 * set the last link), but branch->key contains the number that should
586 * be placed into *branch->p to fill that gap.
588 * If allocation fails we free all blocks we've allocated (and forget
589 * their buffer_heads) and return the error value the from failed
590 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
591 * as described above and return 0.
593 static int ext3_alloc_branch(handle_t
*handle
, struct inode
*inode
,
594 int indirect_blks
, int *blks
, ext3_fsblk_t goal
,
595 int *offsets
, Indirect
*branch
)
597 int blocksize
= inode
->i_sb
->s_blocksize
;
600 struct buffer_head
*bh
;
602 ext3_fsblk_t new_blocks
[4];
603 ext3_fsblk_t current_block
;
605 num
= ext3_alloc_blocks(handle
, inode
, goal
, indirect_blks
,
606 *blks
, new_blocks
, &err
);
610 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
612 * metadata blocks and data blocks are allocated.
614 for (n
= 1; n
<= indirect_blks
; n
++) {
616 * Get buffer_head for parent block, zero it out
617 * and set the pointer to new one, then send
620 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
623 BUFFER_TRACE(bh
, "call get_create_access");
624 err
= ext3_journal_get_create_access(handle
, bh
);
631 memset(bh
->b_data
, 0, blocksize
);
632 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
633 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
634 *branch
[n
].p
= branch
[n
].key
;
635 if ( n
== indirect_blks
) {
636 current_block
= new_blocks
[n
];
638 * End of chain, update the last new metablock of
639 * the chain to point to the new allocated
640 * data blocks numbers
642 for (i
=1; i
< num
; i
++)
643 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
645 BUFFER_TRACE(bh
, "marking uptodate");
646 set_buffer_uptodate(bh
);
649 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
650 err
= ext3_journal_dirty_metadata(handle
, bh
);
657 /* Allocation failed, free what we already allocated */
658 for (i
= 1; i
<= n
; i
++) {
659 BUFFER_TRACE(branch
[i
].bh
, "call journal_forget");
660 ext3_journal_forget(handle
, branch
[i
].bh
);
662 for (i
= 0; i
<indirect_blks
; i
++)
663 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
665 ext3_free_blocks(handle
, inode
, new_blocks
[i
], num
);
671 * ext3_splice_branch - splice the allocated branch onto inode.
673 * @block: (logical) number of block we are adding
674 * @chain: chain of indirect blocks (with a missing link - see
676 * @where: location of missing link
677 * @num: number of indirect blocks we are adding
678 * @blks: number of direct blocks we are adding
680 * This function fills the missing link and does all housekeeping needed in
681 * inode (->i_blocks, etc.). In case of success we end up with the full
682 * chain to new block and return 0.
684 static int ext3_splice_branch(handle_t
*handle
, struct inode
*inode
,
685 long block
, Indirect
*where
, int num
, int blks
)
689 struct ext3_block_alloc_info
*block_i
;
690 ext3_fsblk_t current_block
;
692 block_i
= EXT3_I(inode
)->i_block_alloc_info
;
694 * If we're splicing into a [td]indirect block (as opposed to the
695 * inode) then we need to get write access to the [td]indirect block
699 BUFFER_TRACE(where
->bh
, "get_write_access");
700 err
= ext3_journal_get_write_access(handle
, where
->bh
);
706 *where
->p
= where
->key
;
709 * Update the host buffer_head or inode to point to more just allocated
710 * direct blocks blocks
712 if (num
== 0 && blks
> 1) {
713 current_block
= le32_to_cpu(where
->key
) + 1;
714 for (i
= 1; i
< blks
; i
++)
715 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
719 * update the most recently allocated logical & physical block
720 * in i_block_alloc_info, to assist find the proper goal block for next
724 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
725 block_i
->last_alloc_physical_block
=
726 le32_to_cpu(where
[num
].key
) + blks
- 1;
729 /* We are done with atomic stuff, now do the rest of housekeeping */
731 inode
->i_ctime
= CURRENT_TIME_SEC
;
732 ext3_mark_inode_dirty(handle
, inode
);
734 /* had we spliced it onto indirect block? */
737 * If we spliced it onto an indirect block, we haven't
738 * altered the inode. Note however that if it is being spliced
739 * onto an indirect block at the very end of the file (the
740 * file is growing) then we *will* alter the inode to reflect
741 * the new i_size. But that is not done here - it is done in
742 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
744 jbd_debug(5, "splicing indirect only\n");
745 BUFFER_TRACE(where
->bh
, "call ext3_journal_dirty_metadata");
746 err
= ext3_journal_dirty_metadata(handle
, where
->bh
);
751 * OK, we spliced it into the inode itself on a direct block.
752 * Inode was dirtied above.
754 jbd_debug(5, "splicing direct\n");
759 for (i
= 1; i
<= num
; i
++) {
760 BUFFER_TRACE(where
[i
].bh
, "call journal_forget");
761 ext3_journal_forget(handle
, where
[i
].bh
);
762 ext3_free_blocks(handle
,inode
,le32_to_cpu(where
[i
-1].key
),1);
764 ext3_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
);
770 * Allocation strategy is simple: if we have to allocate something, we will
771 * have to go the whole way to leaf. So let's do it before attaching anything
772 * to tree, set linkage between the newborn blocks, write them if sync is
773 * required, recheck the path, free and repeat if check fails, otherwise
774 * set the last missing link (that will protect us from any truncate-generated
775 * removals - all blocks on the path are immune now) and possibly force the
776 * write on the parent block.
777 * That has a nice additional property: no special recovery from the failed
778 * allocations is needed - we simply release blocks and do not touch anything
779 * reachable from inode.
781 * `handle' can be NULL if create == 0.
783 * The BKL may not be held on entry here. Be sure to take it early.
784 * return > 0, # of blocks mapped or allocated.
785 * return = 0, if plain lookup failed.
786 * return < 0, error case.
788 int ext3_get_blocks_handle(handle_t
*handle
, struct inode
*inode
,
789 sector_t iblock
, unsigned long maxblocks
,
790 struct buffer_head
*bh_result
,
799 int blocks_to_boundary
= 0;
801 struct ext3_inode_info
*ei
= EXT3_I(inode
);
803 ext3_fsblk_t first_block
= 0;
806 J_ASSERT(handle
!= NULL
|| create
== 0);
807 depth
= ext3_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
812 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
814 /* Simplest case - block found, no allocation needed */
816 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
817 clear_buffer_new(bh_result
);
820 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
823 if (!verify_chain(chain
, chain
+ depth
- 1)) {
825 * Indirect block might be removed by
826 * truncate while we were reading it.
827 * Handling of that case: forget what we've
828 * got now. Flag the err as EAGAIN, so it
835 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
837 if (blk
== first_block
+ count
)
846 /* Next simple case - plain lookup or failed read of indirect block */
847 if (!create
|| err
== -EIO
)
850 mutex_lock(&ei
->truncate_mutex
);
853 * If the indirect block is missing while we are reading
854 * the chain(ext3_get_branch() returns -EAGAIN err), or
855 * if the chain has been changed after we grab the semaphore,
856 * (either because another process truncated this branch, or
857 * another get_block allocated this branch) re-grab the chain to see if
858 * the request block has been allocated or not.
860 * Since we already block the truncate/other get_block
861 * at this point, we will have the current copy of the chain when we
862 * splice the branch into the tree.
864 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
865 while (partial
> chain
) {
869 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
872 mutex_unlock(&ei
->truncate_mutex
);
875 clear_buffer_new(bh_result
);
881 * Okay, we need to do block allocation. Lazily initialize the block
882 * allocation info here if necessary
884 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
885 ext3_init_block_alloc_info(inode
);
887 goal
= ext3_find_goal(inode
, iblock
, partial
);
889 /* the number of blocks need to allocate for [d,t]indirect blocks */
890 indirect_blks
= (chain
+ depth
) - partial
- 1;
893 * Next look up the indirect map to count the totoal number of
894 * direct blocks to allocate for this branch.
896 count
= ext3_blks_to_allocate(partial
, indirect_blks
,
897 maxblocks
, blocks_to_boundary
);
899 * Block out ext3_truncate while we alter the tree
901 err
= ext3_alloc_branch(handle
, inode
, indirect_blks
, &count
, goal
,
902 offsets
+ (partial
- chain
), partial
);
905 * The ext3_splice_branch call will free and forget any buffers
906 * on the new chain if there is a failure, but that risks using
907 * up transaction credits, especially for bitmaps where the
908 * credits cannot be returned. Can we handle this somehow? We
909 * may need to return -EAGAIN upwards in the worst case. --sct
912 err
= ext3_splice_branch(handle
, inode
, iblock
,
913 partial
, indirect_blks
, count
);
914 mutex_unlock(&ei
->truncate_mutex
);
918 set_buffer_new(bh_result
);
920 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
921 if (count
> blocks_to_boundary
)
922 set_buffer_boundary(bh_result
);
924 /* Clean up and exit */
925 partial
= chain
+ depth
- 1; /* the whole chain */
927 while (partial
> chain
) {
928 BUFFER_TRACE(partial
->bh
, "call brelse");
932 BUFFER_TRACE(bh_result
, "returned");
937 /* Maximum number of blocks we map for direct IO at once. */
938 #define DIO_MAX_BLOCKS 4096
940 * Number of credits we need for writing DIO_MAX_BLOCKS:
941 * We need sb + group descriptor + bitmap + inode -> 4
942 * For B blocks with A block pointers per block we need:
943 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
944 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
946 #define DIO_CREDITS 25
948 static int ext3_get_block(struct inode
*inode
, sector_t iblock
,
949 struct buffer_head
*bh_result
, int create
)
951 handle_t
*handle
= ext3_journal_current_handle();
952 int ret
= 0, started
= 0;
953 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
955 if (create
&& !handle
) { /* Direct IO write... */
956 if (max_blocks
> DIO_MAX_BLOCKS
)
957 max_blocks
= DIO_MAX_BLOCKS
;
958 handle
= ext3_journal_start(inode
, DIO_CREDITS
+
959 2 * EXT3_QUOTA_TRANS_BLOCKS(inode
->i_sb
));
960 if (IS_ERR(handle
)) {
961 ret
= PTR_ERR(handle
);
967 ret
= ext3_get_blocks_handle(handle
, inode
, iblock
,
968 max_blocks
, bh_result
, create
);
970 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
974 ext3_journal_stop(handle
);
979 int ext3_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
982 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
987 * `handle' can be NULL if create is zero
989 struct buffer_head
*ext3_getblk(handle_t
*handle
, struct inode
*inode
,
990 long block
, int create
, int *errp
)
992 struct buffer_head dummy
;
995 J_ASSERT(handle
!= NULL
|| create
== 0);
998 dummy
.b_blocknr
= -1000;
999 buffer_trace_init(&dummy
.b_history
);
1000 err
= ext3_get_blocks_handle(handle
, inode
, block
, 1,
1003 * ext3_get_blocks_handle() returns number of blocks
1004 * mapped. 0 in case of a HOLE.
