2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
26 #include <asm/byteorder.h>
28 #include <asm/uaccess.h>
32 * Conventional PIO operations for ATA devices
35 static u8
ide_inb (unsigned long port
)
37 return (u8
) inb(port
);
40 static void ide_outb (u8 val
, unsigned long port
)
45 static void ide_outbsync (ide_drive_t
*drive
, u8 addr
, unsigned long port
)
50 void default_hwif_iops (ide_hwif_t
*hwif
)
52 hwif
->OUTB
= ide_outb
;
53 hwif
->OUTBSYNC
= ide_outbsync
;
58 * MMIO operations, typically used for SATA controllers
61 static u8
ide_mm_inb (unsigned long port
)
63 return (u8
) readb((void __iomem
*) port
);
66 static void ide_mm_outb (u8 value
, unsigned long port
)
68 writeb(value
, (void __iomem
*) port
);
71 static void ide_mm_outbsync (ide_drive_t
*drive
, u8 value
, unsigned long port
)
73 writeb(value
, (void __iomem
*) port
);
76 void default_hwif_mmiops (ide_hwif_t
*hwif
)
78 hwif
->OUTB
= ide_mm_outb
;
79 /* Most systems will need to override OUTBSYNC, alas however
80 this one is controller specific! */
81 hwif
->OUTBSYNC
= ide_mm_outbsync
;
82 hwif
->INB
= ide_mm_inb
;
85 EXPORT_SYMBOL(default_hwif_mmiops
);
87 void SELECT_DRIVE (ide_drive_t
*drive
)
89 ide_hwif_t
*hwif
= drive
->hwif
;
90 const struct ide_port_ops
*port_ops
= hwif
->port_ops
;
92 if (port_ops
&& port_ops
->selectproc
)
93 port_ops
->selectproc(drive
);
95 hwif
->OUTB(drive
->select
.all
, hwif
->io_ports
.device_addr
);
98 static void SELECT_MASK(ide_drive_t
*drive
, int mask
)
100 const struct ide_port_ops
*port_ops
= drive
->hwif
->port_ops
;
102 if (port_ops
&& port_ops
->maskproc
)
103 port_ops
->maskproc(drive
, mask
);
106 static void ide_tf_load(ide_drive_t
*drive
, ide_task_t
*task
)
108 ide_hwif_t
*hwif
= drive
->hwif
;
109 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
110 struct ide_taskfile
*tf
= &task
->tf
;
111 void (*tf_outb
)(u8 addr
, unsigned long port
);
112 u8 mmio
= (hwif
->host_flags
& IDE_HFLAG_MMIO
) ? 1 : 0;
113 u8 HIHI
= (task
->tf_flags
& IDE_TFLAG_LBA48
) ? 0xE0 : 0xEF;
116 tf_outb
= ide_mm_outb
;
120 if (task
->tf_flags
& IDE_TFLAG_FLAGGED
)
123 ide_set_irq(drive
, 1);
125 if ((task
->tf_flags
& IDE_TFLAG_NO_SELECT_MASK
) == 0)
126 SELECT_MASK(drive
, 0);
128 if (task
->tf_flags
& IDE_TFLAG_OUT_DATA
) {
129 u16 data
= (tf
->hob_data
<< 8) | tf
->data
;
132 writew(data
, (void __iomem
*)io_ports
->data_addr
);
134 outw(data
, io_ports
->data_addr
);
137 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_FEATURE
)
138 tf_outb(tf
->hob_feature
, io_ports
->feature_addr
);
139 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_NSECT
)
140 tf_outb(tf
->hob_nsect
, io_ports
->nsect_addr
);
141 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_LBAL
)
142 tf_outb(tf
->hob_lbal
, io_ports
->lbal_addr
);
143 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_LBAM
)
144 tf_outb(tf
->hob_lbam
, io_ports
->lbam_addr
);
145 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_LBAH
)
146 tf_outb(tf
->hob_lbah
, io_ports
->lbah_addr
);
148 if (task
->tf_flags
& IDE_TFLAG_OUT_FEATURE
)
149 tf_outb(tf
->feature
, io_ports
->feature_addr
);
150 if (task
->tf_flags
& IDE_TFLAG_OUT_NSECT
)
151 tf_outb(tf
->nsect
, io_ports
->nsect_addr
);
152 if (task
->tf_flags
& IDE_TFLAG_OUT_LBAL
)
153 tf_outb(tf
->lbal
, io_ports
->lbal_addr
);
154 if (task
->tf_flags
& IDE_TFLAG_OUT_LBAM
)
155 tf_outb(tf
->lbam
, io_ports
->lbam_addr
);
156 if (task
->tf_flags
& IDE_TFLAG_OUT_LBAH
)
157 tf_outb(tf
->lbah
, io_ports
->lbah_addr
);
159 if (task
->tf_flags
& IDE_TFLAG_OUT_DEVICE
)
160 tf_outb((tf
->device
& HIHI
) | drive
->select
.all
,
161 io_ports
->device_addr
);
164 static void ide_tf_read(ide_drive_t
*drive
, ide_task_t
*task
)
166 ide_hwif_t
*hwif
= drive
->hwif
;
167 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
168 struct ide_taskfile
*tf
= &task
->tf
;
