[PATCH] mm: balance dirty pages
[linux-2.6/verdex.git] / mm / memory.c
blobdd7d7fc5ed609267f15f7ead6bcc19838cb4b408
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
72 unsigned long num_physpages;
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78 * and ZONE_HIGHMEM.
80 void * high_memory;
81 unsigned long vmalloc_earlyreserve;
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
85 EXPORT_SYMBOL(vmalloc_earlyreserve);
87 int randomize_va_space __read_mostly = 1;
89 static int __init disable_randmaps(char *s)
91 randomize_va_space = 0;
92 return 1;
94 __setup("norandmaps", disable_randmaps);
98 * If a p?d_bad entry is found while walking page tables, report
99 * the error, before resetting entry to p?d_none. Usually (but
100 * very seldom) called out from the p?d_none_or_clear_bad macros.
103 void pgd_clear_bad(pgd_t *pgd)
105 pgd_ERROR(*pgd);
106 pgd_clear(pgd);
109 void pud_clear_bad(pud_t *pud)
111 pud_ERROR(*pud);
112 pud_clear(pud);
115 void pmd_clear_bad(pmd_t *pmd)
117 pmd_ERROR(*pmd);
118 pmd_clear(pmd);
122 * Note: this doesn't free the actual pages themselves. That
123 * has been handled earlier when unmapping all the memory regions.
125 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
127 struct page *page = pmd_page(*pmd);
128 pmd_clear(pmd);
129 pte_lock_deinit(page);
130 pte_free_tlb(tlb, page);
131 dec_zone_page_state(page, NR_PAGETABLE);
132 tlb->mm->nr_ptes--;
135 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
136 unsigned long addr, unsigned long end,
137 unsigned long floor, unsigned long ceiling)
139 pmd_t *pmd;
140 unsigned long next;
141 unsigned long start;
143 start = addr;
144 pmd = pmd_offset(pud, addr);
145 do {
146 next = pmd_addr_end(addr, end);
147 if (pmd_none_or_clear_bad(pmd))
148 continue;
149 free_pte_range(tlb, pmd);
150 } while (pmd++, addr = next, addr != end);
152 start &= PUD_MASK;
153 if (start < floor)
154 return;
155 if (ceiling) {
156 ceiling &= PUD_MASK;
157 if (!ceiling)
158 return;
160 if (end - 1 > ceiling - 1)
161 return;
163 pmd = pmd_offset(pud, start);
164 pud_clear(pud);
165 pmd_free_tlb(tlb, pmd);
168 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
169 unsigned long addr, unsigned long end,
170 unsigned long floor, unsigned long ceiling)
172 pud_t *pud;
173 unsigned long next;
174 unsigned long start;
176 start = addr;
177 pud = pud_offset(pgd, addr);
178 do {
179 next = pud_addr_end(addr, end);
180 if (pud_none_or_clear_bad(pud))
181 continue;
182 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
183 } while (pud++, addr = next, addr != end);
185 start &= PGDIR_MASK;
186 if (start < floor)
187 return;
188 if (ceiling) {
189 ceiling &= PGDIR_MASK;
190 if (!ceiling)
191 return;
193 if (end - 1 > ceiling - 1)
194 return;
196 pud = pud_offset(pgd, start);
197 pgd_clear(pgd);
198 pud_free_tlb(tlb, pud);
202 * This function frees user-level page tables of a process.
204 * Must be called with pagetable lock held.
206 void free_pgd_range(struct mmu_gather **tlb,
207 unsigned long addr, unsigned long end,
208 unsigned long floor, unsigned long ceiling)
210 pgd_t *pgd;
211 unsigned long next;
212 unsigned long start;
215 * The next few lines have given us lots of grief...
217 * Why are we testing PMD* at this top level? Because often
218 * there will be no work to do at all, and we'd prefer not to
219 * go all the way down to the bottom just to discover that.
221 * Why all these "- 1"s? Because 0 represents both the bottom
222 * of the address space and the top of it (using -1 for the
223 * top wouldn't help much: the masks would do the wrong thing).
224 * The rule is that addr 0 and floor 0 refer to the bottom of
225 * the address space, but end 0 and ceiling 0 refer to the top
226 * Comparisons need to use "end - 1" and "ceiling - 1" (though
227 * that end 0 case should be mythical).
229 * Wherever addr is brought up or ceiling brought down, we must
230 * be careful to reject "the opposite 0" before it confuses the
231 * subsequent tests. But what about where end is brought down
232 * by PMD_SIZE below? no, end can't go down to 0 there.
234 * Whereas we round start (addr) and ceiling down, by different
235 * masks at different levels, in order to test whether a table
236 * now has no other vmas using it, so can be freed, we don't
237 * bother to round floor or end up - the tests don't need that.
240 addr &= PMD_MASK;
241 if (addr < floor) {
242 addr += PMD_SIZE;
243 if (!addr)
244 return;
246 if (ceiling) {
247 ceiling &= PMD_MASK;
248 if (!ceiling)
249 return;
251 if (end - 1 > ceiling - 1)
252 end -= PMD_SIZE;
253 if (addr > end - 1)
254 return;
256 start = addr;
257 pgd = pgd_offset((*tlb)->mm, addr);
258 do {
259 next = pgd_addr_end(addr, end);
260 if (pgd_none_or_clear_bad(pgd))
261 continue;
262 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
263 } while (pgd++, addr = next, addr != end);
265 if (!(*tlb)->fullmm)
266 flush_tlb_pgtables((*tlb)->mm, start, end);
269 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
270 unsigned long floor, unsigned long ceiling)
272 while (vma) {
273 struct vm_area_struct *next = vma->vm_next;
274 unsigned long addr = vma->vm_start;
277 * Hide vma from rmap and vmtruncate before freeing pgtables
279 anon_vma_unlink(vma);
280 unlink_file_vma(vma);
282 if (is_vm_hugetlb_page(vma)) {
283 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
284 floor, next? next->vm_start: ceiling);
285 } else {
287 * Optimization: gather nearby vmas into one call down
289 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
290 && !is_vm_hugetlb_page(next)) {
291 vma = next;
292 next = vma->vm_next;
293 anon_vma_unlink(vma);
294 unlink_file_vma(vma);
296 free_pgd_range(tlb, addr, vma->vm_end,
297 floor, next? next->vm_start: ceiling);
299 vma = next;
303 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
305 struct page *new = pte_alloc_one(mm, address);
306 if (!new)
307 return -ENOMEM;
309 pte_lock_init(new);
310 spin_lock(&mm->page_table_lock);
311 if (pmd_present(*pmd)) { /* Another has populated it */
312 pte_lock_deinit(new);
313 pte_free(new);
314 } else {
315 mm->nr_ptes++;
316 inc_zone_page_state(new, NR_PAGETABLE);
317 pmd_populate(mm, pmd, new);
319 spin_unlock(&mm->page_table_lock);
320 return 0;
323 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
325 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
326 if (!new)
327 return -ENOMEM;
329 spin_lock(&init_mm.page_table_lock);
330 if (pmd_present(*pmd)) /* Another has populated it */
331 pte_free_kernel(new);
332 else
333 pmd_populate_kernel(&init_mm, pmd, new);
334 spin_unlock(&init_mm.page_table_lock);
335 return 0;
338 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
340 if (file_rss)
341 add_mm_counter(mm, file_rss, file_rss);
342 if (anon_rss)
343 add_mm_counter(mm, anon_rss, anon_rss);
347 * This function is called to print an error when a bad pte
348 * is found. For example, we might have a PFN-mapped pte in
349 * a region that doesn't allow it.
351 * The calling function must still handle the error.
353 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
355 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
356 "vm_flags = %lx, vaddr = %lx\n",
357 (long long)pte_val(pte),
358 (vma->vm_mm == current->mm ? current->comm : "???"),
359 vma->vm_flags, vaddr);
360 dump_stack();
363 static inline int is_cow_mapping(unsigned int flags)
365 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
369 * This function gets the "struct page" associated with a pte.
371 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
372 * will have each page table entry just pointing to a raw page frame
373 * number, and as far as the VM layer is concerned, those do not have
374 * pages associated with them - even if the PFN might point to memory
375 * that otherwise is perfectly fine and has a "struct page".
377 * The way we recognize those mappings is through the rules set up
378 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
379 * and the vm_pgoff will point to the first PFN mapped: thus every
380 * page that is a raw mapping will always honor the rule
382 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
384 * and if that isn't true, the page has been COW'ed (in which case it
385 * _does_ have a "struct page" associated with it even if it is in a
386 * VM_PFNMAP range).
388 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
390 unsigned long pfn = pte_pfn(pte);
392 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
393 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
394 if (pfn == vma->vm_pgoff + off)
395 return NULL;
396 if (!is_cow_mapping(vma->vm_flags))
397 return NULL;
401 * Add some anal sanity checks for now. Eventually,
402 * we should just do "return pfn_to_page(pfn)", but
403 * in the meantime we check that we get a valid pfn,
404 * and that the resulting page looks ok.