1012 if (!err
&& buffer_mapped(&dummy
)) {
1013 struct buffer_head
*bh
;
1014 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1019 if (buffer_new(&dummy
)) {
1020 J_ASSERT(create
!= 0);
1021 J_ASSERT(handle
!= NULL
);
1024 * Now that we do not always journal data, we should
1025 * keep in mind whether this should always journal the
1026 * new buffer as metadata. For now, regular file
1027 * writes use ext3_get_block instead, so it's not a
1031 BUFFER_TRACE(bh
, "call get_create_access");
1032 fatal
= ext3_journal_get_create_access(handle
, bh
);
1033 if (!fatal
&& !buffer_uptodate(bh
)) {
1034 memset(bh
->b_data
,0,inode
->i_sb
->s_blocksize
);
1035 set_buffer_uptodate(bh
);
1038 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
1039 err
= ext3_journal_dirty_metadata(handle
, bh
);
1043 BUFFER_TRACE(bh
, "not a new buffer");
1056 struct buffer_head
*ext3_bread(handle_t
*handle
, struct inode
*inode
,
1057 int block
, int create
, int *err
)
1059 struct buffer_head
* bh
;
1061 bh
= ext3_getblk(handle
, inode
, block
, create
, err
);
1064 if (buffer_uptodate(bh
))
1066 ll_rw_block(READ_META
, 1, &bh
);
1068 if (buffer_uptodate(bh
))
1075 static int walk_page_buffers( handle_t
*handle
,
1076 struct buffer_head
*head
,
1080 int (*fn
)( handle_t
*handle
,
1081 struct buffer_head
*bh
))
1083 struct buffer_head
*bh
;
1084 unsigned block_start
, block_end
;
1085 unsigned blocksize
= head
->b_size
;
1087 struct buffer_head
*next
;
1089 for ( bh
= head
, block_start
= 0;
1090 ret
== 0 && (bh
!= head
|| !block_start
);
1091 block_start
= block_end
, bh
= next
)
1093 next
= bh
->b_this_page
;
1094 block_end
= block_start
+ blocksize
;
1095 if (block_end
<= from
|| block_start
>= to
) {
1096 if (partial
&& !buffer_uptodate(bh
))
1100 err
= (*fn
)(handle
, bh
);
1108 * To preserve ordering, it is essential that the hole instantiation and
1109 * the data write be encapsulated in a single transaction. We cannot
1110 * close off a transaction and start a new one between the ext3_get_block()
1111 * and the commit_write(). So doing the journal_start at the start of
1112 * prepare_write() is the right place.
1114 * Also, this function can nest inside ext3_writepage() ->
1115 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1116 * has generated enough buffer credits to do the whole page. So we won't
1117 * block on the journal in that case, which is good, because the caller may
1120 * By accident, ext3 can be reentered when a transaction is open via
1121 * quota file writes. If we were to commit the transaction while thus
1122 * reentered, there can be a deadlock - we would be holding a quota
1123 * lock, and the commit would never complete if another thread had a
1124 * transaction open and was blocking on the quota lock - a ranking
1127 * So what we do is to rely on the fact that journal_stop/journal_start
1128 * will _not_ run commit under these circumstances because handle->h_ref
1129 * is elevated. We'll still have enough credits for the tiny quotafile
1132 static int do_journal_get_write_access(handle_t
*handle
,
1133 struct buffer_head
*bh
)
1135 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1137 return ext3_journal_get_write_access(handle
, bh
);
1140 static int ext3_write_begin(struct file
*file
, struct address_space
*mapping
,
1141 loff_t pos
, unsigned len
, unsigned flags
,
1142 struct page
**pagep
, void **fsdata
)
1144 struct inode
*inode
= mapping
->host
;
1151 /* Reserve one block more for addition to orphan list in case
1152 * we allocate blocks but write fails for some reason */
1153 int needed_blocks
= ext3_writepage_trans_blocks(inode
) + 1;
1155 index
= pos
>> PAGE_CACHE_SHIFT
;
1156 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1160 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1165 handle
= ext3_journal_start(inode
, needed_blocks
);
1166 if (IS_ERR(handle
)) {
1168 page_cache_release(page
);
1169 ret
= PTR_ERR(handle
);
1172 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1175 goto write_begin_failed
;
1177 if (ext3_should_journal_data(inode
)) {
1178 ret
= walk_page_buffers(handle
, page_buffers(page
),
1179 from
, to
, NULL
, do_journal_get_write_access
);
1184 * block_write_begin may have instantiated a few blocks
1185 * outside i_size. Trim these off again. Don't need
1186 * i_size_read because we hold i_mutex.
1188 * Add inode to orphan list in case we crash before truncate
1189 * finishes. Do this only if ext3_can_truncate() agrees so
1190 * that orphan processing code is happy.
1192 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1193 ext3_orphan_add(handle
, inode
);
1194 ext3_journal_stop(handle
);
1196 page_cache_release(page
);
1197 if (pos
+ len
> inode
->i_size
)
1198 ext3_truncate(inode
);
1200 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1207 int ext3_journal_dirty_data(handle_t
*handle
, struct buffer_head
*bh
)
1209 int err
= journal_dirty_data(handle
, bh
);
1211 ext3_journal_abort_handle(__func__
, __func__
,
1216 /* For ordered writepage and write_end functions */
1217 static int journal_dirty_data_fn(handle_t
*handle
, struct buffer_head
*bh
)
1220 * Write could have mapped the buffer but it didn't copy the data in
1221 * yet. So avoid filing such buffer into a transaction.
1223 if (buffer_mapped(bh
) && buffer_uptodate(bh
))
1224 return ext3_journal_dirty_data(handle
, bh
);
1228 /* For write_end() in data=journal mode */
1229 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1231 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1233 set_buffer_uptodate(bh
);
1234 return ext3_journal_dirty_metadata(handle
, bh
);
1238 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1239 * for the whole page but later we failed to copy the data in. Update inode
1240 * size according to what we managed to copy. The rest is going to be
1241 * truncated in write_end function.
1243 static void update_file_sizes(struct inode
*inode
, loff_t pos
, unsigned copied
)
1245 /* What matters to us is i_disksize. We don't write i_size anywhere */
1246 if (pos
+ copied
> inode
->i_size
)
1247 i_size_write(inode
, pos
+ copied
);
1248 if (pos
+ copied
> EXT3_I(inode
)->i_disksize
) {
1249 EXT3_I(inode
)->i_disksize
= pos
+ copied
;
1250 mark_inode_dirty(inode
);
1255 * We need to pick up the new inode size which generic_commit_write gave us
1256 * `file' can be NULL - eg, when called from page_symlink().
1258 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1259 * buffers are managed internally.
1261 static int ext3_ordered_write_end(struct file
*file
,
1262 struct address_space
*mapping
,
1263 loff_t pos
, unsigned len
, unsigned copied
,
1264 struct page
*page
, void *fsdata
)
1266 handle_t
*handle
= ext3_journal_current_handle();
1267 struct inode
*inode
= file
->f_mapping
->host
;
1271 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1273 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1275 ret
= walk_page_buffers(handle
, page_buffers(page
),
1276 from
, to
, NULL
, journal_dirty_data_fn
);
1279 update_file_sizes(inode
, pos
, copied
);
1281 * There may be allocated blocks outside of i_size because
1282 * we failed to copy some data. Prepare for truncate.
1284 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1285 ext3_orphan_add(handle
, inode
);
1286 ret2
= ext3_journal_stop(handle
);
1290 page_cache_release(page
);
1292 if (pos
+ len
> inode
->i_size
)
1293 ext3_truncate(inode
);
1294 return ret
? ret
: copied
;
1297 static int ext3_writeback_write_end(struct file
*file
,
1298 struct address_space
*mapping
,
1299 loff_t pos
, unsigned len
, unsigned copied
,
1300 struct page
*page
, void *fsdata
)
1302 handle_t
*handle
= ext3_journal_current_handle();
1303 struct inode
*inode
= file
->f_mapping
->host
;
1306 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1307 update_file_sizes(inode
, pos
, copied
);
1309 * There may be allocated blocks outside of i_size because
1310 * we failed to copy some data. Prepare for truncate.
1312 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1313 ext3_orphan_add(handle
, inode
);
1314 ret
= ext3_journal_stop(handle
);
1316 page_cache_release(page
);
1318 if (pos
+ len
> inode
->i_size
)
1319 ext3_truncate(inode
);
1320 return ret
? ret
: copied
;
1323 static int ext3_journalled_write_end(struct file
*file
,
1324 struct address_space
*mapping
,
1325 loff_t pos
, unsigned len
, unsigned copied
,
1326 struct page
*page
, void *fsdata
)
1328 handle_t
*handle
= ext3_journal_current_handle();
1329 struct inode
*inode
= mapping
->host
;
1334 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1338 if (!PageUptodate(page
))
1340 page_zero_new_buffers(page
, from
+ copied
, to
);
1344 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1345 to
, &partial
, write_end_fn
);
1347 SetPageUptodate(page
);
1349 if (pos
+ copied
> inode
->i_size
)
1350 i_size_write(inode
, pos
+ copied
);
1352 * There may be allocated blocks outside of i_size because
1353 * we failed to copy some data. Prepare for truncate.