169 void (*tf_outb
)(u8 addr
, unsigned long port
);
170 u8 (*tf_inb
)(unsigned long port
);
171 u8 mmio
= (hwif
->host_flags
& IDE_HFLAG_MMIO
) ? 1 : 0;
174 tf_outb
= ide_mm_outb
;
181 if (task
->tf_flags
& IDE_TFLAG_IN_DATA
) {
185 data
= readw((void __iomem
*)io_ports
->data_addr
);
187 data
= inw(io_ports
->data_addr
);
189 tf
->data
= data
& 0xff;
190 tf
->hob_data
= (data
>> 8) & 0xff;
193 /* be sure we're looking at the low order bits */
194 tf_outb(drive
->ctl
& ~0x80, io_ports
->ctl_addr
);
196 if (task
->tf_flags
& IDE_TFLAG_IN_NSECT
)
197 tf
->nsect
= tf_inb(io_ports
->nsect_addr
);
198 if (task
->tf_flags
& IDE_TFLAG_IN_LBAL
)
199 tf
->lbal
= tf_inb(io_ports
->lbal_addr
);
200 if (task
->tf_flags
& IDE_TFLAG_IN_LBAM
)
201 tf
->lbam
= tf_inb(io_ports
->lbam_addr
);
202 if (task
->tf_flags
& IDE_TFLAG_IN_LBAH
)
203 tf
->lbah
= tf_inb(io_ports
->lbah_addr
);
204 if (task
->tf_flags
& IDE_TFLAG_IN_DEVICE
)
205 tf
->device
= tf_inb(io_ports
->device_addr
);
207 if (task
->tf_flags
& IDE_TFLAG_LBA48
) {
208 tf_outb(drive
->ctl
| 0x80, io_ports
->ctl_addr
);
210 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_FEATURE
)
211 tf
->hob_feature
= tf_inb(io_ports
->feature_addr
);
212 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_NSECT
)
213 tf
->hob_nsect
= tf_inb(io_ports
->nsect_addr
);
214 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAL
)
215 tf
->hob_lbal
= tf_inb(io_ports
->lbal_addr
);
216 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAM
)
217 tf
->hob_lbam
= tf_inb(io_ports
->lbam_addr
);
218 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAH
)
219 tf
->hob_lbah
= tf_inb(io_ports
->lbah_addr
);
224 * Some localbus EIDE interfaces require a special access sequence
225 * when using 32-bit I/O instructions to transfer data. We call this
226 * the "vlb_sync" sequence, which consists of three successive reads
227 * of the sector count register location, with interrupts disabled
228 * to ensure that the reads all happen together.
230 static void ata_vlb_sync(unsigned long port
)
238 * This is used for most PIO data transfers *from* the IDE interface
240 * These routines will round up any request for an odd number of bytes,
241 * so if an odd len is specified, be sure that there's at least one
242 * extra byte allocated for the buffer.
244 static void ata_input_data(ide_drive_t
*drive
, struct request
*rq
,
245 void *buf
, unsigned int len
)
247 ide_hwif_t
*hwif
= drive
->hwif
;
248 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
249 unsigned long data_addr
= io_ports
->data_addr
;
250 u8 io_32bit
= drive
->io_32bit
;
251 u8 mmio
= (hwif
->host_flags
& IDE_HFLAG_MMIO
) ? 1 : 0;
256 unsigned long uninitialized_var(flags
);
258 if ((io_32bit
& 2) && !mmio
) {
259 local_irq_save(flags
);
260 ata_vlb_sync(io_ports
->nsect_addr
);
264 __ide_mm_insl((void __iomem
*)data_addr
, buf
, len
/ 4);
266 insl(data_addr
, buf
, len
/ 4);
268 if ((io_32bit
& 2) && !mmio
)
269 local_irq_restore(flags
);
271 if ((len
& 3) >= 2) {
273 __ide_mm_insw((void __iomem
*)data_addr
,
274 (u8
*)buf
+ (len
& ~3), 1);
276 insw(data_addr
, (u8
*)buf
+ (len
& ~3), 1);
280 __ide_mm_insw((void __iomem
*)data_addr
, buf
, len
/ 2);
282 insw(data_addr
, buf
, len
/ 2);
287 * This is used for most PIO data transfers *to* the IDE interface
289 static void ata_output_data(ide_drive_t
*drive
, struct request
*rq
,
290 void *buf
, unsigned int len
)
292 ide_hwif_t
*hwif
= drive
->hwif
;
293 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
294 unsigned long data_addr
= io_ports
->data_addr
;
295 u8 io_32bit
= drive
->io_32bit
;
296 u8 mmio
= (hwif
->host_flags
& IDE_HFLAG_MMIO
) ? 1 : 0;
299 unsigned long uninitialized_var(flags
);
301 if ((io_32bit
& 2) && !mmio
) {
302 local_irq_save(flags
);
303 ata_vlb_sync(io_ports
->nsect_addr
);
307 __ide_mm_outsl((void __iomem
