2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
41 * This is stored as mr->r_trans_private.
44 struct rds_iw_device
*device
;
45 struct rds_iw_mr_pool
*pool
;
46 struct rdma_cm_id
*cm_id
;
49 struct ib_fast_reg_page_list
*page_list
;
51 struct rds_iw_mapping mapping
;
52 unsigned char remap_count
;
56 * Our own little MR pool
58 struct rds_iw_mr_pool
{
59 struct rds_iw_device
*device
; /* back ptr to the device that owns us */
61 struct mutex flush_lock
; /* serialize fmr invalidate */
62 struct work_struct flush_worker
; /* flush worker */
64 spinlock_t list_lock
; /* protect variables below */
65 atomic_t item_count
; /* total # of MRs */
66 atomic_t dirty_count
; /* # dirty of MRs */
67 struct list_head dirty_list
; /* dirty mappings */
68 struct list_head clean_list
; /* unused & unamapped MRs */
69 atomic_t free_pinned
; /* memory pinned by free MRs */
70 unsigned long max_message_size
; /* in pages */
71 unsigned long max_items
;
72 unsigned long max_items_soft
;
73 unsigned long max_free_pinned
;
77 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool
*pool
, int free_all
);
78 static void rds_iw_mr_pool_flush_worker(struct work_struct
*work
);
79 static int rds_iw_init_fastreg(struct rds_iw_mr_pool
*pool
, struct rds_iw_mr
*ibmr
);
80 static int rds_iw_map_fastreg(struct rds_iw_mr_pool
*pool
,
81 struct rds_iw_mr
*ibmr
,
82 struct scatterlist
*sg
, unsigned int nents
);
83 static void rds_iw_free_fastreg(struct rds_iw_mr_pool
*pool
, struct rds_iw_mr
*ibmr
);
84 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool
*pool
,
85 struct list_head
*unmap_list
,
86 struct list_head
*kill_list
);
87 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool
*pool
, struct rds_iw_mr
*ibmr
);
89 static int rds_iw_get_device(struct rds_sock
*rs
, struct rds_iw_device
**rds_iwdev
, struct rdma_cm_id
**cm_id
)
91 struct rds_iw_device
*iwdev
;
92 struct rds_iw_cm_id
*i_cm_id
;
97 list_for_each_entry(iwdev
, &rds_iw_devices
, list
) {
98 spin_lock_irq(&iwdev
->spinlock
);
99 list_for_each_entry(i_cm_id
, &iwdev
->cm_id_list
, list
) {
100 struct sockaddr_in
*src_addr
, *dst_addr
;
102 src_addr
= (struct sockaddr_in
*)&i_cm_id
->cm_id
->route
.addr
.src_addr
;
103 dst_addr
= (struct sockaddr_in
*)&i_cm_id
->cm_id
->route
.addr
.dst_addr
;
105 rdsdebug("local ipaddr = %x port %d, "
106 "remote ipaddr = %x port %d"
107 "..looking for %x port %d, "
108 "remote ipaddr = %x port %d\n",
109 src_addr
->sin_addr
.s_addr
,
111 dst_addr
->sin_addr
.s_addr
,
117 #ifdef WORKING_TUPLE_DETECTION
118 if (src_addr
->sin_addr
.s_addr
== rs
->rs_bound_addr
&&
119 src_addr
->sin_port
== rs
->rs_bound_port
&&
120 dst_addr
->sin_addr
.s_addr
== rs
->rs_conn_addr
&&
121 dst_addr
->sin_port
== rs
->rs_conn_port
) {
123 /* FIXME - needs to compare the local and remote
124 * ipaddr/port tuple, but the ipaddr is the only
125 * available infomation in the rds_sock (as the rest are
126 * zero'ed. It doesn't appear to be properly populated
127 * during connection setup...