1355 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1356 ext3_orphan_add(handle
, inode
);
1357 EXT3_I(inode
)->i_state
|= EXT3_STATE_JDATA
;
1358 if (inode
->i_size
> EXT3_I(inode
)->i_disksize
) {
1359 EXT3_I(inode
)->i_disksize
= inode
->i_size
;
1360 ret2
= ext3_mark_inode_dirty(handle
, inode
);
1365 ret2
= ext3_journal_stop(handle
);
1369 page_cache_release(page
);
1371 if (pos
+ len
> inode
->i_size
)
1372 ext3_truncate(inode
);
1373 return ret
? ret
: copied
;
1377 * bmap() is special. It gets used by applications such as lilo and by
1378 * the swapper to find the on-disk block of a specific piece of data.
1380 * Naturally, this is dangerous if the block concerned is still in the
1381 * journal. If somebody makes a swapfile on an ext3 data-journaling
1382 * filesystem and enables swap, then they may get a nasty shock when the
1383 * data getting swapped to that swapfile suddenly gets overwritten by
1384 * the original zero's written out previously to the journal and
1385 * awaiting writeback in the kernel's buffer cache.
1387 * So, if we see any bmap calls here on a modified, data-journaled file,
1388 * take extra steps to flush any blocks which might be in the cache.
1390 static sector_t
ext3_bmap(struct address_space
*mapping
, sector_t block
)
1392 struct inode
*inode
= mapping
->host
;
1396 if (EXT3_I(inode
)->i_state
& EXT3_STATE_JDATA
) {
1398 * This is a REALLY heavyweight approach, but the use of
1399 * bmap on dirty files is expected to be extremely rare:
1400 * only if we run lilo or swapon on a freshly made file
1401 * do we expect this to happen.
1403 * (bmap requires CAP_SYS_RAWIO so this does not
1404 * represent an unprivileged user DOS attack --- we'd be
1405 * in trouble if mortal users could trigger this path at
1408 * NB. EXT3_STATE_JDATA is not set on files other than
1409 * regular files. If somebody wants to bmap a directory
1410 * or symlink and gets confused because the buffer
1411 * hasn't yet been flushed to disk, they deserve
1412 * everything they get.
1415 EXT3_I(inode
)->i_state
&= ~EXT3_STATE_JDATA
;
1416 journal
= EXT3_JOURNAL(inode
);
1417 journal_lock_updates(journal
);
1418 err
= journal_flush(journal
);
1419 journal_unlock_updates(journal
);
1425 return generic_block_bmap(mapping
,block
,ext3_get_block
);
1428 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1434 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1440 static int buffer_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
1442 return !buffer_mapped(bh
);
1446 * Note that we always start a transaction even if we're not journalling
1447 * data. This is to preserve ordering: any hole instantiation within
1448 * __block_write_full_page -> ext3_get_block() should be journalled
1449 * along with the data so we don't crash and then get metadata which
1450 * refers to old data.
1452 * In all journalling modes block_write_full_page() will start the I/O.
1456 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1461 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1463 * Same applies to ext3_get_block(). We will deadlock on various things like
1464 * lock_journal and i_truncate_mutex.
1466 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1469 * 16May01: If we're reentered then journal_current_handle() will be
1470 * non-zero. We simply *return*.
1472 * 1 July 2001: @@@ FIXME:
1473 * In journalled data mode, a data buffer may be metadata against the
1474 * current transaction. But the same file is part of a shared mapping
1475 * and someone does a writepage() on it.
1477 * We will move the buffer onto the async_data list, but *after* it has
1478 * been dirtied. So there's a small window where we have dirty data on
1481 * Note that this only applies to the last partial page in the file. The
1482 * bit which block_write_full_page() uses prepare/commit for. (That's
1483 * broken code anyway: it's wrong for msync()).
1485 * It's a rare case: affects the final partial page, for journalled data
1486 * where the file is subject to bith write() and writepage() in the same
1487 * transction. To fix it we'll need a custom block_write_full_page().
1488 * We'll probably need that anyway for journalling writepage() output.
1490 * We don't honour synchronous mounts for writepage(). That would be
1491 * disastrous. Any write() or metadata operation will sync the fs for
1494 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1495 * we don't need to open a transaction here.
1497 static int ext3_ordered_writepage(struct page
*page
,
1498 struct writeback_control
*wbc
)
1500 struct inode
*inode
= page
->mapping
->host
;
1501 struct buffer_head
*page_bufs
;
1502 handle_t
*handle
= NULL
;
1506 J_ASSERT(PageLocked(page
));
1509 * We give up here if we're reentered, because it might be for a
1510 * different filesystem.
1512 if (ext3_journal_current_handle())
1515 if (!page_has_buffers(page
)) {
1516 create_empty_buffers(page
, inode
->i_sb
->s_blocksize
,
1517 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1518 page_bufs
= page_buffers(page
);
1520 page_bufs
= page_buffers(page
);
1521 if (!walk_page_buffers(NULL
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1522 NULL
, buffer_unmapped
)) {
1523 /* Provide NULL get_block() to catch bugs if buffers
1524 * weren't really mapped */
1525 return block_write_full_page(page
, NULL
, wbc
);
1528 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1530 if (IS_ERR(handle
)) {
1531 ret
= PTR_ERR(handle
);
1535 walk_page_buffers(handle
, page_bufs
, 0,
1536 PAGE_CACHE_SIZE
, NULL
, bget_one
);
1538 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1541 * The page can become unlocked at any point now, and
1542 * truncate can then come in and change things. So we
1543 * can't touch *page from now on. But *page_bufs is
1544 * safe due to elevated refcount.
1548 * And attach them to the current transaction. But only if
1549 * block_write_full_page() succeeded. Otherwise they are unmapped,
1550 * and generally junk.
1553 err
= walk_page_buffers(handle
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1554 NULL
, journal_dirty_data_fn
);
1558 walk_page_buffers(handle
, page_bufs
, 0,
1559 PAGE_CACHE_SIZE
, NULL
, bput_one
);
1560 err
= ext3_journal_stop(handle
);
1566 redirty_page_for_writepage(wbc
, page
);
1571 static int ext3_writeback_writepage(struct page
*page
,
1572 struct writeback_control
*wbc
)
1574 struct inode
*inode
= page
->mapping
->host
;
1575 handle_t
*handle
= NULL
;
1579 if (ext3_journal_current_handle())
1582 if (page_has_buffers(page
)) {
1583 if (!walk_page_buffers(NULL
, page_buffers(page
), 0,
1584 PAGE_CACHE_SIZE
, NULL
, buffer_unmapped
)) {
1585 /* Provide NULL get_block() to catch bugs if buffers
1586 * weren't really mapped */
1587 return block_write_full_page(page
, NULL
, wbc
);
1591 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1592 if (IS_ERR(handle
)) {
1593 ret
= PTR_ERR(handle
);
1597 if (test_opt(inode
->i_sb
, NOBH
) && ext3_should_writeback_data(inode
))
1598 ret
= nobh_writepage(page
, ext3_get_block
, wbc
);
1600 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1602 err
= ext3_journal_stop(handle
);
1608 redirty_page_for_writepage(wbc
, page
);
1613 static int ext3_journalled_writepage(struct page
*page
,
1614 struct writeback_control
*wbc
)
1616 struct inode
*inode
= page
->mapping
->host
;
1617 handle_t
*handle
= NULL
;
1621 if (ext3_journal_current_handle())
1624 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1625 if (IS_ERR(handle
)) {
1626 ret
= PTR_ERR(handle
);
1630 if (!page_has_buffers(page
) || PageChecked(page
)) {
1632 * It's mmapped pagecache. Add buffers and journal it. There
1633 * doesn't seem much point in redirtying the page here.
1635 ClearPageChecked(page
);
1636 ret
= block_prepare_write(page
, 0, PAGE_CACHE_SIZE
,
1639 ext3_journal_stop(handle
);
1642 ret
= walk_page_buffers(handle
, page_buffers(page
), 0,
1643 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
);
1645 err
= walk_page_buffers(handle
, page_buffers(page
), 0,
1646 PAGE_CACHE_SIZE
, NULL
, write_end_fn
);
1649 EXT3_I(inode
)->i_state
|= EXT3_STATE_JDATA
;
1653 * It may be a page full of checkpoint-mode buffers. We don't
1654 * really know unless we go poke around in the buffer_heads.
1655 * But block_write_full_page will do the right thing.
1657 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1659 err
= ext3_journal_stop(handle
);
1666 redirty_page_for_writepage(wbc
, page
);
1672 static int ext3_readpage(struct file
*file
, struct page
*page
)
1674 return mpage_readpage(page
, ext3_get_block
);
1678 ext3_readpages(struct file
*file
, struct address_space
*mapping
,
1679 struct list_head
*pages
, unsigned nr_pages
)
1681 return mpage_readpages(mapping
, pages
, nr_pages
, ext3_get_block
);
1684 static void ext3_invalidatepage(struct page
*page
, unsigned long offset
)
1686 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1689 * If it's a full truncate we just forget about the pending dirtying
1692 ClearPageChecked(page
);
1694 journal_invalidatepage(journal
, page
, offset
);
1697 static int ext3_releasepage(struct page
*page
, gfp_t wait
)
1699 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1701 WARN_ON(PageChecked(page
));
1702 if (!page_has_buffers(page
))
1704 return journal_try_to_free_buffers(journal
, page
, wait
);
1708 * If the O_DIRECT write will extend the file then add this inode to the
1709 * orphan list. So recovery will truncate it back to the original size
1710 * if the machine crashes during the write.
1712 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1713 * crashes then stale disk data _may_ be exposed inside the file. But current
1714 * VFS code falls back into buffered path in that case so we are safe.