406 if (unlikely(!pfn_valid(pfn))) {
407 print_bad_pte(vma, pte, addr);
408 return NULL;
412 * NOTE! We still have PageReserved() pages in the page
413 * tables.
415 * The PAGE_ZERO() pages and various VDSO mappings can
416 * cause them to exist.
418 return pfn_to_page(pfn);
422 * copy one vm_area from one task to the other. Assumes the page tables
423 * already present in the new task to be cleared in the whole range
424 * covered by this vma.
427 static inline void
428 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
429 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
430 unsigned long addr, int *rss)
432 unsigned long vm_flags = vma->vm_flags;
433 pte_t pte = *src_pte;
434 struct page *page;
436 /* pte contains position in swap or file, so copy. */
437 if (unlikely(!pte_present(pte))) {
438 if (!pte_file(pte)) {
439 swp_entry_t entry = pte_to_swp_entry(pte);
441 swap_duplicate(entry);
442 /* make sure dst_mm is on swapoff's mmlist. */
443 if (unlikely(list_empty(&dst_mm->mmlist))) {
444 spin_lock(&mmlist_lock);
445 if (list_empty(&dst_mm->mmlist))
446 list_add(&dst_mm->mmlist,
447 &src_mm->mmlist);
448 spin_unlock(&mmlist_lock);
450 if (is_write_migration_entry(entry) &&
451 is_cow_mapping(vm_flags)) {
453 * COW mappings require pages in both parent
454 * and child to be set to read.
456 make_migration_entry_read(&entry);
457 pte = swp_entry_to_pte(entry);
458 set_pte_at(src_mm, addr, src_pte, pte);
461 goto out_set_pte;
465 * If it's a COW mapping, write protect it both
466 * in the parent and the child
468 if (is_cow_mapping(vm_flags)) {
469 ptep_set_wrprotect(src_mm, addr, src_pte);
470 pte = *src_pte;
474 * If it's a shared mapping, mark it clean in
475 * the child
477 if (vm_flags & VM_SHARED)
478 pte = pte_mkclean(pte);
479 pte = pte_mkold(pte);
481 page = vm_normal_page(vma, addr, pte);
482 if (page) {
483 get_page(page);
484 page_dup_rmap(page);
485 rss[!!PageAnon(page)]++;
488 out_set_pte:
489 set_pte_at(dst_mm, addr, dst_pte, pte);
492 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
494 unsigned long addr, unsigned long end)
496 pte_t *src_pte, *dst_pte;
497 spinlock_t *src_ptl, *dst_ptl;
498 int progress = 0;
499 int rss[2];
501 again:
502 rss[1] = rss[0] = 0;
503 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
504 if (!dst_pte)
505 return -ENOMEM;
506 src_pte = pte_offset_map_nested(src_pmd, addr);
507 src_ptl = pte_lockptr(src_mm, src_pmd);
508 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
510 do {
512 * We are holding two locks at this point - either of them
513 * could generate latencies in another task on another CPU.
515 if (progress >= 32) {
516 progress = 0;
517 if (need_resched() ||
518 need_lockbreak(src_ptl) ||
519 need_lockbreak(dst_ptl))
520 break;
522 if (pte_none(*src_pte)) {
523 progress++;
524 continue;
526 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
527 progress += 8;
528 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
530 spin_unlock(src_ptl);
531 pte_unmap_nested(src_pte - 1);
532 add_mm_rss(dst_mm, rss[0], rss[1]);
533 pte_unmap_unlock(dst_pte - 1, dst_ptl);
534 cond_resched();
535 if (addr != end)
536 goto again;
537 return 0;
540 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
541 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
542 unsigned long addr, unsigned long end)
544 pmd_t *src_pmd, *dst_pmd;
545 unsigned long next;
547 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
548 if (!dst_pmd)
549 return -ENOMEM;
550 src_pmd = pmd_offset(src_pud, addr);
551 do {
552 next = pmd_addr_end(addr, end);
553 if (pmd_none_or_clear_bad(src_pmd))
554 continue;
555 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
556 vma, addr, next))
557 return -ENOMEM;
558 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
559 return 0;
562 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
563 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
564 unsigned long addr, unsigned long end)
566 pud_t *src_pud, *dst_pud;
567 unsigned long next;
569 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
570 if (!dst_pud)
571 return -ENOMEM;
572 src_pud = pud_offset(src_pgd, addr);
573 do {
574 next = pud_addr_end(addr, end);
575 if (pud_none_or_clear_bad(src_pud))
576 continue;
577 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
578 vma, addr, next))
579 return -ENOMEM;
580 } while (dst_pud++, src_pud++, addr = next, addr != end);
581 return 0;
584 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
585 struct vm_area_struct *vma)
587 pgd_t *src_pgd, *dst_pgd;
588 unsigned long next;
589 unsigned long addr = vma->vm_start;
590 unsigned long end = vma->vm_end;
593 * Don't copy ptes where a page fault will fill them correctly.
594 * Fork becomes much lighter when there are big shared or private
595 * readonly mappings. The tradeoff is that copy_page_range is more
596 * efficient than faulting.
598 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
599 if (!vma->anon_vma)
600 return 0;
603 if (is_vm_hugetlb_page(vma))
604 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
606 dst_pgd = pgd_offset(dst_mm, addr);
607 src_pgd = pgd_offset(src_mm, addr);
608 do {
609 next = pgd_addr_end(addr, end);
610 if (pgd_none_or_clear_bad(src_pgd))
611 continue;
612 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
613 vma, addr, next))
614 return -ENOMEM;
615 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
616 return 0;
619 static unsigned long zap_pte_range(struct mmu_gather *tlb,
620 struct vm_area_struct *vma, pmd_t *pmd,
621 unsigned long addr, unsigned long end,
622 long *zap_work, struct zap_details *details)
624 struct mm_struct *mm = tlb->mm;
625 pte_t *pte;
626 spinlock_t *ptl;
627 int file_rss = 0;
628 int anon_rss = 0;
630 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
631 do {
632 pte_t ptent = *pte;
633 if (pte_none(ptent)) {
634 (*zap_work)--;
635 continue;
638 (*zap_work) -= PAGE_SIZE;
640 if (pte_present(ptent)) {
641 struct page *page;
643 page = vm_normal_page(vma, addr, ptent);
644 if (unlikely(details) && page) {
646 * unmap_shared_mapping_pages() wants to
647 * invalidate cache without truncating:
648 * unmap shared but keep private pages.
650 if (details->check_mapping &&
651 details->check_mapping != page->mapping)
652 continue;
654 * Each page->index must be checked when
655 * invalidating or truncating nonlinear.
657 if (details->nonlinear_vma &&
658 (page->index < details->first_index ||
659 page->index > details->last_index))
660 continue;
662 ptent = ptep_get_and_clear_full(mm, addr, pte,
663 tlb->fullmm);
664 tlb_remove_tlb_entry(tlb, pte, addr);
665 if (unlikely(!page))
666 continue;
667 if (unlikely(details) && details->nonlinear_vma
668 && linear_page_index(details->nonlinear_vma,
669 addr) != page->index)
670 set_pte_at(mm, addr, pte,
671 pgoff_to_pte(page->index));
672 if (PageAnon(page))
673 anon_rss--;
674 else {
675 if (pte_dirty(ptent))
676 set_page_dirty(page);
677 if (pte_young(ptent))
678 mark_page_accessed(page);
679 file_rss--;
681 page_remove_rmap(page);
682 tlb_remove_page(tlb, page);
683 continue;
686 * If details->check_mapping, we leave swap entries;
687 * if details->nonlinear_vma, we leave file entries.