129 if (src_addr
->sin_addr
.s_addr
== rs
->rs_bound_addr
) {
131 spin_unlock_irq(&iwdev
->spinlock
);
133 *cm_id
= i_cm_id
->cm_id
;
137 spin_unlock_irq(&iwdev
->spinlock
);
143 static int rds_iw_add_cm_id(struct rds_iw_device
*rds_iwdev
, struct rdma_cm_id
*cm_id
)
145 struct rds_iw_cm_id
*i_cm_id
;
147 i_cm_id
= kmalloc(sizeof *i_cm_id
, GFP_KERNEL
);
151 i_cm_id
->cm_id
= cm_id
;
153 spin_lock_irq(&rds_iwdev
->spinlock
);
154 list_add_tail(&i_cm_id
->list
, &rds_iwdev
->cm_id_list
);
155 spin_unlock_irq(&rds_iwdev
->spinlock
);
160 void rds_iw_remove_cm_id(struct rds_iw_device
*rds_iwdev
, struct rdma_cm_id
*cm_id
)
162 struct rds_iw_cm_id
*i_cm_id
;
164 spin_lock_irq(&rds_iwdev
->spinlock
);
165 list_for_each_entry(i_cm_id
, &rds_iwdev
->cm_id_list
, list
) {
166 if (i_cm_id
->cm_id
== cm_id
) {
167 list_del(&i_cm_id
->list
);
172 spin_unlock_irq(&rds_iwdev
->spinlock
);
176 int rds_iw_update_cm_id(struct rds_iw_device
*rds_iwdev
, struct rdma_cm_id
*cm_id
)
178 struct sockaddr_in
*src_addr
, *dst_addr
;
179 struct rds_iw_device
*rds_iwdev_old
;
181 struct rdma_cm_id
*pcm_id
;
184 src_addr
= (struct sockaddr_in
*)&cm_id
->route
.addr
.src_addr
;
185 dst_addr
= (struct sockaddr_in
*)&cm_id
->route
.addr
.dst_addr
;
187 rs
.rs_bound_addr
= src_addr
->sin_addr
.s_addr
;
188 rs
.rs_bound_port
= src_addr
->sin_port
;
189 rs
.rs_conn_addr
= dst_addr
->sin_addr
.s_addr
;
190 rs
.rs_conn_port
= dst_addr
->sin_port
;
192 rc
= rds_iw_get_device(&rs
, &rds_iwdev_old
, &pcm_id
);
194 rds_iw_remove_cm_id(rds_iwdev
, cm_id
);
196 return rds_iw_add_cm_id(rds_iwdev
, cm_id
);
199 void rds_iw_add_conn(struct rds_iw_device
*rds_iwdev
, struct rds_connection
*conn
)
201 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
203 /* conn was previously on the nodev_conns_list */
204 spin_lock_irq(&iw_nodev_conns_lock
);
205 BUG_ON(list_empty(&iw_nodev_conns
));
206 BUG_ON(list_empty(&ic
->iw_node
));
207 list_del(&ic
->iw_node
);
209 spin_lock_irq(&rds_iwdev
->spinlock
);
210 list_add_tail(&ic
->iw_node
, &rds_iwdev
->conn_list
);
211 spin_unlock_irq(&rds_iwdev
->spinlock
);
212 spin_unlock_irq(&iw_nodev_conns_lock
);
214 ic
->rds_iwdev
= rds_iwdev
;
217 void rds_iw_remove_conn(struct rds_iw_device
*rds_iwdev
, struct rds_connection
*conn
)
219 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
221 /* place conn on nodev_conns_list */
222 spin_lock(&iw_nodev_conns_lock
);
224 spin_lock_irq(&rds_iwdev
->spinlock
);
225 BUG_ON(list_empty(&ic
->iw_node
));
226 list_del(&ic
->iw_node
);
227 spin_unlock_irq(&rds_iwdev
->spinlock
);
229 list_add_tail(&ic
->iw_node
, &iw_nodev_conns
);
231 spin_unlock(&iw_nodev_conns_lock
);
233 rds_iw_remove_cm_id(ic
->rds_iwdev
, ic
->i_cm_id
);
234 ic
->rds_iwdev
= NULL
;
237 void __rds_iw_destroy_conns(struct list_head
*list
, spinlock_t
*list_lock
)
239 struct rds_iw_connection
*ic
, *_ic
;
242 /* avoid calling conn_destroy with irqs off */
243 spin_lock_irq(list_lock
);