*)data_addr
, buf
, len
/ 4);
309 outsl(data_addr
, buf
, len
/ 4);
311 if ((io_32bit
& 2) && !mmio
)
312 local_irq_restore(flags
);
314 if ((len
& 3) >= 2) {
316 __ide_mm_outsw((void __iomem
*)data_addr
,
317 (u8
*)buf
+ (len
& ~3), 1);
319 outsw(data_addr
, (u8
*)buf
+ (len
& ~3), 1);
323 __ide_mm_outsw((void __iomem
*)data_addr
, buf
, len
/ 2);
325 outsw(data_addr
, buf
, len
/ 2);
329 void default_hwif_transport(ide_hwif_t
*hwif
)
331 hwif
->tf_load
= ide_tf_load
;
332 hwif
->tf_read
= ide_tf_read
;
334 hwif
->input_data
= ata_input_data
;
335 hwif
->output_data
= ata_output_data
;
338 void ide_fix_driveid (struct hd_driveid
*id
)
340 #ifndef __LITTLE_ENDIAN
345 id
->config
= __le16_to_cpu(id
->config
);
346 id
->cyls
= __le16_to_cpu(id
->cyls
);
347 id
->reserved2
= __le16_to_cpu(id
->reserved2
);
348 id
->heads
= __le16_to_cpu(id
->heads
);
349 id
->track_bytes
= __le16_to_cpu(id
->track_bytes
);
350 id
->sector_bytes
= __le16_to_cpu(id
->sector_bytes
);
351 id
->sectors
= __le16_to_cpu(id
->sectors
);
352 id
->vendor0
= __le16_to_cpu(id
->vendor0
);
353 id
->vendor1
= __le16_to_cpu(id
->vendor1
);
354 id
->vendor2
= __le16_to_cpu(id
->vendor2
);
355 stringcast
= (u16
*)&id
->serial_no
[0];
356 for (i
= 0; i
< (20/2); i
++)
357 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
358 id
->buf_type
= __le16_to_cpu(id
->buf_type
);
359 id
->buf_size
= __le16_to_cpu(id
->buf_size
);
360 id
->ecc_bytes
= __le16_to_cpu(id
->ecc_bytes
);
361 stringcast
= (u16
*)&id
->fw_rev
[0];
362 for (i
= 0; i
< (8/2); i
++)
363 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
364 stringcast
= (u16
*)&id
->model
[0];
365 for (i
= 0; i
< (40/2); i
++)
366 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
367 id
->dword_io
= __le16_to_cpu(id
->dword_io
);
368 id
->reserved50
= __le16_to_cpu(id
->reserved50
);
369 id
->field_valid
= __le16_to_cpu(id
->field_valid
);
370 id
->cur_cyls
= __le16_to_cpu(id
->cur_cyls
);
371 id
->cur_heads
= __le16_to_cpu(id
->cur_heads
);
372 id
->cur_sectors
= __le16_to_cpu(id
->cur_sectors
);
373 id
->cur_capacity0
= __le16_to_cpu(id
->cur_capacity0
);
374 id
->cur_capacity1
= __le16_to_cpu(id
->cur_capacity1
);
375 id
->lba_capacity
= __le32_to_cpu(id
->lba_capacity
);
376 id
->dma_1word
= __le16_to_cpu(id
->dma_1word
);
377 id
->dma_mword
= __le16_to_cpu(id
->dma_mword
);
378 id
->eide_pio_modes
= __le16_to_cpu(id
->eide_pio_modes
);
379 id
->eide_dma_min
= __le16_to_cpu(id
->eide_dma_min
);
380 id
->eide_dma_time
= __le16_to_cpu(id
->eide_dma_time
);
381 id
->eide_pio
= __le16_to_cpu(id
->eide_pio
);
382 id
->eide_pio_iordy
= __le16_to_cpu(id
->eide_pio_iordy
);
383 for (i
= 0; i
< 2; ++i
)
384 id
->words69_70
[i
] = __le16_to_cpu(id
->words69_70
[i
]);
385 for (i
= 0; i
< 4; ++i
)
386 id
->words71_74
[i
] = __le16_to_cpu(id
->words71_74
[i
]);
387 id
->queue_depth
= __le16_to_cpu(id
->queue_depth
);
388 for (i
= 0; i
< 4; ++i
)
389 id
->words76_79
[i
] = __le16_to_cpu(id
->words76_79
[i
]);
390 id
->major_rev_num
= __le16_to_cpu(id
->major_rev_num
);
391 id
->minor_rev_num
= __le16_to_cpu(id
->minor_rev_num
);
392 id
->command_set_1
= __le16_to_cpu(id
->command_set_1
);
393 id
->command_set_2
= __le16_to_cpu(id
->command_set_2
);
394 id
->cfsse
= __le16_to_cpu(id
->cfsse
);
395 id
->cfs_enable_1
= __le16_to_cpu(id
->cfs_enable_1
);
396 id
->cfs_enable_2
= __le16_to_cpu(id
->cfs_enable_2
);
397 id
->csf_default
= __le16_to_cpu(id
->csf_default
);
398 id
->dma_ultra
= __le16_to_cpu(id
->dma_ultra
);
399 id
->trseuc
= __le16_to_cpu(id
->trseuc
);
400 id
->trsEuc
= __le16_to_cpu(id
->trsEuc
);
401 id
->CurAPMvalues
= __le16_to_cpu(id
->CurAPMvalues
);
402 id
->mprc
= __le16_to_cpu(id
->mprc
);
403 id
->hw_config
= __le16_to_cpu(id
->hw_config
);
404 id
->acoustic
= __le16_to_cpu(id
->acoustic
);
405 id
->msrqs
= __le16_to_cpu(id
->msrqs
);
406 id
->sxfert