689 if (unlikely(details))
690 continue;
691 if (!pte_file(ptent))
692 free_swap_and_cache(pte_to_swp_entry(ptent));
693 pte_clear_full(mm, addr, pte, tlb->fullmm);
694 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
696 add_mm_rss(mm, file_rss, anon_rss);
697 pte_unmap_unlock(pte - 1, ptl);
699 return addr;
702 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
703 struct vm_area_struct *vma, pud_t *pud,
704 unsigned long addr, unsigned long end,
705 long *zap_work, struct zap_details *details)
707 pmd_t *pmd;
708 unsigned long next;
710 pmd = pmd_offset(pud, addr);
711 do {
712 next = pmd_addr_end(addr, end);
713 if (pmd_none_or_clear_bad(pmd)) {
714 (*zap_work)--;
715 continue;
717 next = zap_pte_range(tlb, vma, pmd, addr, next,
718 zap_work, details);
719 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
721 return addr;
724 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
725 struct vm_area_struct *vma, pgd_t *pgd,
726 unsigned long addr, unsigned long end,
727 long *zap_work, struct zap_details *details)
729 pud_t *pud;
730 unsigned long next;
732 pud = pud_offset(pgd, addr);
733 do {
734 next = pud_addr_end(addr, end);
735 if (pud_none_or_clear_bad(pud)) {
736 (*zap_work)--;
737 continue;
739 next = zap_pmd_range(tlb, vma, pud, addr, next,
740 zap_work, details);
741 } while (pud++, addr = next, (addr != end && *zap_work > 0));
743 return addr;
746 static unsigned long unmap_page_range(struct mmu_gather *tlb,
747 struct vm_area_struct *vma,
748 unsigned long addr, unsigned long end,
749 long *zap_work, struct zap_details *details)
751 pgd_t *pgd;
752 unsigned long next;
754 if (details && !details->check_mapping && !details->nonlinear_vma)
755 details = NULL;
757 BUG_ON(addr >= end);
758 tlb_start_vma(tlb, vma);
759 pgd = pgd_offset(vma->vm_mm, addr);
760 do {
761 next = pgd_addr_end(addr, end);
762 if (pgd_none_or_clear_bad(pgd)) {
763 (*zap_work)--;
764 continue;
766 next = zap_pud_range(tlb, vma, pgd, addr, next,
767 zap_work, details);
768 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
769 tlb_end_vma(tlb, vma);
771 return addr;
774 #ifdef CONFIG_PREEMPT
775 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
776 #else
777 /* No preempt: go for improved straight-line efficiency */
778 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
779 #endif
782 * unmap_vmas - unmap a range of memory covered by a list of vma's
783 * @tlbp: address of the caller's struct mmu_gather
784 * @vma: the starting vma
785 * @start_addr: virtual address at which to start unmapping
786 * @end_addr: virtual address at which to end unmapping
787 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
788 * @details: details of nonlinear truncation or shared cache invalidation
790 * Returns the end address of the unmapping (restart addr if interrupted).
792 * Unmap all pages in the vma list.
794 * We aim to not hold locks for too long (for scheduling latency reasons).
795 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
796 * return the ending mmu_gather to the caller.
798 * Only addresses between `start' and `end' will be unmapped.
800 * The VMA list must be sorted in ascending virtual address order.
802 * unmap_vmas() assumes that the caller will flush the whole unmapped address
803 * range after unmap_vmas() returns. So the only responsibility here is to
804 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
805 * drops the lock and schedules.
807 unsigned long unmap_vmas(struct mmu_gather **tlbp,
808 struct vm_area_struct *vma, unsigned long start_addr,
809 unsigned long end_addr, unsigned long *nr_accounted,
810 struct zap_details *details)
812 long zap_work = ZAP_BLOCK_SIZE;
813 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
814 int tlb_start_valid = 0;
815 unsigned long start = start_addr;
816 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
817 int fullmm = (*tlbp)->fullmm;
819 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
820 unsigned long end;
822 start = max(vma->vm_start, start_addr);
823 if (start >= vma->vm_end)
824 continue;
825 end = min(vma->vm_end, end_addr);
826 if (end <= vma->vm_start)
827 continue;
829 if (vma->vm_flags & VM_ACCOUNT)
830 *nr_accounted += (end - start) >> PAGE_SHIFT;
832 while (start != end) {
833 if (!tlb_start_valid) {
834 tlb_start = start;
835 tlb_start_valid = 1;
838 if (unlikely(is_vm_hugetlb_page(vma))) {
839 unmap_hugepage_range(vma, start, end);
840 zap_work -= (end - start) /
841 (HPAGE_SIZE / PAGE_SIZE);
842 start = end;
843 } else
844 start = unmap_page_range(*tlbp, vma,
845 start, end, &zap_work, details);
847 if (zap_work > 0) {
848 BUG_ON(start != end);
849 break;
852 tlb_finish_mmu(*tlbp, tlb_start, start);
854 if (need_resched() ||
855 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
856 if (i_mmap_lock) {
857 *tlbp = NULL;
858 goto out;
860 cond_resched();
863 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
864 tlb_start_valid = 0;
865 zap_work = ZAP_BLOCK_SIZE;
868 out:
869 return start; /* which is now the end (or restart) address */
873 * zap_page_range - remove user pages in a given range
874 * @vma: vm_area_struct holding the applicable pages
875 * @address: starting address of pages to zap
876 * @size: number of bytes to zap
877 * @details: details of nonlinear truncation or shared cache invalidation
879 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
880 unsigned long size, struct zap_details *details)
882 struct mm_struct *mm = vma->vm_mm;
883 struct mmu_gather *tlb;
884 unsigned long end = address + size;
885 unsigned long nr_accounted = 0;
887 lru_add_drain();
888 tlb = tlb_gather_mmu(mm, 0);
889 update_hiwater_rss(mm);
890 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
891 if (tlb)
892 tlb_finish_mmu(tlb, address, end);
893 return end;
897 * Do a quick page-table lookup for a single page.
899 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
900 unsigned int flags)
902 pgd_t *pgd;
903 pud_t *pud;
904 pmd_t *pmd;
905 pte_t *ptep, pte;
906 spinlock_t *ptl;
907 struct page *page;
908 struct mm_struct *mm = vma->vm_mm;
910 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
911 if (!IS_ERR(page)) {
912 BUG_ON(flags & FOLL_GET);
913 goto out;
916 page = NULL;
917 pgd = pgd_offset(mm, address);
918 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
919 goto no_page_table;
921 pud = pud_offset(pgd, address);
922 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
923 goto no_page_table;
925 pmd = pmd_offset(pud, address);
926 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
927 goto no_page_table;
929 if (pmd_huge(*pmd)) {
930 BUG_ON(flags & FOLL_GET);
931 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
932 goto out;
935 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
936 if (!ptep)
937 goto out;
939 pte = *ptep;
940 if (!pte_present(pte))
941 goto unlock;
942 if ((flags & FOLL_WRITE) && !pte_write(pte))
943 goto unlock;
944 page = vm_normal_page(vma, address, pte);
945 if (unlikely(!page))
946 goto unlock;
948 if (flags & FOLL_GET)
949 get_page(page);
950 if (flags & FOLL_TOUCH) {
951 if ((flags & FOLL_WRITE) &&
952 !pte_dirty(pte) && !PageDirty(page))
953 set_page_dirty(page);
954 mark_page_accessed(page);
956 unlock:
957 pte_unmap_unlock(ptep, ptl);
958 out:
959 return page;
961 no_page_table:
963 * When core dumping an enormous anonymous area that nobody
964 * has touched so far, we don't want to allocate page tables.
966 if (flags & FOLL_ANON) {
967 page = ZERO_PAGE(address);
968 if (flags & FOLL_GET)
969 get_page(page);
970 BUG_ON(flags & FOLL_WRITE);
972 return page;
975 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
976 unsigned long start, int len, int write, int force,
977 struct page **pages, struct vm_area_struct **vmas)
979 int i;
980 unsigned int vm_flags;
983 * Require read or write permissions.
984 * If 'force' is set, we only require the "MAY" flags.
986 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
987 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
988 i = 0;
990 do {
991 struct vm_area_struct *vma;
992 unsigned int foll_flags;
994 vma = find_extend_vma(mm, start);
995 if (!vma && in_gate_area(tsk, start)) {
996 unsigned long pg = start & PAGE_MASK;
997 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
998 pgd_t *pgd;
999 pud_t *pud;
1000 pmd_t *pmd;
1001 pte_t *pte;
1002 if (write) /* user gate pages are read-only */
1003 return i ? : -EFAULT;
1004 if (pg > TASK_SIZE)
1005 pgd = pgd_offset_k(pg);
1006 else
1007 pgd = pgd_offset_gate(mm, pg);
1008 BUG_ON(pgd_none(*pgd));
1009 pud = pud_offset(pgd, pg);
1010 BUG_ON(pud_none(*pud));
1011 pmd = pmd_offset(pud, pg);
1012 if (pmd_none(*pmd))
1013 return i ? : -EFAULT;
1014 pte = pte_offset_map(pmd, pg);
1015 if (pte_none(*pte)) {
1016 pte_unmap(pte);
1017 return i ? : -EFAULT;
1019 if (pages) {
1020 struct page *page = vm_normal_page(gate_vma, start, *pte);
1021 pages[i] = page;
1022 if (page)
1023 get_page(page);
1025 pte_unmap(pte);
1026 if (vmas)
1027 vmas[i] = gate_vma;
1028 i++;
1029 start += PAGE_SIZE;
1030 len--;
1031 continue;
1034 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1035 || !(vm_flags & vma->vm_flags))
1036 return i ? : -EFAULT;
1038 if (is_vm_hugetlb_page(vma)) {
1039 i = follow_hugetlb_page(mm, vma, pages, vmas,
1040 &start, &len, i);
1041 continue;
1044 foll_flags = FOLL_TOUCH;
1045 if (pages)
1046 foll_flags |= FOLL_GET;
1047 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1048 (!vma->vm_ops || !vma->vm_ops->nopage))
1049 foll_flags |= FOLL_ANON;
1051 do {
1052 struct page *page;
1054 if (write)
1055 foll_flags |= FOLL_WRITE;
1057 cond_resched();
1058 while (!(page = follow_page(vma, start, foll_flags))) {
1059 int ret;
1060 ret = __handle_mm_fault(mm, vma, start,
1061 foll_flags & FOLL_WRITE);
1063 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1064 * broken COW when necessary, even if maybe_mkwrite
1065 * decided not to set pte_write. We can thus safely do
1066 * subsequent page lookups as if they were reads.
