sched: remove wait_runtime limit
[linux-2.6/verdex.git] / kernel / sched.c
blob21cc3b2be02367f09106062953c1a714bed61549
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
66 #include <asm/tlb.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak)) sched_clock(void)
75 return (unsigned long long)jiffies * (1000000000 / HZ);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
115 #ifdef CONFIG_SMP
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134 #endif
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
143 static unsigned int static_prio_timeslice(int static_prio)
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
154 static inline int rt_policy(int policy)
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
161 static inline int task_has_rt_policy(struct task_struct *p)
163 return rt_policy(p->policy);
167 * This is the priority-queue data structure of the RT scheduling class:
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
174 /* CFS-related fields in a runqueue */
175 struct cfs_rq {
176 struct load_weight load;
177 unsigned long nr_running;
179 s64 fair_clock;
180 u64 exec_clock;
181 u64 min_vruntime;
182 s64 wait_runtime;
183 unsigned long wait_runtime_overruns, wait_runtime_underruns;
185 struct rb_root tasks_timeline;
186 struct rb_node *rb_leftmost;
187 struct rb_node *rb_load_balance_curr;
188 /* 'curr' points to currently running entity on this cfs_rq.
189 * It is set to NULL otherwise (i.e when none are currently running).
191 struct sched_entity *curr;
192 #ifdef CONFIG_FAIR_GROUP_SCHED
193 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
195 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
196 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
197 * (like users, containers etc.)
199 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
200 * list is used during load balance.
202 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
203 #endif
206 /* Real-Time classes' related field in a runqueue: */
207 struct rt_rq {
208 struct rt_prio_array active;
209 int rt_load_balance_idx;
210 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
214 * This is the main, per-CPU runqueue data structure.
216 * Locking rule: those places that want to lock multiple runqueues
217 * (such as the load balancing or the thread migration code), lock
218 * acquire operations must be ordered by ascending &runqueue.
220 struct rq {
221 spinlock_t lock; /* runqueue lock */
224 * nr_running and cpu_load should be in the same cacheline because
225 * remote CPUs use both these fields when doing load calculation.
227 unsigned long nr_running;
228 #define CPU_LOAD_IDX_MAX 5
229 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
230 unsigned char idle_at_tick;
231 #ifdef CONFIG_NO_HZ
232 unsigned char in_nohz_recently;
233 #endif
234 struct load_weight load; /* capture load from *all* tasks on this cpu */
235 unsigned long nr_load_updates;
236 u64 nr_switches;
238 struct cfs_rq cfs;
239 #ifdef CONFIG_FAIR_GROUP_SCHED
240 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
241 #endif
242 struct rt_rq rt;
245 * This is part of a global counter where only the total sum
246 * over all CPUs matters. A task can increase this counter on
247 * one CPU and if it got migrated afterwards it may decrease
248 * it on another CPU. Always updated under the runqueue lock:
250 unsigned long nr_uninterruptible;
252 struct task_struct *curr, *idle;
253 unsigned long next_balance;
254 struct mm_struct *prev_mm;
256 u64 clock, prev_clock_raw;
257 s64 clock_max_delta;
259 unsigned int clock_warps, clock_overflows;
260 u64 idle_clock;
261 unsigned int clock_deep_idle_events;
262 u64 tick_timestamp;
264 atomic_t nr_iowait;
266 #ifdef CONFIG_SMP
267 struct sched_domain *sd;
269 /* For active balancing */
270 int active_balance;
271 int push_cpu;
272 int cpu; /* cpu of this runqueue */
274 struct task_struct *migration_thread;
275 struct list_head migration_queue;
276 #endif
278 #ifdef CONFIG_SCHEDSTATS
279 /* latency stats */
280 struct sched_info rq_sched_info;
282 /* sys_sched_yield() stats */
283 unsigned long yld_exp_empty;
284 unsigned long yld_act_empty;
285 unsigned long yld_both_empty;
286 unsigned long yld_cnt;
288 /* schedule() stats */
289 unsigned long sched_switch;
290 unsigned long sched_cnt;
291 unsigned long sched_goidle;
293 /* try_to_wake_up() stats */
294 unsigned long ttwu_cnt;
295 unsigned long ttwu_local;
296 #endif
297 struct lock_class_key rq_lock_key;
300 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
301 static DEFINE_MUTEX(sched_hotcpu_mutex);
303 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
305 rq->curr->sched_class->check_preempt_curr(rq, p);
308 static inline int cpu_of(struct rq *rq)
310 #ifdef CONFIG_SMP
311 return rq->cpu;
312 #else
313 return 0;
314 #endif
318 * Update the per-runqueue clock, as finegrained as the platform can give
319 * us, but without assuming monotonicity, etc.:
321 static void __update_rq_clock(struct rq *rq)
323 u64 prev_raw = rq->prev_clock_raw;
324 u64 now = sched_clock();
325 s64 delta = now - prev_raw;
326 u64 clock = rq->clock;
328 #ifdef CONFIG_SCHED_DEBUG
329 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
330 #endif
332 * Protect against sched_clock() occasionally going backwards:
334 if (unlikely(delta < 0)) {
335 clock++;
336 rq->clock_warps++;
337 } else {
339 * Catch too large forward jumps too:
341 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
342 if (clock < rq->tick_timestamp + TICK_NSEC)
343 clock = rq->tick_timestamp + TICK_NSEC;
344 else
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
358 static void update_rq_clock(struct rq *rq)
360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
365 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
366 * See detach_destroy_domains: synchronize_sched for details.
368 * The domain tree of any CPU may only be accessed from within
369 * preempt-disabled sections.
371 #define for_each_domain(cpu, __sd) \
372 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
374 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
375 #define this_rq() (&__get_cpu_var(runqueues))
376 #define task_rq(p) cpu_rq(task_cpu(p))
377 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
380 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
382 #ifdef CONFIG_SCHED_DEBUG
383 # define const_debug __read_mostly
384 #else
385 # define const_debug static const
386 #endif
389 * Debugging: various feature bits
391 enum {
392 SCHED_FEAT_FAIR_SLEEPERS = 1,
393 SCHED_FEAT_NEW_FAIR_SLEEPERS = 2,
394 SCHED_FEAT_SLEEPER_AVG = 4,
395 SCHED_FEAT_SLEEPER_LOAD_AVG = 8,
396 SCHED_FEAT_START_DEBIT = 16,
397 SCHED_FEAT_USE_TREE_AVG = 32,
398 SCHED_FEAT_APPROX_AVG = 64,
401 const_debug unsigned int sysctl_sched_features =
402 SCHED_FEAT_FAIR_SLEEPERS *0 |
403 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
404 SCHED_FEAT_SLEEPER_AVG *0 |
405 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
406 SCHED_FEAT_START_DEBIT *1 |
407 SCHED_FEAT_USE_TREE_AVG *0 |
408 SCHED_FEAT_APPROX_AVG *0;
410 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
413 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
414 * clock constructed from sched_clock():
416 unsigned long long cpu_clock(int cpu)
418 unsigned long long now;
419 unsigned long flags;
420 struct rq *rq;
422 local_irq_save(flags);
423 rq = cpu_rq(cpu);
424 update_rq_clock(rq);
425 now = rq->clock;
426 local_irq_restore(flags);
428 return now;
431 #ifdef CONFIG_FAIR_GROUP_SCHED
432 /* Change a task's ->cfs_rq if it moves across CPUs */
433 static inline void set_task_cfs_rq(struct task_struct *p)
435 p->se.cfs_rq = &task_rq(p)->cfs;
437 #else
438 static inline void set_task_cfs_rq(struct task_struct *p)
441 #endif
443 #ifndef prepare_arch_switch
444 # define prepare_arch_switch(next) do { } while (0)
445 #endif
446 #ifndef finish_arch_switch
447 # define finish_arch_switch(prev) do { } while (0)
448 #endif
450 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
451 static inline int task_running(struct rq *rq, struct task_struct *p)
453 return rq->curr == p;
456 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
460 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
462 #ifdef CONFIG_DEBUG_SPINLOCK
463 /* this is a valid case when another task releases the spinlock */
464 rq->lock.owner = current;
465 #endif
467 * If we are tracking spinlock dependencies then we have to
468 * fix up the runqueue lock - which gets 'carried over' from
469 * prev into current:
471 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
473 spin_unlock_irq(&rq->lock);
476 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
477 static inline int task_running(struct rq *rq, struct task_struct *p)
479 #ifdef CONFIG_SMP
480 return p->oncpu;
481 #else
482 return rq->curr == p;
483 #endif
486 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
488 #ifdef CONFIG_SMP
490 * We can optimise this out completely for !SMP, because the
491 * SMP rebalancing from interrupt is the only thing that cares
492 * here.
494 next->oncpu = 1;
495 #endif
496 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
497 spin_unlock_irq(&rq->lock);
498 #else
499 spin_unlock(&rq->lock);
500 #endif
503 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
505 #ifdef CONFIG_SMP
507 * After ->oncpu is cleared, the task can be moved to a different CPU.
508 * We must ensure this doesn't happen until the switch is completely
509 * finished.
511 smp_wmb();
512 prev->oncpu = 0;
513 #endif
514 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
515 local_irq_enable();
516 #endif
518 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
521 * __task_rq_lock - lock the runqueue a given task resides on.
522 * Must be called interrupts disabled.
524 static inline struct rq *__task_rq_lock(struct task_struct *p)
525 __acquires(rq->lock)
527 struct rq *rq;
529 repeat_lock_task:
530 rq = task_rq(p);
531 spin_lock(&rq->lock);
532 if (unlikely(rq != task_rq(p))) {
533 spin_unlock(&rq->lock);
534 goto repeat_lock_task;
536 return rq;
540 * task_rq_lock - lock the runqueue a given task resides on and disable
541 * interrupts. Note the ordering: we can safely lookup the task_rq without
542 * explicitly disabling preemption.
544 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
545 __acquires(rq->lock)
547 struct rq *rq;
549 repeat_lock_task:
550 local_irq_save(*flags);
551 rq = task_rq(p);
552 spin_lock(&rq->lock);
553 if (unlikely(rq != task_rq(p))) {
554 spin_unlock_irqrestore(&rq->lock, *flags);
555 goto repeat_lock_task;
557 return rq;
560 static inline void __task_rq_unlock(struct rq *rq)
561 __releases(rq->lock)
563 spin_unlock(&rq->lock);
566 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
567 __releases(rq->lock)
569 spin_unlock_irqrestore(&rq->lock, *flags);
573 * this_rq_lock - lock this runqueue and disable interrupts.
575 static inline struct rq *this_rq_lock(void)
576 __acquires(rq->lock)
578 struct rq *rq;
580 local_irq_disable();
581 rq = this_rq();
582 spin_lock(&rq->lock);
584 return rq;
588 * We are going deep-idle (irqs are disabled):
590 void sched_clock_idle_sleep_event(void)
592 struct rq *rq = cpu_rq(smp_processor_id());
594 spin_lock(&rq->lock);
595 __update_rq_clock(rq);
596 spin_unlock(&rq->lock);
597 rq->clock_deep_idle_events++;
599 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
602 * We just idled delta nanoseconds (called with irqs disabled):
604 void sched_clock_idle_wakeup_event(u64 delta_ns)
606 struct rq *rq = cpu_rq(smp_processor_id());
607 u64 now = sched_clock();
609 rq->idle_clock += delta_ns;
611 * Override the previous timestamp and ignore all
612 * sched_clock() deltas that occured while we idled,
613 * and use the PM-provided delta_ns to advance the
614 * rq clock:
616 spin_lock(&rq->lock);
617 rq->prev_clock_raw = now;
618 rq->clock += delta_ns;
619 spin_unlock(&rq->lock);
621 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
624 * resched_task - mark a task 'to be rescheduled now'.
626 * On UP this means the setting of the need_resched flag, on SMP it
627 * might also involve a cross-CPU call to trigger the scheduler on
628 * the target CPU.
630 #ifdef CONFIG_SMP
632 #ifndef tsk_is_polling
633 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
634 #endif
636 static void resched_task(struct task_struct *p)
638 int cpu;
640 assert_spin_locked(&task_rq(p)->lock);
642 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
643 return;
645 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
647 cpu = task_cpu(p);
648 if (cpu == smp_processor_id())
649 return;
651 /* NEED_RESCHED must be visible before we test polling */
652 smp_mb();
653 if (!tsk_is_polling(p))
654 smp_send_reschedule(cpu);
657 static void resched_cpu(int cpu)
659 struct rq *rq = cpu_rq(cpu);
660 unsigned long flags;
662 if (!spin_trylock_irqsave(&rq->lock, flags))
663 return;
664 resched_task(cpu_curr(cpu));
665 spin_unlock_irqrestore(&rq->lock, flags);
667 #else
668 static inline void resched_task(struct task_struct *p)
670 assert_spin_locked(&task_rq(p)->lock);
671 set_tsk_need_resched(p);
673 #endif
675 #if BITS_PER_LONG == 32
676 # define WMULT_CONST (~0UL)
677 #else
678 # define WMULT_CONST (1UL << 32)
679 #endif
681 #define WMULT_SHIFT 32
684 * Shift right and round:
686 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
688 static unsigned long
689 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
690 struct load_weight *lw)
692 u64 tmp;
694 if (unlikely(!lw->inv_weight))
695 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
697 tmp = (u64)delta_exec * weight;
699 * Check whether we'd overflow the 64-bit multiplication:
701 if (unlikely(tmp > WMULT_CONST))
702 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
703 WMULT_SHIFT/2);
704 else
705 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
707 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
710 static inline unsigned long
711 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
713 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
716 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
718 lw->weight += inc;
719 if (sched_feat(FAIR_SLEEPERS))
720 lw->inv_weight = WMULT_CONST / lw->weight;
723 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
725 lw->weight -= dec;
726 if (sched_feat(FAIR_SLEEPERS) && likely(lw->weight))
727 lw->inv_weight = WMULT_CONST / lw->weight;
731 * To aid in avoiding the subversion of "niceness" due to uneven distribution
732 * of tasks with abnormal "nice" values across CPUs the contribution that
733 * each task makes to its run queue's load is weighted according to its
734 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
735 * scaled version of the new time slice allocation that they receive on time
736 * slice expiry etc.
739 #define WEIGHT_IDLEPRIO 2
740 #define WMULT_IDLEPRIO (1 << 31)
743 * Nice levels are multiplicative, with a gentle 10% change for every
744 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
745 * nice 1, it will get ~10% less CPU time than another CPU-bound task
746 * that remained on nice 0.
748 * The "10% effect" is relative and cumulative: from _any_ nice level,
749 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
750 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
751 * If a task goes up by ~10% and another task goes down by ~10% then
752 * the relative distance between them is ~25%.)