= __le16_to_cpu(id
->sxfert
);
407 id
->sal
= __le16_to_cpu(id
->sal
);
408 id
->spg
= __le32_to_cpu(id
->spg
);
409 id
->lba_capacity_2
= __le64_to_cpu(id
->lba_capacity_2
);
410 for (i
= 0; i
< 22; i
++)
411 id
->words104_125
[i
] = __le16_to_cpu(id
->words104_125
[i
]);
412 id
->last_lun
= __le16_to_cpu(id
->last_lun
);
413 id
->word127
= __le16_to_cpu(id
->word127
);
414 id
->dlf
= __le16_to_cpu(id
->dlf
);
415 id
->csfo
= __le16_to_cpu(id
->csfo
);
416 for (i
= 0; i
< 26; i
++)
417 id
->words130_155
[i
] = __le16_to_cpu(id
->words130_155
[i
]);
418 id
->word156
= __le16_to_cpu(id
->word156
);
419 for (i
= 0; i
< 3; i
++)
420 id
->words157_159
[i
] = __le16_to_cpu(id
->words157_159
[i
]);
421 id
->cfa_power
= __le16_to_cpu(id
->cfa_power
);
422 for (i
= 0; i
< 14; i
++)
423 id
->words161_175
[i
] = __le16_to_cpu(id
->words161_175
[i
]);
424 for (i
= 0; i
< 31; i
++)
425 id
->words176_205
[i
] = __le16_to_cpu(id
->words176_205
[i
]);
426 for (i
= 0; i
< 48; i
++)
427 id
->words206_254
[i
] = __le16_to_cpu(id
->words206_254
[i
]);
428 id
->integrity_word
= __le16_to_cpu(id
->integrity_word
);
430 # error "Please fix <asm/byteorder.h>"
436 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
437 * removing leading/trailing blanks and compressing internal blanks.
438 * It is primarily used to tidy up the model name/number fields as
439 * returned by the WIN_[P]IDENTIFY commands.
442 void ide_fixstring (u8
*s
, const int bytecount
, const int byteswap
)
444 u8
*p
= s
, *end
= &s
[bytecount
& ~1]; /* bytecount must be even */
447 /* convert from big-endian to host byte order */
448 for (p
= end
; p
!= s
;) {
449 unsigned short *pp
= (unsigned short *) (p
-= 2);
453 /* strip leading blanks */
454 while (s
!= end
&& *s
== ' ')
456 /* compress internal blanks and strip trailing blanks */
457 while (s
!= end
&& *s
) {
458 if (*s
++ != ' ' || (s
!= end
&& *s
&& *s
!= ' '))
461 /* wipe out trailing garbage */
466 EXPORT_SYMBOL(ide_fixstring
);
469 * Needed for PCI irq sharing
471 int drive_is_ready (ide_drive_t
*drive
)
473 ide_hwif_t
*hwif
= HWIF(drive
);
476 if (drive
->waiting_for_dma
)
477 return hwif
->dma_ops
->dma_test_irq(drive
);
480 /* need to guarantee 400ns since last command was issued */
485 * We do a passive status test under shared PCI interrupts on
486 * cards that truly share the ATA side interrupt, but may also share
487 * an interrupt with another pci card/device. We make no assumptions
488 * about possible isa-pnp and pci-pnp issues yet.
490 if (hwif
->io_ports
.ctl_addr
)
491 stat
= ide_read_altstatus(drive
);
493 /* Note: this may clear a pending IRQ!! */
494 stat
= ide_read_status(drive
);
496 if (stat
& BUSY_STAT
)
497 /* drive busy: definitely not interrupting */
500 /* drive ready: *might* be interrupting */
504 EXPORT_SYMBOL(drive_is_ready
);
507 * This routine busy-waits for the drive status to be not "busy".
508 * It then checks the status for all of the "good" bits and none
509 * of the "bad" bits, and if all is okay it returns 0. All other
510 * cases return error -- caller may then invoke ide_error().
512 * This routine should get fixed to not hog the cpu during extra long waits..
513 * That could be done by busy-waiting for the first jiffy or two, and then
514 * setting a timer to wake up at half second intervals thereafter,
515 * until timeout is achieved, before timing out.
517 static int __ide_wait_stat(ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
, u8
*rstat
)
523 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
524 stat
= ide_read_status(drive
);
526 if (stat
& BUSY_STAT
) {
527 local_irq_set(flags
);
529 while ((stat
= ide_read_status(drive
)) & BUSY_STAT
) {
530 if (time_after(jiffies
, timeout
)) {
532 * One last read after the timeout in case
533 * heavy interrupt load made us not make any
534 * progress during the timeout..