1068 if (ret & VM_FAULT_WRITE)
1069 foll_flags &= ~FOLL_WRITE;
1071 switch (ret & ~VM_FAULT_WRITE) {
1072 case VM_FAULT_MINOR:
1073 tsk->min_flt++;
1074 break;
1075 case VM_FAULT_MAJOR:
1076 tsk->maj_flt++;
1077 break;
1078 case VM_FAULT_SIGBUS:
1079 return i ? i : -EFAULT;
1080 case VM_FAULT_OOM:
1081 return i ? i : -ENOMEM;
1082 default:
1083 BUG();
1086 if (pages) {
1087 pages[i] = page;
1089 flush_anon_page(page, start);
1090 flush_dcache_page(page);
1092 if (vmas)
1093 vmas[i] = vma;
1094 i++;
1095 start += PAGE_SIZE;
1096 len--;
1097 } while (len && start < vma->vm_end);
1098 } while (len);
1099 return i;
1101 EXPORT_SYMBOL(get_user_pages);
1103 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1104 unsigned long addr, unsigned long end, pgprot_t prot)
1106 pte_t *pte;
1107 spinlock_t *ptl;
1109 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1110 if (!pte)
1111 return -ENOMEM;
1112 do {
1113 struct page *page = ZERO_PAGE(addr);
1114 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1115 page_cache_get(page);
1116 page_add_file_rmap(page);
1117 inc_mm_counter(mm, file_rss);
1118 BUG_ON(!pte_none(*pte));
1119 set_pte_at(mm, addr, pte, zero_pte);
1120 } while (pte++, addr += PAGE_SIZE, addr != end);
1121 pte_unmap_unlock(pte - 1, ptl);
1122 return 0;
1125 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1126 unsigned long addr, unsigned long end, pgprot_t prot)
1128 pmd_t *pmd;
1129 unsigned long next;
1131 pmd = pmd_alloc(mm, pud, addr);
1132 if (!pmd)
1133 return -ENOMEM;
1134 do {
1135 next = pmd_addr_end(addr, end);
1136 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1137 return -ENOMEM;
1138 } while (pmd++, addr = next, addr != end);
1139 return 0;
1142 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1143 unsigned long addr, unsigned long end, pgprot_t prot)
1145 pud_t *pud;
1146 unsigned long next;
1148 pud = pud_alloc(mm, pgd, addr);
1149 if (!pud)
1150 return -ENOMEM;
1151 do {
1152 next = pud_addr_end(addr, end);
1153 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1154 return -ENOMEM;
1155 } while (pud++, addr = next, addr != end);
1156 return 0;
1159 int zeromap_page_range(struct vm_area_struct *vma,
1160 unsigned long addr, unsigned long size, pgprot_t prot)
1162 pgd_t *pgd;
1163 unsigned long next;
1164 unsigned long end = addr + size;
1165 struct mm_struct *mm = vma->vm_mm;
1166 int err;
1168 BUG_ON(addr >= end);
1169 pgd = pgd_offset(mm, addr);
1170 flush_cache_range(vma, addr, end);
1171 do {
1172 next = pgd_addr_end(addr, end);
1173 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1174 if (err)
1175 break;
1176 } while (pgd++, addr = next, addr != end);
1177 return err;
1180 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1182 pgd_t * pgd = pgd_offset(mm, addr);
1183 pud_t * pud = pud_alloc(mm, pgd, addr);
1184 if (pud) {
1185 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1186 if (pmd)
1187 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1189 return NULL;
1193 * This is the old fallback for page remapping.
1195 * For historical reasons, it only allows reserved pages. Only
1196 * old drivers should use this, and they needed to mark their
1197 * pages reserved for the old functions anyway.
1199 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1201 int retval;
1202 pte_t *pte;
1203 spinlock_t *ptl;
1205 retval = -EINVAL;
1206 if (PageAnon(page))
1207 goto out;
1208 retval = -ENOMEM;
1209 flush_dcache_page(page);
1210 pte = get_locked_pte(mm, addr, &ptl);
1211 if (!pte)
1212 goto out;
1213 retval = -EBUSY;
1214 if (!pte_none(*pte))
1215 goto out_unlock;
1217 /* Ok, finally just insert the thing.. */
1218 get_page(page);
1219 inc_mm_counter(mm, file_rss);
1220 page_add_file_rmap(page);
1221 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1223 retval = 0;
1224 out_unlock:
1225 pte_unmap_unlock(pte, ptl);
1226 out:
1227 return retval;
1231 * This allows drivers to insert individual pages they've allocated
1232 * into a user vma.
1234 * The page has to be a nice clean _individual_ kernel allocation.
1235 * If you allocate a compound page, you need to have marked it as
1236 * such (__GFP_COMP), or manually just split the page up yourself
1237 * (see split_page()).
1239 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1240 * took an arbitrary page protection parameter. This doesn't allow
1241 * that. Your vma protection will have to be set up correctly, which
1242 * means that if you want a shared writable mapping, you'd better
1243 * ask for a shared writable mapping!
1245 * The page does not need to be reserved.
1247 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1249 if (addr < vma->vm_start || addr >= vma->vm_end)
1250 return -EFAULT;
1251 if (!page_count(page))
1252 return -EINVAL;
1253 vma->vm_flags |= VM_INSERTPAGE;
1254 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1256 EXPORT_SYMBOL(vm_insert_page);
1259 * maps a range of physical memory into the requested pages. the old
1260 * mappings are removed. any references to nonexistent pages results
1261 * in null mappings (currently treated as "copy-on-access")
1263 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1264 unsigned long addr, unsigned long end,
1265 unsigned long pfn, pgprot_t prot)
1267 pte_t *pte;
1268 spinlock_t *ptl;
1270 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1271 if (!pte)
1272 return -ENOMEM;
1273 do {
1274 BUG_ON(!pte_none(*pte));
1275 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1276 pfn++;
1277 } while (pte++, addr += PAGE_SIZE, addr != end);
1278 pte_unmap_unlock(pte - 1, ptl);
1279 return 0;
1282 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1283 unsigned long addr, unsigned long end,
1284 unsigned long pfn, pgprot_t prot)
1286 pmd_t *pmd;
1287 unsigned long next;
1289 pfn -= addr >> PAGE_SHIFT;
1290 pmd = pmd_alloc(mm, pud, addr);
1291 if (!pmd)
1292 return -ENOMEM;
1293 do {
1294 next = pmd_addr_end(addr, end);
1295 if (remap_pte_range(mm, pmd, addr, next,
1296 pfn + (addr >> PAGE_SHIFT), prot))
1297 return -ENOMEM;
1298 } while (pmd++, addr = next, addr != end);
1299 return 0;
1302 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1303 unsigned long addr, unsigned long end,
1304 unsigned long pfn, pgprot_t prot)
1306 pud_t *pud;
1307 unsigned long next;
1309 pfn -= addr >> PAGE_SHIFT;
1310 pud = pud_alloc(mm, pgd, addr);
1311 if (!pud)
1312 return -ENOMEM;
1313 do {
1314 next = pud_addr_end(addr, end);
1315 if (remap_pmd_range(mm, pud, addr, next,
1316 pfn + (addr >> PAGE_SHIFT), prot))
1317 return -ENOMEM;
1318 } while (pud++, addr = next, addr != end);
1319 return 0;
1322 /* Note: this is only safe if the mm semaphore is held when called. */
1323 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1324 unsigned long pfn, unsigned long size, pgprot_t prot)
1326 pgd_t *pgd;
1327 unsigned long next;
1328 unsigned long end = addr + PAGE_ALIGN(size);
1329 struct mm_struct *mm = vma->vm_mm;
1330 int err;
1333 * Physically remapped pages are special. Tell the
1334 * rest of the world about it:
1335 * VM_IO tells people not to look at these pages
1336 * (accesses can have side effects).
1337 * VM_RESERVED is specified all over the place, because
1338 * in 2.4 it kept swapout's vma scan off this vma; but
1339 * in 2.6 the LRU scan won't even find its pages, so this
1340 * flag means no more than count its pages in reserved_vm,
1341 * and omit it from core dump, even when VM_IO turned off.
1342 * VM_PFNMAP tells the core MM that the base pages are just
1343 * raw PFN mappings, and do not have a "struct page" associated
1344 * with them.