754 static const int prio_to_weight[40] = {
755 /* -20 */ 88761, 71755, 56483, 46273, 36291,
756 /* -15 */ 29154, 23254, 18705, 14949, 11916,
757 /* -10 */ 9548, 7620, 6100, 4904, 3906,
758 /* -5 */ 3121, 2501, 1991, 1586, 1277,
759 /* 0 */ 1024, 820, 655, 526, 423,
760 /* 5 */ 335, 272, 215, 172, 137,
761 /* 10 */ 110, 87, 70, 56, 45,
762 /* 15 */ 36, 29, 23, 18, 15,
766 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
768 * In cases where the weight does not change often, we can use the
769 * precalculated inverse to speed up arithmetics by turning divisions
770 * into multiplications:
772 static const u32 prio_to_wmult[40] = {
773 /* -20 */ 48388, 59856, 76040, 92818, 118348,
774 /* -15 */ 147320, 184698, 229616, 287308, 360437,
775 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
776 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
777 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
778 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
779 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
780 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
783 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
786 * runqueue iterator, to support SMP load-balancing between different
787 * scheduling classes, without having to expose their internal data
788 * structures to the load-balancing proper:
790 struct rq_iterator {
791 void *arg;
792 struct task_struct *(*start)(void *);
793 struct task_struct *(*next)(void *);
796 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
797 unsigned long max_nr_move, unsigned long max_load_move,
798 struct sched_domain *sd, enum cpu_idle_type idle,
799 int *all_pinned, unsigned long *load_moved,
800 int *this_best_prio, struct rq_iterator *iterator);
802 #include "sched_stats.h"
803 #include "sched_rt.c"
804 #include "sched_fair.c"
805 #include "sched_idletask.c"
806 #ifdef CONFIG_SCHED_DEBUG
807 # include "sched_debug.c"
808 #endif
810 #define sched_class_highest (&rt_sched_class)
813 * Update delta_exec, delta_fair fields for rq.
815 * delta_fair clock advances at a rate inversely proportional to
816 * total load (rq->load.weight) on the runqueue, while
817 * delta_exec advances at the same rate as wall-clock (provided
818 * cpu is not idle).
820 * delta_exec / delta_fair is a measure of the (smoothened) load on this
821 * runqueue over any given interval. This (smoothened) load is used
822 * during load balance.
824 * This function is called /before/ updating rq->load
825 * and when switching tasks.
827 static inline void inc_load(struct rq *rq, const struct task_struct *p)
829 update_load_add(&rq->load, p->se.load.weight);
832 static inline void dec_load(struct rq *rq, const struct task_struct *p)
834 update_load_sub(&rq->load, p->se.load.weight);
837 static void inc_nr_running(struct task_struct *p, struct rq *rq)
839 rq->nr_running++;
840 inc_load(rq, p);
843 static void dec_nr_running(struct task_struct *p, struct rq *rq)
845 rq->nr_running--;
846 dec_load(rq, p);
849 static void set_load_weight(struct task_struct *p)
851 p->se.wait_runtime = 0;
853 if (task_has_rt_policy(p)) {
854 p->se.load.weight = prio_to_weight[0] * 2;
855 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
856 return;
860 * SCHED_IDLE tasks get minimal weight:
862 if (p->policy == SCHED_IDLE) {
863 p->se.load.weight = WEIGHT_IDLEPRIO;
864 p->se.load.inv_weight = WMULT_IDLEPRIO;
865 return;
868 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
869 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
872 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
874 sched_info_queued(p);
875 p->sched_class->enqueue_task(rq, p, wakeup);
876 p->se.on_rq = 1;
879 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
881 p->sched_class->dequeue_task(rq, p, sleep);
882 p->se.on_rq = 0;
886 * __normal_prio - return the priority that is based on the static prio
888 static inline int __normal_prio(struct task_struct *p)
890 return p->static_prio;
894 * Calculate the expected normal priority: i.e. priority
895 * without taking RT-inheritance into account. Might be
896 * boosted by interactivity modifiers. Changes upon fork,
897 * setprio syscalls, and whenever the interactivity
898 * estimator recalculates.
900 static inline int normal_prio(struct task_struct *p)
902 int prio;
904 if (task_has_rt_policy(p))
905 prio = MAX_RT_PRIO-1 - p->rt_priority;
906 else
907 prio = __normal_prio(p);
908 return prio;
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
918 static int effective_prio(struct task_struct *p)
920 p->normal_prio = normal_prio(p);
922 * If we are RT tasks or we were boosted to RT priority,
923 * keep the priority unchanged. Otherwise, update priority
924 * to the normal priority:
926 if (!rt_prio(p->prio))
927 return p->normal_prio;
928 return p->prio;
932 * activate_task - move a task to the runqueue.
934 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
936 if (p->state == TASK_UNINTERRUPTIBLE)
937 rq->nr_uninterruptible--;
939 enqueue_task(rq, p, wakeup);
940 inc_nr_running(p, rq);
944 * activate_idle_task - move idle task to the _front_ of runqueue.
946 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
948 update_rq_clock(rq);
950 if (p->state == TASK_UNINTERRUPTIBLE)
951 rq->nr_uninterruptible--;
953 enqueue_task(rq, p, 0);
954 inc_nr_running(p, rq);
958 * deactivate_task - remove a task from the runqueue.
960 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
962 if (p->state == TASK_UNINTERRUPTIBLE)
963 rq->nr_uninterruptible++;
965 dequeue_task(rq, p, sleep);
966 dec_nr_running(p, rq);
970 * task_curr - is this task currently executing on a CPU?
971 * @p: the task in question.
973 inline int task_curr(const struct task_struct *p)
975 return cpu_curr(task_cpu(p)) == p;
978 /* Used instead of source_load when we know the type == 0 */
979 unsigned long weighted_cpuload(const int cpu)
981 return cpu_rq(cpu)->load.weight;
984 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
986 #ifdef CONFIG_SMP
987 task_thread_info(p)->cpu = cpu;
988 set_task_cfs_rq(p);
989 #endif
992 #ifdef CONFIG_SMP
994 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
996 int old_cpu = task_cpu(p);
997 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
998 u64 clock_offset, fair_clock_offset;
1000 clock_offset = old_rq->clock - new_rq->clock;
1001 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1003 if (p->se.wait_start_fair)
1004 p->se.wait_start_fair -= fair_clock_offset;
1006 #ifdef CONFIG_SCHEDSTATS
1007 if (p->se.wait_start)
1008 p->se.wait_start -= clock_offset;
1009 if (p->se.sleep_start)
1010 p->se.sleep_start -= clock_offset;
1011 if (p->se.block_start)
1012 p->se.block_start -= clock_offset;
1013 #endif
1015 __set_task_cpu(p, new_cpu);
1018 struct migration_req {
1019 struct list_head list;
1021 struct task_struct *task;
1022 int dest_cpu;
1024 struct completion done;
1028 * The task's runqueue lock must be held.
1029 * Returns true if you have to wait for migration thread.
1031 static int
1032 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1034 struct rq *rq = task_rq(p);
1037 * If the task is not on a runqueue (and not running), then
1038 * it is sufficient to simply update the task's cpu field.
1040 if (!p->se.on_rq && !task_running(rq, p)) {
1041 set_task_cpu(p, dest_cpu);
1042 return 0;
1045 init_completion(&req->done);
1046 req->task = p;
1047 req->dest_cpu = dest_cpu;
1048 list_add(&req->list, &rq->migration_queue);
1050 return 1;
1054 * wait_task_inactive - wait for a thread to unschedule.
1056 * The caller must ensure that the task *will* unschedule sometime soon,
1057 * else this function might spin for a *long* time. This function can't
1058 * be called with interrupts off, or it may introduce deadlock with
1059 * smp_call_function() if an IPI is sent by the same process we are
1060 * waiting to become inactive.
1062 void wait_task_inactive(struct task_struct *p)
1064 unsigned long flags;
1065 int running, on_rq;
1066 struct rq *rq;
1068 repeat:
1070 * We do the initial early heuristics without holding
1071 * any task-queue locks at all. We'll only try to get
1072 * the runqueue lock when things look like they will
1073 * work out!
1075 rq = task_rq(p);
1078 * If the task is actively running on another CPU
1079 * still, just relax and busy-wait without holding
1080 * any locks.
1082 * NOTE! Since we don't hold any locks, it's not
1083 * even sure that "rq" stays as the right runqueue!
1084 * But we don't care, since "task_running()" will
1085 * return false if the runqueue has changed and p
1086 * is actually now running somewhere else!
1088 while (task_running(rq, p))
1089 cpu_relax();
1092 * Ok, time to look more closely! We need the rq
1093 * lock now, to be *sure*. If we're wrong, we'll
1094 * just go back and repeat.
1096 rq = task_rq_lock(p, &flags);
1097 running = task_running(rq, p);
1098 on_rq = p->se.on_rq;
1099 task_rq_unlock(rq, &flags);
1102 * Was it really running after all now that we
1103 * checked with the proper locks actually held?
1105 * Oops. Go back and try again..
1107 if (unlikely(running)) {
1108 cpu_relax();
1109 goto repeat;
1113 * It's not enough that it's not actively running,
1114 * it must be off the runqueue _entirely_, and not
1115 * preempted!
1117 * So if it wa still runnable (but just not actively
1118 * running right now), it's preempted, and we should
1119 * yield - it could be a while.
1121 if (unlikely(on_rq)) {
1122 yield();
1123 goto repeat;
1127 * Ahh, all good. It wasn't running, and it wasn't
1128 * runnable, which means that it will never become
1129 * running in the future either. We're all done!
1133 /***
1134 * kick_process - kick a running thread to enter/exit the kernel
1135 * @p: the to-be-kicked thread
1137 * Cause a process which is running on another CPU to enter
1138 * kernel-mode, without any delay. (to get signals handled.)
1140 * NOTE: this function doesnt have to take the runqueue lock,
1141 * because all it wants to ensure is that the remote task enters
1142 * the kernel. If the IPI races and the task has been migrated
1143 * to another CPU then no harm is done and the purpose has been
1144 * achieved as well.
1146 void kick_process(struct task_struct *p)
1148 int cpu;
1150 preempt_disable();
1151 cpu = task_cpu(p);
1152 if ((cpu != smp_processor_id()) && task_curr(p))
1153 smp_send_reschedule(cpu);
1154 preempt_enable();
1158 * Return a low guess at the load of a migration-source cpu weighted
1159 * according to the scheduling class and "nice" value.
1161 * We want to under-estimate the load of migration sources, to
1162 * balance conservatively.
1164 static inline unsigned long source_load(int cpu, int type)
1166 struct rq *rq = cpu_rq(cpu);
1167 unsigned long total = weighted_cpuload(cpu);
1169 if (type == 0)
1170 return total;
1172 return min(rq->cpu_load[type-1], total);
1176 * Return a high guess at the load of a migration-target cpu weighted
1177 * according to the scheduling class and "nice" value.
1179 static inline unsigned long target_load(int cpu, int type)
1181 struct rq *rq = cpu_rq(cpu);
1182 unsigned long total = weighted_cpuload(cpu);
1184 if (type == 0)
1185 return total;
1187 return max(rq->cpu_load[type-1], total);
1191 * Return the average load per task on the cpu's run queue
1193 static inline unsigned long cpu_avg_load_per_task(int cpu)
1195 struct rq *rq = cpu_rq(cpu);
1196 unsigned long total = weighted_cpuload(cpu);
1197 unsigned long n = rq->nr_running;
1199 return n ? total / n : SCHED_LOAD_SCALE;
1203 * find_idlest_group finds and returns the least busy CPU group within the
1204 * domain.
1206 static struct sched_group *
1207 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1209 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1210 unsigned long min_load = ULONG_MAX, this_load = 0;
1211 int load_idx = sd->forkexec_idx;
1212 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1214 do {
1215 unsigned long load, avg_load;
1216 int local_group;
1217 int i;
1219 /* Skip over this group if it has no CPUs allowed */
1220 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1221 goto nextgroup;
1223 local_group = cpu_isset(this_cpu, group->cpumask);
1225 /* Tally up the load of all CPUs in the group */
1226 avg_load = 0;
1228 for_each_cpu_mask(i, group->cpumask) {
1229 /* Bias balancing toward cpus of our domain */
1230 if (local_group)
1231 load = source_load(i, load_idx);
1232 else
1233 load = target_load(i, load_idx);
1235 avg_load += load;
1238 /* Adjust by relative CPU power of the group */
1239 avg_load = sg_div_cpu_power(group,
1240 avg_load * SCHED_LOAD_SCALE);
1242 if (local_group) {
1243 this_load = avg_load;
1244 this = group;
1245 } else if (avg_load < min_load) {
1246 min_load = avg_load;
1247 idlest = group;
1249 nextgroup:
1250 group = group->next;
1251 } while (group != sd->groups);
1253 if (!idlest || 100*this_load < imbalance*min_load)
1254 return NULL;
1255 return idlest;
1259 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1261 static int
1262 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1264 cpumask_t tmp;
1265 unsigned long load, min_load = ULONG_MAX;
1266 int idlest = -1;
1267 int i;
1269 /* Traverse only the allowed CPUs */
1270 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1272 for_each_cpu_mask(i, tmp) {
1273 load = weighted_cpuload(i);
1275 if (load < min_load || (load == min_load && i == this_cpu)) {
1276 min_load = load;
1277 idlest = i;
1281 return idlest;
1285 * sched_balance_self: balance the current task (running on cpu) in domains
1286 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1287 * SD_BALANCE_EXEC.
1289 * Balance, ie. select the least loaded group.
1291 * Returns the target CPU number, or the same CPU if no balancing is needed.
1293 * preempt must be disabled.
1295 static int sched_balance_self(int cpu, int flag)
1297 struct task_struct *t = current;
1298 struct sched_domain *tmp, *sd = NULL;
1300 for_each_domain(cpu, tmp) {
1302 * If power savings logic is enabled for a domain, stop there.
1304 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1305 break;
1306 if (tmp->flags & flag)
1307 sd = tmp;
1310 while (sd) {
1311 cpumask_t span;
1312 struct sched_group *group;
1313 int new_cpu, weight;
1315 if (!(sd->flags & flag)) {
1316 sd = sd->child;
1317 continue;
1320 span = sd->span;
1321 group = find_idlest_group(sd, t, cpu);
1322 if (!group) {
1323 sd = sd->child;
1324 continue;
1327 new_cpu = find_idlest_cpu(group, t, cpu);
1328 if (new_cpu == -1 || new_cpu == cpu) {
1329 /* Now try balancing at a lower domain level of cpu */
1330 sd = sd->child;
1331 continue;
1334 /* Now try balancing at a lower domain level of new_cpu */
1335 cpu = new_cpu;
1336 sd = NULL;
1337 weight = cpus_weight(span);
1338 for_each_domain(cpu, tmp) {
1339 if (weight <= cpus_weight(tmp->span))
1340 break;
1341 if (tmp->flags & flag)
1342 sd = tmp;
1344 /* while loop will break here if sd == NULL */
1347 return cpu;
1350 #endif /* CONFIG_SMP */
1353 * wake_idle() will wake a task on an idle cpu if task->cpu is
1354 * not idle and an idle cpu is available. The span of cpus to
1355 * search starts with cpus closest then further out as needed,
1356 * so we always favor a closer, idle cpu.
1358 * Returns the CPU we should wake onto.
1360 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1361 static int wake_idle(int cpu, struct task_struct *p)
1363 cpumask_t tmp;
1364 struct sched_domain *sd;
1365 int i;
1368 * If it is idle, then it is the best cpu to run this task.
1370 * This cpu is also the best, if it has more than one task already.
1371 * Siblings must be also busy(in most cases) as they didn't already
1372 * pickup the extra load from this cpu and hence we need not check
1373 * sibling runqueue info. This will avoid the checks and cache miss
1374 * penalities associated with that.
1376 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1377 return cpu;
1379 for_each_domain(cpu, sd) {
1380 if (sd->flags & SD_WAKE_IDLE) {
1381 cpus_and(tmp, sd->span, p->cpus_allowed);
1382 for_each_cpu_mask(i, tmp) {
1383 if (idle_cpu(i))
1384 return i;
1386 } else {
1387 break;
1390 return cpu;
1392 #else
1393 static inline int wake_idle(int cpu, struct task_struct *p)
1395 return cpu;
1397 #endif
1399 /***
1400 * try_to_wake_up - wake up a thread
1401 * @p: the to-be-woken-up thread
1402 * @state: the mask of task states that can be woken
1403 * @sync: do a synchronous wakeup?