1716 static ssize_t
ext3_direct_IO(int rw
, struct kiocb
*iocb
,
1717 const struct iovec
*iov
, loff_t offset
,
1718 unsigned long nr_segs
)
1720 struct file
*file
= iocb
->ki_filp
;
1721 struct inode
*inode
= file
->f_mapping
->host
;
1722 struct ext3_inode_info
*ei
= EXT3_I(inode
);
1726 size_t count
= iov_length(iov
, nr_segs
);
1729 loff_t final_size
= offset
+ count
;
1731 if (final_size
> inode
->i_size
) {
1732 /* Credits for sb + inode write */
1733 handle
= ext3_journal_start(inode
, 2);
1734 if (IS_ERR(handle
)) {
1735 ret
= PTR_ERR(handle
);
1738 ret
= ext3_orphan_add(handle
, inode
);
1740 ext3_journal_stop(handle
);
1744 ei
->i_disksize
= inode
->i_size
;
1745 ext3_journal_stop(handle
);
1749 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
1751 ext3_get_block
, NULL
);
1756 /* Credits for sb + inode write */
1757 handle
= ext3_journal_start(inode
, 2);
1758 if (IS_ERR(handle
)) {
1759 /* This is really bad luck. We've written the data
1760 * but cannot extend i_size. Bail out and pretend
1761 * the write failed... */
1762 ret
= PTR_ERR(handle
);
1766 ext3_orphan_del(handle
, inode
);
1768 loff_t end
= offset
+ ret
;
1769 if (end
> inode
->i_size
) {
1770 ei
->i_disksize
= end
;
1771 i_size_write(inode
, end
);
1773 * We're going to return a positive `ret'
1774 * here due to non-zero-length I/O, so there's
1775 * no way of reporting error returns from
1776 * ext3_mark_inode_dirty() to userspace. So
1779 ext3_mark_inode_dirty(handle
, inode
);
1782 err
= ext3_journal_stop(handle
);
1791 * Pages can be marked dirty completely asynchronously from ext3's journalling
1792 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1793 * much here because ->set_page_dirty is called under VFS locks. The page is
1794 * not necessarily locked.
1796 * We cannot just dirty the page and leave attached buffers clean, because the
1797 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1798 * or jbddirty because all the journalling code will explode.
1800 * So what we do is to mark the page "pending dirty" and next time writepage
1801 * is called, propagate that into the buffers appropriately.
1803 static int ext3_journalled_set_page_dirty(struct page
*page
)
1805 SetPageChecked(page
);
1806 return __set_page_dirty_nobuffers(page
);
1809 static const struct address_space_operations ext3_ordered_aops
= {
1810 .readpage
= ext3_readpage
,
1811 .readpages
= ext3_readpages
,
1812 .writepage
= ext3_ordered_writepage
,
1813 .sync_page
= block_sync_page
,
1814 .write_begin
= ext3_write_begin
,
1815 .write_end
= ext3_ordered_write_end
,
1817 .invalidatepage
= ext3_invalidatepage
,
1818 .releasepage
= ext3_releasepage
,
1819 .direct_IO
= ext3_direct_IO
,
1820 .migratepage
= buffer_migrate_page
,
1821 .is_partially_uptodate
= block_is_partially_uptodate
,
1824 static const struct address_space_operations ext3_writeback_aops
= {
1825 .readpage
= ext3_readpage
,
1826 .readpages
= ext3_readpages
,
1827 .writepage
= ext3_writeback_writepage
,
1828 .sync_page
= block_sync_page
,
1829 .write_begin
= ext3_write_begin
,
1830 .write_end
= ext3_writeback_write_end
,
1832 .invalidatepage
= ext3_invalidatepage
,
1833 .releasepage
= ext3_releasepage
,
1834 .direct_IO
= ext3_direct_IO
,
1835 .migratepage
= buffer_migrate_page
,
1836 .is_partially_uptodate
= block_is_partially_uptodate
,
1839 static const struct address_space_operations ext3_journalled_aops
= {
1840 .readpage
= ext3_readpage
,
1841 .readpages
= ext3_readpages
,
1842 .writepage
= ext3_journalled_writepage
,
1843 .sync_page
= block_sync_page
,
1844 .write_begin
= ext3_write_begin
,
1845 .write_end
= ext3_journalled_write_end
,
1846 .set_page_dirty
= ext3_journalled_set_page_dirty
,
1848 .invalidatepage
= ext3_invalidatepage
,
1849 .releasepage
= ext3_releasepage
,
1850 .is_partially_uptodate
= block_is_partially_uptodate
,
1853 void ext3_set_aops(struct inode
*inode
)
1855 if (ext3_should_order_data(inode
))
1856 inode
->i_mapping
->a_ops
= &ext3_ordered_aops
;
1857 else if (ext3_should_writeback_data(inode
))
1858 inode
->i_mapping
->a_ops
= &ext3_writeback_aops
;
1860 inode
->i_mapping
->a_ops
= &ext3_journalled_aops
;
1864 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1865 * up to the end of the block which corresponds to `from'.
1866 * This required during truncate. We need to physically zero the tail end
1867 * of that block so it doesn't yield old data if the file is later grown.
1869 static int ext3_block_truncate_page(handle_t
*handle
, struct page
*page
,
1870 struct address_space
*mapping
, loff_t from
)
1872 ext3_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
1873 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
1874 unsigned blocksize
, iblock
, length
, pos
;
1875 struct inode
*inode
= mapping
->host
;
1876 struct buffer_head
*bh
;
1879 blocksize
= inode
->i_sb
->s_blocksize
;
1880 length
= blocksize
- (offset
& (blocksize
- 1));
1881 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1884 * For "nobh" option, we can only work if we don't need to
1885 * read-in the page - otherwise we create buffers to do the IO.
1887 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
1888 ext3_should_writeback_data(inode
) && PageUptodate(page
)) {
1889 zero_user(page
, offset
, length
);
1890 set_page_dirty(page
);
1894 if (!page_has_buffers(page
))
1895 create_empty_buffers(page
, blocksize
, 0);
1897 /* Find the buffer that contains "offset" */
1898 bh
= page_buffers(page
);
1900 while (offset
>= pos
) {
1901 bh
= bh
->b_this_page
;
1907 if (buffer_freed(bh
)) {
1908 BUFFER_TRACE(bh
, "freed: skip");
1912 if (!buffer_mapped(bh
)) {
1913 BUFFER_TRACE(bh
, "unmapped");
1914 ext3_get_block(inode
, iblock
, bh
, 0);
1915 /* unmapped? It's a hole - nothing to do */
1916 if (!buffer_mapped(bh
)) {
1917 BUFFER_TRACE(bh
, "still unmapped");
1922 /* Ok, it's mapped. Make sure it's up-to-date */
1923 if (PageUptodate(page
))
1924 set_buffer_uptodate(bh
);
1926 if (!buffer_uptodate(bh
)) {
1928 ll_rw_block(READ
, 1, &bh
);
1930 /* Uhhuh. Read error. Complain and punt. */
1931 if (!buffer_uptodate(bh
))
1935 if (ext3_should_journal_data(inode
)) {
1936 BUFFER_TRACE(bh
, "get write access");
1937 err
= ext3_journal_get_write_access(handle
, bh
);
1942 zero_user(page
, offset
, length
);
1943 BUFFER_TRACE(bh
, "zeroed end of block");
1946 if (ext3_should_journal_data(inode
)) {
1947 err
= ext3_journal_dirty_metadata(handle
, bh
);
1949 if (ext3_should_order_data(inode
))
1950 err
= ext3_journal_dirty_data(handle
, bh
);
1951 mark_buffer_dirty(bh
);
1956 page_cache_release(page
);
1961 * Probably it should be a library function... search for first non-zero word
1962 * or memcmp with zero_page, whatever is better for particular architecture.
1965 static inline int all_zeroes(__le32
*p
, __le32
*q
)
1974 * ext3_find_shared - find the indirect blocks for partial truncation.
1975 * @inode: inode in question
1976 * @depth: depth of the affected branch
1977 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1978 * @chain: place to store the pointers to partial indirect blocks
1979 * @top: place to the (detached) top of branch
1981 * This is a helper function used by ext3_truncate().
1983 * When we do truncate() we may have to clean the ends of several
1984 * indirect blocks but leave the blocks themselves alive. Block is
1985 * partially truncated if some data below the new i_size is refered
1986 * from it (and it is on the path to the first completely truncated
1987 * data block, indeed). We have to free the top of that path along
1988 * with everything to the right of the path. Since no allocation
1989 * past the truncation point is possible until ext3_truncate()
1990 * finishes, we may safely do the latter, but top of branch may
1991 * require special attention - pageout below the truncation point
1992 * might try to populate it.
1994 * We atomically detach the top of branch from the tree, store the
1995 * block number of its root in *@top, pointers to buffer_heads of
1996 * partially truncated blocks - in @chain[].bh and pointers to
1997 * their last elements that should not be removed - in
1998 * @chain[].p. Return value is the pointer to last filled element
2001 * The work left to caller to do the actual freeing of subtrees:
2002 * a) free the subtree starting from *@top
2003 * b) free the subtrees whose roots are stored in
2004 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2005 * c) free the subtrees growing from the inode past the @chain[0].
2006 * (no partially truncated stuff there). */
2008 static Indirect
*ext3_find_shared(struct inode
*inode
, int depth
,
2009 int offsets
[4], Indirect chain
[4], __le32
*top
)
2011 Indirect
*partial
, *p
;
2015 /* Make k index the deepest non-null offest + 1 */
2016 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
2018 partial
= ext3_get_branch(inode
, k
, offsets
, chain
, &err
);
2019 /* Writer: pointers */
2021 partial
= chain
+ k
-1;
2023 * If the branch acquired continuation since we've looked at it -
2024 * fine, it should all survive and (new) top doesn't belong to us.
2026 if (!partial
->key
&& *partial
->p
)
2029 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
2032 * OK, we've found the last block that must survive. The rest of our
2033 * branch should be detached before unlocking. However, if that rest
2034 * of branch is all ours and does not grow immediately from the inode
2035 * it's easier to cheat and just decrement partial->p.