1346 * There's a horrible special case to handle copy-on-write
1347 * behaviour that some programs depend on. We mark the "original"
1348 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1350 if (is_cow_mapping(vma->vm_flags)) {
1351 if (addr != vma->vm_start || end != vma->vm_end)
1352 return -EINVAL;
1353 vma->vm_pgoff = pfn;
1356 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1358 BUG_ON(addr >= end);
1359 pfn -= addr >> PAGE_SHIFT;
1360 pgd = pgd_offset(mm, addr);
1361 flush_cache_range(vma, addr, end);
1362 do {
1363 next = pgd_addr_end(addr, end);
1364 err = remap_pud_range(mm, pgd, addr, next,
1365 pfn + (addr >> PAGE_SHIFT), prot);
1366 if (err)
1367 break;
1368 } while (pgd++, addr = next, addr != end);
1369 return err;
1371 EXPORT_SYMBOL(remap_pfn_range);
1374 * handle_pte_fault chooses page fault handler according to an entry
1375 * which was read non-atomically. Before making any commitment, on
1376 * those architectures or configurations (e.g. i386 with PAE) which
1377 * might give a mix of unmatched parts, do_swap_page and do_file_page
1378 * must check under lock before unmapping the pte and proceeding
1379 * (but do_wp_page is only called after already making such a check;
1380 * and do_anonymous_page and do_no_page can safely check later on).
1382 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1383 pte_t *page_table, pte_t orig_pte)
1385 int same = 1;
1386 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1387 if (sizeof(pte_t) > sizeof(unsigned long)) {
1388 spinlock_t *ptl = pte_lockptr(mm, pmd);
1389 spin_lock(ptl);
1390 same = pte_same(*page_table, orig_pte);
1391 spin_unlock(ptl);
1393 #endif
1394 pte_unmap(page_table);
1395 return same;
1399 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1400 * servicing faults for write access. In the normal case, do always want
1401 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1402 * that do not have writing enabled, when used by access_process_vm.
1404 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1406 if (likely(vma->vm_flags & VM_WRITE))
1407 pte = pte_mkwrite(pte);
1408 return pte;
1411 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1414 * If the source page was a PFN mapping, we don't have
1415 * a "struct page" for it. We do a best-effort copy by
1416 * just copying from the original user address. If that
1417 * fails, we just zero-fill it. Live with it.
1419 if (unlikely(!src)) {
1420 void *kaddr = kmap_atomic(dst, KM_USER0);
1421 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1424 * This really shouldn't fail, because the page is there
1425 * in the page tables. But it might just be unreadable,
1426 * in which case we just give up and fill the result with
1427 * zeroes.
1429 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1430 memset(kaddr, 0, PAGE_SIZE);
1431 kunmap_atomic(kaddr, KM_USER0);
1432 return;
1435 copy_user_highpage(dst, src, va);
1439 * This routine handles present pages, when users try to write
1440 * to a shared page. It is done by copying the page to a new address
1441 * and decrementing the shared-page counter for the old page.
1443 * Note that this routine assumes that the protection checks have been
1444 * done by the caller (the low-level page fault routine in most cases).
1445 * Thus we can safely just mark it writable once we've done any necessary
1446 * COW.
1448 * We also mark the page dirty at this point even though the page will
1449 * change only once the write actually happens. This avoids a few races,
1450 * and potentially makes it more efficient.
1452 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1453 * but allow concurrent faults), with pte both mapped and locked.
1454 * We return with mmap_sem still held, but pte unmapped and unlocked.
1456 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1457 unsigned long address, pte_t *page_table, pmd_t *pmd,
1458 spinlock_t *ptl, pte_t orig_pte)
1460 struct page *old_page, *new_page;
1461 pte_t entry;
1462 int reuse = 0, ret = VM_FAULT_MINOR;
1463 struct page *dirty_page = NULL;
1465 old_page = vm_normal_page(vma, address, orig_pte);
1466 if (!old_page)
1467 goto gotten;
1470 * Only catch write-faults on shared writable pages, read-only
1471 * shared pages can get COWed by get_user_pages(.write=1, .force=1).
1473 if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1474 (VM_WRITE|VM_SHARED))) {
1475 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1477 * Notify the address space that the page is about to
1478 * become writable so that it can prohibit this or wait
1479 * for the page to get into an appropriate state.
1481 * We do this without the lock held, so that it can
1482 * sleep if it needs to.
1484 page_cache_get(old_page);
1485 pte_unmap_unlock(page_table, ptl);
1487 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1488 goto unwritable_page;
1490 page_cache_release(old_page);
1493 * Since we dropped the lock we need to revalidate
1494 * the PTE as someone else may have changed it. If
1495 * they did, we just return, as we can count on the
1496 * MMU to tell us if they didn't also make it writable.
1498 page_table = pte_offset_map_lock(mm, pmd, address,
1499 &ptl);
1500 if (!pte_same(*page_table, orig_pte))
1501 goto unlock;
1503 dirty_page = old_page;
1504 get_page(dirty_page);
1505 reuse = 1;
1506 } else if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1507 reuse = can_share_swap_page(old_page);
1508 unlock_page(old_page);
1511 if (reuse) {
1512 flush_cache_page(vma, address, pte_pfn(orig_pte));
1513 entry = pte_mkyoung(orig_pte);
1514 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1515 ptep_set_access_flags(vma, address, page_table, entry, 1);
1516 update_mmu_cache(vma, address, entry);
1517 lazy_mmu_prot_update(entry);
1518 ret |= VM_FAULT_WRITE;
1519 goto unlock;
1523 * Ok, we need to copy. Oh, well..
1525 page_cache_get(old_page);
1526 gotten:
1527 pte_unmap_unlock(page_table, ptl);
1529 if (unlikely(anon_vma_prepare(vma)))
1530 goto oom;
1531 if (old_page == ZERO_PAGE(address)) {
1532 new_page = alloc_zeroed_user_highpage(vma, address);
1533 if (!new_page)
1534 goto oom;
1535 } else {
1536 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1537 if (!new_page)
1538 goto oom;
1539 cow_user_page(new_page, old_page, address);
1543 * Re-check the pte - we dropped the lock
1545 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1546 if (likely(pte_same(*page_table, orig_pte))) {
1547 if (old_page) {
1548 page_remove_rmap(old_page);
1549 if (!PageAnon(old_page)) {
1550 dec_mm_counter(mm, file_rss);
1551 inc_mm_counter(mm, anon_rss);
1553 } else
1554 inc_mm_counter(mm, anon_rss);
1555 flush_cache_page(vma, address, pte_pfn(orig_pte));
1556 entry = mk_pte(new_page, vma->vm_page_prot);
1557 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1558 lazy_mmu_prot_update(entry);
1559 ptep_establish(vma, address, page_table, entry);
1560 update_mmu_cache(vma, address, entry);
1561 lru_cache_add_active(new_page);
1562 page_add_new_anon_rmap(new_page, vma, address);
1564 /* Free the old page.. */
1565 new_page = old_page;
1566 ret |= VM_FAULT_WRITE;
1568 if (new_page)
1569 page_cache_release(new_page);
1570 if (old_page)
1571 page_cache_release(old_page);
1572 unlock:
1573 pte_unmap_unlock(page_table, ptl);
1574 if (dirty_page) {
1575 set_page_dirty_balance(dirty_page);
1576 put_page(dirty_page);
1578 return ret;
1579 oom:
1580 if (old_page)
1581 page_cache_release(old_page);
1582 return VM_FAULT_OOM;
1584 unwritable_page:
1585 page_cache_release(old_page);
1586 return VM_FAULT_SIGBUS;
1590 * Helper functions for unmap_mapping_range().
1592 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1594 * We have to restart searching the prio_tree whenever we drop the lock,
1595 * since the iterator is only valid while the lock is held, and anyway
1596 * a later vma might be split and reinserted earlier while lock dropped.
1598 * The list of nonlinear vmas could be handled more efficiently, using
1599 * a placeholder, but handle it in the same way until a need is shown.
1600 * It is important to search the prio_tree before nonlinear list: a vma
1601 * may become nonlinear and be shifted from prio_tree to nonlinear list
1602 * while the lock is dropped; but never shifted from list to prio_tree.
1604 * In order to make forward progress despite restarting the search,
1605 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1606 * quickly skip it next time around. Since the prio_tree search only
1607 * shows us those vmas affected by unmapping the range in question, we
1608 * can't efficiently keep all vmas in step with mapping->truncate_count:
1609 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1610 * mapping->truncate_count and vma->vm_truncate_count are protected by
1611 * i_mmap_lock.
1613 * In order to make forward progress despite repeatedly restarting some
1614 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1615 * and restart from that address when we reach that vma again. It might
1616 * have been split or merged, shrunk or extended, but never shifted: so
1617 * restart_addr remains valid so long as it remains in the vma's range.
1618 * unmap_mapping_range forces truncate_count to leap over page-aligned
1619 * values so we can save vma's restart_addr in its truncate_count field.