1405 * Put it on the run-queue if it's not already there. The "current"
1406 * thread is always on the run-queue (except when the actual
1407 * re-schedule is in progress), and as such you're allowed to do
1408 * the simpler "current->state = TASK_RUNNING" to mark yourself
1409 * runnable without the overhead of this.
1411 * returns failure only if the task is already active.
1413 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1415 int cpu, this_cpu, success = 0;
1416 unsigned long flags;
1417 long old_state;
1418 struct rq *rq;
1419 #ifdef CONFIG_SMP
1420 struct sched_domain *sd, *this_sd = NULL;
1421 unsigned long load, this_load;
1422 int new_cpu;
1423 #endif
1425 rq = task_rq_lock(p, &flags);
1426 old_state = p->state;
1427 if (!(old_state & state))
1428 goto out;
1430 if (p->se.on_rq)
1431 goto out_running;
1433 cpu = task_cpu(p);
1434 this_cpu = smp_processor_id();
1436 #ifdef CONFIG_SMP
1437 if (unlikely(task_running(rq, p)))
1438 goto out_activate;
1440 new_cpu = cpu;
1442 schedstat_inc(rq, ttwu_cnt);
1443 if (cpu == this_cpu) {
1444 schedstat_inc(rq, ttwu_local);
1445 goto out_set_cpu;
1448 for_each_domain(this_cpu, sd) {
1449 if (cpu_isset(cpu, sd->span)) {
1450 schedstat_inc(sd, ttwu_wake_remote);
1451 this_sd = sd;
1452 break;
1456 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1457 goto out_set_cpu;
1460 * Check for affine wakeup and passive balancing possibilities.
1462 if (this_sd) {
1463 int idx = this_sd->wake_idx;
1464 unsigned int imbalance;
1466 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1468 load = source_load(cpu, idx);
1469 this_load = target_load(this_cpu, idx);
1471 new_cpu = this_cpu; /* Wake to this CPU if we can */
1473 if (this_sd->flags & SD_WAKE_AFFINE) {
1474 unsigned long tl = this_load;
1475 unsigned long tl_per_task;
1477 tl_per_task = cpu_avg_load_per_task(this_cpu);
1480 * If sync wakeup then subtract the (maximum possible)
1481 * effect of the currently running task from the load
1482 * of the current CPU:
1484 if (sync)
1485 tl -= current->se.load.weight;
1487 if ((tl <= load &&
1488 tl + target_load(cpu, idx) <= tl_per_task) ||
1489 100*(tl + p->se.load.weight) <= imbalance*load) {
1491 * This domain has SD_WAKE_AFFINE and
1492 * p is cache cold in this domain, and
1493 * there is no bad imbalance.
1495 schedstat_inc(this_sd, ttwu_move_affine);
1496 goto out_set_cpu;
1501 * Start passive balancing when half the imbalance_pct
1502 * limit is reached.
1504 if (this_sd->flags & SD_WAKE_BALANCE) {
1505 if (imbalance*this_load <= 100*load) {
1506 schedstat_inc(this_sd, ttwu_move_balance);
1507 goto out_set_cpu;
1512 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1513 out_set_cpu:
1514 new_cpu = wake_idle(new_cpu, p);
1515 if (new_cpu != cpu) {
1516 set_task_cpu(p, new_cpu);
1517 task_rq_unlock(rq, &flags);
1518 /* might preempt at this point */
1519 rq = task_rq_lock(p, &flags);
1520 old_state = p->state;
1521 if (!(old_state & state))
1522 goto out;
1523 if (p->se.on_rq)
1524 goto out_running;
1526 this_cpu = smp_processor_id();
1527 cpu = task_cpu(p);
1530 out_activate:
1531 #endif /* CONFIG_SMP */
1532 update_rq_clock(rq);
1533 activate_task(rq, p, 1);
1535 * Sync wakeups (i.e. those types of wakeups where the waker
1536 * has indicated that it will leave the CPU in short order)
1537 * don't trigger a preemption, if the woken up task will run on
1538 * this cpu. (in this case the 'I will reschedule' promise of
1539 * the waker guarantees that the freshly woken up task is going
1540 * to be considered on this CPU.)
1542 if (!sync || cpu != this_cpu)
1543 check_preempt_curr(rq, p);
1544 success = 1;
1546 out_running:
1547 p->state = TASK_RUNNING;
1548 out:
1549 task_rq_unlock(rq, &flags);
1551 return success;
1554 int fastcall wake_up_process(struct task_struct *p)
1556 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1557 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1559 EXPORT_SYMBOL(wake_up_process);
1561 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1563 return try_to_wake_up(p, state, 0);
1567 * Perform scheduler related setup for a newly forked process p.
1568 * p is forked by current.
1570 * __sched_fork() is basic setup used by init_idle() too:
1572 static void __sched_fork(struct task_struct *p)
1574 p->se.wait_start_fair = 0;
1575 p->se.exec_start = 0;
1576 p->se.sum_exec_runtime = 0;
1577 p->se.prev_sum_exec_runtime = 0;
1578 p->se.wait_runtime = 0;
1580 #ifdef CONFIG_SCHEDSTATS
1581 p->se.wait_start = 0;
1582 p->se.sum_wait_runtime = 0;
1583 p->se.sum_sleep_runtime = 0;
1584 p->se.sleep_start = 0;
1585 p->se.block_start = 0;
1586 p->se.sleep_max = 0;
1587 p->se.block_max = 0;
1588 p->se.exec_max = 0;
1589 p->se.slice_max = 0;
1590 p->se.wait_max = 0;
1591 p->se.wait_runtime_overruns = 0;
1592 p->se.wait_runtime_underruns = 0;
1593 #endif
1595 INIT_LIST_HEAD(&p->run_list);
1596 p->se.on_rq = 0;
1598 #ifdef CONFIG_PREEMPT_NOTIFIERS
1599 INIT_HLIST_HEAD(&p->preempt_notifiers);
1600 #endif
1603 * We mark the process as running here, but have not actually
1604 * inserted it onto the runqueue yet. This guarantees that
1605 * nobody will actually run it, and a signal or other external
1606 * event cannot wake it up and insert it on the runqueue either.
1608 p->state = TASK_RUNNING;
1612 * fork()/clone()-time setup:
1614 void sched_fork(struct task_struct *p, int clone_flags)
1616 int cpu = get_cpu();
1618 __sched_fork(p);
1620 #ifdef CONFIG_SMP
1621 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1622 #endif
1623 __set_task_cpu(p, cpu);
1626 * Make sure we do not leak PI boosting priority to the child:
1628 p->prio = current->normal_prio;
1630 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1631 if (likely(sched_info_on()))
1632 memset(&p->sched_info, 0, sizeof(p->sched_info));
1633 #endif
1634 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1635 p->oncpu = 0;
1636 #endif
1637 #ifdef CONFIG_PREEMPT
1638 /* Want to start with kernel preemption disabled. */
1639 task_thread_info(p)->preempt_count = 1;
1640 #endif
1641 put_cpu();
1645 * wake_up_new_task - wake up a newly created task for the first time.
1647 * This function will do some initial scheduler statistics housekeeping
1648 * that must be done for every newly created context, then puts the task
1649 * on the runqueue and wakes it.
1651 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1653 unsigned long flags;
1654 struct rq *rq;
1655 int this_cpu;
1657 rq = task_rq_lock(p, &flags);
1658 BUG_ON(p->state != TASK_RUNNING);
1659 this_cpu = smp_processor_id(); /* parent's CPU */
1660 update_rq_clock(rq);
1662 p->prio = effective_prio(p);
1664 if (rt_prio(p->prio))
1665 p->sched_class = &rt_sched_class;
1666 else
1667 p->sched_class = &fair_sched_class;
1669 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1670 !current->se.on_rq) {
1671 activate_task(rq, p, 0);
1672 } else {
1674 * Let the scheduling class do new task startup
1675 * management (if any):
1677 p->sched_class->task_new(rq, p);
1678 inc_nr_running(p, rq);
1680 check_preempt_curr(rq, p);
1681 task_rq_unlock(rq, &flags);
1684 #ifdef CONFIG_PREEMPT_NOTIFIERS
1687 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1688 * @notifier: notifier struct to register
1690 void preempt_notifier_register(struct preempt_notifier *notifier)
1692 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1694 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1697 * preempt_notifier_unregister - no longer interested in preemption notifications
1698 * @notifier: notifier struct to unregister
1700 * This is safe to call from within a preemption notifier.
1702 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1704 hlist_del(&notifier->link);
1706 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1708 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1710 struct preempt_notifier *notifier;
1711 struct hlist_node *node;
1713 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1714 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1717 static void
1718 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1719 struct task_struct *next)
1721 struct preempt_notifier *notifier;
1722 struct hlist_node *node;
1724 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1725 notifier->ops->sched_out(notifier, next);
1728 #else
1730 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1734 static void
1735 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1736 struct task_struct *next)
1740 #endif
1743 * prepare_task_switch - prepare to switch tasks
1744 * @rq: the runqueue preparing to switch
1745 * @prev: the current task that is being switched out
1746 * @next: the task we are going to switch to.
1748 * This is called with the rq lock held and interrupts off. It must
1749 * be paired with a subsequent finish_task_switch after the context
1750 * switch.
1752 * prepare_task_switch sets up locking and calls architecture specific
1753 * hooks.
1755 static inline void
1756 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1757 struct task_struct *next)
1759 fire_sched_out_preempt_notifiers(prev, next);
1760 prepare_lock_switch(rq, next);
1761 prepare_arch_switch(next);
1765 * finish_task_switch - clean up after a task-switch
1766 * @rq: runqueue associated with task-switch
1767 * @prev: the thread we just switched away from.
1769 * finish_task_switch must be called after the context switch, paired
1770 * with a prepare_task_switch call before the context switch.
1771 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1772 * and do any other architecture-specific cleanup actions.
1774 * Note that we may have delayed dropping an mm in context_switch(). If
1775 * so, we finish that here outside of the runqueue lock. (Doing it
1776 * with the lock held can cause deadlocks; see schedule() for
1777 * details.)
1779 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1780 __releases(rq->lock)
1782 struct mm_struct *mm = rq->prev_mm;
1783 long prev_state;
1785 rq->prev_mm = NULL;
1788 * A task struct has one reference for the use as "current".
1789 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1790 * schedule one last time. The schedule call will never return, and
1791 * the scheduled task must drop that reference.
1792 * The test for TASK_DEAD must occur while the runqueue locks are
1793 * still held, otherwise prev could be scheduled on another cpu, die
1794 * there before we look at prev->state, and then the reference would
1795 * be dropped twice.
1796 * Manfred Spraul <manfred@colorfullife.com>
1798 prev_state = prev->state;
1799 finish_arch_switch(prev);
1800 finish_lock_switch(rq, prev);
1801 fire_sched_in_preempt_notifiers(current);
1802 if (mm)
1803 mmdrop(mm);
1804 if (unlikely(prev_state == TASK_DEAD)) {
1806 * Remove function-return probe instances associated with this
1807 * task and put them back on the free list.
1809 kprobe_flush_task(prev);
1810 put_task_struct(prev);
1815 * schedule_tail - first thing a freshly forked thread must call.
1816 * @prev: the thread we just switched away from.
1818 asmlinkage void schedule_tail(struct task_struct *prev)
1819 __releases(rq->lock)
1821 struct rq *rq = this_rq();
1823 finish_task_switch(rq, prev);
1824 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1825 /* In this case, finish_task_switch does not reenable preemption */
1826 preempt_enable();
1827 #endif
1828 if (current->set_child_tid)
1829 put_user(current->pid, current->set_child_tid);
1833 * context_switch - switch to the new MM and the new
1834 * thread's register state.
1836 static inline void
1837 context_switch(struct rq *rq, struct task_struct *prev,
1838 struct task_struct *next)
1840 struct mm_struct *mm, *oldmm;
1842 prepare_task_switch(rq, prev, next);
1843 mm = next->mm;
1844 oldmm = prev->active_mm;
1846 * For paravirt, this is coupled with an exit in switch_to to
1847 * combine the page table reload and the switch backend into
1848 * one hypercall.
1850 arch_enter_lazy_cpu_mode();
1852 if (unlikely(!mm)) {
1853 next->active_mm = oldmm;
1854 atomic_inc(&oldmm->mm_count);
1855 enter_lazy_tlb(oldmm, next);
1856 } else
1857 switch_mm(oldmm, mm, next);
1859 if (unlikely(!prev->mm)) {
1860 prev->active_mm = NULL;
1861 rq->prev_mm = oldmm;
1864 * Since the runqueue lock will be released by the next
1865 * task (which is an invalid locking op but in the case
1866 * of the scheduler it's an obvious special-case), so we
1867 * do an early lockdep release here:
1869 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1870 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1871 #endif
1873 /* Here we just switch the register state and the stack. */
1874 switch_to(prev, next, prev);
1876 barrier();
1878 * this_rq must be evaluated again because prev may have moved
1879 * CPUs since it called schedule(), thus the 'rq' on its stack
1880 * frame will be invalid.
1882 finish_task_switch(this_rq(), prev);
1886 * nr_running, nr_uninterruptible and nr_context_switches:
1888 * externally visible scheduler statistics: current number of runnable
1889 * threads, current number of uninterruptible-sleeping threads, total
1890 * number of context switches performed since bootup.
1892 unsigned long nr_running(void)
1894 unsigned long i, sum = 0;
1896 for_each_online_cpu(i)
1897 sum += cpu_rq(i)->nr_running;
1899 return sum;
1902 unsigned long nr_uninterruptible(void)
1904 unsigned long i, sum = 0;
1906 for_each_possible_cpu(i)
1907 sum += cpu_rq(i)->nr_uninterruptible;
1910 * Since we read the counters lockless, it might be slightly
1911 * inaccurate. Do not allow it to go below zero though:
1913 if (unlikely((long)sum < 0))
1914 sum = 0;
1916 return sum;
1919 unsigned long long nr_context_switches(void)
1921 int i;
1922 unsigned long long sum = 0;
1924 for_each_possible_cpu(i)
1925 sum += cpu_rq(i)->nr_switches;
1927 return sum;
1930 unsigned long nr_iowait(void)
1932 unsigned long i, sum = 0;
1934 for_each_possible_cpu(i)
1935 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1937 return sum;
1940 unsigned long nr_active(void)
1942 unsigned long i, running = 0, uninterruptible = 0;
1944 for_each_online_cpu(i) {
1945 running += cpu_rq(i)->nr_running;
1946 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1949 if (unlikely((long)uninterruptible < 0))
1950 uninterruptible = 0;
1952 return running + uninterruptible;
1956 * Update rq->cpu_load[] statistics. This function is usually called every
1957 * scheduler tick (TICK_NSEC).
1959 static void update_cpu_load(struct rq *this_rq)
1961 unsigned long this_load = this_rq->load.weight;
1962 int i, scale;
1964 this_rq->nr_load_updates++;
1966 /* Update our load: */
1967 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1968 unsigned long old_load, new_load;
1970 /* scale is effectively 1 << i now, and >> i divides by scale */
1972 old_load = this_rq->cpu_load[i];
1973 new_load = this_load;
1975 * Round up the averaging division if load is increasing. This
1976 * prevents us from getting stuck on 9 if the load is 10, for
1977 * example.