2037 if (p
== chain
+ k
- 1 && p
> chain
) {
2041 /* Nope, don't do this in ext3. Must leave the tree intact */
2048 while(partial
> p
) {
2049 brelse(partial
->bh
);
2057 * Zero a number of block pointers in either an inode or an indirect block.
2058 * If we restart the transaction we must again get write access to the
2059 * indirect block for further modification.
2061 * We release `count' blocks on disk, but (last - first) may be greater
2062 * than `count' because there can be holes in there.
2064 static void ext3_clear_blocks(handle_t
*handle
, struct inode
*inode
,
2065 struct buffer_head
*bh
, ext3_fsblk_t block_to_free
,
2066 unsigned long count
, __le32
*first
, __le32
*last
)
2069 if (try_to_extend_transaction(handle
, inode
)) {
2071 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
2072 ext3_journal_dirty_metadata(handle
, bh
);
2074 ext3_mark_inode_dirty(handle
, inode
);
2075 ext3_journal_test_restart(handle
, inode
);
2077 BUFFER_TRACE(bh
, "retaking write access");
2078 ext3_journal_get_write_access(handle
, bh
);
2083 * Any buffers which are on the journal will be in memory. We find
2084 * them on the hash table so journal_revoke() will run journal_forget()
2085 * on them. We've already detached each block from the file, so
2086 * bforget() in journal_forget() should be safe.
2088 * AKPM: turn on bforget in journal_forget()!!!
2090 for (p
= first
; p
< last
; p
++) {
2091 u32 nr
= le32_to_cpu(*p
);
2093 struct buffer_head
*bh
;
2096 bh
= sb_find_get_block(inode
->i_sb
, nr
);
2097 ext3_forget(handle
, 0, inode
, bh
, nr
);
2101 ext3_free_blocks(handle
, inode
, block_to_free
, count
);
2105 * ext3_free_data - free a list of data blocks
2106 * @handle: handle for this transaction
2107 * @inode: inode we are dealing with
2108 * @this_bh: indirect buffer_head which contains *@first and *@last
2109 * @first: array of block numbers
2110 * @last: points immediately past the end of array
2112 * We are freeing all blocks refered from that array (numbers are stored as
2113 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2115 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2116 * blocks are contiguous then releasing them at one time will only affect one
2117 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2118 * actually use a lot of journal space.
2120 * @this_bh will be %NULL if @first and @last point into the inode's direct
2123 static void ext3_free_data(handle_t
*handle
, struct inode
*inode
,
2124 struct buffer_head
*this_bh
,
2125 __le32
*first
, __le32
*last
)
2127 ext3_fsblk_t block_to_free
= 0; /* Starting block # of a run */
2128 unsigned long count
= 0; /* Number of blocks in the run */
2129 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
2132 ext3_fsblk_t nr
; /* Current block # */
2133 __le32
*p
; /* Pointer into inode/ind
2134 for current block */
2137 if (this_bh
) { /* For indirect block */
2138 BUFFER_TRACE(this_bh
, "get_write_access");
2139 err
= ext3_journal_get_write_access(handle
, this_bh
);
2140 /* Important: if we can't update the indirect pointers
2141 * to the blocks, we can't free them. */
2146 for (p
= first
; p
< last
; p
++) {
2147 nr
= le32_to_cpu(*p
);
2149 /* accumulate blocks to free if they're contiguous */
2152 block_to_free_p
= p
;
2154 } else if (nr
== block_to_free
+ count
) {
2157 ext3_clear_blocks(handle
, inode
, this_bh
,
2159 count
, block_to_free_p
, p
);
2161 block_to_free_p
= p
;
2168 ext3_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
2169 count
, block_to_free_p
, p
);
2172 BUFFER_TRACE(this_bh
, "call ext3_journal_dirty_metadata");
2175 * The buffer head should have an attached journal head at this
2176 * point. However, if the data is corrupted and an indirect
2177 * block pointed to itself, it would have been detached when
2178 * the block was cleared. Check for this instead of OOPSing.
2181 ext3_journal_dirty_metadata(handle
, this_bh
);
2183 ext3_error(inode
->i_sb
, "ext3_free_data",
2184 "circular indirect block detected, "
2185 "inode=%lu, block=%llu",
2187 (unsigned long long)this_bh
->b_blocknr
);
2192 * ext3_free_branches - free an array of branches
2193 * @handle: JBD handle for this transaction
2194 * @inode: inode we are dealing with
2195 * @parent_bh: the buffer_head which contains *@first and *@last
2196 * @first: array of block numbers
2197 * @last: pointer immediately past the end of array
2198 * @depth: depth of the branches to free
2200 * We are freeing all blocks refered from these branches (numbers are
2201 * stored as little-endian 32-bit) and updating @inode->i_blocks
2204 static void ext3_free_branches(handle_t
*handle
, struct inode
*inode
,
2205 struct buffer_head
*parent_bh
,
2206 __le32
*first
, __le32
*last
, int depth
)
2211 if (is_handle_aborted(handle
))
2215 struct buffer_head
*bh
;
2216 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2218 while (--p
>= first
) {
2219 nr
= le32_to_cpu(*p
);
2221 continue; /* A hole */
2223 /* Go read the buffer for the next level down */
2224 bh
= sb_bread(inode
->i_sb
, nr
);
2227 * A read failure? Report error and clear slot
2231 ext3_error(inode
->i_sb
, "ext3_free_branches",
2232 "Read failure, inode=%lu, block="E3FSBLK
,
2237 /* This zaps the entire block. Bottom up. */
2238 BUFFER_TRACE(bh
, "free child branches");
2239 ext3_free_branches(handle
, inode
, bh
,
2240 (__le32
*)bh
->b_data
,
2241 (__le32
*)bh
->b_data
+ addr_per_block
,
2245 * We've probably journalled the indirect block several
2246 * times during the truncate. But it's no longer
2247 * needed and we now drop it from the transaction via
2250 * That's easy if it's exclusively part of this
2251 * transaction. But if it's part of the committing
2252 * transaction then journal_forget() will simply
2253 * brelse() it. That means that if the underlying
2254 * block is reallocated in ext3_get_block(),
2255 * unmap_underlying_metadata() will find this block
2256 * and will try to get rid of it. damn, damn.
2258 * If this block has already been committed to the
2259 * journal, a revoke record will be written. And
2260 * revoke records must be emitted *before* clearing
2261 * this block's bit in the bitmaps.
2263 ext3_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
2266 * Everything below this this pointer has been
2267 * released. Now let this top-of-subtree go.
2269 * We want the freeing of this indirect block to be
2270 * atomic in the journal with the updating of the
2271 * bitmap block which owns it. So make some room in
2274 * We zero the parent pointer *after* freeing its
2275 * pointee in the bitmaps, so if extend_transaction()
2276 * for some reason fails to put the bitmap changes and
2277 * the release into the same transaction, recovery
2278 * will merely complain about releasing a free block,
2279 * rather than leaking blocks.
2281 if (is_handle_aborted(handle
))
2283 if (try_to_extend_transaction(handle
, inode
)) {
2284 ext3_mark_inode_dirty(handle
, inode
);
2285 ext3_journal_test_restart(handle
, inode
);
2288 ext3_free_blocks(handle
, inode
, nr
, 1);
2292 * The block which we have just freed is
2293 * pointed to by an indirect block: journal it
2295 BUFFER_TRACE(parent_bh
, "get_write_access");
2296 if (!ext3_journal_get_write_access(handle
,
2299 BUFFER_TRACE(parent_bh
,
2300 "call ext3_journal_dirty_metadata");
2301 ext3_journal_dirty_metadata(handle
,
2307 /* We have reached the bottom of the tree. */
2308 BUFFER_TRACE(parent_bh
, "free data blocks");
2309 ext3_free_data(handle
, inode
, parent_bh
, first
, last
);
2313 int ext3_can_truncate(struct inode
*inode
)
2315 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
2317 if (S_ISREG(inode
->i_mode
))
2319 if (S_ISDIR(inode
->i_mode
))
2321 if (S_ISLNK(inode
->i_mode
))
2322 return !ext3_inode_is_fast_symlink(inode
);
2329 * We block out ext3_get_block() block instantiations across the entire
2330 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2331 * simultaneously on behalf of the same inode.
2333 * As we work through the truncate and commmit bits of it to the journal there
2334 * is one core, guiding principle: the file's tree must always be consistent on
2335 * disk. We must be able to restart the truncate after a crash.
2337 * The file's tree may be transiently inconsistent in memory (although it
2338 * probably isn't), but whenever we close off and commit a journal transaction,
2339 * the contents of (the filesystem + the journal) must be consistent and
2340 * restartable. It's pretty simple, really: bottom up, right to left (although
2341 * left-to-right works OK too).
2343 * Note that at recovery time, journal replay occurs *before* the restart of
2344 * truncate against the orphan inode list.
2346 * The committed inode has the new, desired i_size (which is the same as
2347 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2348 * that this inode's truncate did not complete and it will again call
2349 * ext3_truncate() to have another go. So there will be instantiated blocks
2350 * to the right of the truncation point in a crashed ext3 filesystem. But
2351 * that's fine - as long as they are linked from the inode, the post-crash
2352 * ext3_truncate() run will find them and release them.
2354 void ext3_truncate(struct inode
*inode
)
2357 struct ext3_inode_info
*ei
= EXT3_I(inode
);
2358 __le32
*i_data
= ei
->i_data
;
2359 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2360 struct address_space
*mapping
= inode
->i_mapping
;
2367 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
2370 if (!ext3_can_truncate(inode
))
2373 if (inode
->i_size
== 0 && ext3_should_writeback_data(inode
))
2374 ei
->i_state
|= EXT3_STATE_FLUSH_ON_CLOSE
;
2377 * We have to lock the EOF page here, because lock_page() nests
2378 * outside journal_start().