244 list_splice(list
, &tmp_list
);
245 INIT_LIST_HEAD(list
);
246 spin_unlock_irq(list_lock
);
248 list_for_each_entry_safe(ic
, _ic
, &tmp_list
, iw_node
) {
249 if (ic
->conn
->c_passive
)
250 rds_conn_destroy(ic
->conn
->c_passive
);
251 rds_conn_destroy(ic
->conn
);
255 static void rds_iw_set_scatterlist(struct rds_iw_scatterlist
*sg
,
256 struct scatterlist
*list
, unsigned int sg_len
)
265 static u64
*rds_iw_map_scatterlist(struct rds_iw_device
*rds_iwdev
,
266 struct rds_iw_scatterlist
*sg
,
267 unsigned int dma_page_shift
)
269 struct ib_device
*dev
= rds_iwdev
->dev
;
270 u64
*dma_pages
= NULL
;
272 unsigned int dma_page_size
;
275 dma_page_size
= 1 << dma_page_shift
;
276 dma_mask
= dma_page_size
- 1;
278 WARN_ON(sg
->dma_len
);
280 sg
->dma_len
= ib_dma_map_sg(dev
, sg
->list
, sg
->len
, DMA_BIDIRECTIONAL
);
281 if (unlikely(!sg
->dma_len
)) {
282 printk(KERN_WARNING
"RDS/IW: dma_map_sg failed!\n");
283 return ERR_PTR(-EBUSY
);
290 for (i
= 0; i
< sg
->dma_len
; ++i
) {
291 unsigned int dma_len
= ib_sg_dma_len(dev
, &sg
->list
[i
]);
292 u64 dma_addr
= ib_sg_dma_address(dev
, &sg
->list
[i
]);
295 sg
->bytes
+= dma_len
;
297 end_addr
= dma_addr
+ dma_len
;
298 if (dma_addr
& dma_mask
) {
301 dma_addr
&= ~dma_mask
;
303 if (end_addr
& dma_mask
) {
304 if (i
< sg
->dma_len
- 1)
306 end_addr
= (end_addr
+ dma_mask
) & ~dma_mask
;
309 sg
->dma_npages
+= (end_addr
- dma_addr
) >> dma_page_shift
;
312 /* Now gather the dma addrs into one list */
313 if (sg
->dma_npages
> fastreg_message_size
)
316 dma_pages
= kmalloc(sizeof(u64
) * sg
->dma_npages
, GFP_ATOMIC
);
322 for (i
= j
= 0; i
< sg
->dma_len
; ++i
) {
323 unsigned int dma_len
= ib_sg_dma_len(dev
, &sg
->list
[i
]);
324 u64 dma_addr
= ib_sg_dma_address(dev
, &sg
->list
[i
]);
327 end_addr
= dma_addr
+ dma_len
;
328 dma_addr
&= ~dma_mask
;
329 for (; dma_addr
< end_addr
; dma_addr
+= dma_page_size
)
330 dma_pages
[j
++] = dma_addr
;
331 BUG_ON(j
> sg
->dma_npages
);
337 ib_dma_unmap_sg(rds_iwdev
->dev
, sg
->list
, sg
->len
, DMA_BIDIRECTIONAL
);
344 struct rds_iw_mr_pool
*rds_iw_create_mr_pool(struct rds_iw_device
*rds_iwdev
)
346 struct rds_iw_mr_pool
*pool
;
348 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
350 printk(KERN_WARNING
"RDS/IW: rds_iw_create_mr_pool alloc error\n");
351 return ERR_PTR(-ENOMEM
);
354 pool
->device
= rds_iwdev
;
355 INIT_LIST_HEAD(&pool
->dirty_list
);
356 INIT_LIST_HEAD(&pool
->clean_list
);
357 mutex_init(&pool
->flush_lock
);
358 spin_lock_init(&pool
->list_lock
);
359 INIT_WORK(&pool
->flush_worker
, rds_iw_mr_pool_flush_worker
);
361 pool
->max_message_size
= fastreg_message_size
;
362 pool
->max_items
= fastreg_pool_size
;
363 pool
->max_free_pinned
= pool
->max_items
* pool
->max_message_size
/ 4;
364 pool
->max_pages
= fastreg_message_size
;
366 /* We never allow more than max_items MRs to be allocated.
367 * When we exceed more than max_items_soft, we start freeing
368 * items more aggressively.