1979 if (new_load > old_load)
1980 new_load += scale-1;
1981 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1985 #ifdef CONFIG_SMP
1988 * double_rq_lock - safely lock two runqueues
1990 * Note this does not disable interrupts like task_rq_lock,
1991 * you need to do so manually before calling.
1993 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1994 __acquires(rq1->lock)
1995 __acquires(rq2->lock)
1997 BUG_ON(!irqs_disabled());
1998 if (rq1 == rq2) {
1999 spin_lock(&rq1->lock);
2000 __acquire(rq2->lock); /* Fake it out ;) */
2001 } else {
2002 if (rq1 < rq2) {
2003 spin_lock(&rq1->lock);
2004 spin_lock(&rq2->lock);
2005 } else {
2006 spin_lock(&rq2->lock);
2007 spin_lock(&rq1->lock);
2010 update_rq_clock(rq1);
2011 update_rq_clock(rq2);
2015 * double_rq_unlock - safely unlock two runqueues
2017 * Note this does not restore interrupts like task_rq_unlock,
2018 * you need to do so manually after calling.
2020 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2021 __releases(rq1->lock)
2022 __releases(rq2->lock)
2024 spin_unlock(&rq1->lock);
2025 if (rq1 != rq2)
2026 spin_unlock(&rq2->lock);
2027 else
2028 __release(rq2->lock);
2032 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2034 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2035 __releases(this_rq->lock)
2036 __acquires(busiest->lock)
2037 __acquires(this_rq->lock)
2039 if (unlikely(!irqs_disabled())) {
2040 /* printk() doesn't work good under rq->lock */
2041 spin_unlock(&this_rq->lock);
2042 BUG_ON(1);
2044 if (unlikely(!spin_trylock(&busiest->lock))) {
2045 if (busiest < this_rq) {
2046 spin_unlock(&this_rq->lock);
2047 spin_lock(&busiest->lock);
2048 spin_lock(&this_rq->lock);
2049 } else
2050 spin_lock(&busiest->lock);
2055 * If dest_cpu is allowed for this process, migrate the task to it.
2056 * This is accomplished by forcing the cpu_allowed mask to only
2057 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2058 * the cpu_allowed mask is restored.
2060 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2062 struct migration_req req;
2063 unsigned long flags;
2064 struct rq *rq;
2066 rq = task_rq_lock(p, &flags);
2067 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2068 || unlikely(cpu_is_offline(dest_cpu)))
2069 goto out;
2071 /* force the process onto the specified CPU */
2072 if (migrate_task(p, dest_cpu, &req)) {
2073 /* Need to wait for migration thread (might exit: take ref). */
2074 struct task_struct *mt = rq->migration_thread;
2076 get_task_struct(mt);
2077 task_rq_unlock(rq, &flags);
2078 wake_up_process(mt);
2079 put_task_struct(mt);
2080 wait_for_completion(&req.done);
2082 return;
2084 out:
2085 task_rq_unlock(rq, &flags);
2089 * sched_exec - execve() is a valuable balancing opportunity, because at
2090 * this point the task has the smallest effective memory and cache footprint.
2092 void sched_exec(void)
2094 int new_cpu, this_cpu = get_cpu();
2095 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2096 put_cpu();
2097 if (new_cpu != this_cpu)
2098 sched_migrate_task(current, new_cpu);
2102 * pull_task - move a task from a remote runqueue to the local runqueue.
2103 * Both runqueues must be locked.
2105 static void pull_task(struct rq *src_rq, struct task_struct *p,
2106 struct rq *this_rq, int this_cpu)
2108 deactivate_task(src_rq, p, 0);
2109 set_task_cpu(p, this_cpu);
2110 activate_task(this_rq, p, 0);
2112 * Note that idle threads have a prio of MAX_PRIO, for this test
2113 * to be always true for them.
2115 check_preempt_curr(this_rq, p);
2119 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2121 static
2122 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2123 struct sched_domain *sd, enum cpu_idle_type idle,
2124 int *all_pinned)
2127 * We do not migrate tasks that are:
2128 * 1) running (obviously), or
2129 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2130 * 3) are cache-hot on their current CPU.
2132 if (!cpu_isset(this_cpu, p->cpus_allowed))
2133 return 0;
2134 *all_pinned = 0;
2136 if (task_running(rq, p))
2137 return 0;
2139 return 1;
2142 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2143 unsigned long max_nr_move, unsigned long max_load_move,
2144 struct sched_domain *sd, enum cpu_idle_type idle,
2145 int *all_pinned, unsigned long *load_moved,
2146 int *this_best_prio, struct rq_iterator *iterator)
2148 int pulled = 0, pinned = 0, skip_for_load;
2149 struct task_struct *p;
2150 long rem_load_move = max_load_move;
2152 if (max_nr_move == 0 || max_load_move == 0)
2153 goto out;
2155 pinned = 1;
2158 * Start the load-balancing iterator:
2160 p = iterator->start(iterator->arg);
2161 next:
2162 if (!p)
2163 goto out;
2165 * To help distribute high priority tasks accross CPUs we don't
2166 * skip a task if it will be the highest priority task (i.e. smallest
2167 * prio value) on its new queue regardless of its load weight
2169 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2170 SCHED_LOAD_SCALE_FUZZ;
2171 if ((skip_for_load && p->prio >= *this_best_prio) ||
2172 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2173 p = iterator->next(iterator->arg);
2174 goto next;
2177 pull_task(busiest, p, this_rq, this_cpu);
2178 pulled++;
2179 rem_load_move -= p->se.load.weight;
2182 * We only want to steal up to the prescribed number of tasks
2183 * and the prescribed amount of weighted load.
2185 if (pulled < max_nr_move && rem_load_move > 0) {
2186 if (p->prio < *this_best_prio)
2187 *this_best_prio = p->prio;
2188 p = iterator->next(iterator->arg);
2189 goto next;
2191 out:
2193 * Right now, this is the only place pull_task() is called,
2194 * so we can safely collect pull_task() stats here rather than
2195 * inside pull_task().
2197 schedstat_add(sd, lb_gained[idle], pulled);
2199 if (all_pinned)
2200 *all_pinned = pinned;
2201 *load_moved = max_load_move - rem_load_move;
2202 return pulled;
2206 * move_tasks tries to move up to max_load_move weighted load from busiest to
2207 * this_rq, as part of a balancing operation within domain "sd".
2208 * Returns 1 if successful and 0 otherwise.
2210 * Called with both runqueues locked.
2212 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2213 unsigned long max_load_move,
2214 struct sched_domain *sd, enum cpu_idle_type idle,
2215 int *all_pinned)
2217 struct sched_class *class = sched_class_highest;
2218 unsigned long total_load_moved = 0;
2219 int this_best_prio = this_rq->curr->prio;
2221 do {
2222 total_load_moved +=
2223 class->load_balance(this_rq, this_cpu, busiest,
2224 ULONG_MAX, max_load_move - total_load_moved,
2225 sd, idle, all_pinned, &this_best_prio);
2226 class = class->next;
2227 } while (class && max_load_move > total_load_moved);
2229 return total_load_moved > 0;
2233 * move_one_task tries to move exactly one task from busiest to this_rq, as
2234 * part of active balancing operations within "domain".
2235 * Returns 1 if successful and 0 otherwise.
2237 * Called with both runqueues locked.
2239 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2240 struct sched_domain *sd, enum cpu_idle_type idle)
2242 struct sched_class *class;
2243 int this_best_prio = MAX_PRIO;
2245 for (class = sched_class_highest; class; class = class->next)
2246 if (class->load_balance(this_rq, this_cpu, busiest,
2247 1, ULONG_MAX, sd, idle, NULL,
2248 &this_best_prio))
2249 return 1;
2251 return 0;
2255 * find_busiest_group finds and returns the busiest CPU group within the
2256 * domain. It calculates and returns the amount of weighted load which
2257 * should be moved to restore balance via the imbalance parameter.
2259 static struct sched_group *
2260 find_busiest_group(struct sched_domain *sd, int this_cpu,
2261 unsigned long *imbalance, enum cpu_idle_type idle,
2262 int *sd_idle, cpumask_t *cpus, int *balance)
2264 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2265 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2266 unsigned long max_pull;
2267 unsigned long busiest_load_per_task, busiest_nr_running;
2268 unsigned long this_load_per_task, this_nr_running;
2269 int load_idx;
2270 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2271 int power_savings_balance = 1;
2272 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2273 unsigned long min_nr_running = ULONG_MAX;
2274 struct sched_group *group_min = NULL, *group_leader = NULL;
2275 #endif
2277 max_load = this_load = total_load = total_pwr = 0;
2278 busiest_load_per_task = busiest_nr_running = 0;
2279 this_load_per_task = this_nr_running = 0;
2280 if (idle == CPU_NOT_IDLE)
2281 load_idx = sd->busy_idx;
2282 else if (idle == CPU_NEWLY_IDLE)
2283 load_idx = sd->newidle_idx;
2284 else
2285 load_idx = sd->idle_idx;
2287 do {
2288 unsigned long load, group_capacity;
2289 int local_group;
2290 int i;
2291 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2292 unsigned long sum_nr_running, sum_weighted_load;
2294 local_group = cpu_isset(this_cpu, group->cpumask);
2296 if (local_group)
2297 balance_cpu = first_cpu(group->cpumask);
2299 /* Tally up the load of all CPUs in the group */
2300 sum_weighted_load = sum_nr_running = avg_load = 0;
2302 for_each_cpu_mask(i, group->cpumask) {
2303 struct rq *rq;
2305 if (!cpu_isset(i, *cpus))
2306 continue;
2308 rq = cpu_rq(i);
2310 if (*sd_idle && rq->nr_running)
2311 *sd_idle = 0;
2313 /* Bias balancing toward cpus of our domain */
2314 if (local_group) {
2315 if (idle_cpu(i) && !first_idle_cpu) {
2316 first_idle_cpu = 1;
2317 balance_cpu = i;
2320 load = target_load(i, load_idx);
2321 } else
2322 load = source_load(i, load_idx);
2324 avg_load += load;
2325 sum_nr_running += rq->nr_running;
2326 sum_weighted_load += weighted_cpuload(i);
2330 * First idle cpu or the first cpu(busiest) in this sched group
2331 * is eligible for doing load balancing at this and above
2332 * domains. In the newly idle case, we will allow all the cpu's
2333 * to do the newly idle load balance.
2335 if (idle != CPU_NEWLY_IDLE && local_group &&
2336 balance_cpu != this_cpu && balance) {
2337 *balance = 0;
2338 goto ret;
2341 total_load += avg_load;
2342 total_pwr += group->__cpu_power;
2344 /* Adjust by relative CPU power of the group */
2345 avg_load = sg_div_cpu_power(group,
2346 avg_load * SCHED_LOAD_SCALE);
2348 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2350 if (local_group) {
2351 this_load = avg_load;
2352 this = group;
2353 this_nr_running = sum_nr_running;
2354 this_load_per_task = sum_weighted_load;
2355 } else if (avg_load > max_load &&
2356 sum_nr_running > group_capacity) {
2357 max_load = avg_load;
2358 busiest = group;
2359 busiest_nr_running = sum_nr_running;
2360 busiest_load_per_task = sum_weighted_load;
2363 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2365 * Busy processors will not participate in power savings
2366 * balance.
2368 if (idle == CPU_NOT_IDLE ||
2369 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2370 goto group_next;
2373 * If the local group is idle or completely loaded
2374 * no need to do power savings balance at this domain
2376 if (local_group && (this_nr_running >= group_capacity ||
2377 !this_nr_running))
2378 power_savings_balance = 0;
2381 * If a group is already running at full capacity or idle,
2382 * don't include that group in power savings calculations
2384 if (!power_savings_balance || sum_nr_running >= group_capacity
2385 || !sum_nr_running)
2386 goto group_next;
2389 * Calculate the group which has the least non-idle load.
2390 * This is the group from where we need to pick up the load
2391 * for saving power
2393 if ((sum_nr_running < min_nr_running) ||
2394 (sum_nr_running == min_nr_running &&
2395 first_cpu(group->cpumask) <
2396 first_cpu(group_min->cpumask))) {
2397 group_min = group;
2398 min_nr_running = sum_nr_running;
2399 min_load_per_task = sum_weighted_load /
2400 sum_nr_running;
2404 * Calculate the group which is almost near its
2405 * capacity but still has some space to pick up some load
2406 * from other group and save more power
2408 if (sum_nr_running <= group_capacity - 1) {
2409 if (sum_nr_running > leader_nr_running ||
2410 (sum_nr_running == leader_nr_running &&
2411 first_cpu(group->cpumask) >
2412 first_cpu(group_leader->cpumask))) {
2413 group_leader = group;
2414 leader_nr_running = sum_nr_running;
2417 group_next:
2418 #endif
2419 group = group->next;
2420 } while (group != sd->groups);
2422 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2423 goto out_balanced;
2425 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2427 if (this_load >= avg_load ||
2428 100*max_load <= sd->imbalance_pct*this_load)
2429 goto out_balanced;
2431 busiest_load_per_task /= busiest_nr_running;
2433 * We're trying to get all the cpus to the average_load, so we don't
2434 * want to push ourselves above the average load, nor do we wish to
2435 * reduce the max loaded cpu below the average load, as either of these
2436 * actions would just result in more rebalancing later, and ping-pong
2437 * tasks around. Thus we look for the minimum possible imbalance.
2438 * Negative imbalances (*we* are more loaded than anyone else) will
2439 * be counted as no imbalance for these purposes -- we can't fix that
2440 * by pulling tasks to us. Be careful of negative numbers as they'll
2441 * appear as very large values with unsigned longs.
2443 if (max_load <= busiest_load_per_task)
2444 goto out_balanced;
2447 * In the presence of smp nice balancing, certain scenarios can have
2448 * max load less than avg load(as we skip the groups at or below
2449 * its cpu_power, while calculating max_load..)
2451 if (max_load < avg_load) {
2452 *imbalance = 0;
2453 goto small_imbalance;
2456 /* Don't want to pull so many tasks that a group would go idle */
2457 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2459 /* How much load to actually move to equalise the imbalance */
2460 *imbalance = min(max_pull * busiest->__cpu_power,
2461 (avg_load - this_load) * this->__cpu_power)
2462 / SCHED_LOAD_SCALE;
2465 * if *imbalance is less than the average load per runnable task
2466 * there is no gaurantee that any tasks will be moved so we'll have
2467 * a think about bumping its value to force at least one task to be
2468 * moved
2470 if (*imbalance < busiest_load_per_task) {
2471 unsigned long tmp, pwr_now, pwr_move;
2472 unsigned int imbn;
2474 small_imbalance:
2475 pwr_move = pwr_now = 0;
2476 imbn = 2;
2477 if (this_nr_running) {
2478 this_load_per_task /= this_nr_running;
2479 if (busiest_load_per_task > this_load_per_task)
2480 imbn = 1;
2481 } else
2482 this_load_per_task = SCHED_LOAD_SCALE;
2484 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2485 busiest_load_per_task * imbn) {
2486 *imbalance = busiest_load_per_task;
2487 return busiest;
2491 * OK, we don't have enough imbalance to justify moving tasks,
2492 * however we may be able to increase total CPU power used by
2493 * moving them.