1621 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1623 static void reset_vma_truncate_counts(struct address_space *mapping)
1625 struct vm_area_struct *vma;
1626 struct prio_tree_iter iter;
1628 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1629 vma->vm_truncate_count = 0;
1630 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1631 vma->vm_truncate_count = 0;
1634 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1635 unsigned long start_addr, unsigned long end_addr,
1636 struct zap_details *details)
1638 unsigned long restart_addr;
1639 int need_break;
1641 again:
1642 restart_addr = vma->vm_truncate_count;
1643 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1644 start_addr = restart_addr;
1645 if (start_addr >= end_addr) {
1646 /* Top of vma has been split off since last time */
1647 vma->vm_truncate_count = details->truncate_count;
1648 return 0;
1652 restart_addr = zap_page_range(vma, start_addr,
1653 end_addr - start_addr, details);
1654 need_break = need_resched() ||
1655 need_lockbreak(details->i_mmap_lock);
1657 if (restart_addr >= end_addr) {
1658 /* We have now completed this vma: mark it so */
1659 vma->vm_truncate_count = details->truncate_count;
1660 if (!need_break)
1661 return 0;
1662 } else {
1663 /* Note restart_addr in vma's truncate_count field */
1664 vma->vm_truncate_count = restart_addr;
1665 if (!need_break)
1666 goto again;
1669 spin_unlock(details->i_mmap_lock);
1670 cond_resched();
1671 spin_lock(details->i_mmap_lock);
1672 return -EINTR;
1675 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1676 struct zap_details *details)
1678 struct vm_area_struct *vma;
1679 struct prio_tree_iter iter;
1680 pgoff_t vba, vea, zba, zea;
1682 restart:
1683 vma_prio_tree_foreach(vma, &iter, root,
1684 details->first_index, details->last_index) {
1685 /* Skip quickly over those we have already dealt with */
1686 if (vma->vm_truncate_count == details->truncate_count)
1687 continue;
1689 vba = vma->vm_pgoff;
1690 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1691 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1692 zba = details->first_index;
1693 if (zba < vba)
1694 zba = vba;
1695 zea = details->last_index;
1696 if (zea > vea)
1697 zea = vea;
1699 if (unmap_mapping_range_vma(vma,
1700 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1701 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1702 details) < 0)
1703 goto restart;
1707 static inline void unmap_mapping_range_list(struct list_head *head,
1708 struct zap_details *details)
1710 struct vm_area_struct *vma;
1713 * In nonlinear VMAs there is no correspondence between virtual address
1714 * offset and file offset. So we must perform an exhaustive search
1715 * across *all* the pages in each nonlinear VMA, not just the pages
1716 * whose virtual address lies outside the file truncation point.
1718 restart:
1719 list_for_each_entry(vma, head, shared.vm_set.list) {
1720 /* Skip quickly over those we have already dealt with */
1721 if (vma->vm_truncate_count == details->truncate_count)
1722 continue;
1723 details->nonlinear_vma = vma;
1724 if (unmap_mapping_range_vma(vma, vma->vm_start,
1725 vma->vm_end, details) < 0)
1726 goto restart;
1731 * unmap_mapping_range - unmap the portion of all mmaps
1732 * in the specified address_space corresponding to the specified
1733 * page range in the underlying file.
1734 * @mapping: the address space containing mmaps to be unmapped.
1735 * @holebegin: byte in first page to unmap, relative to the start of
1736 * the underlying file. This will be rounded down to a PAGE_SIZE
1737 * boundary. Note that this is different from vmtruncate(), which
1738 * must keep the partial page. In contrast, we must get rid of
1739 * partial pages.
1740 * @holelen: size of prospective hole in bytes. This will be rounded
1741 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1742 * end of the file.
1743 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1744 * but 0 when invalidating pagecache, don't throw away private data.
1746 void unmap_mapping_range(struct address_space *mapping,
1747 loff_t const holebegin, loff_t const holelen, int even_cows)
1749 struct zap_details details;
1750 pgoff_t hba = holebegin >> PAGE_SHIFT;
1751 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1753 /* Check for overflow. */
1754 if (sizeof(holelen) > sizeof(hlen)) {
1755 long long holeend =
1756 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1757 if (holeend & ~(long long)ULONG_MAX)
1758 hlen = ULONG_MAX - hba + 1;
1761 details.check_mapping = even_cows? NULL: mapping;
1762 details.nonlinear_vma = NULL;
1763 details.first_index = hba;
1764 details.last_index = hba + hlen - 1;
1765 if (details.last_index < details.first_index)
1766 details.last_index = ULONG_MAX;
1767 details.i_mmap_lock = &mapping->i_mmap_lock;
1769 spin_lock(&mapping->i_mmap_lock);
1771 /* serialize i_size write against truncate_count write */
1772 smp_wmb();
1773 /* Protect against page faults, and endless unmapping loops */
1774 mapping->truncate_count++;
1776 * For archs where spin_lock has inclusive semantics like ia64
1777 * this smp_mb() will prevent to read pagetable contents
1778 * before the truncate_count increment is visible to
1779 * other cpus.
1781 smp_mb();
1782 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1783 if (mapping->truncate_count == 0)
1784 reset_vma_truncate_counts(mapping);
1785 mapping->truncate_count++;
1787 details.truncate_count = mapping->truncate_count;
1789 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1790 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1791 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1792 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1793 spin_unlock(&mapping->i_mmap_lock);
1795 EXPORT_SYMBOL(unmap_mapping_range);
1798 * Handle all mappings that got truncated by a "truncate()"
1799 * system call.
1801 * NOTE! We have to be ready to update the memory sharing
1802 * between the file and the memory map for a potential last
1803 * incomplete page. Ugly, but necessary.
1805 int vmtruncate(struct inode * inode, loff_t offset)
1807 struct address_space *mapping = inode->i_mapping;
1808 unsigned long limit;
1810 if (inode->i_size < offset)
1811 goto do_expand;
1813 * truncation of in-use swapfiles is disallowed - it would cause
1814 * subsequent swapout to scribble on the now-freed blocks.
1816 if (IS_SWAPFILE(inode))
1817 goto out_busy;
1818 i_size_write(inode, offset);
1819 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1820 truncate_inode_pages(mapping, offset);
1821 goto out_truncate;
1823 do_expand:
1824 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1825 if (limit != RLIM_INFINITY && offset > limit)
1826 goto out_sig;
1827 if (offset > inode->i_sb->s_maxbytes)
1828 goto out_big;
1829 i_size_write(inode, offset);
1831 out_truncate:
1832 if (inode->i_op && inode->i_op->truncate)
1833 inode->i_op->truncate(inode);
1834 return 0;
1835 out_sig:
1836 send_sig(SIGXFSZ, current, 0);
1837 out_big:
1838 return -EFBIG;
1839 out_busy:
1840 return -ETXTBSY;
1842 EXPORT_SYMBOL(vmtruncate);
1844 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1846 struct address_space *mapping = inode->i_mapping;
1849 * If the underlying filesystem is not going to provide
1850 * a way to truncate a range of blocks (punch a hole) -
1851 * we should return failure right now.
1853 if (!inode->i_op || !inode->i_op->truncate_range)
1854 return -ENOSYS;
1856 mutex_lock(&inode->i_mutex);
1857 down_write(&inode->i_alloc_sem);
1858 unmap_mapping_range(mapping, offset, (end - offset), 1);
1859 truncate_inode_pages_range(mapping, offset, end);
1860 inode->i_op->truncate_range(inode, offset, end);
1861 up_write(&inode->i_alloc_sem);
1862 mutex_unlock(&inode->i_mutex);
1864 return 0;
1866 EXPORT_UNUSED_SYMBOL(vmtruncate_range); /* June 2006 */
1869 * Primitive swap readahead code. We simply read an aligned block of
1870 * (1 << page_cluster) entries in the swap area. This method is chosen
1871 * because it doesn't cost us any seek time. We also make sure to queue
1872 * the 'original' request together with the readahead ones...
1874 * This has been extended to use the NUMA policies from the mm triggering
1875 * the readahead.
1877 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1879 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1881 #ifdef CONFIG_NUMA
1882 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1883 #endif
1884 int i, num;
1885 struct page *new_page;
1886 unsigned long offset;
1889 * Get the number of handles we should do readahead io to.
1891 num = valid_swaphandles(entry, &offset);
1892 for (i = 0; i < num; offset++, i++) {
1893 /* Ok, do the async read-ahead now */
1894 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1895 offset), vma, addr);
1896 if (!new_page)
1897 break;
1898 page_cache_release(new_page);
1899 #ifdef CONFIG_NUMA
1901 * Find the next applicable VMA for the NUMA policy.
1903 addr += PAGE_SIZE;
1904 if (addr == 0)
1905 vma = NULL;
1906 if (vma) {
1907 if (addr >= vma->vm_end) {
1908 vma = next_vma;
1909 next_vma = vma ? vma->vm_next : NULL;
1911 if (vma && addr < vma->vm_start)
1912 vma = NULL;
1913 } else {
1914 if (next_vma && addr >= next_vma->vm_start) {
1915 vma = next_vma;
1916 next_vma = vma->vm_next;
1919 #endif
1921 lru_add_drain(); /* Push any new pages onto the LRU now */
1925 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1926 * but allow concurrent faults), and pte mapped but not yet locked.
1927 * We return with mmap_sem still held, but pte unmapped and unlocked.