369 * Make sure that max_items > max_items_soft > max_items / 2
371 pool
->max_items_soft
= pool
->max_items
* 3 / 4;
376 void rds_iw_get_mr_info(struct rds_iw_device
*rds_iwdev
, struct rds_info_rdma_connection
*iinfo
)
378 struct rds_iw_mr_pool
*pool
= rds_iwdev
->mr_pool
;
380 iinfo
->rdma_mr_max
= pool
->max_items
;
381 iinfo
->rdma_mr_size
= pool
->max_pages
;
384 void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool
*pool
)
386 flush_workqueue(rds_wq
);
387 rds_iw_flush_mr_pool(pool
, 1);
388 BUG_ON(atomic_read(&pool
->item_count
));
389 BUG_ON(atomic_read(&pool
->free_pinned
));
393 static inline struct rds_iw_mr
*rds_iw_reuse_fmr(struct rds_iw_mr_pool
*pool
)
395 struct rds_iw_mr
*ibmr
= NULL
;
398 spin_lock_irqsave(&pool
->list_lock
, flags
);
399 if (!list_empty(&pool
->clean_list
)) {
400 ibmr
= list_entry(pool
->clean_list
.next
, struct rds_iw_mr
, mapping
.m_list
);
401 list_del_init(&ibmr
->mapping
.m_list
);
403 spin_unlock_irqrestore(&pool
->list_lock
, flags
);
408 static struct rds_iw_mr
*rds_iw_alloc_mr(struct rds_iw_device
*rds_iwdev
)
410 struct rds_iw_mr_pool
*pool
= rds_iwdev
->mr_pool
;
411 struct rds_iw_mr
*ibmr
= NULL
;
412 int err
= 0, iter
= 0;
415 ibmr
= rds_iw_reuse_fmr(pool
);
419 /* No clean MRs - now we have the choice of either
420 * allocating a fresh MR up to the limit imposed by the
421 * driver, or flush any dirty unused MRs.
422 * We try to avoid stalling in the send path if possible,
423 * so we allocate as long as we're allowed to.
425 * We're fussy with enforcing the FMR limit, though. If the driver
426 * tells us we can't use more than N fmrs, we shouldn't start
428 if (atomic_inc_return(&pool
->item_count
) <= pool
->max_items
)
431 atomic_dec(&pool
->item_count
);
434 rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted
);
435 return ERR_PTR(-EAGAIN
);
438 /* We do have some empty MRs. Flush them out. */
439 rds_iw_stats_inc(s_iw_rdma_mr_pool_wait
);
440 rds_iw_flush_mr_pool(pool
, 0);
443 ibmr
= kzalloc(sizeof(*ibmr
), GFP_KERNEL
);
449 spin_lock_init(&ibmr
->mapping
.m_lock
);
450 INIT_LIST_HEAD(&ibmr
->mapping
.m_list
);
451 ibmr
->mapping
.m_mr
= ibmr
;
453 err
= rds_iw_init_fastreg(pool
, ibmr
);
457 rds_iw_stats_inc(s_iw_rdma_mr_alloc
);
462 rds_iw_destroy_fastreg(pool
, ibmr
);
465 atomic_dec(&pool
->item_count
);
469 void rds_iw_sync_mr(void *trans_private
, int direction
)
471 struct rds_iw_mr
*ibmr
= trans_private
;
472 struct rds_iw_device
*rds_iwdev
= ibmr
->device
;
475 case DMA_FROM_DEVICE
:
476 ib_dma_sync_sg_for_cpu(rds_iwdev
->dev
, ibmr
->mapping
.m_sg
.list
,
477 ibmr
->mapping
.m_sg
.dma_len
, DMA_BIDIRECTIONAL
);
480 ib_dma_sync_sg_for_device(rds_iwdev
->dev
, ibmr
->mapping
.m_sg
.list
,
481 ibmr
->mapping
.m_sg
.dma_len
, DMA_BIDIRECTIONAL
);
486 static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool
*pool
, int free_all
)
488 unsigned int item_count
;
490 item_count
= atomic_read(&pool
->item_count
);
498 * Flush our pool of MRs.
499 * At a minimum, all currently unused MRs are unmapped.
500 * If the number of MRs allocated exceeds the limit, we also try
501 * to free as many MRs as needed to get back to this limit.