2496 pwr_now += busiest->__cpu_power *
2497 min(busiest_load_per_task, max_load);
2498 pwr_now += this->__cpu_power *
2499 min(this_load_per_task, this_load);
2500 pwr_now /= SCHED_LOAD_SCALE;
2502 /* Amount of load we'd subtract */
2503 tmp = sg_div_cpu_power(busiest,
2504 busiest_load_per_task * SCHED_LOAD_SCALE);
2505 if (max_load > tmp)
2506 pwr_move += busiest->__cpu_power *
2507 min(busiest_load_per_task, max_load - tmp);
2509 /* Amount of load we'd add */
2510 if (max_load * busiest->__cpu_power <
2511 busiest_load_per_task * SCHED_LOAD_SCALE)
2512 tmp = sg_div_cpu_power(this,
2513 max_load * busiest->__cpu_power);
2514 else
2515 tmp = sg_div_cpu_power(this,
2516 busiest_load_per_task * SCHED_LOAD_SCALE);
2517 pwr_move += this->__cpu_power *
2518 min(this_load_per_task, this_load + tmp);
2519 pwr_move /= SCHED_LOAD_SCALE;
2521 /* Move if we gain throughput */
2522 if (pwr_move > pwr_now)
2523 *imbalance = busiest_load_per_task;
2526 return busiest;
2528 out_balanced:
2529 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2530 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2531 goto ret;
2533 if (this == group_leader && group_leader != group_min) {
2534 *imbalance = min_load_per_task;
2535 return group_min;
2537 #endif
2538 ret:
2539 *imbalance = 0;
2540 return NULL;
2544 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2546 static struct rq *
2547 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2548 unsigned long imbalance, cpumask_t *cpus)
2550 struct rq *busiest = NULL, *rq;
2551 unsigned long max_load = 0;
2552 int i;
2554 for_each_cpu_mask(i, group->cpumask) {
2555 unsigned long wl;
2557 if (!cpu_isset(i, *cpus))
2558 continue;
2560 rq = cpu_rq(i);
2561 wl = weighted_cpuload(i);
2563 if (rq->nr_running == 1 && wl > imbalance)
2564 continue;
2566 if (wl > max_load) {
2567 max_load = wl;
2568 busiest = rq;
2572 return busiest;
2576 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2577 * so long as it is large enough.
2579 #define MAX_PINNED_INTERVAL 512
2582 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2583 * tasks if there is an imbalance.
2585 static int load_balance(int this_cpu, struct rq *this_rq,
2586 struct sched_domain *sd, enum cpu_idle_type idle,
2587 int *balance)
2589 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2590 struct sched_group *group;
2591 unsigned long imbalance;
2592 struct rq *busiest;
2593 cpumask_t cpus = CPU_MASK_ALL;
2594 unsigned long flags;
2597 * When power savings policy is enabled for the parent domain, idle
2598 * sibling can pick up load irrespective of busy siblings. In this case,
2599 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2600 * portraying it as CPU_NOT_IDLE.
2602 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2603 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2604 sd_idle = 1;
2606 schedstat_inc(sd, lb_cnt[idle]);
2608 redo:
2609 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2610 &cpus, balance);
2612 if (*balance == 0)
2613 goto out_balanced;
2615 if (!group) {
2616 schedstat_inc(sd, lb_nobusyg[idle]);
2617 goto out_balanced;
2620 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2621 if (!busiest) {
2622 schedstat_inc(sd, lb_nobusyq[idle]);
2623 goto out_balanced;
2626 BUG_ON(busiest == this_rq);
2628 schedstat_add(sd, lb_imbalance[idle], imbalance);
2630 ld_moved = 0;
2631 if (busiest->nr_running > 1) {
2633 * Attempt to move tasks. If find_busiest_group has found
2634 * an imbalance but busiest->nr_running <= 1, the group is
2635 * still unbalanced. ld_moved simply stays zero, so it is
2636 * correctly treated as an imbalance.
2638 local_irq_save(flags);
2639 double_rq_lock(this_rq, busiest);
2640 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2641 imbalance, sd, idle, &all_pinned);
2642 double_rq_unlock(this_rq, busiest);
2643 local_irq_restore(flags);
2646 * some other cpu did the load balance for us.
2648 if (ld_moved && this_cpu != smp_processor_id())
2649 resched_cpu(this_cpu);
2651 /* All tasks on this runqueue were pinned by CPU affinity */
2652 if (unlikely(all_pinned)) {
2653 cpu_clear(cpu_of(busiest), cpus);
2654 if (!cpus_empty(cpus))
2655 goto redo;
2656 goto out_balanced;
2660 if (!ld_moved) {
2661 schedstat_inc(sd, lb_failed[idle]);
2662 sd->nr_balance_failed++;
2664 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2666 spin_lock_irqsave(&busiest->lock, flags);
2668 /* don't kick the migration_thread, if the curr
2669 * task on busiest cpu can't be moved to this_cpu
2671 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2672 spin_unlock_irqrestore(&busiest->lock, flags);
2673 all_pinned = 1;
2674 goto out_one_pinned;
2677 if (!busiest->active_balance) {
2678 busiest->active_balance = 1;
2679 busiest->push_cpu = this_cpu;
2680 active_balance = 1;
2682 spin_unlock_irqrestore(&busiest->lock, flags);
2683 if (active_balance)
2684 wake_up_process(busiest->migration_thread);
2687 * We've kicked active balancing, reset the failure
2688 * counter.
2690 sd->nr_balance_failed = sd->cache_nice_tries+1;
2692 } else
2693 sd->nr_balance_failed = 0;
2695 if (likely(!active_balance)) {
2696 /* We were unbalanced, so reset the balancing interval */
2697 sd->balance_interval = sd->min_interval;
2698 } else {
2700 * If we've begun active balancing, start to back off. This
2701 * case may not be covered by the all_pinned logic if there
2702 * is only 1 task on the busy runqueue (because we don't call
2703 * move_tasks).
2705 if (sd->balance_interval < sd->max_interval)
2706 sd->balance_interval *= 2;
2709 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2710 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2711 return -1;
2712 return ld_moved;
2714 out_balanced:
2715 schedstat_inc(sd, lb_balanced[idle]);
2717 sd->nr_balance_failed = 0;
2719 out_one_pinned:
2720 /* tune up the balancing interval */
2721 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2722 (sd->balance_interval < sd->max_interval))
2723 sd->balance_interval *= 2;
2725 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2726 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2727 return -1;
2728 return 0;
2732 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2733 * tasks if there is an imbalance.
2735 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2736 * this_rq is locked.
2738 static int
2739 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2741 struct sched_group *group;
2742 struct rq *busiest = NULL;
2743 unsigned long imbalance;
2744 int ld_moved = 0;
2745 int sd_idle = 0;
2746 int all_pinned = 0;
2747 cpumask_t cpus = CPU_MASK_ALL;
2750 * When power savings policy is enabled for the parent domain, idle
2751 * sibling can pick up load irrespective of busy siblings. In this case,
2752 * let the state of idle sibling percolate up as IDLE, instead of
2753 * portraying it as CPU_NOT_IDLE.
2755 if (sd->flags & SD_SHARE_CPUPOWER &&
2756 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2757 sd_idle = 1;
2759 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2760 redo:
2761 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2762 &sd_idle, &cpus, NULL);
2763 if (!group) {
2764 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2765 goto out_balanced;
2768 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2769 &cpus);
2770 if (!busiest) {
2771 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2772 goto out_balanced;
2775 BUG_ON(busiest == this_rq);
2777 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2779 ld_moved = 0;
2780 if (busiest->nr_running > 1) {
2781 /* Attempt to move tasks */
2782 double_lock_balance(this_rq, busiest);
2783 /* this_rq->clock is already updated */
2784 update_rq_clock(busiest);
2785 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2786 imbalance, sd, CPU_NEWLY_IDLE,
2787 &all_pinned);
2788 spin_unlock(&busiest->lock);
2790 if (unlikely(all_pinned)) {
2791 cpu_clear(cpu_of(busiest), cpus);
2792 if (!cpus_empty(cpus))
2793 goto redo;
2797 if (!ld_moved) {
2798 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2799 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2800 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2801 return -1;
2802 } else
2803 sd->nr_balance_failed = 0;
2805 return ld_moved;
2807 out_balanced:
2808 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2809 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2810 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2811 return -1;
2812 sd->nr_balance_failed = 0;
2814 return 0;
2818 * idle_balance is called by schedule() if this_cpu is about to become
2819 * idle. Attempts to pull tasks from other CPUs.
2821 static void idle_balance(int this_cpu, struct rq *this_rq)
2823 struct sched_domain *sd;
2824 int pulled_task = -1;
2825 unsigned long next_balance = jiffies + HZ;
2827 for_each_domain(this_cpu, sd) {
2828 unsigned long interval;
2830 if (!(sd->flags & SD_LOAD_BALANCE))
2831 continue;
2833 if (sd->flags & SD_BALANCE_NEWIDLE)
2834 /* If we've pulled tasks over stop searching: */
2835 pulled_task = load_balance_newidle(this_cpu,
2836 this_rq, sd);
2838 interval = msecs_to_jiffies(sd->balance_interval);
2839 if (time_after(next_balance, sd->last_balance + interval))
2840 next_balance = sd->last_balance + interval;
2841 if (pulled_task)
2842 break;
2844 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2846 * We are going idle. next_balance may be set based on
2847 * a busy processor. So reset next_balance.
2849 this_rq->next_balance = next_balance;
2854 * active_load_balance is run by migration threads. It pushes running tasks
2855 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2856 * running on each physical CPU where possible, and avoids physical /
2857 * logical imbalances.
2859 * Called with busiest_rq locked.
2861 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2863 int target_cpu = busiest_rq->push_cpu;
2864 struct sched_domain *sd;
2865 struct rq *target_rq;
2867 /* Is there any task to move? */
2868 if (busiest_rq->nr_running <= 1)
2869 return;
2871 target_rq = cpu_rq(target_cpu);
2874 * This condition is "impossible", if it occurs
2875 * we need to fix it. Originally reported by
2876 * Bjorn Helgaas on a 128-cpu setup.
2878 BUG_ON(busiest_rq == target_rq);
2880 /* move a task from busiest_rq to target_rq */
2881 double_lock_balance(busiest_rq, target_rq);
2882 update_rq_clock(busiest_rq);
2883 update_rq_clock(target_rq);
2885 /* Search for an sd spanning us and the target CPU. */
2886 for_each_domain(target_cpu, sd) {
2887 if ((sd->flags & SD_LOAD_BALANCE) &&
2888 cpu_isset(busiest_cpu, sd->span))
2889 break;
2892 if (likely(sd)) {
2893 schedstat_inc(sd, alb_cnt);
2895 if (move_one_task(target_rq, target_cpu, busiest_rq,
2896 sd, CPU_IDLE))
2897 schedstat_inc(sd, alb_pushed);
2898 else
2899 schedstat_inc(sd, alb_failed);
2901 spin_unlock(&target_rq->lock);
2904 #ifdef CONFIG_NO_HZ
2905 static struct {
2906 atomic_t load_balancer;
2907 cpumask_t cpu_mask;
2908 } nohz ____cacheline_aligned = {
2909 .load_balancer = ATOMIC_INIT(-1),
2910 .cpu_mask = CPU_MASK_NONE,
2914 * This routine will try to nominate the ilb (idle load balancing)
2915 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2916 * load balancing on behalf of all those cpus. If all the cpus in the system
2917 * go into this tickless mode, then there will be no ilb owner (as there is
2918 * no need for one) and all the cpus will sleep till the next wakeup event
2919 * arrives...
2921 * For the ilb owner, tick is not stopped. And this tick will be used
2922 * for idle load balancing. ilb owner will still be part of
2923 * nohz.cpu_mask..
2925 * While stopping the tick, this cpu will become the ilb owner if there
2926 * is no other owner. And will be the owner till that cpu becomes busy
2927 * or if all cpus in the system stop their ticks at which point
2928 * there is no need for ilb owner.
2930 * When the ilb owner becomes busy, it nominates another owner, during the
2931 * next busy scheduler_tick()
2933 int select_nohz_load_balancer(int stop_tick)
2935 int cpu = smp_processor_id();
2937 if (stop_tick) {
2938 cpu_set(cpu, nohz.cpu_mask);
2939 cpu_rq(cpu)->in_nohz_recently = 1;
2942 * If we are going offline and still the leader, give up!
2944 if (cpu_is_offline(cpu) &&
2945 atomic_read(&nohz.load_balancer) == cpu) {
2946 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2947 BUG();
2948 return 0;
2951 /* time for ilb owner also to sleep */
2952 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2953 if (atomic_read(&nohz.load_balancer) == cpu)
2954 atomic_set(&nohz.load_balancer, -1);
2955 return 0;
2958 if (atomic_read(&nohz.load_balancer) == -1) {
2959 /* make me the ilb owner */
2960 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2961 return 1;
2962 } else if (atomic_read(&nohz.load_balancer) == cpu)
2963 return 1;
2964 } else {
2965 if (!cpu_isset(cpu, nohz.cpu_mask))
2966 return 0;
2968 cpu_clear(cpu, nohz.cpu_mask);
2970 if (atomic_read(&nohz.load_balancer) == cpu)
2971 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2972 BUG();
2974 return 0;
2976 #endif
2978 static DEFINE_SPINLOCK(balancing);
2981 * It checks each scheduling domain to see if it is due to be balanced,
2982 * and initiates a balancing operation if so.
2984 * Balancing parameters are set up in arch_init_sched_domains.
2986 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2988 int balance = 1;
2989 struct rq *rq = cpu_rq(cpu);
2990 unsigned long interval;
2991 struct sched_domain *sd;
2992 /* Earliest time when we have to do rebalance again */
2993 unsigned long next_balance = jiffies + 60*HZ;
2994 int update_next_balance = 0;
2996 for_each_domain(cpu, sd) {
2997 if (!(sd->flags & SD_LOAD_BALANCE))
2998 continue;
3000 interval = sd->balance_interval;
3001 if (idle != CPU_IDLE)
3002 interval *= sd->busy_factor;
3004 /* scale ms to jiffies */
3005 interval = msecs_to_jiffies(interval);
3006 if (unlikely(!interval))
3007 interval = 1;
3008 if (interval > HZ*NR_CPUS/10)
3009 interval = HZ*NR_CPUS/10;
3012 if (sd->flags & SD_SERIALIZE) {
3013 if (!spin_trylock(&balancing))
3014 goto out;
3017 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3018 if (load_balance(cpu, rq, sd, idle, &balance)) {
3020 * We've pulled tasks over so either we're no
3021 * longer idle, or one of our SMT siblings is
3022 * not idle.
3024 idle = CPU_NOT_IDLE;
3026 sd->last_balance = jiffies;
3028 if (sd->flags & SD_SERIALIZE)
3029 spin_unlock(&balancing);
3030 out:
3031 if (time_after(next_balance, sd->last_balance + interval)) {
3032 next_balance = sd->last_balance + interval;
3033 update_next_balance = 1;
3037 * Stop the load balance at this level. There is another
3038 * CPU in our sched group which is doing load balancing more
3039 * actively.
3041 if (!balance)
3042 break;
3046 * next_balance will be updated only when there is a need.
3047 * When the cpu is attached to null domain for ex, it will not be
3048 * updated.
3050 if (likely(update_next_balance))
3051 rq->next_balance = next_balance;
3055 * run_rebalance_domains is triggered when needed from the scheduler tick.
3056 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3057 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3059 static void run_rebalance_domains(struct softirq_action *h)
3061 int this_cpu = smp_processor_id();
3062 struct rq *this_rq = cpu_rq(this_cpu);
3063 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3064 CPU_IDLE : CPU_NOT_IDLE;
3066 rebalance_domains(this_cpu, idle);
3068 #ifdef CONFIG_NO_HZ
3070 * If this cpu is the owner for idle load balancing, then do the
3071 * balancing on behalf of the other idle cpus whose ticks are
3072 * stopped.