2380 if ((inode
->i_size
& (blocksize
- 1)) == 0) {
2381 /* Block boundary? Nothing to do */
2384 page
= grab_cache_page(mapping
,
2385 inode
->i_size
>> PAGE_CACHE_SHIFT
);
2390 handle
= start_transaction(inode
);
2391 if (IS_ERR(handle
)) {
2393 clear_highpage(page
);
2394 flush_dcache_page(page
);
2396 page_cache_release(page
);
2401 last_block
= (inode
->i_size
+ blocksize
-1)
2402 >> EXT3_BLOCK_SIZE_BITS(inode
->i_sb
);
2405 ext3_block_truncate_page(handle
, page
, mapping
, inode
->i_size
);
2407 n
= ext3_block_to_path(inode
, last_block
, offsets
, NULL
);
2409 goto out_stop
; /* error */
2412 * OK. This truncate is going to happen. We add the inode to the
2413 * orphan list, so that if this truncate spans multiple transactions,
2414 * and we crash, we will resume the truncate when the filesystem
2415 * recovers. It also marks the inode dirty, to catch the new size.
2417 * Implication: the file must always be in a sane, consistent
2418 * truncatable state while each transaction commits.
2420 if (ext3_orphan_add(handle
, inode
))
2424 * The orphan list entry will now protect us from any crash which
2425 * occurs before the truncate completes, so it is now safe to propagate
2426 * the new, shorter inode size (held for now in i_size) into the
2427 * on-disk inode. We do this via i_disksize, which is the value which
2428 * ext3 *really* writes onto the disk inode.
2430 ei
->i_disksize
= inode
->i_size
;
2433 * From here we block out all ext3_get_block() callers who want to
2434 * modify the block allocation tree.
2436 mutex_lock(&ei
->truncate_mutex
);
2438 if (n
== 1) { /* direct blocks */
2439 ext3_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
2440 i_data
+ EXT3_NDIR_BLOCKS
);
2444 partial
= ext3_find_shared(inode
, n
, offsets
, chain
, &nr
);
2445 /* Kill the top of shared branch (not detached) */
2447 if (partial
== chain
) {
2448 /* Shared branch grows from the inode */
2449 ext3_free_branches(handle
, inode
, NULL
,
2450 &nr
, &nr
+1, (chain
+n
-1) - partial
);
2453 * We mark the inode dirty prior to restart,
2454 * and prior to stop. No need for it here.
2457 /* Shared branch grows from an indirect block */
2458 BUFFER_TRACE(partial
->bh
, "get_write_access");
2459 ext3_free_branches(handle
, inode
, partial
->bh
,
2461 partial
->p
+1, (chain
+n
-1) - partial
);
2464 /* Clear the ends of indirect blocks on the shared branch */
2465 while (partial
> chain
) {
2466 ext3_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
2467 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
2468 (chain
+n
-1) - partial
);
2469 BUFFER_TRACE(partial
->bh
, "call brelse");
2470 brelse (partial
->bh
);
2474 /* Kill the remaining (whole) subtrees */
2475 switch (offsets
[0]) {
2477 nr
= i_data
[EXT3_IND_BLOCK
];
2479 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
2480 i_data
[EXT3_IND_BLOCK
] = 0;
2482 case EXT3_IND_BLOCK
:
2483 nr
= i_data
[EXT3_DIND_BLOCK
];
2485 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
2486 i_data
[EXT3_DIND_BLOCK
] = 0;
2488 case EXT3_DIND_BLOCK
:
2489 nr
= i_data
[EXT3_TIND_BLOCK
];
2491 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
2492 i_data
[EXT3_TIND_BLOCK
] = 0;
2494 case EXT3_TIND_BLOCK
:
2498 ext3_discard_reservation(inode
);
2500 mutex_unlock(&ei
->truncate_mutex
);
2501 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
2502 ext3_mark_inode_dirty(handle
, inode
);
2505 * In a multi-transaction truncate, we only make the final transaction
2512 * If this was a simple ftruncate(), and the file will remain alive
2513 * then we need to clear up the orphan record which we created above.
2514 * However, if this was a real unlink then we were called by
2515 * ext3_delete_inode(), and we allow that function to clean up the
2516 * orphan info for us.
2519 ext3_orphan_del(handle
, inode
);
2521 ext3_journal_stop(handle
);
2525 * Delete the inode from orphan list so that it doesn't stay there
2526 * forever and trigger assertion on umount.
2529 ext3_orphan_del(NULL
, inode
);
2532 static ext3_fsblk_t
ext3_get_inode_block(struct super_block
*sb
,
2533 unsigned long ino
, struct ext3_iloc
*iloc
)
2535 unsigned long block_group
;
2536 unsigned long offset
;
2538 struct ext3_group_desc
*gdp
;
2540 if (!ext3_valid_inum(sb
, ino
)) {
2542 * This error is already checked for in namei.c unless we are
2543 * looking at an NFS filehandle, in which case no error
2549 block_group
= (ino
- 1) / EXT3_INODES_PER_GROUP(sb
);
2550 gdp
= ext3_get_group_desc(sb
, block_group
, NULL
);
2554 * Figure out the offset within the block group inode table
2556 offset
= ((ino
- 1) % EXT3_INODES_PER_GROUP(sb
)) *
2557 EXT3_INODE_SIZE(sb
);
2558 block
= le32_to_cpu(gdp
->bg_inode_table
) +
2559 (offset
>> EXT3_BLOCK_SIZE_BITS(sb
));
2561 iloc
->block_group
= block_group
;
2562 iloc
->offset
= offset
& (EXT3_BLOCK_SIZE(sb
) - 1);
2567 * ext3_get_inode_loc returns with an extra refcount against the inode's
2568 * underlying buffer_head on success. If 'in_mem' is true, we have all
2569 * data in memory that is needed to recreate the on-disk version of this
2572 static int __ext3_get_inode_loc(struct inode
*inode
,
2573 struct ext3_iloc
*iloc
, int in_mem
)
2576 struct buffer_head
*bh
;
2578 block
= ext3_get_inode_block(inode
->i_sb
, inode
->i_ino
, iloc
);
2582 bh
= sb_getblk(inode
->i_sb
, block
);
2584 ext3_error (inode
->i_sb
, "ext3_get_inode_loc",
2585 "unable to read inode block - "
2586 "inode=%lu, block="E3FSBLK
,
2587 inode
->i_ino
, block
);
2590 if (!buffer_uptodate(bh
)) {
2594 * If the buffer has the write error flag, we have failed
2595 * to write out another inode in the same block. In this
2596 * case, we don't have to read the block because we may
2597 * read the old inode data successfully.
2599 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
2600 set_buffer_uptodate(bh
);
2602 if (buffer_uptodate(bh
)) {
2603 /* someone brought it uptodate while we waited */
2609 * If we have all information of the inode in memory and this
2610 * is the only valid inode in the block, we need not read the
2614 struct buffer_head
*bitmap_bh
;
2615 struct ext3_group_desc
*desc
;
2616 int inodes_per_buffer
;
2617 int inode_offset
, i
;
2621 block_group
= (inode
->i_ino
- 1) /
2622 EXT3_INODES_PER_GROUP(inode
->i_sb
);
2623 inodes_per_buffer
= bh
->b_size
/
2624 EXT3_INODE_SIZE(inode
->i_sb
);
2625 inode_offset
= ((inode
->i_ino
- 1) %
2626 EXT3_INODES_PER_GROUP(inode
->i_sb
));
2627 start
= inode_offset
& ~(inodes_per_buffer
- 1);
2629 /* Is the inode bitmap in cache? */
2630 desc
= ext3_get_group_desc(inode
->i_sb
,
2635 bitmap_bh
= sb_getblk(inode
->i_sb
,
2636 le32_to_cpu(desc
->bg_inode_bitmap
));
2641 * If the inode bitmap isn't in cache then the
2642 * optimisation may end up performing two reads instead
2643 * of one, so skip it.
2645 if (!buffer_uptodate(bitmap_bh
)) {
2649 for (i
= start
; i
< start
+ inodes_per_buffer
; i
++) {
2650 if (i
== inode_offset
)
2652 if (ext3_test_bit(i
, bitmap_bh
->b_data
))
2656 if (i
== start
+ inodes_per_buffer
) {
2657 /* all other inodes are free, so skip I/O */
2658 memset(bh
->b_data
, 0, bh
->b_size
);
2659 set_buffer_uptodate(bh
);
2667 * There are other valid inodes in the buffer, this inode
2668 * has in-inode xattrs, or we don't have this inode in memory.
2669 * Read the block from disk.