503 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool
*pool
, int free_all
)
505 struct rds_iw_mr
*ibmr
, *next
;
506 LIST_HEAD(unmap_list
);
507 LIST_HEAD(kill_list
);
509 unsigned int nfreed
= 0, ncleaned
= 0, free_goal
;
512 rds_iw_stats_inc(s_iw_rdma_mr_pool_flush
);
514 mutex_lock(&pool
->flush_lock
);
516 spin_lock_irqsave(&pool
->list_lock
, flags
);
517 /* Get the list of all mappings to be destroyed */
518 list_splice_init(&pool
->dirty_list
, &unmap_list
);
520 list_splice_init(&pool
->clean_list
, &kill_list
);
521 spin_unlock_irqrestore(&pool
->list_lock
, flags
);
523 free_goal
= rds_iw_flush_goal(pool
, free_all
);
525 /* Batched invalidate of dirty MRs.
526 * For FMR based MRs, the mappings on the unmap list are
527 * actually members of an ibmr (ibmr->mapping). They either
528 * migrate to the kill_list, or have been cleaned and should be
529 * moved to the clean_list.
530 * For fastregs, they will be dynamically allocated, and
531 * will be destroyed by the unmap function.
533 if (!list_empty(&unmap_list
)) {
534 ncleaned
= rds_iw_unmap_fastreg_list(pool
, &unmap_list
, &kill_list
);
535 /* If we've been asked to destroy all MRs, move those
536 * that were simply cleaned to the kill list */
538 list_splice_init(&unmap_list
, &kill_list
);
541 /* Destroy any MRs that are past their best before date */
542 list_for_each_entry_safe(ibmr
, next
, &kill_list
, mapping
.m_list
) {
543 rds_iw_stats_inc(s_iw_rdma_mr_free
);
544 list_del(&ibmr
->mapping
.m_list
);
545 rds_iw_destroy_fastreg(pool
, ibmr
);
550 /* Anything that remains are laundered ibmrs, which we can add
551 * back to the clean list. */
552 if (!list_empty(&unmap_list
)) {
553 spin_lock_irqsave(&pool
->list_lock
, flags
);
554 list_splice(&unmap_list
, &pool
->clean_list
);
555 spin_unlock_irqrestore(&pool
->list_lock
, flags
);
558 atomic_sub(ncleaned
, &pool
->dirty_count
);
559 atomic_sub(nfreed
, &pool
->item_count
);
561 mutex_unlock(&pool
->flush_lock
);
565 static void rds_iw_mr_pool_flush_worker(struct work_struct
*work
)
567 struct rds_iw_mr_pool
*pool
= container_of(work
, struct rds_iw_mr_pool
, flush_worker
);
569 rds_iw_flush_mr_pool(pool
, 0);
572 void rds_iw_free_mr(void *trans_private
, int invalidate
)
574 struct rds_iw_mr
*ibmr
= trans_private
;
575 struct rds_iw_mr_pool
*pool
= ibmr
->device
->mr_pool
;
577 rdsdebug("RDS/IW: free_mr nents %u\n", ibmr
->mapping
.m_sg
.len
);
581 /* Return it to the pool's free list */
582 rds_iw_free_fastreg(pool
, ibmr
);
584 /* If we've pinned too many pages, request a flush */
585 if (atomic_read(&pool
->free_pinned
) >= pool
->max_free_pinned
586 || atomic_read(&pool
->dirty_count
) >= pool
->max_items
/ 10)
587 queue_work(rds_wq
, &pool
->flush_worker
);
590 if (likely(!in_interrupt())) {
591 rds_iw_flush_mr_pool(pool
, 0);
593 /* We get here if the user created a MR marked
594 * as use_once and invalidate at the same time. */
595 queue_work(rds_wq
, &pool
->flush_worker
);
600 void rds_iw_flush_mrs(void)
602 struct rds_iw_device
*rds_iwdev
;
604 list_for_each_entry(rds_iwdev
, &rds_iw_devices
, list
) {
605 struct rds_iw_mr_pool
*pool
= rds_iwdev
->mr_pool
;
608 rds_iw_flush_mr_pool(pool
, 0);
612 void *rds_iw_get_mr(struct scatterlist
*sg
, unsigned long nents
,
613 struct rds_sock
*rs
, u32
*key_ret
)
615 struct rds_iw_device
*rds_iwdev
;
616 struct rds_iw_mr
*ibmr
= NULL
;
617 struct rdma_cm_id
*cm_id
;
620 ret
= rds_iw_get_device(rs
, &rds_iwdev
, &cm_id
);
626 if (!rds_iwdev
->mr_pool
) {
631 ibmr
= rds_iw_alloc_mr(rds_iwdev
);
636 ibmr
->device
= rds_iwdev
;
638 ret
= rds_iw_map_fastreg(rds_iwdev
->mr_pool
, ibmr
, sg
, nents
);
640 *key_ret
= ibmr
->mr
->rkey
;
642 printk(KERN_WARNING
"RDS/IW: failed to map mr (errno=%d)\n", ret
);
647 rds_iw_free_mr(ibmr
, 0);
654 * iWARP fastreg handling
656 * The life cycle of a fastreg registration is a bit different from
658 * The idea behind fastreg is to have one MR, to which we bind different
659 * mappings over time. To avoid stalling on the expensive map and invalidate
660 * operations, these operations are pipelined on the same send queue on
661 * which we want to send the message containing the r_key.