536 stat
= ide_read_status(drive
);
537 if (!(stat
& BUSY_STAT
))
540 local_irq_restore(flags
);
545 local_irq_restore(flags
);
548 * Allow status to settle, then read it again.
549 * A few rare drives vastly violate the 400ns spec here,
550 * so we'll wait up to 10usec for a "good" status
551 * rather than expensively fail things immediately.
552 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
554 for (i
= 0; i
< 10; i
++) {
556 stat
= ide_read_status(drive
);
558 if (OK_STAT(stat
, good
, bad
)) {
568 * In case of error returns error value after doing "*startstop = ide_error()".
569 * The caller should return the updated value of "startstop" in this case,
570 * "startstop" is unchanged when the function returns 0.
572 int ide_wait_stat(ide_startstop_t
*startstop
, ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
)
577 /* bail early if we've exceeded max_failures */
578 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
579 *startstop
= ide_stopped
;
583 err
= __ide_wait_stat(drive
, good
, bad
, timeout
, &stat
);
586 char *s
= (err
== -EBUSY
) ? "status timeout" : "status error";
587 *startstop
= ide_error(drive
, s
, stat
);
593 EXPORT_SYMBOL(ide_wait_stat
);
596 * ide_in_drive_list - look for drive in black/white list
597 * @id: drive identifier
598 * @drive_table: list to inspect
600 * Look for a drive in the blacklist and the whitelist tables
601 * Returns 1 if the drive is found in the table.
604 int ide_in_drive_list(struct hd_driveid
*id
, const struct drive_list_entry
*drive_table
)
606 for ( ; drive_table
->id_model
; drive_table
++)
607 if ((!strcmp(drive_table
->id_model
, id
->model
)) &&
608 (!drive_table
->id_firmware
||
609 strstr(id
->fw_rev
, drive_table
->id_firmware
)))
614 EXPORT_SYMBOL_GPL(ide_in_drive_list
);
617 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
618 * We list them here and depend on the device side cable detection for them.
620 * Some optical devices with the buggy firmwares have the same problem.
622 static const struct drive_list_entry ivb_list
[] = {
623 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
624 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
625 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
626 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
627 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
628 { "TSSTcorp CDDVDW SH-S202H" , "SB00" },
629 { "TSSTcorp CDDVDW SH-S202H" , "SB01" },
634 * All hosts that use the 80c ribbon must use!
635 * The name is derived from upper byte of word 93 and the 80c ribbon.
637 u8
eighty_ninty_three (ide_drive_t
*drive
)
639 ide_hwif_t
*hwif
= drive
->hwif
;
640 struct hd_driveid
*id
= drive
->id
;
641 int ivb
= ide_in_drive_list(id
, ivb_list
);
643 if (hwif
->cbl
== ATA_CBL_PATA40_SHORT
)
647 printk(KERN_DEBUG
"%s: skipping word 93 validity check\n",
650 if (ide_dev_is_sata(id
) && !ivb
)
653 if (hwif
->cbl
!= ATA_CBL_PATA80
&& !ivb
)
658 * - change master/slave IDENTIFY order
659 * - force bit13 (80c cable present) check also for !ivb devices
660 * (unless the slave device is pre-ATA3)
662 if ((id
->hw_config
& 0x4000) || (ivb
&& (id
->hw_config
& 0x2000)))
666 if (drive
->udma33_warned
== 1)
669 printk(KERN_WARNING
"%s: %s side 80-wire cable detection failed, "
670 "limiting max speed to UDMA33\n",
672 hwif
->cbl
== ATA_CBL_PATA80
? "drive" : "host");
674 drive
->udma33_warned
= 1;
679 int ide_driveid_update(ide_drive_t
*drive
)
681 ide_hwif_t
*hwif
= drive
->hwif
;
682 struct hd_driveid
*id
;
683 unsigned long timeout
, flags
;
687 * Re-read drive->id for possible DMA mode
688 * change (copied from ide-probe.c)
691 SELECT_MASK(drive
, 1);
692 ide_set_irq(drive
, 1);
694 hwif
->OUTBSYNC(drive
, WIN_IDENTIFY
, hwif
->io_ports
.command_addr
);
695 timeout
= jiffies
+ WAIT_WORSTCASE
;
697 if (time_after(jiffies
, timeout
)) {
698 SELECT_MASK(drive
, 0);
699 return 0; /* drive timed-out */
702 msleep(50); /* give drive a breather */
703 stat
= ide_read_altstatus(drive
);
704 } while (stat
& BUSY_STAT
);
706 msleep(50); /* wait for IRQ and DRQ_STAT */
707 stat
= ide_read_status(drive
);
709 if (!OK_STAT(stat
, DRQ_STAT
, BAD_R_STAT
)) {
710 SELECT_MASK(drive
, 0);
711 printk("%s: CHECK for good STATUS\n", drive
->name
);
714 local_irq_save(flags
);
715 SELECT_MASK(drive
, 0);
716 id
= kmalloc(SECTOR_WORDS
*4, GFP_ATOMIC
);
718 local_irq_restore(flags
);
721 hwif
->input_data(drive
, NULL
, id
, SECTOR_SIZE
);
722 (void)ide_read_status(drive
); /* clear drive IRQ */
724 local_irq_restore(flags
);
727 drive
->id
->dma_ultra
= id
->dma_ultra
;
728 drive
->id
->dma_mword
= id
->dma_mword
;
729 drive
->id
->dma_1word
= id
->dma_1word
;
730 /* anything more ? */
733 if (drive
->using_dma
&& ide_id_dma_bug(drive
))
740 int ide_config_drive_speed(ide_drive_t
*drive
, u8 speed
)
742 ide_hwif_t
*hwif
= drive
->hwif
;
743 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
747 // while (HWGROUP(drive)->busy)
750 #ifdef CONFIG_BLK_DEV_IDEDMA
751 if (hwif
->dma_ops
) /* check if host supports DMA */
752 hwif
->dma_ops
->dma_host_set(drive
, 0);
755 /* Skip setting PIO flow-control modes on pre-EIDE drives */
756 if ((speed
& 0xf8) == XFER_PIO_0
&& !(drive
->id
->capability
& 0x08))
760 * Don't use ide_wait_cmd here - it will
761 * attempt to set_geometry and recalibrate,
762 * but for some reason these don't work at
763 * this point (lost interrupt).