1929 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1930 unsigned long address, pte_t *page_table, pmd_t *pmd,
1931 int write_access, pte_t orig_pte)
1933 spinlock_t *ptl;
1934 struct page *page;
1935 swp_entry_t entry;
1936 pte_t pte;
1937 int ret = VM_FAULT_MINOR;
1939 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1940 goto out;
1942 entry = pte_to_swp_entry(orig_pte);
1943 if (is_migration_entry(entry)) {
1944 migration_entry_wait(mm, pmd, address);
1945 goto out;
1947 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1948 page = lookup_swap_cache(entry);
1949 if (!page) {
1950 swapin_readahead(entry, address, vma);
1951 page = read_swap_cache_async(entry, vma, address);
1952 if (!page) {
1954 * Back out if somebody else faulted in this pte
1955 * while we released the pte lock.
1957 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1958 if (likely(pte_same(*page_table, orig_pte)))
1959 ret = VM_FAULT_OOM;
1960 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
1961 goto unlock;
1964 /* Had to read the page from swap area: Major fault */
1965 ret = VM_FAULT_MAJOR;
1966 count_vm_event(PGMAJFAULT);
1967 grab_swap_token();
1970 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
1971 mark_page_accessed(page);
1972 lock_page(page);
1975 * Back out if somebody else already faulted in this pte.
1977 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1978 if (unlikely(!pte_same(*page_table, orig_pte)))
1979 goto out_nomap;
1981 if (unlikely(!PageUptodate(page))) {
1982 ret = VM_FAULT_SIGBUS;
1983 goto out_nomap;
1986 /* The page isn't present yet, go ahead with the fault. */
1988 inc_mm_counter(mm, anon_rss);
1989 pte = mk_pte(page, vma->vm_page_prot);
1990 if (write_access && can_share_swap_page(page)) {
1991 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1992 write_access = 0;
1995 flush_icache_page(vma, page);
1996 set_pte_at(mm, address, page_table, pte);
1997 page_add_anon_rmap(page, vma, address);
1999 swap_free(entry);
2000 if (vm_swap_full())
2001 remove_exclusive_swap_page(page);
2002 unlock_page(page);
2004 if (write_access) {
2005 if (do_wp_page(mm, vma, address,
2006 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
2007 ret = VM_FAULT_OOM;
2008 goto out;
2011 /* No need to invalidate - it was non-present before */
2012 update_mmu_cache(vma, address, pte);
2013 lazy_mmu_prot_update(pte);
2014 unlock:
2015 pte_unmap_unlock(page_table, ptl);
2016 out:
2017 return ret;
2018 out_nomap:
2019 pte_unmap_unlock(page_table, ptl);
2020 unlock_page(page);
2021 page_cache_release(page);
2022 return ret;
2026 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2027 * but allow concurrent faults), and pte mapped but not yet locked.
2028 * We return with mmap_sem still held, but pte unmapped and unlocked.
2030 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2031 unsigned long address, pte_t *page_table, pmd_t *pmd,
2032 int write_access)
2034 struct page *page;
2035 spinlock_t *ptl;
2036 pte_t entry;
2038 if (write_access) {
2039 /* Allocate our own private page. */
2040 pte_unmap(page_table);
2042 if (unlikely(anon_vma_prepare(vma)))
2043 goto oom;
2044 page = alloc_zeroed_user_highpage(vma, address);
2045 if (!page)
2046 goto oom;
2048 entry = mk_pte(page, vma->vm_page_prot);
2049 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2051 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2052 if (!pte_none(*page_table))
2053 goto release;
2054 inc_mm_counter(mm, anon_rss);
2055 lru_cache_add_active(page);
2056 page_add_new_anon_rmap(page, vma, address);
2057 } else {
2058 /* Map the ZERO_PAGE - vm_page_prot is readonly */
2059 page = ZERO_PAGE(address);
2060 page_cache_get(page);
2061 entry = mk_pte(page, vma->vm_page_prot);
2063 ptl = pte_lockptr(mm, pmd);
2064 spin_lock(ptl);
2065 if (!pte_none(*page_table))
2066 goto release;
2067 inc_mm_counter(mm, file_rss);
2068 page_add_file_rmap(page);
2071 set_pte_at(mm, address, page_table, entry);
2073 /* No need to invalidate - it was non-present before */
2074 update_mmu_cache(vma, address, entry);
2075 lazy_mmu_prot_update(entry);
2076 unlock:
2077 pte_unmap_unlock(page_table, ptl);
2078 return VM_FAULT_MINOR;
2079 release:
2080 page_cache_release(page);
2081 goto unlock;
2082 oom:
2083 return VM_FAULT_OOM;
2087 * do_no_page() tries to create a new page mapping. It aggressively
2088 * tries to share with existing pages, but makes a separate copy if
2089 * the "write_access" parameter is true in order to avoid the next
2090 * page fault.
2092 * As this is called only for pages that do not currently exist, we
2093 * do not need to flush old virtual caches or the TLB.
2095 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2096 * but allow concurrent faults), and pte mapped but not yet locked.
2097 * We return with mmap_sem still held, but pte unmapped and unlocked.
2099 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2100 unsigned long address, pte_t *page_table, pmd_t *pmd,
2101 int write_access)
2103 spinlock_t *ptl;
2104 struct page *new_page;
2105 struct address_space *mapping = NULL;
2106 pte_t entry;
2107 unsigned int sequence = 0;
2108 int ret = VM_FAULT_MINOR;
2109 int anon = 0;
2110 struct page *dirty_page = NULL;
2112 pte_unmap(page_table);
2113 BUG_ON(vma->vm_flags & VM_PFNMAP);
2115 if (vma->vm_file) {
2116 mapping = vma->vm_file->f_mapping;
2117 sequence = mapping->truncate_count;
2118 smp_rmb(); /* serializes i_size against truncate_count */
2120 retry:
2121 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2123 * No smp_rmb is needed here as long as there's a full
2124 * spin_lock/unlock sequence inside the ->nopage callback
2125 * (for the pagecache lookup) that acts as an implicit
2126 * smp_mb() and prevents the i_size read to happen
2127 * after the next truncate_count read.
2130 /* no page was available -- either SIGBUS or OOM */
2131 if (new_page == NOPAGE_SIGBUS)
2132 return VM_FAULT_SIGBUS;
2133 if (new_page == NOPAGE_OOM)
2134 return VM_FAULT_OOM;
2137 * Should we do an early C-O-W break?
2139 if (write_access) {
2140 if (!(vma->vm_flags & VM_SHARED)) {
2141 struct page *page;
2143 if (unlikely(anon_vma_prepare(vma)))
2144 goto oom;
2145 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2146 if (!page)
2147 goto oom;
2148 copy_user_highpage(page, new_page, address);
2149 page_cache_release(new_page);
2150 new_page = page;
2151 anon = 1;
2153 } else {
2154 /* if the page will be shareable, see if the backing
2155 * address space wants to know that the page is about
2156 * to become writable */
2157 if (vma->vm_ops->page_mkwrite &&
2158 vma->vm_ops->page_mkwrite(vma, new_page) < 0
2160 page_cache_release(new_page);
2161 return VM_FAULT_SIGBUS;
2166 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2168 * For a file-backed vma, someone could have truncated or otherwise
2169 * invalidated this page. If unmap_mapping_range got called,
2170 * retry getting the page.
2172 if (mapping && unlikely(sequence != mapping->truncate_count)) {
2173 pte_unmap_unlock(page_table, ptl);
2174 page_cache_release(new_page);
2175 cond_resched();
2176 sequence = mapping->truncate_count;
2177 smp_rmb();
2178 goto retry;
2182 * This silly early PAGE_DIRTY setting removes a race
2183 * due to the bad i386 page protection. But it's valid
2184 * for other architectures too.
2186 * Note that if write_access is true, we either now have
2187 * an exclusive copy of the page, or this is a shared mapping,
2188 * so we can make it writable and dirty to avoid having to
2189 * handle that later.
2191 /* Only go through if we didn't race with anybody else... */
2192 if (pte_none(*page_table)) {
2193 flush_icache_page(vma, new_page);
2194 entry = mk_pte(new_page, vma->vm_page_prot);
2195 if (write_access)
2196 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2197 set_pte_at(mm, address, page_table, entry);
2198 if (anon) {
2199 inc_mm_counter(mm, anon_rss);
2200 lru_cache_add_active(new_page);
2201 page_add_new_anon_rmap(new_page, vma, address);
2202 } else {
2203 inc_mm_counter(mm, file_rss);
2204 page_add_file_rmap(new_page);
2205 if (write_access) {
2206 dirty_page = new_page;
2207 get_page(dirty_page);
2210 } else {
2211 /* One of our sibling threads was faster, back out. */
2212 page_cache_release(new_page);
2213 goto unlock;
2216 /* no need to invalidate: a not-present page shouldn't be cached */
2217 update_mmu_cache(vma, address, entry);
2218 lazy_mmu_prot_update(entry);
2219 unlock:
2220 pte_unmap_unlock(page_table, ptl);
2221 if (dirty_page) {
2222 set_page_dirty_balance(dirty_page);
2223 put_page(dirty_page);
2225 return ret;
2226 oom:
2227 page_cache_release(new_page);
2228 return VM_FAULT_OOM;
2232 * Fault of a previously existing named mapping. Repopulate the pte
2233 * from the encoded file_pte if possible. This enables swappable
2234 * nonlinear vmas.