3074 if (this_rq->idle_at_tick &&
3075 atomic_read(&nohz.load_balancer) == this_cpu) {
3076 cpumask_t cpus = nohz.cpu_mask;
3077 struct rq *rq;
3078 int balance_cpu;
3080 cpu_clear(this_cpu, cpus);
3081 for_each_cpu_mask(balance_cpu, cpus) {
3083 * If this cpu gets work to do, stop the load balancing
3084 * work being done for other cpus. Next load
3085 * balancing owner will pick it up.
3087 if (need_resched())
3088 break;
3090 rebalance_domains(balance_cpu, CPU_IDLE);
3092 rq = cpu_rq(balance_cpu);
3093 if (time_after(this_rq->next_balance, rq->next_balance))
3094 this_rq->next_balance = rq->next_balance;
3097 #endif
3101 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3103 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3104 * idle load balancing owner or decide to stop the periodic load balancing,
3105 * if the whole system is idle.
3107 static inline void trigger_load_balance(struct rq *rq, int cpu)
3109 #ifdef CONFIG_NO_HZ
3111 * If we were in the nohz mode recently and busy at the current
3112 * scheduler tick, then check if we need to nominate new idle
3113 * load balancer.
3115 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3116 rq->in_nohz_recently = 0;
3118 if (atomic_read(&nohz.load_balancer) == cpu) {
3119 cpu_clear(cpu, nohz.cpu_mask);
3120 atomic_set(&nohz.load_balancer, -1);
3123 if (atomic_read(&nohz.load_balancer) == -1) {
3125 * simple selection for now: Nominate the
3126 * first cpu in the nohz list to be the next
3127 * ilb owner.
3129 * TBD: Traverse the sched domains and nominate
3130 * the nearest cpu in the nohz.cpu_mask.
3132 int ilb = first_cpu(nohz.cpu_mask);
3134 if (ilb != NR_CPUS)
3135 resched_cpu(ilb);
3140 * If this cpu is idle and doing idle load balancing for all the
3141 * cpus with ticks stopped, is it time for that to stop?
3143 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3144 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3145 resched_cpu(cpu);
3146 return;
3150 * If this cpu is idle and the idle load balancing is done by
3151 * someone else, then no need raise the SCHED_SOFTIRQ
3153 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3154 cpu_isset(cpu, nohz.cpu_mask))
3155 return;
3156 #endif
3157 if (time_after_eq(jiffies, rq->next_balance))
3158 raise_softirq(SCHED_SOFTIRQ);
3161 #else /* CONFIG_SMP */
3164 * on UP we do not need to balance between CPUs:
3166 static inline void idle_balance(int cpu, struct rq *rq)
3170 /* Avoid "used but not defined" warning on UP */
3171 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3172 unsigned long max_nr_move, unsigned long max_load_move,
3173 struct sched_domain *sd, enum cpu_idle_type idle,
3174 int *all_pinned, unsigned long *load_moved,
3175 int *this_best_prio, struct rq_iterator *iterator)
3177 *load_moved = 0;
3179 return 0;
3182 #endif
3184 DEFINE_PER_CPU(struct kernel_stat, kstat);
3186 EXPORT_PER_CPU_SYMBOL(kstat);
3189 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3190 * that have not yet been banked in case the task is currently running.
3192 unsigned long long task_sched_runtime(struct task_struct *p)
3194 unsigned long flags;
3195 u64 ns, delta_exec;
3196 struct rq *rq;
3198 rq = task_rq_lock(p, &flags);
3199 ns = p->se.sum_exec_runtime;
3200 if (rq->curr == p) {
3201 update_rq_clock(rq);
3202 delta_exec = rq->clock - p->se.exec_start;
3203 if ((s64)delta_exec > 0)
3204 ns += delta_exec;
3206 task_rq_unlock(rq, &flags);
3208 return ns;
3212 * Account user cpu time to a process.
3213 * @p: the process that the cpu time gets accounted to
3214 * @hardirq_offset: the offset to subtract from hardirq_count()
3215 * @cputime: the cpu time spent in user space since the last update
3217 void account_user_time(struct task_struct *p, cputime_t cputime)
3219 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3220 cputime64_t tmp;
3222 p->utime = cputime_add(p->utime, cputime);
3224 /* Add user time to cpustat. */
3225 tmp = cputime_to_cputime64(cputime);
3226 if (TASK_NICE(p) > 0)
3227 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3228 else
3229 cpustat->user = cputime64_add(cpustat->user, tmp);
3233 * Account system cpu time to a process.
3234 * @p: the process that the cpu time gets accounted to
3235 * @hardirq_offset: the offset to subtract from hardirq_count()
3236 * @cputime: the cpu time spent in kernel space since the last update
3238 void account_system_time(struct task_struct *p, int hardirq_offset,
3239 cputime_t cputime)
3241 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3242 struct rq *rq = this_rq();
3243 cputime64_t tmp;
3245 p->stime = cputime_add(p->stime, cputime);
3247 /* Add system time to cpustat. */
3248 tmp = cputime_to_cputime64(cputime);
3249 if (hardirq_count() - hardirq_offset)
3250 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3251 else if (softirq_count())
3252 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3253 else if (p != rq->idle)
3254 cpustat->system = cputime64_add(cpustat->system, tmp);
3255 else if (atomic_read(&rq->nr_iowait) > 0)
3256 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3257 else
3258 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3259 /* Account for system time used */
3260 acct_update_integrals(p);
3264 * Account for involuntary wait time.
3265 * @p: the process from which the cpu time has been stolen
3266 * @steal: the cpu time spent in involuntary wait
3268 void account_steal_time(struct task_struct *p, cputime_t steal)
3270 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3271 cputime64_t tmp = cputime_to_cputime64(steal);
3272 struct rq *rq = this_rq();
3274 if (p == rq->idle) {
3275 p->stime = cputime_add(p->stime, steal);
3276 if (atomic_read(&rq->nr_iowait) > 0)
3277 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3278 else
3279 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3280 } else
3281 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3285 * This function gets called by the timer code, with HZ frequency.
3286 * We call it with interrupts disabled.
3288 * It also gets called by the fork code, when changing the parent's
3289 * timeslices.
3291 void scheduler_tick(void)
3293 int cpu = smp_processor_id();
3294 struct rq *rq = cpu_rq(cpu);
3295 struct task_struct *curr = rq->curr;
3296 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3298 spin_lock(&rq->lock);
3299 __update_rq_clock(rq);
3301 * Let rq->clock advance by at least TICK_NSEC:
3303 if (unlikely(rq->clock < next_tick))
3304 rq->clock = next_tick;
3305 rq->tick_timestamp = rq->clock;
3306 update_cpu_load(rq);
3307 if (curr != rq->idle) /* FIXME: needed? */
3308 curr->sched_class->task_tick(rq, curr);
3309 spin_unlock(&rq->lock);
3311 #ifdef CONFIG_SMP
3312 rq->idle_at_tick = idle_cpu(cpu);
3313 trigger_load_balance(rq, cpu);
3314 #endif
3317 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3319 void fastcall add_preempt_count(int val)
3322 * Underflow?
3324 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3325 return;
3326 preempt_count() += val;
3328 * Spinlock count overflowing soon?
3330 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3331 PREEMPT_MASK - 10);
3333 EXPORT_SYMBOL(add_preempt_count);
3335 void fastcall sub_preempt_count(int val)
3338 * Underflow?
3340 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3341 return;
3343 * Is the spinlock portion underflowing?
3345 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3346 !(preempt_count() & PREEMPT_MASK)))
3347 return;
3349 preempt_count() -= val;
3351 EXPORT_SYMBOL(sub_preempt_count);
3353 #endif
3356 * Print scheduling while atomic bug:
3358 static noinline void __schedule_bug(struct task_struct *prev)
3360 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3361 prev->comm, preempt_count(), prev->pid);
3362 debug_show_held_locks(prev);
3363 if (irqs_disabled())
3364 print_irqtrace_events(prev);
3365 dump_stack();
3369 * Various schedule()-time debugging checks and statistics:
3371 static inline void schedule_debug(struct task_struct *prev)
3374 * Test if we are atomic. Since do_exit() needs to call into
3375 * schedule() atomically, we ignore that path for now.
3376 * Otherwise, whine if we are scheduling when we should not be.
3378 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3379 __schedule_bug(prev);
3381 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3383 schedstat_inc(this_rq(), sched_cnt);
3387 * Pick up the highest-prio task:
3389 static inline struct task_struct *
3390 pick_next_task(struct rq *rq, struct task_struct *prev)
3392 struct sched_class *class;
3393 struct task_struct *p;
3396 * Optimization: we know that if all tasks are in
3397 * the fair class we can call that function directly:
3399 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3400 p = fair_sched_class.pick_next_task(rq);
3401 if (likely(p))
3402 return p;
3405 class = sched_class_highest;
3406 for ( ; ; ) {
3407 p = class->pick_next_task(rq);
3408 if (p)
3409 return p;
3411 * Will never be NULL as the idle class always
3412 * returns a non-NULL p:
3414 class = class->next;
3419 * schedule() is the main scheduler function.
3421 asmlinkage void __sched schedule(void)
3423 struct task_struct *prev, *next;
3424 long *switch_count;
3425 struct rq *rq;
3426 int cpu;
3428 need_resched:
3429 preempt_disable();
3430 cpu = smp_processor_id();
3431 rq = cpu_rq(cpu);
3432 rcu_qsctr_inc(cpu);
3433 prev = rq->curr;
3434 switch_count = &prev->nivcsw;
3436 release_kernel_lock(prev);
3437 need_resched_nonpreemptible:
3439 schedule_debug(prev);
3441 spin_lock_irq(&rq->lock);
3442 clear_tsk_need_resched(prev);
3443 __update_rq_clock(rq);
3445 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3446 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3447 unlikely(signal_pending(prev)))) {
3448 prev->state = TASK_RUNNING;
3449 } else {
3450 deactivate_task(rq, prev, 1);
3452 switch_count = &prev->nvcsw;
3455 if (unlikely(!rq->nr_running))
3456 idle_balance(cpu, rq);
3458 prev->sched_class->put_prev_task(rq, prev);
3459 next = pick_next_task(rq, prev);
3461 sched_info_switch(prev, next);
3463 if (likely(prev != next)) {
3464 rq->nr_switches++;
3465 rq->curr = next;
3466 ++*switch_count;
3468 context_switch(rq, prev, next); /* unlocks the rq */
3469 } else
3470 spin_unlock_irq(&rq->lock);
3472 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3473 cpu = smp_processor_id();
3474 rq = cpu_rq(cpu);
3475 goto need_resched_nonpreemptible;
3477 preempt_enable_no_resched();
3478 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3479 goto need_resched;
3481 EXPORT_SYMBOL(schedule);
3483 #ifdef CONFIG_PREEMPT
3485 * this is the entry point to schedule() from in-kernel preemption
3486 * off of preempt_enable. Kernel preemptions off return from interrupt
3487 * occur there and call schedule directly.
3489 asmlinkage void __sched preempt_schedule(void)
3491 struct thread_info *ti = current_thread_info();
3492 #ifdef CONFIG_PREEMPT_BKL
3493 struct task_struct *task = current;
3494 int saved_lock_depth;
3495 #endif
3497 * If there is a non-zero preempt_count or interrupts are disabled,
3498 * we do not want to preempt the current task. Just return..
3500 if (likely(ti->preempt_count || irqs_disabled()))
3501 return;
3503 need_resched:
3504 add_preempt_count(PREEMPT_ACTIVE);
3506 * We keep the big kernel semaphore locked, but we
3507 * clear ->lock_depth so that schedule() doesnt
3508 * auto-release the semaphore:
3510 #ifdef CONFIG_PREEMPT_BKL
3511 saved_lock_depth = task->lock_depth;
3512 task->lock_depth = -1;
3513 #endif
3514 schedule();
3515 #ifdef CONFIG_PREEMPT_BKL
3516 task->lock_depth = saved_lock_depth;
3517 #endif
3518 sub_preempt_count(PREEMPT_ACTIVE);
3520 /* we could miss a preemption opportunity between schedule and now */
3521 barrier();
3522 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3523 goto need_resched;
3525 EXPORT_SYMBOL(preempt_schedule);
3528 * this is the entry point to schedule() from kernel preemption
3529 * off of irq context.
3530 * Note, that this is called and return with irqs disabled. This will
3531 * protect us against recursive calling from irq.
3533 asmlinkage void __sched preempt_schedule_irq(void)
3535 struct thread_info *ti = current_thread_info();
3536 #ifdef CONFIG_PREEMPT_BKL
3537 struct task_struct *task = current;
3538 int saved_lock_depth;
3539 #endif
3540 /* Catch callers which need to be fixed */
3541 BUG_ON(ti->preempt_count || !irqs_disabled());
3543 need_resched:
3544 add_preempt_count(PREEMPT_ACTIVE);
3546 * We keep the big kernel semaphore locked, but we
3547 * clear ->lock_depth so that schedule() doesnt
3548 * auto-release the semaphore:
3550 #ifdef CONFIG_PREEMPT_BKL
3551 saved_lock_depth = task->lock_depth;
3552 task->lock_depth = -1;
3553 #endif
3554 local_irq_enable();
3555 schedule();
3556 local_irq_disable();
3557 #ifdef CONFIG_PREEMPT_BKL
3558 task->lock_depth = saved_lock_depth;
3559 #endif
3560 sub_preempt_count(PREEMPT_ACTIVE);
3562 /* we could miss a preemption opportunity between schedule and now */
3563 barrier();
3564 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3565 goto need_resched;
3568 #endif /* CONFIG_PREEMPT */
3570 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3571 void *key)
3573 return try_to_wake_up(curr->private, mode, sync);
3575 EXPORT_SYMBOL(default_wake_function);
3578 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3579 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3580 * number) then we wake all the non-exclusive tasks and one exclusive task.
3582 * There are circumstances in which we can try to wake a task which has already
3583 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3584 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3586 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3587 int nr_exclusive, int sync, void *key)
3589 wait_queue_t *curr, *next;
3591 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3592 unsigned flags = curr->flags;
3594 if (curr->func(curr, mode, sync, key) &&
3595 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3596 break;
3601 * __wake_up - wake up threads blocked on a waitqueue.
3602 * @q: the waitqueue
3603 * @mode: which threads
3604 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3605 * @key: is directly passed to the wakeup function
3607 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3608 int nr_exclusive, void *key)
3610 unsigned long flags;
3612 spin_lock_irqsave(&q->lock, flags);
3613 __wake_up_common(q, mode, nr_exclusive, 0, key);
3614 spin_unlock_irqrestore(&q->lock, flags);
3616 EXPORT_SYMBOL(__wake_up);
3619 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3621 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3623 __wake_up_common(q, mode, 1, 0, NULL);
3627 * __wake_up_sync - wake up threads blocked on a waitqueue.
3628 * @q: the waitqueue
3629 * @mode: which threads
3630 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3632 * The sync wakeup differs that the waker knows that it will schedule
3633 * away soon, so while the target thread will be woken up, it will not
3634 * be migrated to another CPU - ie. the two threads are 'synchronized'
3635 * with each other. This can prevent needless bouncing between CPUs.
3637 * On UP it can prevent extra preemption.