2672 bh
->b_end_io
= end_buffer_read_sync
;
2673 submit_bh(READ_META
, bh
);
2675 if (!buffer_uptodate(bh
)) {
2676 ext3_error(inode
->i_sb
, "ext3_get_inode_loc",
2677 "unable to read inode block - "
2678 "inode=%lu, block="E3FSBLK
,
2679 inode
->i_ino
, block
);
2689 int ext3_get_inode_loc(struct inode
*inode
, struct ext3_iloc
*iloc
)
2691 /* We have all inode data except xattrs in memory here. */
2692 return __ext3_get_inode_loc(inode
, iloc
,
2693 !(EXT3_I(inode
)->i_state
& EXT3_STATE_XATTR
));
2696 void ext3_set_inode_flags(struct inode
*inode
)
2698 unsigned int flags
= EXT3_I(inode
)->i_flags
;
2700 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
2701 if (flags
& EXT3_SYNC_FL
)
2702 inode
->i_flags
|= S_SYNC
;
2703 if (flags
& EXT3_APPEND_FL
)
2704 inode
->i_flags
|= S_APPEND
;
2705 if (flags
& EXT3_IMMUTABLE_FL
)
2706 inode
->i_flags
|= S_IMMUTABLE
;
2707 if (flags
& EXT3_NOATIME_FL
)
2708 inode
->i_flags
|= S_NOATIME
;
2709 if (flags
& EXT3_DIRSYNC_FL
)
2710 inode
->i_flags
|= S_DIRSYNC
;
2713 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2714 void ext3_get_inode_flags(struct ext3_inode_info
*ei
)
2716 unsigned int flags
= ei
->vfs_inode
.i_flags
;
2718 ei
->i_flags
&= ~(EXT3_SYNC_FL
|EXT3_APPEND_FL
|
2719 EXT3_IMMUTABLE_FL
|EXT3_NOATIME_FL
|EXT3_DIRSYNC_FL
);
2721 ei
->i_flags
|= EXT3_SYNC_FL
;
2722 if (flags
& S_APPEND
)
2723 ei
->i_flags
|= EXT3_APPEND_FL
;
2724 if (flags
& S_IMMUTABLE
)
2725 ei
->i_flags
|= EXT3_IMMUTABLE_FL
;
2726 if (flags
& S_NOATIME
)
2727 ei
->i_flags
|= EXT3_NOATIME_FL
;
2728 if (flags
& S_DIRSYNC
)
2729 ei
->i_flags
|= EXT3_DIRSYNC_FL
;
2732 struct inode
*ext3_iget(struct super_block
*sb
, unsigned long ino
)
2734 struct ext3_iloc iloc
;
2735 struct ext3_inode
*raw_inode
;
2736 struct ext3_inode_info
*ei
;
2737 struct buffer_head
*bh
;
2738 struct inode
*inode
;
2742 inode
= iget_locked(sb
, ino
);
2744 return ERR_PTR(-ENOMEM
);
2745 if (!(inode
->i_state
& I_NEW
))
2749 ei
->i_block_alloc_info
= NULL
;
2751 ret
= __ext3_get_inode_loc(inode
, &iloc
, 0);
2755 raw_inode
= ext3_raw_inode(&iloc
);
2756 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
2757 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
2758 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
2759 if(!(test_opt (inode
->i_sb
, NO_UID32
))) {
2760 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
2761 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
2763 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
2764 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
2765 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
2766 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
2767 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
2768 inode
->i_atime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= 0;
2771 ei
->i_dir_start_lookup
= 0;
2772 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
2773 /* We now have enough fields to check if the inode was active or not.
2774 * This is needed because nfsd might try to access dead inodes
2775 * the test is that same one that e2fsck uses
2776 * NeilBrown 1999oct15
2778 if (inode
->i_nlink
== 0) {
2779 if (inode
->i_mode
== 0 ||
2780 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ORPHAN_FS
)) {
2781 /* this inode is deleted */
2786 /* The only unlinked inodes we let through here have
2787 * valid i_mode and are being read by the orphan
2788 * recovery code: that's fine, we're about to complete
2789 * the process of deleting those. */
2791 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
2792 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
2793 #ifdef EXT3_FRAGMENTS
2794 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
2795 ei
->i_frag_no
= raw_inode
->i_frag
;
2796 ei
->i_frag_size
= raw_inode
->i_fsize
;
2798 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
2799 if (!S_ISREG(inode
->i_mode
)) {
2800 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
2803 ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
2805 ei
->i_disksize
= inode
->i_size
;
2806 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
2807 ei
->i_block_group
= iloc
.block_group
;
2809 * NOTE! The in-memory inode i_data array is in little-endian order
2810 * even on big-endian machines: we do NOT byteswap the block numbers!
2812 for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
2813 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
2814 INIT_LIST_HEAD(&ei
->i_orphan
);
2816 if (inode
->i_ino
>= EXT3_FIRST_INO(inode
->i_sb
) + 1 &&
2817 EXT3_INODE_SIZE(inode
->i_sb
) > EXT3_GOOD_OLD_INODE_SIZE
) {
2819 * When mke2fs creates big inodes it does not zero out
2820 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2821 * so ignore those first few inodes.
2823 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
2824 if (EXT3_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
2825 EXT3_INODE_SIZE(inode
->i_sb
)) {
2830 if (ei
->i_extra_isize
== 0) {
2831 /* The extra space is currently unused. Use it. */
2832 ei
->i_extra_isize
= sizeof(struct ext3_inode
) -
2833 EXT3_GOOD_OLD_INODE_SIZE
;
2835 __le32
*magic
= (void *)raw_inode
+
2836 EXT3_GOOD_OLD_INODE_SIZE
+
2838 if (*magic
== cpu_to_le32(EXT3_XATTR_MAGIC
))
2839 ei
->i_state
|= EXT3_STATE_XATTR
;
2842 ei
->i_extra_isize
= 0;
2844 if (S_ISREG(inode
->i_mode
)) {
2845 inode
->i_op
= &ext3_file_inode_operations
;
2846 inode
->i_fop
= &ext3_file_operations
;
2847 ext3_set_aops(inode
);
2848 } else if (S_ISDIR(inode
->i_mode
)) {
2849 inode
->i_op
= &ext3_dir_inode_operations
;
2850 inode
->i_fop
= &ext3_dir_operations
;
2851 } else if (S_ISLNK(inode
->i_mode
)) {
2852 if (ext3_inode_is_fast_symlink(inode
)) {
2853 inode
->i_op
= &ext3_fast_symlink_inode_operations
;
2854 nd_terminate_link(ei
->i_data
, inode
->i_size
,
2855 sizeof(ei
->i_data
) - 1);
2857 inode
->i_op
= &ext3_symlink_inode_operations
;
2858 ext3_set_aops(inode
);
2861 inode
->i_op
= &ext3_special_inode_operations
;
2862 if (raw_inode
->i_block
[0])
2863 init_special_inode(inode
, inode
->i_mode
,
2864 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
2866 init_special_inode(inode
, inode
->i_mode
,
2867 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
2870 ext3_set_inode_flags(inode
);
2871 unlock_new_inode(inode
);
2876 return ERR_PTR(ret
);
2880 * Post the struct inode info into an on-disk inode location in the
2881 * buffer-cache. This gobbles the caller's reference to the
2882 * buffer_head in the inode location struct.
2884 * The caller must have write access to iloc->bh.
2886 static int ext3_do_update_inode(handle_t
*handle
,
2887 struct inode
*inode
,
2888 struct ext3_iloc
*iloc
)
2890 struct ext3_inode
*raw_inode
= ext3_raw_inode(iloc
);
2891 struct ext3_inode_info
*ei
= EXT3_I(inode
);
2892 struct buffer_head
*bh
= iloc
->bh
;
2893 int err
= 0, rc
, block
;
2895 /* For fields not not tracking in the in-memory inode,
2896 * initialise them to zero for new inodes. */
2897 if (ei
->i_state
& EXT3_STATE_NEW
)
2898 memset(raw_inode
, 0, EXT3_SB(inode
->i_sb
)->s_inode_size
);
2900 ext3_get_inode_flags(ei
);
2901 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
2902 if(!(test_opt(inode
->i_sb
, NO_UID32
))) {
2903 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
2904 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
2906 * Fix up interoperability with old kernels. Otherwise, old inodes get
2907 * re-used with the upper 16 bits of the uid/gid intact
2910 raw_inode
->i_uid_high
=
2911 cpu_to_le16(high_16_bits(inode
->i_uid
));
2912 raw_inode
->i_gid_high
=
2913 cpu_to_le16(high_16_bits(inode
->i_gid
));
2915 raw_inode
->i_uid_high
= 0;
2916 raw_inode
->i_gid_high
= 0;
2919 raw_inode
->i_uid_low
=
2920 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
2921 raw_inode
->i_gid_low
=
2922 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
2923 raw_inode
->i_uid_high
= 0;
2924 raw_inode
->i_gid_high
= 0;
2926 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
2927 raw_inode
->i_size
= cpu_to_le32(ei
->i_disksize
);
2928 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
2929 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
2930 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
2931 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
2932 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
2933 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
2934 #ifdef EXT3_FRAGMENTS
2935 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
2936 raw_inode
->i_frag
= ei
->i_frag_no
;
2937 raw_inode
->i_fsize
= ei
->i_frag_size
;
2939 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
2940 if (!S_ISREG(inode
->i_mode
)) {
2941 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
2943 raw_inode
->i_size_high
=
2944 cpu_to_le32(ei
->i_disksize
>> 32);
2945 if (ei
->i_disksize
> 0x7fffffffULL
) {
2946 struct super_block
*sb
= inode
->i_sb
;
2947 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb
,
2948 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
) ||
2949 EXT3_SB(sb
)->s_es
->s_rev_level
==
2950 cpu_to_le32(EXT3_GOOD_OLD_REV
)) {
2951 /* If this is the first large file
2952 * created, add a flag to the superblock.
2954 err
= ext3_journal_get_write_access(handle
,
2955 EXT3_SB(sb
)->s_sbh
);
2958 ext3_update_dynamic_rev(sb
);
2959 EXT3_SET_RO_COMPAT_FEATURE(sb
,
2960 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
);
2962 err
= ext3_journal_dirty_metadata(handle
,
2963 EXT3_SB(sb
)->s_sbh
);
2967 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
2968 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
2969 if (old_valid_dev(inode
->i_rdev
)) {
2970 raw_inode
->i_block
[0] =
2971 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
2972 raw_inode
->i_block
[1] = 0;
2974 raw_inode
->i_block
[0] = 0;
2975 raw_inode
->i_block
[1] =
2976 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
2977 raw_inode
->i_block
[2] = 0;
2979 } else for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
2980 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
2982 if (ei
->i_extra_isize
)
2983 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
2985 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
2986 rc
= ext3_journal_dirty_metadata(handle
, bh
);
2989 ei
->i_state
&= ~EXT3_STATE_NEW
;
2993 ext3_std_error(inode
->i_sb
, err
);
2998 * ext3_write_inode()
3000 * We are called from a few places:
3002 * - Within generic_file_write() for O_SYNC files.
3003 * Here, there will be no transaction running. We wait for any running
3004 * trasnaction to commit.
3006 * - Within sys_sync(), kupdate and such.
3007 * We wait on commit, if tol to.
3009 * - Within prune_icache() (PF_MEMALLOC == true)
3010 * Here we simply return. We can't afford to block kswapd on the
3013 * In all cases it is actually safe for us to return without doing anything,
3014 * because the inode has been copied into a raw inode buffer in
3015 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3018 * Note that we are absolutely dependent upon all inode dirtiers doing the
3019 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3020 * which we are interested.