663 * This creates a bit of a problem for us, as we do not have the destination
664 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
665 * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit
666 * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
667 * before queuing the SEND. When completions for these arrive, they are
668 * dispatched to the MR has a bit set showing that RDMa can be performed.
670 * There is another interesting aspect that's related to invalidation.
671 * The application can request that a mapping is invalidated in FREE_MR.
672 * The expectation there is that this invalidation step includes ALL
673 * PREVIOUSLY FREED MRs.
675 static int rds_iw_init_fastreg(struct rds_iw_mr_pool
*pool
,
676 struct rds_iw_mr
*ibmr
)
678 struct rds_iw_device
*rds_iwdev
= pool
->device
;
679 struct ib_fast_reg_page_list
*page_list
= NULL
;
683 mr
= ib_alloc_fast_reg_mr(rds_iwdev
->pd
, pool
->max_message_size
);
687 printk(KERN_WARNING
"RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err
);
691 /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
694 page_list
= ib_alloc_fast_reg_page_list(rds_iwdev
->dev
, pool
->max_message_size
);
695 if (IS_ERR(page_list
)) {
696 err
= PTR_ERR(page_list
);
698 printk(KERN_WARNING
"RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err
);
703 ibmr
->page_list
= page_list
;
708 static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping
*mapping
)
710 struct rds_iw_mr
*ibmr
= mapping
->m_mr
;
711 struct ib_send_wr f_wr
, *failed_wr
;
715 * Perform a WR for the fast_reg_mr. Each individual page
716 * in the sg list is added to the fast reg page list and placed
717 * inside the fast_reg_mr WR. The key used is a rolling 8bit
718 * counter, which should guarantee uniqueness.
720 ib_update_fast_reg_key(ibmr
->mr
, ibmr
->remap_count
++);
721 mapping
->m_rkey
= ibmr
->mr
->rkey
;
723 memset(&f_wr
, 0, sizeof(f_wr
));
724 f_wr
.wr_id
= RDS_IW_FAST_REG_WR_ID
;
725 f_wr
.opcode
= IB_WR_FAST_REG_MR
;
726 f_wr
.wr
.fast_reg
.length
= mapping
->m_sg
.bytes
;
727 f_wr
.wr
.fast_reg
.rkey
= mapping
->m_rkey
;
728 f_wr
.wr
.fast_reg
.page_list
= ibmr
->page_list
;
729 f_wr
.wr
.fast_reg
.page_list_len
= mapping
->m_sg
.dma_len
;
730 f_wr
.wr
.fast_reg
.page_shift
= ibmr
->device
->page_shift
;
731 f_wr
.wr
.fast_reg
.access_flags
= IB_ACCESS_LOCAL_WRITE
|
732 IB_ACCESS_REMOTE_READ
|
733 IB_ACCESS_REMOTE_WRITE
;
734 f_wr
.wr
.fast_reg
.iova_start
= 0;
735 f_wr
.send_flags
= IB_SEND_SIGNALED
;
738 ret
= ib_post_send(ibmr
->cm_id
->qp
, &f_wr
, &failed_wr
);
739 BUG_ON(failed_wr
!= &f_wr
);
740 if (ret
&& printk_ratelimit())
741 printk(KERN_WARNING
"RDS/IW: %s:%d ib_post_send returned %d\n",
742 __func__
, __LINE__
, ret
);
746 static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr
*ibmr
)
748 struct ib_send_wr s_wr
, *failed_wr
;
751 if (!ibmr
->cm_id
->qp
|| !ibmr
->mr
)
754 memset(&s_wr
, 0, sizeof(s_wr
));
755 s_wr
.wr_id
= RDS_IW_LOCAL_INV_WR_ID
;
756 s_wr
.opcode
= IB_WR_LOCAL_INV
;
757 s_wr
.ex
.invalidate_rkey
= ibmr
->mr
->rkey
;
758 s_wr
.send_flags
= IB_SEND_SIGNALED
;
761 ret
= ib_post_send(ibmr