766 * Select the drive, and issue the SETFEATURES command
768 disable_irq_nosync(hwif
->irq
);
771 * FIXME: we race against the running IRQ here if
772 * this is called from non IRQ context. If we use
773 * disable_irq() we hang on the error path. Work
779 SELECT_MASK(drive
, 0);
781 ide_set_irq(drive
, 0);
782 hwif
->OUTB(speed
, io_ports
->nsect_addr
);
783 hwif
->OUTB(SETFEATURES_XFER
, io_ports
->feature_addr
);
784 hwif
->OUTBSYNC(drive
, WIN_SETFEATURES
, io_ports
->command_addr
);
785 if (drive
->quirk_list
== 2)
786 ide_set_irq(drive
, 1);
788 error
= __ide_wait_stat(drive
, drive
->ready_stat
,
789 BUSY_STAT
|DRQ_STAT
|ERR_STAT
,
792 SELECT_MASK(drive
, 0);
794 enable_irq(hwif
->irq
);
797 (void) ide_dump_status(drive
, "set_drive_speed_status", stat
);
801 drive
->id
->dma_ultra
&= ~0xFF00;
802 drive
->id
->dma_mword
&= ~0x0F00;
803 drive
->id
->dma_1word
&= ~0x0F00;
806 #ifdef CONFIG_BLK_DEV_IDEDMA
807 if ((speed
>= XFER_SW_DMA_0
|| (hwif
->host_flags
& IDE_HFLAG_VDMA
)) &&
809 hwif
->dma_ops
->dma_host_set(drive
, 1);
810 else if (hwif
->dma_ops
) /* check if host supports DMA */
811 ide_dma_off_quietly(drive
);
815 case XFER_UDMA_7
: drive
->id
->dma_ultra
|= 0x8080; break;
816 case XFER_UDMA_6
: drive
->id
->dma_ultra
|= 0x4040; break;
817 case XFER_UDMA_5
: drive
->id
->dma_ultra
|= 0x2020; break;
818 case XFER_UDMA_4
: drive
->id
->dma_ultra
|= 0x1010; break;
819 case XFER_UDMA_3
: drive
->id
->dma_ultra
|= 0x0808; break;
820 case XFER_UDMA_2
: drive
->id
->dma_ultra
|= 0x0404; break;
821 case XFER_UDMA_1
: drive
->id
->dma_ultra
|= 0x0202; break;
822 case XFER_UDMA_0
: drive
->id
->dma_ultra
|= 0x0101; break;
823 case XFER_MW_DMA_2
: drive
->id
->dma_mword
|= 0x0404; break;
824 case XFER_MW_DMA_1
: drive
->id
->dma_mword
|= 0x0202; break;
825 case XFER_MW_DMA_0
: drive
->id
->dma_mword
|= 0x0101; break;
826 case XFER_SW_DMA_2
: drive
->id
->dma_1word
|= 0x0404; break;
827 case XFER_SW_DMA_1
: drive
->id
->dma_1word
|= 0x0202; break;
828 case XFER_SW_DMA_0
: drive
->id
->dma_1word
|= 0x0101; break;
831 if (!drive
->init_speed
)
832 drive
->init_speed
= speed
;
833 drive
->current_speed
= speed
;
838 * This should get invoked any time we exit the driver to
839 * wait for an interrupt response from a drive. handler() points
840 * at the appropriate code to handle the next interrupt, and a
841 * timer is started to prevent us from waiting forever in case
842 * something goes wrong (see the ide_timer_expiry() handler later on).