3639 void fastcall
3640 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3642 unsigned long flags;
3643 int sync = 1;
3645 if (unlikely(!q))
3646 return;
3648 if (unlikely(!nr_exclusive))
3649 sync = 0;
3651 spin_lock_irqsave(&q->lock, flags);
3652 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3653 spin_unlock_irqrestore(&q->lock, flags);
3655 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3657 void fastcall complete(struct completion *x)
3659 unsigned long flags;
3661 spin_lock_irqsave(&x->wait.lock, flags);
3662 x->done++;
3663 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3664 1, 0, NULL);
3665 spin_unlock_irqrestore(&x->wait.lock, flags);
3667 EXPORT_SYMBOL(complete);
3669 void fastcall complete_all(struct completion *x)
3671 unsigned long flags;
3673 spin_lock_irqsave(&x->wait.lock, flags);
3674 x->done += UINT_MAX/2;
3675 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3676 0, 0, NULL);
3677 spin_unlock_irqrestore(&x->wait.lock, flags);
3679 EXPORT_SYMBOL(complete_all);
3681 void fastcall __sched wait_for_completion(struct completion *x)
3683 might_sleep();
3685 spin_lock_irq(&x->wait.lock);
3686 if (!x->done) {
3687 DECLARE_WAITQUEUE(wait, current);
3689 wait.flags |= WQ_FLAG_EXCLUSIVE;
3690 __add_wait_queue_tail(&x->wait, &wait);
3691 do {
3692 __set_current_state(TASK_UNINTERRUPTIBLE);
3693 spin_unlock_irq(&x->wait.lock);
3694 schedule();
3695 spin_lock_irq(&x->wait.lock);
3696 } while (!x->done);
3697 __remove_wait_queue(&x->wait, &wait);
3699 x->done--;
3700 spin_unlock_irq(&x->wait.lock);
3702 EXPORT_SYMBOL(wait_for_completion);
3704 unsigned long fastcall __sched
3705 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3707 might_sleep();
3709 spin_lock_irq(&x->wait.lock);
3710 if (!x->done) {
3711 DECLARE_WAITQUEUE(wait, current);
3713 wait.flags |= WQ_FLAG_EXCLUSIVE;
3714 __add_wait_queue_tail(&x->wait, &wait);
3715 do {
3716 __set_current_state(TASK_UNINTERRUPTIBLE);
3717 spin_unlock_irq(&x->wait.lock);
3718 timeout = schedule_timeout(timeout);
3719 spin_lock_irq(&x->wait.lock);
3720 if (!timeout) {
3721 __remove_wait_queue(&x->wait, &wait);
3722 goto out;
3724 } while (!x->done);
3725 __remove_wait_queue(&x->wait, &wait);
3727 x->done--;
3728 out:
3729 spin_unlock_irq(&x->wait.lock);
3730 return timeout;
3732 EXPORT_SYMBOL(wait_for_completion_timeout);
3734 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3736 int ret = 0;
3738 might_sleep();
3740 spin_lock_irq(&x->wait.lock);
3741 if (!x->done) {
3742 DECLARE_WAITQUEUE(wait, current);
3744 wait.flags |= WQ_FLAG_EXCLUSIVE;
3745 __add_wait_queue_tail(&x->wait, &wait);
3746 do {
3747 if (signal_pending(current)) {
3748 ret = -ERESTARTSYS;
3749 __remove_wait_queue(&x->wait, &wait);
3750 goto out;
3752 __set_current_state(TASK_INTERRUPTIBLE);
3753 spin_unlock_irq(&x->wait.lock);
3754 schedule();
3755 spin_lock_irq(&x->wait.lock);
3756 } while (!x->done);
3757 __remove_wait_queue(&x->wait, &wait);
3759 x->done--;
3760 out:
3761 spin_unlock_irq(&x->wait.lock);
3763 return ret;
3765 EXPORT_SYMBOL(wait_for_completion_interruptible);
3767 unsigned long fastcall __sched
3768 wait_for_completion_interruptible_timeout(struct completion *x,
3769 unsigned long timeout)
3771 might_sleep();
3773 spin_lock_irq(&x->wait.lock);
3774 if (!x->done) {
3775 DECLARE_WAITQUEUE(wait, current);
3777 wait.flags |= WQ_FLAG_EXCLUSIVE;
3778 __add_wait_queue_tail(&x->wait, &wait);
3779 do {
3780 if (signal_pending(current)) {
3781 timeout = -ERESTARTSYS;
3782 __remove_wait_queue(&x->wait, &wait);
3783 goto out;
3785 __set_current_state(TASK_INTERRUPTIBLE);
3786 spin_unlock_irq(&x->wait.lock);
3787 timeout = schedule_timeout(timeout);
3788 spin_lock_irq(&x->wait.lock);
3789 if (!timeout) {
3790 __remove_wait_queue(&x->wait, &wait);
3791 goto out;
3793 } while (!x->done);
3794 __remove_wait_queue(&x->wait, &wait);
3796 x->done--;
3797 out:
3798 spin_unlock_irq(&x->wait.lock);
3799 return timeout;
3801 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3803 static inline void
3804 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3806 spin_lock_irqsave(&q->lock, *flags);
3807 __add_wait_queue(q, wait);
3808 spin_unlock(&q->lock);
3811 static inline void
3812 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3814 spin_lock_irq(&q->lock);
3815 __remove_wait_queue(q, wait);
3816 spin_unlock_irqrestore(&q->lock, *flags);
3819 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3821 unsigned long flags;
3822 wait_queue_t wait;
3824 init_waitqueue_entry(&wait, current);
3826 current->state = TASK_INTERRUPTIBLE;
3828 sleep_on_head(q, &wait, &flags);
3829 schedule();
3830 sleep_on_tail(q, &wait, &flags);
3832 EXPORT_SYMBOL(interruptible_sleep_on);
3834 long __sched
3835 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3837 unsigned long flags;
3838 wait_queue_t wait;
3840 init_waitqueue_entry(&wait, current);
3842 current->state = TASK_INTERRUPTIBLE;
3844 sleep_on_head(q, &wait, &flags);
3845 timeout = schedule_timeout(timeout);
3846 sleep_on_tail(q, &wait, &flags);
3848 return timeout;
3850 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3852 void __sched sleep_on(wait_queue_head_t *q)
3854 unsigned long flags;
3855 wait_queue_t wait;
3857 init_waitqueue_entry(&wait, current);
3859 current->state = TASK_UNINTERRUPTIBLE;
3861 sleep_on_head(q, &wait, &flags);
3862 schedule();
3863 sleep_on_tail(q, &wait, &flags);
3865 EXPORT_SYMBOL(sleep_on);
3867 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3869 unsigned long flags;
3870 wait_queue_t wait;
3872 init_waitqueue_entry(&wait, current);
3874 current->state = TASK_UNINTERRUPTIBLE;
3876 sleep_on_head(q, &wait, &flags);
3877 timeout = schedule_timeout(timeout);
3878 sleep_on_tail(q, &wait, &flags);
3880 return timeout;
3882 EXPORT_SYMBOL(sleep_on_timeout);
3884 #ifdef CONFIG_RT_MUTEXES
3887 * rt_mutex_setprio - set the current priority of a task
3888 * @p: task
3889 * @prio: prio value (kernel-internal form)
3891 * This function changes the 'effective' priority of a task. It does
3892 * not touch ->normal_prio like __setscheduler().
3894 * Used by the rt_mutex code to implement priority inheritance logic.
3896 void rt_mutex_setprio(struct task_struct *p, int prio)
3898 unsigned long flags;
3899 int oldprio, on_rq;
3900 struct rq *rq;
3902 BUG_ON(prio < 0 || prio > MAX_PRIO);
3904 rq = task_rq_lock(p, &flags);
3905 update_rq_clock(rq);
3907 oldprio = p->prio;
3908 on_rq = p->se.on_rq;
3909 if (on_rq)
3910 dequeue_task(rq, p, 0);
3912 if (rt_prio(prio))
3913 p->sched_class = &rt_sched_class;
3914 else
3915 p->sched_class = &fair_sched_class;
3917 p->prio = prio;
3919 if (on_rq) {
3920 enqueue_task(rq, p, 0);
3922 * Reschedule if we are currently running on this runqueue and
3923 * our priority decreased, or if we are not currently running on
3924 * this runqueue and our priority is higher than the current's
3926 if (task_running(rq, p)) {
3927 if (p->prio > oldprio)
3928 resched_task(rq->curr);
3929 } else {
3930 check_preempt_curr(rq, p);
3933 task_rq_unlock(rq, &flags);
3936 #endif
3938 void set_user_nice(struct task_struct *p, long nice)
3940 int old_prio, delta, on_rq;
3941 unsigned long flags;
3942 struct rq *rq;
3944 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3945 return;
3947 * We have to be careful, if called from sys_setpriority(),
3948 * the task might be in the middle of scheduling on another CPU.
3950 rq = task_rq_lock(p, &flags);
3951 update_rq_clock(rq);
3953 * The RT priorities are set via sched_setscheduler(), but we still
3954 * allow the 'normal' nice value to be set - but as expected
3955 * it wont have any effect on scheduling until the task is
3956 * SCHED_FIFO/SCHED_RR:
3958 if (task_has_rt_policy(p)) {
3959 p->static_prio = NICE_TO_PRIO(nice);
3960 goto out_unlock;
3962 on_rq = p->se.on_rq;
3963 if (on_rq) {
3964 dequeue_task(rq, p, 0);
3965 dec_load(rq, p);
3968 p->static_prio = NICE_TO_PRIO(nice);
3969 set_load_weight(p);
3970 old_prio = p->prio;
3971 p->prio = effective_prio(p);
3972 delta = p->prio - old_prio;
3974 if (on_rq) {
3975 enqueue_task(rq, p, 0);
3976 inc_load(rq, p);
3978 * If the task increased its priority or is running and
3979 * lowered its priority, then reschedule its CPU:
3981 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3982 resched_task(rq->curr);
3984 out_unlock:
3985 task_rq_unlock(rq, &flags);
3987 EXPORT_SYMBOL(set_user_nice);
3990 * can_nice - check if a task can reduce its nice value
3991 * @p: task
3992 * @nice: nice value
3994 int can_nice(const struct task_struct *p, const int nice)
3996 /* convert nice value [19,-20] to rlimit style value [1,40] */
3997 int nice_rlim = 20 - nice;
3999 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4000 capable(CAP_SYS_NICE));
4003 #ifdef __ARCH_WANT_SYS_NICE
4006 * sys_nice - change the priority of the current process.
4007 * @increment: priority increment
4009 * sys_setpriority is a more generic, but much slower function that
4010 * does similar things.
4012 asmlinkage long sys_nice(int increment)
4014 long nice, retval;
4017 * Setpriority might change our priority at the same moment.
4018 * We don't have to worry. Conceptually one call occurs first
4019 * and we have a single winner.
4021 if (increment < -40)
4022 increment = -40;
4023 if (increment > 40)
4024 increment = 40;
4026 nice = PRIO_TO_NICE(current->static_prio) + increment;
4027 if (nice < -20)
4028 nice = -20;
4029 if (nice > 19)
4030 nice = 19;
4032 if (increment < 0 && !can_nice(current, nice))
4033 return -EPERM;
4035 retval = security_task_setnice(current, nice);
4036 if (retval)
4037 return retval;
4039 set_user_nice(current, nice);
4040 return 0;
4043 #endif
4046 * task_prio - return the priority value of a given task.
4047 * @p: the task in question.
4049 * This is the priority value as seen by users in /proc.
4050 * RT tasks are offset by -200. Normal tasks are centered
4051 * around 0, value goes from -16 to +15.
4053 int task_prio(const struct task_struct *p)
4055 return p->prio - MAX_RT_PRIO;
4059 * task_nice - return the nice value of a given task.
4060 * @p: the task in question.
4062 int task_nice(const struct task_struct *p)
4064 return TASK_NICE(p);
4066 EXPORT_SYMBOL_GPL(task_nice);
4069 * idle_cpu - is a given cpu idle currently?
4070 * @cpu: the processor in question.
4072 int idle_cpu(int cpu)
4074 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4078 * idle_task - return the idle task for a given cpu.
4079 * @cpu: the processor in question.
4081 struct task_struct *idle_task(int cpu)
4083 return cpu_rq(cpu)->idle;
4087 * find_process_by_pid - find a process with a matching PID value.
4088 * @pid: the pid in question.
4090 static inline struct task_struct *find_process_by_pid(pid_t pid)
4092 return pid ? find_task_by_pid(pid) : current;
4095 /* Actually do priority change: must hold rq lock. */
4096 static void
4097 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4099 BUG_ON(p->se.on_rq);
4101 p->policy = policy;
4102 switch (p->policy) {
4103 case SCHED_NORMAL:
4104 case SCHED_BATCH:
4105 case SCHED_IDLE:
4106 p->sched_class = &fair_sched_class;
4107 break;
4108 case SCHED_FIFO:
4109 case SCHED_RR:
4110 p->sched_class = &rt_sched_class;
4111 break;
4114 p->rt_priority = prio;
4115 p->normal_prio = normal_prio(p);
4116 /* we are holding p->pi_lock already */
4117 p->prio = rt_mutex_getprio(p);
4118 set_load_weight(p);
4122 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4123 * @p: the task in question.
4124 * @policy: new policy.
4125 * @param: structure containing the new RT priority.
4127 * NOTE that the task may be already dead.
4129 int sched_setscheduler(struct task_struct *p, int policy,
4130 struct sched_param *param)
4132 int retval, oldprio, oldpolicy = -1, on_rq;
4133 unsigned long flags;
4134 struct rq *rq;
4136 /* may grab non-irq protected spin_locks */
4137 BUG_ON(in_interrupt());
4138 recheck:
4139 /* double check policy once rq lock held */
4140 if (policy < 0)
4141 policy = oldpolicy = p->policy;
4142 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4143 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4144 policy != SCHED_IDLE)
4145 return -EINVAL;
4147 * Valid priorities for SCHED_FIFO and SCHED_RR are
4148 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4149 * SCHED_BATCH and SCHED_IDLE is 0.
4151 if (param->sched_priority < 0 ||
4152 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4153 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4154 return -EINVAL;
4155 if (rt_policy(policy) != (param->sched_priority != 0))
4156 return -EINVAL;
4159 * Allow unprivileged RT tasks to decrease priority:
4161 if (!capable(CAP_SYS_NICE)) {
4162 if (rt_policy(policy)) {
4163 unsigned long rlim_rtprio;
4165 if (!lock_task_sighand(p, &flags))
4166 return -ESRCH;
4167 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4168 unlock_task_sighand(p, &flags);
4170 /* can't set/change the rt policy */
4171 if (policy != p->policy && !rlim_rtprio)
4172 return -EPERM;
4174 /* can't increase priority */
4175 if (param->sched_priority > p->rt_priority &&
4176 param->sched_priority > rlim_rtprio)
4177 return -EPERM;
4180 * Like positive nice levels, dont allow tasks to
4181 * move out of SCHED_IDLE either:
4183 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4184 return -EPERM;
4186 /* can't change other user's priorities */
4187 if ((current->euid != p->euid) &&
4188 (current->euid != p->uid))
4189 return -EPERM;
4192 retval = security_task_setscheduler(p, policy, param);
4193 if (retval)
4194 return retval;
4196 * make sure no PI-waiters arrive (or leave) while we are
4197 * changing the priority of the task:
4199 spin_lock_irqsave(&p->pi_lock, flags);
4201 * To be able to change p->policy safely, the apropriate
4202 * runqueue lock must be held.