->cm_id
->qp
, &s_wr
, &failed_wr
);
762 if (ret
&& printk_ratelimit()) {
763 printk(KERN_WARNING
"RDS/IW: %s:%d ib_post_send returned %d\n",
764 __func__
, __LINE__
, ret
);
771 static int rds_iw_map_fastreg(struct rds_iw_mr_pool
*pool
,
772 struct rds_iw_mr
*ibmr
,
773 struct scatterlist
*sg
,
776 struct rds_iw_device
*rds_iwdev
= pool
->device
;
777 struct rds_iw_mapping
*mapping
= &ibmr
->mapping
;
781 rds_iw_set_scatterlist(&mapping
->m_sg
, sg
, sg_len
);
783 dma_pages
= rds_iw_map_scatterlist(rds_iwdev
,
785 rds_iwdev
->page_shift
);
786 if (IS_ERR(dma_pages
)) {
787 ret
= PTR_ERR(dma_pages
);
792 if (mapping
->m_sg
.dma_len
> pool
->max_message_size
) {
797 for (i
= 0; i
< mapping
->m_sg
.dma_npages
; ++i
)
798 ibmr
->page_list
->page_list
[i
] = dma_pages
[i
];
800 ret
= rds_iw_rdma_build_fastreg(mapping
);
804 rds_iw_stats_inc(s_iw_rdma_mr_used
);
813 * "Free" a fastreg MR.
815 static void rds_iw_free_fastreg(struct rds_iw_mr_pool
*pool
,
816 struct rds_iw_mr
*ibmr
)
821 if (!ibmr
->mapping
.m_sg
.dma_len
)
824 ret
= rds_iw_rdma_fastreg_inv(ibmr
);
828 /* Try to post the LOCAL_INV WR to the queue. */
829 spin_lock_irqsave(&pool
->list_lock
, flags
);
831 list_add_tail(&ibmr
->mapping
.m_list
, &pool
->dirty_list
);
832 atomic_add(ibmr
->mapping
.m_sg
.len
, &pool
->free_pinned
);
833 atomic_inc(&pool
->dirty_count
);
835 spin_unlock_irqrestore(&pool
->list_lock
, flags
);
838 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool
*pool
,
839 struct list_head
*unmap_list
,
840 struct list_head
*kill_list
)
842 struct rds_iw_mapping
*mapping
, *next
;
843 unsigned int ncleaned
= 0;
844 LIST_HEAD(laundered
);
846 /* Batched invalidation of fastreg MRs.
847 * Why do we do it this way, even though we could pipeline unmap
848 * and remap? The reason is the application semantics - when the
849 * application requests an invalidation of MRs, it expects all
850 * previously released R_Keys to become invalid.
852 * If we implement MR reuse naively, we risk memory corruption
853 * (this has actually been observed). So the default behavior
854 * requires that a MR goes through an explicit unmap operation before
855 * we can reuse it again.
857 * We could probably improve on this a little, by allowing immediate
858 * reuse of a MR on the same socket (eg you could add small
859 * cache of unused MRs to strct rds_socket - GET_MR could grab one
860 * of these without requiring an explicit invalidate).
862 while (!list_empty(unmap_list
)) {
865 spin_lock_irqsave(&pool
->list_lock
, flags
);
866 list_for_each_entry_safe(mapping
, next
, unmap_list
, m_list
) {
867 list_move(&mapping
->m_list
, &laundered
);
870 spin_unlock_irqrestore(&pool
->list_lock
, flags
);
873 /* Move all laundered mappings back to the unmap list.
874 * We do not kill any WRs right now - it doesn't seem the
875 * fastreg API has a max_remap limit. */
876 list_splice_init(&laundered
, unmap_list
);
881 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool
*pool
,
882 struct rds_iw_mr
*ibmr
)
885 ib_free_fast_reg_page_list(ibmr
->page_list
);
887 ib_dereg_mr(ibmr
->mr
);