844 * See also ide_execute_command
846 static void __ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
847 unsigned int timeout
, ide_expiry_t
*expiry
)
849 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
851 BUG_ON(hwgroup
->handler
);
852 hwgroup
->handler
= handler
;
853 hwgroup
->expiry
= expiry
;
854 hwgroup
->timer
.expires
= jiffies
+ timeout
;
855 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
856 add_timer(&hwgroup
->timer
);
859 void ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
860 unsigned int timeout
, ide_expiry_t
*expiry
)
863 spin_lock_irqsave(&ide_lock
, flags
);
864 __ide_set_handler(drive
, handler
, timeout
, expiry
);
865 spin_unlock_irqrestore(&ide_lock
, flags
);
868 EXPORT_SYMBOL(ide_set_handler
);
871 * ide_execute_command - execute an IDE command
872 * @drive: IDE drive to issue the command against
873 * @command: command byte to write
874 * @handler: handler for next phase
875 * @timeout: timeout for command
876 * @expiry: handler to run on timeout
878 * Helper function to issue an IDE command. This handles the
879 * atomicity requirements, command timing and ensures that the
880 * handler and IRQ setup do not race. All IDE command kick off
881 * should go via this function or do equivalent locking.
884 void ide_execute_command(ide_drive_t
*drive
, u8 cmd
, ide_handler_t
*handler
,
885 unsigned timeout
, ide_expiry_t
*expiry
)
888 ide_hwif_t
*hwif
= HWIF(drive
);
890 spin_lock_irqsave(&ide_lock
, flags
);
891 __ide_set_handler(drive
, handler
, timeout
, expiry
);
892 hwif
->OUTBSYNC(drive
, cmd
, hwif
->io_ports
.command_addr
);
894 * Drive takes 400nS to respond, we must avoid the IRQ being
895 * serviced before that.
897 * FIXME: we could skip this delay with care on non shared devices
900 spin_unlock_irqrestore(&ide_lock
, flags
);
902 EXPORT_SYMBOL(ide_execute_command
);
904 void ide_execute_pkt_cmd(ide_drive_t
*drive
)
906 ide_hwif_t
*hwif
= drive
->hwif
;
909 spin_lock_irqsave(&ide_lock
, flags
);
910 hwif
->OUTBSYNC(drive
, WIN_PACKETCMD
, hwif
->io_ports
.command_addr
);
912 spin_unlock_irqrestore(&ide_lock
, flags
);
914 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd
);
917 static ide_startstop_t
do_reset1 (ide_drive_t
*, int);
920 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
921 * during an atapi drive reset operation. If the drive has not yet responded,
922 * and we have not yet hit our maximum waiting time, then the timer is restarted
925 static ide_startstop_t
atapi_reset_pollfunc (ide_drive_t
*drive
)
927 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
932 stat
= ide_read_status(drive
);
934 if (OK_STAT(stat
, 0, BUSY_STAT
))
935 printk("%s: ATAPI reset complete\n", drive
->name
);
937 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
938 ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
939 /* continue polling */
943 hwgroup
->polling
= 0;
944 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
946 /* do it the old fashioned way */
947 return do_reset1(drive
, 1);
950 hwgroup
->polling
= 0;
951 hwgroup
->resetting
= 0;
956 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
957 * during an ide reset operation. If the drives have not yet responded,
958 * and we have not yet hit our maximum waiting time, then the timer is restarted
961 static ide_startstop_t
reset_pollfunc (ide_drive_t
*drive
)
963 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
964 ide_hwif_t
*hwif
= HWIF(drive
);
965 const struct ide_port_ops
*port_ops
= hwif
->port_ops
;
968 if (port_ops
&& port_ops
->reset_poll
) {
969 if (port_ops
->reset_poll(drive
)) {
970 printk(KERN_ERR
"%s: host reset_poll failure for %s.\n",
971 hwif
->name
, drive
->name
);
976 tmp
= ide_read_status(drive
);
978 if (!OK_STAT(tmp
, 0, BUSY_STAT
)) {
979 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
980 ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
981 /* continue polling */
984 printk("%s: reset timed-out, status=0x%02x\n", hwif
->name
, tmp
);
987 printk("%s: reset: ", hwif
->name
);
988 tmp
= ide_read_error(drive
);
996 switch (tmp
& 0x7f) {
997 case 1: printk("passed");
999 case 2: printk("formatter device error");
1001 case 3: printk("sector buffer error");
1003 case 4: printk("ECC circuitry error");
1005 case 5: printk("controlling MPU error");
1007 default:printk("error (0x%02x?)", tmp
);
1010 printk("; slave: failed");
1014 hwgroup
->polling
= 0; /* done polling */
1015 hwgroup
->resetting
= 0; /* done reset attempt */
1019 static void ide_disk_pre_reset(ide_drive_t
*drive
)
1021 int legacy
= (drive
->id
->cfs_enable_2
& 0x0400) ? 0 : 1;
1023 drive
->special
.all
= 0;
1024 drive
->special
.b
.set_geometry
= legacy
;
1025 drive
->special
.b
.recalibrate
= legacy
;
1026 drive
->mult_count
= 0;
1027 if (!drive
->keep_settings
&& !drive
->using_dma
)
1028 drive
->mult_req
= 0;
1029 if (drive
->mult_req
!= drive
->mult_count
)
1030 drive
->special
.b
.set_multmode
= 1;
1033 static void pre_reset(ide_drive_t
*drive
)
1035 const struct ide_port_ops
*port_ops
= drive
->hwif
->port_ops
;
1037 if (drive
->media
== ide_disk
)
1038 ide_disk_pre_reset(drive
);
1040 drive
->post_reset
= 1;
1042 if (drive
->using_dma
) {
1043 if (drive
->crc_count
)
1044 ide_check_dma_crc(drive
);
1049 if (!drive
->keep_settings
) {
1050 if (!drive
->using_dma
) {
1052 drive
->io_32bit
= 0;
1057 if (port_ops
&& port_ops
->pre_reset
)
1058 port_ops
->pre_reset(drive
);
1060 if (drive
->current_speed
!= 0xff)
1061 drive
->desired_speed
= drive
->current_speed
;
1062 drive
->current_speed
= 0xff;
1066 * do_reset1() attempts to recover a confused drive by resetting it.