3022 * It would be a bug for them to not do this. The code:
3024 * mark_inode_dirty(inode)
3026 * inode->i_size = expr;
3028 * is in error because a kswapd-driven write_inode() could occur while
3029 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3030 * will no longer be on the superblock's dirty inode list.
3032 int ext3_write_inode(struct inode
*inode
, int wait
)
3034 if (current
->flags
& PF_MEMALLOC
)
3037 if (ext3_journal_current_handle()) {
3038 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3046 return ext3_force_commit(inode
->i_sb
);
3052 * Called from notify_change.
3054 * We want to trap VFS attempts to truncate the file as soon as
3055 * possible. In particular, we want to make sure that when the VFS
3056 * shrinks i_size, we put the inode on the orphan list and modify
3057 * i_disksize immediately, so that during the subsequent flushing of
3058 * dirty pages and freeing of disk blocks, we can guarantee that any
3059 * commit will leave the blocks being flushed in an unused state on
3060 * disk. (On recovery, the inode will get truncated and the blocks will
3061 * be freed, so we have a strong guarantee that no future commit will
3062 * leave these blocks visible to the user.)
3064 * Called with inode->sem down.
3066 int ext3_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3068 struct inode
*inode
= dentry
->d_inode
;
3070 const unsigned int ia_valid
= attr
->ia_valid
;
3072 error
= inode_change_ok(inode
, attr
);
3076 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
3077 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
3080 /* (user+group)*(old+new) structure, inode write (sb,
3081 * inode block, ? - but truncate inode update has it) */
3082 handle
= ext3_journal_start(inode
, 2*(EXT3_QUOTA_INIT_BLOCKS(inode
->i_sb
)+
3083 EXT3_QUOTA_DEL_BLOCKS(inode
->i_sb
))+3);
3084 if (IS_ERR(handle
)) {
3085 error
= PTR_ERR(handle
);
3088 error
= vfs_dq_transfer(inode
, attr
) ? -EDQUOT
: 0;
3090 ext3_journal_stop(handle
);
3093 /* Update corresponding info in inode so that everything is in
3094 * one transaction */
3095 if (attr
->ia_valid
& ATTR_UID
)
3096 inode
->i_uid
= attr
->ia_uid
;
3097 if (attr
->ia_valid
& ATTR_GID
)
3098 inode
->i_gid
= attr
->ia_gid
;
3099 error
= ext3_mark_inode_dirty(handle
, inode
);
3100 ext3_journal_stop(handle
);
3103 if (S_ISREG(inode
->i_mode
) &&
3104 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
3107 handle
= ext3_journal_start(inode
, 3);
3108 if (IS_ERR(handle
)) {
3109 error
= PTR_ERR(handle
);
3113 error
= ext3_orphan_add(handle
, inode
);
3114 EXT3_I(inode
)->i_disksize
= attr
->ia_size
;
3115 rc
= ext3_mark_inode_dirty(handle
, inode
);
3118 ext3_journal_stop(handle
);
3121 rc
= inode_setattr(inode
, attr
);
3123 if (!rc
&& (ia_valid
& ATTR_MODE
))
3124 rc
= ext3_acl_chmod(inode
);
3127 ext3_std_error(inode
->i_sb
, error
);
3135 * How many blocks doth make a writepage()?
3137 * With N blocks per page, it may be:
3142 * N+5 bitmap blocks (from the above)
3143 * N+5 group descriptor summary blocks
3146 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3148 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3150 * With ordered or writeback data it's the same, less the N data blocks.
3152 * If the inode's direct blocks can hold an integral number of pages then a
3153 * page cannot straddle two indirect blocks, and we can only touch one indirect
3154 * and dindirect block, and the "5" above becomes "3".
3156 * This still overestimates under most circumstances. If we were to pass the
3157 * start and end offsets in here as well we could do block_to_path() on each
3158 * block and work out the exact number of indirects which are touched. Pah.
3161 static int ext3_writepage_trans_blocks(struct inode
*inode
)
3163 int bpp
= ext3_journal_blocks_per_page(inode
);
3164 int indirects
= (EXT3_NDIR_BLOCKS
% bpp
) ? 5 : 3;
3167 if (ext3_should_journal_data(inode
))
3168 ret
= 3 * (bpp
+ indirects
) + 2;
3170 ret
= 2 * (bpp
+ indirects
) + 2;
3173 /* We know that structure was already allocated during vfs_dq_init so
3174 * we will be updating only the data blocks + inodes */
3175 ret
+= 2*EXT3_QUOTA_TRANS_BLOCKS(inode
->i_sb
);
3182 * The caller must have previously called ext3_reserve_inode_write().
3183 * Give this, we know that the caller already has write access to iloc->bh.
3185 int ext3_mark_iloc_dirty(handle_t
*handle
,
3186 struct inode
*inode
, struct ext3_iloc
*iloc
)
3190 /* the do_update_inode consumes one bh->b_count */
3193 /* ext3_do_update_inode() does journal_dirty_metadata */
3194 err
= ext3_do_update_inode(handle
, inode
, iloc
);
3200 * On success, We end up with an outstanding reference count against
3201 * iloc->bh. This _must_ be cleaned up later.
3205 ext3_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
3206 struct ext3_iloc
*iloc
)
3210 err
= ext3_get_inode_loc(inode
, iloc
);
3212 BUFFER_TRACE(iloc
->bh
, "get_write_access");
3213 err
= ext3_journal_get_write_access(handle
, iloc
->bh
);
3220 ext3_std_error(inode
->i_sb
, err
);
3225 * What we do here is to mark the in-core inode as clean with respect to inode
3226 * dirtiness (it may still be data-dirty).
3227 * This means that the in-core inode may be reaped by prune_icache
3228 * without having to perform any I/O. This is a very good thing,
3229 * because *any* task may call prune_icache - even ones which
3230 * have a transaction open against a different journal.
3232 * Is this cheating? Not really. Sure, we haven't written the
3233 * inode out, but prune_icache isn't a user-visible syncing function.
3234 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3235 * we start and wait on commits.
3237 * Is this efficient/effective? Well, we're being nice to the system
3238 * by cleaning up our inodes proactively so they can be reaped
3239 * without I/O. But we are potentially leaving up to five seconds'
3240 * worth of inodes floating about which prune_icache wants us to
3241 * write out. One way to fix that would be to get prune_icache()
3242 * to do a write_super() to free up some memory. It has the desired
3245 int ext3_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
3247 struct ext3_iloc iloc
;
3251 err
= ext3_reserve_inode_write(handle
, inode
, &iloc
);
3253 err
= ext3_mark_iloc_dirty(handle
, inode
, &iloc
);
3258 * ext3_dirty_inode() is called from __mark_inode_dirty()
3260 * We're really interested in the case where a file is being extended.
3261 * i_size has been changed by generic_commit_write() and we thus need
3262 * to include the updated inode in the current transaction.
3264 * Also, vfs_dq_alloc_space() will always dirty the inode when blocks
3265 * are allocated to the file.
3267 * If the inode is marked synchronous, we don't honour that here - doing
3268 * so would cause a commit on atime updates, which we don't bother doing.
3269 * We handle synchronous inodes at the highest possible level.
3271 void ext3_dirty_inode(struct inode
*inode
)
3273 handle_t
*current_handle
= ext3_journal_current_handle();
3276 handle
= ext3_journal_start(inode
, 2);
3279 if (current_handle
&&
3280 current_handle
->h_transaction
!= handle
->h_transaction
) {
3281 /* This task has a transaction open against a different fs */
3282 printk(KERN_EMERG
"%s: transactions do not match!\n",
3285 jbd_debug(5, "marking dirty. outer handle=%p\n",
3287 ext3_mark_inode_dirty(handle
, inode
);
3289 ext3_journal_stop(handle
);
3296 * Bind an inode's backing buffer_head into this transaction, to prevent
3297 * it from being flushed to disk early. Unlike
3298 * ext3_reserve_inode_write, this leaves behind no bh reference and
3299 * returns no iloc structure, so the caller needs to repeat the iloc
3300 * lookup to mark the inode dirty later.
3302 static int ext3_pin_inode(handle_t
*handle
, struct inode
*inode
)
3304 struct ext3_iloc iloc
;
3308 err
= ext3_get_inode_loc(inode
, &iloc
);
3310 BUFFER_TRACE(iloc
.bh
, "get_write_access");
3311 err
= journal_get_write_access(handle
, iloc
.bh
);
3313 err
= ext3_journal_dirty_metadata(handle
,
3318 ext3_std_error(inode
->i_sb
, err
);
3323 int ext3_change_inode_journal_flag(struct inode
*inode
, int val
)
3330 * We have to be very careful here: changing a data block's
3331 * journaling status dynamically is dangerous. If we write a
3332 * data block to the journal, change the status and then delete
3333 * that block, we risk forgetting to revoke the old log record
3334 * from the journal and so a subsequent replay can corrupt data.
3335 * So, first we make sure that the journal is empty and that
3336 * nobody is changing anything.
3339 journal
= EXT3_JOURNAL(inode
);
3340 if (is_journal_aborted(journal
))
3343 journal_lock_updates(journal
);
3344 journal_flush(journal
);
3347 * OK, there are no updates running now, and all cached data is
3348 * synced to disk. We are now in a completely consistent state
3349 * which doesn't have anything in the journal, and we know that
3350 * no filesystem updates are running, so it is safe to modify
3351 * the inode's in-core data-journaling state flag now.
3355 EXT3_I(inode
)->i_flags
|= EXT3_JOURNAL_DATA_FL
;
3357 EXT3_I(inode
)->i_flags
&= ~EXT3_JOURNAL_DATA_FL
;
3358 ext3_set_aops(inode
);
3360 journal_unlock_updates(journal
);
3362 /* Finally we can mark the inode as dirty. */
3364 handle
= ext3_journal_start(inode
, 1);
3366 return PTR_ERR(handle
);
3368 err
= ext3_mark_inode_dirty(handle
, inode
);
3370 ext3_journal_stop(handle
);
3371 ext3_std_error(inode
->i_sb
, err
);