2236 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2237 * but allow concurrent faults), and pte mapped but not yet locked.
2238 * We return with mmap_sem still held, but pte unmapped and unlocked.
2240 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2241 unsigned long address, pte_t *page_table, pmd_t *pmd,
2242 int write_access, pte_t orig_pte)
2244 pgoff_t pgoff;
2245 int err;
2247 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2248 return VM_FAULT_MINOR;
2250 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2252 * Page table corrupted: show pte and kill process.
2254 print_bad_pte(vma, orig_pte, address);
2255 return VM_FAULT_OOM;
2257 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2259 pgoff = pte_to_pgoff(orig_pte);
2260 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2261 vma->vm_page_prot, pgoff, 0);
2262 if (err == -ENOMEM)
2263 return VM_FAULT_OOM;
2264 if (err)
2265 return VM_FAULT_SIGBUS;
2266 return VM_FAULT_MAJOR;
2270 * These routines also need to handle stuff like marking pages dirty
2271 * and/or accessed for architectures that don't do it in hardware (most
2272 * RISC architectures). The early dirtying is also good on the i386.
2274 * There is also a hook called "update_mmu_cache()" that architectures
2275 * with external mmu caches can use to update those (ie the Sparc or
2276 * PowerPC hashed page tables that act as extended TLBs).
2278 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2279 * but allow concurrent faults), and pte mapped but not yet locked.
2280 * We return with mmap_sem still held, but pte unmapped and unlocked.
2282 static inline int handle_pte_fault(struct mm_struct *mm,
2283 struct vm_area_struct *vma, unsigned long address,
2284 pte_t *pte, pmd_t *pmd, int write_access)
2286 pte_t entry;
2287 pte_t old_entry;
2288 spinlock_t *ptl;
2290 old_entry = entry = *pte;
2291 if (!pte_present(entry)) {
2292 if (pte_none(entry)) {
2293 if (!vma->vm_ops || !vma->vm_ops->nopage)
2294 return do_anonymous_page(mm, vma, address,
2295 pte, pmd, write_access);
2296 return do_no_page(mm, vma, address,
2297 pte, pmd, write_access);
2299 if (pte_file(entry))
2300 return do_file_page(mm, vma, address,
2301 pte, pmd, write_access, entry);
2302 return do_swap_page(mm, vma, address,
2303 pte, pmd, write_access, entry);
2306 ptl = pte_lockptr(mm, pmd);
2307 spin_lock(ptl);
2308 if (unlikely(!pte_same(*pte, entry)))
2309 goto unlock;
2310 if (write_access) {
2311 if (!pte_write(entry))
2312 return do_wp_page(mm, vma, address,
2313 pte, pmd, ptl, entry);
2314 entry = pte_mkdirty(entry);
2316 entry = pte_mkyoung(entry);
2317 if (!pte_same(old_entry, entry)) {
2318 ptep_set_access_flags(vma, address, pte, entry, write_access);
2319 update_mmu_cache(vma, address, entry);
2320 lazy_mmu_prot_update(entry);
2321 } else {
2323 * This is needed only for protection faults but the arch code
2324 * is not yet telling us if this is a protection fault or not.
2325 * This still avoids useless tlb flushes for .text page faults
2326 * with threads.
2328 if (write_access)
2329 flush_tlb_page(vma, address);
2331 unlock:
2332 pte_unmap_unlock(pte, ptl);
2333 return VM_FAULT_MINOR;
2337 * By the time we get here, we already hold the mm semaphore
2339 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2340 unsigned long address, int write_access)
2342 pgd_t *pgd;
2343 pud_t *pud;
2344 pmd_t *pmd;
2345 pte_t *pte;
2347 __set_current_state(TASK_RUNNING);
2349 count_vm_event(PGFAULT);
2351 if (unlikely(is_vm_hugetlb_page(vma)))
2352 return hugetlb_fault(mm, vma, address, write_access);
2354 pgd = pgd_offset(mm, address);
2355 pud = pud_alloc(mm, pgd, address);
2356 if (!pud)
2357 return VM_FAULT_OOM;
2358 pmd = pmd_alloc(mm, pud, address);
2359 if (!pmd)
2360 return VM_FAULT_OOM;
2361 pte = pte_alloc_map(mm, pmd, address);
2362 if (!pte)
2363 return VM_FAULT_OOM;
2365 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2368 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2370 #ifndef __PAGETABLE_PUD_FOLDED
2372 * Allocate page upper directory.
2373 * We've already handled the fast-path in-line.
2375 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2377 pud_t *new = pud_alloc_one(mm, address);
2378 if (!new)
2379 return -ENOMEM;
2381 spin_lock(&mm->page_table_lock);
2382 if (pgd_present(*pgd)) /* Another has populated it */
2383 pud_free(new);
2384 else
2385 pgd_populate(mm, pgd, new);
2386 spin_unlock(&mm->page_table_lock);
2387 return 0;
2389 #else
2390 /* Workaround for gcc 2.96 */
2391 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2393 return 0;
2395 #endif /* __PAGETABLE_PUD_FOLDED */
2397 #ifndef __PAGETABLE_PMD_FOLDED
2399 * Allocate page middle directory.
2400 * We've already handled the fast-path in-line.
2402 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2404 pmd_t *new = pmd_alloc_one(mm, address);
2405 if (!new)
2406 return -ENOMEM;
2408 spin_lock(&mm->page_table_lock);
2409 #ifndef __ARCH_HAS_4LEVEL_HACK
2410 if (pud_present(*pud)) /* Another has populated it */
2411 pmd_free(new);
2412 else
2413 pud_populate(mm, pud, new);
2414 #else
2415 if (pgd_present(*pud)) /* Another has populated it */
2416 pmd_free(new);
2417 else
2418 pgd_populate(mm, pud, new);
2419 #endif /* __ARCH_HAS_4LEVEL_HACK */
2420 spin_unlock(&mm->page_table_lock);
2421 return 0;
2423 #else
2424 /* Workaround for gcc 2.96 */
2425 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2427 return 0;
2429 #endif /* __PAGETABLE_PMD_FOLDED */
2431 int make_pages_present(unsigned long addr, unsigned long end)
2433 int ret, len, write;
2434 struct vm_area_struct * vma;
2436 vma = find_vma(current->mm, addr);
2437 if (!vma)
2438 return -1;
2439 write = (vma->vm_flags & VM_WRITE) != 0;
2440 BUG_ON(addr >= end);
2441 BUG_ON(end > vma->vm_end);
2442 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2443 ret = get_user_pages(current, current->mm, addr,
2444 len, write, 0, NULL, NULL);
2445 if (ret < 0)
2446 return ret;
2447 return ret == len ? 0 : -1;
2451 * Map a vmalloc()-space virtual address to the physical page.
2453 struct page * vmalloc_to_page(void * vmalloc_addr)
2455 unsigned long addr = (unsigned long) vmalloc_addr;
2456 struct page *page = NULL;
2457 pgd_t *pgd = pgd_offset_k(addr);
2458 pud_t *pud;
2459 pmd_t *pmd;
2460 pte_t *ptep, pte;
2462 if (!pgd_none(*pgd)) {
2463 pud = pud_offset(pgd, addr);
2464 if (!pud_none(*pud)) {
2465 pmd = pmd_offset(pud, addr);
2466 if (!pmd_none(*pmd)) {
2467 ptep = pte_offset_map(pmd, addr);
2468 pte = *ptep;
2469 if (pte_present(pte))
2470 page = pte_page(pte);
2471 pte_unmap(ptep);
2475 return page;
2478 EXPORT_SYMBOL(vmalloc_to_page);
2481 * Map a vmalloc()-space virtual address to the physical page frame number.
2483 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2485 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2488 EXPORT_SYMBOL(vmalloc_to_pfn);
2490 #if !defined(__HAVE_ARCH_GATE_AREA)
2492 #if defined(AT_SYSINFO_EHDR)
2493 static struct vm_area_struct gate_vma;
2495 static int __init gate_vma_init(void)
2497 gate_vma.vm_mm = NULL;
2498 gate_vma.vm_start = FIXADDR_USER_START;
2499 gate_vma.vm_end = FIXADDR_USER_END;
2500 gate_vma.vm_page_prot = PAGE_READONLY;
2501 gate_vma.vm_flags = 0;
2502 return 0;
2504 __initcall(gate_vma_init);
2505 #endif
2507 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2509 #ifdef AT_SYSINFO_EHDR
2510 return &gate_vma;
2511 #else
2512 return NULL;
2513 #endif
2516 int in_gate_area_no_task(unsigned long addr)
2518 #ifdef AT_SYSINFO_EHDR
2519 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2520 return 1;
2521 #endif
2522 return 0;
2525 #endif /* __HAVE_ARCH_GATE_AREA */