1067 * Unfortunately, resetting a disk drive actually resets all devices on
1068 * the same interface, so it can really be thought of as resetting the
1069 * interface rather than resetting the drive.
1071 * ATAPI devices have their own reset mechanism which allows them to be
1072 * individually reset without clobbering other devices on the same interface.
1074 * Unfortunately, the IDE interface does not generate an interrupt to let
1075 * us know when the reset operation has finished, so we must poll for this.
1076 * Equally poor, though, is the fact that this may a very long time to complete,
1077 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1078 * we set a timer to poll at 50ms intervals.
1080 static ide_startstop_t
do_reset1 (ide_drive_t
*drive
, int do_not_try_atapi
)
1083 unsigned long flags
;
1085 ide_hwgroup_t
*hwgroup
;
1086 struct ide_io_ports
*io_ports
;
1087 const struct ide_port_ops
*port_ops
;
1090 spin_lock_irqsave(&ide_lock
, flags
);
1092 hwgroup
= HWGROUP(drive
);
1094 io_ports
= &hwif
->io_ports
;
1096 /* We must not reset with running handlers */
1097 BUG_ON(hwgroup
->handler
!= NULL
);
1099 /* For an ATAPI device, first try an ATAPI SRST. */
1100 if (drive
->media
!= ide_disk
&& !do_not_try_atapi
) {
1101 hwgroup
->resetting
= 1;
1103 SELECT_DRIVE(drive
);
1105 hwif
->OUTBSYNC(drive
, WIN_SRST
, io_ports
->command_addr
);
1107 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1108 hwgroup
->polling
= 1;
1109 __ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
1110 spin_unlock_irqrestore(&ide_lock
, flags
);
1115 * First, reset any device state data we were maintaining
1116 * for any of the drives on this interface.
1118 for (unit
= 0; unit
< MAX_DRIVES
; ++unit
)
1119 pre_reset(&hwif
->drives
[unit
]);
1121 if (io_ports
->ctl_addr
== 0) {
1122 spin_unlock_irqrestore(&ide_lock
, flags
);
1126 hwgroup
->resetting
= 1;
1128 * Note that we also set nIEN while resetting the device,
1129 * to mask unwanted interrupts from the interface during the reset.
1130 * However, due to the design of PC hardware, this will cause an
1131 * immediate interrupt due to the edge transition it produces.
1132 * This single interrupt gives us a "fast poll" for drives that
1133 * recover from reset very quickly, saving us the first 50ms wait time.
1135 /* set SRST and nIEN */
1136 hwif
->OUTBSYNC(drive
, drive
->ctl
|6, io_ports
->ctl_addr
);
1137 /* more than enough time */
1139 if (drive
->quirk_list
== 2)
1140 ctl
= drive
->ctl
; /* clear SRST and nIEN */
1142 ctl
= drive
->ctl
| 2; /* clear SRST, leave nIEN */
1143 hwif
->OUTBSYNC(drive
, ctl
, io_ports
->ctl_addr
);
1144 /* more than enough time */
1146 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1147 hwgroup
->polling
= 1;
1148 __ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1151 * Some weird controller like resetting themselves to a strange
1152 * state when the disks are reset this way. At least, the Winbond
1153 * 553 documentation says that
1155 port_ops
= hwif
->port_ops
;
1156 if (port_ops
&& port_ops
->resetproc
)
1157 port_ops
->resetproc(drive
);
1159 spin_unlock_irqrestore(&ide_lock
, flags
);
1164 * ide_do_reset() is the entry point to the drive/interface reset code.
1167 ide_startstop_t
ide_do_reset (ide_drive_t
*drive
)
1169 return do_reset1(drive
, 0);
1172 EXPORT_SYMBOL(ide_do_reset
);
1175 * ide_wait_not_busy() waits for the currently selected device on the hwif
1176 * to report a non-busy status, see comments in ide_probe_port().
1178 int ide_wait_not_busy(ide_hwif_t
*hwif
, unsigned long timeout
)
1184 * Turn this into a schedule() sleep once I'm sure
1185 * about locking issues (2.5 work ?).
1188 stat
= hwif
->INB(hwif
->io_ports
.status_addr
);
1189 if ((stat
& BUSY_STAT
) == 0)
1192 * Assume a value of 0xff means nothing is connected to
1193 * the interface and it doesn't implement the pull-down
1198 touch_softlockup_watchdog();
1199 touch_nmi_watchdog();
1204 EXPORT_SYMBOL_GPL(ide_wait_not_busy
);