4204 rq = __task_rq_lock(p);
4205 /* recheck policy now with rq lock held */
4206 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4207 policy = oldpolicy = -1;
4208 __task_rq_unlock(rq);
4209 spin_unlock_irqrestore(&p->pi_lock, flags);
4210 goto recheck;
4212 update_rq_clock(rq);
4213 on_rq = p->se.on_rq;
4214 if (on_rq)
4215 deactivate_task(rq, p, 0);
4216 oldprio = p->prio;
4217 __setscheduler(rq, p, policy, param->sched_priority);
4218 if (on_rq) {
4219 activate_task(rq, p, 0);
4221 * Reschedule if we are currently running on this runqueue and
4222 * our priority decreased, or if we are not currently running on
4223 * this runqueue and our priority is higher than the current's
4225 if (task_running(rq, p)) {
4226 if (p->prio > oldprio)
4227 resched_task(rq->curr);
4228 } else {
4229 check_preempt_curr(rq, p);
4232 __task_rq_unlock(rq);
4233 spin_unlock_irqrestore(&p->pi_lock, flags);
4235 rt_mutex_adjust_pi(p);
4237 return 0;
4239 EXPORT_SYMBOL_GPL(sched_setscheduler);
4241 static int
4242 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4244 struct sched_param lparam;
4245 struct task_struct *p;
4246 int retval;
4248 if (!param || pid < 0)
4249 return -EINVAL;
4250 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4251 return -EFAULT;
4253 rcu_read_lock();
4254 retval = -ESRCH;
4255 p = find_process_by_pid(pid);
4256 if (p != NULL)
4257 retval = sched_setscheduler(p, policy, &lparam);
4258 rcu_read_unlock();
4260 return retval;
4264 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4265 * @pid: the pid in question.
4266 * @policy: new policy.
4267 * @param: structure containing the new RT priority.
4269 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4270 struct sched_param __user *param)
4272 /* negative values for policy are not valid */
4273 if (policy < 0)
4274 return -EINVAL;
4276 return do_sched_setscheduler(pid, policy, param);
4280 * sys_sched_setparam - set/change the RT priority of a thread
4281 * @pid: the pid in question.
4282 * @param: structure containing the new RT priority.
4284 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4286 return do_sched_setscheduler(pid, -1, param);
4290 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4291 * @pid: the pid in question.
4293 asmlinkage long sys_sched_getscheduler(pid_t pid)
4295 struct task_struct *p;
4296 int retval = -EINVAL;
4298 if (pid < 0)
4299 goto out_nounlock;
4301 retval = -ESRCH;
4302 read_lock(&tasklist_lock);
4303 p = find_process_by_pid(pid);
4304 if (p) {
4305 retval = security_task_getscheduler(p);
4306 if (!retval)
4307 retval = p->policy;
4309 read_unlock(&tasklist_lock);
4311 out_nounlock:
4312 return retval;
4316 * sys_sched_getscheduler - get the RT priority of a thread
4317 * @pid: the pid in question.
4318 * @param: structure containing the RT priority.
4320 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4322 struct sched_param lp;
4323 struct task_struct *p;
4324 int retval = -EINVAL;
4326 if (!param || pid < 0)
4327 goto out_nounlock;
4329 read_lock(&tasklist_lock);
4330 p = find_process_by_pid(pid);
4331 retval = -ESRCH;
4332 if (!p)
4333 goto out_unlock;
4335 retval = security_task_getscheduler(p);
4336 if (retval)
4337 goto out_unlock;
4339 lp.sched_priority = p->rt_priority;
4340 read_unlock(&tasklist_lock);
4343 * This one might sleep, we cannot do it with a spinlock held ...
4345 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4347 out_nounlock:
4348 return retval;
4350 out_unlock:
4351 read_unlock(&tasklist_lock);
4352 return retval;
4355 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4357 cpumask_t cpus_allowed;
4358 struct task_struct *p;
4359 int retval;
4361 mutex_lock(&sched_hotcpu_mutex);
4362 read_lock(&tasklist_lock);
4364 p = find_process_by_pid(pid);
4365 if (!p) {
4366 read_unlock(&tasklist_lock);
4367 mutex_unlock(&sched_hotcpu_mutex);
4368 return -ESRCH;
4372 * It is not safe to call set_cpus_allowed with the
4373 * tasklist_lock held. We will bump the task_struct's
4374 * usage count and then drop tasklist_lock.
4376 get_task_struct(p);
4377 read_unlock(&tasklist_lock);
4379 retval = -EPERM;
4380 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4381 !capable(CAP_SYS_NICE))
4382 goto out_unlock;
4384 retval = security_task_setscheduler(p, 0, NULL);
4385 if (retval)
4386 goto out_unlock;
4388 cpus_allowed = cpuset_cpus_allowed(p);
4389 cpus_and(new_mask, new_mask, cpus_allowed);
4390 retval = set_cpus_allowed(p, new_mask);
4392 out_unlock:
4393 put_task_struct(p);
4394 mutex_unlock(&sched_hotcpu_mutex);
4395 return retval;
4398 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4399 cpumask_t *new_mask)
4401 if (len < sizeof(cpumask_t)) {
4402 memset(new_mask, 0, sizeof(cpumask_t));
4403 } else if (len > sizeof(cpumask_t)) {
4404 len = sizeof(cpumask_t);
4406 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4410 * sys_sched_setaffinity - set the cpu affinity of a process
4411 * @pid: pid of the process
4412 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4413 * @user_mask_ptr: user-space pointer to the new cpu mask
4415 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4416 unsigned long __user *user_mask_ptr)
4418 cpumask_t new_mask;
4419 int retval;
4421 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4422 if (retval)
4423 return retval;
4425 return sched_setaffinity(pid, new_mask);
4429 * Represents all cpu's present in the system
4430 * In systems capable of hotplug, this map could dynamically grow
4431 * as new cpu's are detected in the system via any platform specific
4432 * method, such as ACPI for e.g.
4435 cpumask_t cpu_present_map __read_mostly;
4436 EXPORT_SYMBOL(cpu_present_map);
4438 #ifndef CONFIG_SMP
4439 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4440 EXPORT_SYMBOL(cpu_online_map);
4442 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4443 EXPORT_SYMBOL(cpu_possible_map);
4444 #endif
4446 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4448 struct task_struct *p;
4449 int retval;
4451 mutex_lock(&sched_hotcpu_mutex);
4452 read_lock(&tasklist_lock);
4454 retval = -ESRCH;
4455 p = find_process_by_pid(pid);
4456 if (!p)
4457 goto out_unlock;
4459 retval = security_task_getscheduler(p);
4460 if (retval)
4461 goto out_unlock;
4463 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4465 out_unlock:
4466 read_unlock(&tasklist_lock);
4467 mutex_unlock(&sched_hotcpu_mutex);
4469 return retval;
4473 * sys_sched_getaffinity - get the cpu affinity of a process
4474 * @pid: pid of the process
4475 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4476 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4478 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4479 unsigned long __user *user_mask_ptr)
4481 int ret;
4482 cpumask_t mask;
4484 if (len < sizeof(cpumask_t))
4485 return -EINVAL;
4487 ret = sched_getaffinity(pid, &mask);
4488 if (ret < 0)
4489 return ret;
4491 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4492 return -EFAULT;
4494 return sizeof(cpumask_t);
4498 * sys_sched_yield - yield the current processor to other threads.
4500 * This function yields the current CPU to other tasks. If there are no
4501 * other threads running on this CPU then this function will return.
4503 asmlinkage long sys_sched_yield(void)
4505 struct rq *rq = this_rq_lock();
4507 schedstat_inc(rq, yld_cnt);
4508 current->sched_class->yield_task(rq, current);
4511 * Since we are going to call schedule() anyway, there's
4512 * no need to preempt or enable interrupts:
4514 __release(rq->lock);
4515 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4516 _raw_spin_unlock(&rq->lock);
4517 preempt_enable_no_resched();
4519 schedule();
4521 return 0;
4524 static void __cond_resched(void)
4526 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4527 __might_sleep(__FILE__, __LINE__);
4528 #endif
4530 * The BKS might be reacquired before we have dropped
4531 * PREEMPT_ACTIVE, which could trigger a second
4532 * cond_resched() call.
4534 do {
4535 add_preempt_count(PREEMPT_ACTIVE);
4536 schedule();
4537 sub_preempt_count(PREEMPT_ACTIVE);
4538 } while (need_resched());
4541 int __sched cond_resched(void)
4543 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4544 system_state == SYSTEM_RUNNING) {
4545 __cond_resched();
4546 return 1;
4548 return 0;
4550 EXPORT_SYMBOL(cond_resched);
4553 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4554 * call schedule, and on return reacquire the lock.
4556 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4557 * operations here to prevent schedule() from being called twice (once via
4558 * spin_unlock(), once by hand).
4560 int cond_resched_lock(spinlock_t *lock)
4562 int ret = 0;
4564 if (need_lockbreak(lock)) {
4565 spin_unlock(lock);
4566 cpu_relax();
4567 ret = 1;
4568 spin_lock(lock);
4570 if (need_resched() && system_state == SYSTEM_RUNNING) {
4571 spin_release(&lock->dep_map, 1, _THIS_IP_);
4572 _raw_spin_unlock(lock);
4573 preempt_enable_no_resched();
4574 __cond_resched();
4575 ret = 1;
4576 spin_lock(lock);
4578 return ret;
4580 EXPORT_SYMBOL(cond_resched_lock);
4582 int __sched cond_resched_softirq(void)
4584 BUG_ON(!in_softirq());
4586 if (need_resched() && system_state == SYSTEM_RUNNING) {
4587 local_bh_enable();
4588 __cond_resched();
4589 local_bh_disable();
4590 return 1;
4592 return 0;
4594 EXPORT_SYMBOL(cond_resched_softirq);
4597 * yield - yield the current processor to other threads.
4599 * This is a shortcut for kernel-space yielding - it marks the
4600 * thread runnable and calls sys_sched_yield().
4602 void __sched yield(void)
4604 set_current_state(TASK_RUNNING);
4605 sys_sched_yield();
4607 EXPORT_SYMBOL(yield);
4610 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4611 * that process accounting knows that this is a task in IO wait state.
4613 * But don't do that if it is a deliberate, throttling IO wait (this task
4614 * has set its backing_dev_info: the queue against which it should throttle)
4616 void __sched io_schedule(void)
4618 struct rq *rq = &__raw_get_cpu_var(runqueues);
4620 delayacct_blkio_start();
4621 atomic_inc(&rq->nr_iowait);
4622 schedule();
4623 atomic_dec(&rq->nr_iowait);
4624 delayacct_blkio_end();
4626 EXPORT_SYMBOL(io_schedule);
4628 long __sched io_schedule_timeout(long timeout)
4630 struct rq *rq = &__raw_get_cpu_var(runqueues);
4631 long ret;
4633 delayacct_blkio_start();
4634 atomic_inc(&rq->nr_iowait);
4635 ret = schedule_timeout(timeout);
4636 atomic_dec(&rq->nr_iowait);
4637 delayacct_blkio_end();
4638 return ret;
4642 * sys_sched_get_priority_max - return maximum RT priority.
4643 * @policy: scheduling class.
4645 * this syscall returns the maximum rt_priority that can be used
4646 * by a given scheduling class.
4648 asmlinkage long sys_sched_get_priority_max(int policy)
4650 int ret = -EINVAL;
4652 switch (policy) {
4653 case SCHED_FIFO:
4654 case SCHED_RR:
4655 ret = MAX_USER_RT_PRIO-1;
4656 break;
4657 case SCHED_NORMAL:
4658 case SCHED_BATCH:
4659 case SCHED_IDLE:
4660 ret = 0;
4661 break;
4663 return ret;
4667 * sys_sched_get_priority_min - return minimum RT priority.
4668 * @policy: scheduling class.
4670 * this syscall returns the minimum rt_priority that can be used
4671 * by a given scheduling class.
4673 asmlinkage long sys_sched_get_priority_min(int policy)
4675 int ret = -EINVAL;
4677 switch (policy) {
4678 case SCHED_FIFO:
4679 case SCHED_RR:
4680 ret = 1;
4681 break;
4682 case SCHED_NORMAL:
4683 case SCHED_BATCH:
4684 case SCHED_IDLE:
4685 ret = 0;
4687 return ret;
4691 * sys_sched_rr_get_interval - return the default timeslice of a process.
4692 * @pid: pid of the process.
4693 * @interval: userspace pointer to the timeslice value.
4695 * this syscall writes the default timeslice value of a given process
4696 * into the user-space timespec buffer. A value of '0' means infinity.
4698 asmlinkage
4699 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4701 struct task_struct *p;
4702 int retval = -EINVAL;
4703 struct timespec t;
4705 if (pid < 0)
4706 goto out_nounlock;
4708 retval = -ESRCH;
4709 read_lock(&tasklist_lock);
4710 p = find_process_by_pid(pid);
4711 if (!p)
4712 goto out_unlock;
4714 retval = security_task_getscheduler(p);
4715 if (retval)
4716 goto out_unlock;
4718 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4719 0 : static_prio_timeslice(p->static_prio), &t);
4720 read_unlock(&tasklist_lock);
4721 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4722 out_nounlock:
4723 return retval;
4724 out_unlock:
4725 read_unlock(&tasklist_lock);
4726 return retval;
4729 static const char stat_nam[] = "RSDTtZX";
4731 static void show_task(struct task_struct *p)
4733 unsigned long free = 0;
4734 unsigned state;
4736 state = p->state ? __ffs(p->state) + 1 : 0;
4737 printk("%-13.13s %c", p->comm,
4738 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4739 #if BITS_PER_LONG == 32
4740 if (state == TASK_RUNNING)
4741 printk(" running ");
4742 else
4743 printk(" %08lx ", thread_saved_pc(p));
4744 #else
4745 if (state == TASK_RUNNING)
4746 printk(" running task ");
4747 else
4748 printk(" %016lx ", thread_saved_pc(p));
4749 #endif
4750 #ifdef CONFIG_DEBUG_STACK_USAGE
4752 unsigned long *n = end_of_stack(p);
4753 while (!*n)
4754 n++;
4755 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4757 #endif
4758 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4760 if (state != TASK_RUNNING)
4761 show_stack(p, NULL);
4764 void show_state_filter(unsigned long state_filter)
4766 struct task_struct *g, *p;
4768 #if BITS_PER_LONG == 32
4769 printk(KERN_INFO
4770 " task PC stack pid father\n");
4771 #else
4772 printk(KERN_INFO
4773 " task PC stack pid father\n");
4774 #endif
4775 read_lock(&tasklist_lock);
4776 do_each_thread(g, p) {
4778 * reset the NMI-timeout, listing all files on a slow
4779 * console might take alot of time:
4781 touch_nmi_watchdog();
4782 if (!state_filter || (p->state & state_filter))
4783 show_task(p);
4784 } while_each_thread(g, p);
4786 touch_all_softlockup_watchdogs();
4788 #ifdef CONFIG_SCHED_DEBUG
4789 sysrq_sched_debug_show();
4790 #endif
4791 read_unlock(&tasklist_lock);
4793 * Only show locks if all tasks are dumped:
4795 if (state_filter == -1)
4796 debug_show_all_locks();
4799 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4801 idle->sched_class = &idle_sched_class;
4805 * init_idle - set up an idle thread for a given CPU
4806 * @idle: task in question
4807 * @cpu: cpu the idle task belongs to
4809 * NOTE: this function does not set the idle thread's NEED_RESCHED
4810 * flag, to make booting more robust.
4812 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4814 struct rq *rq = cpu_rq(cpu);
4815 unsigned long flags;
4817 __sched_fork(idle);
4818 idle->se.exec_start = sched_clock();
4820 idle->prio = idle->normal_prio = MAX_PRIO;
4821 idle->cpus_allowed = cpumask_of_cpu(cpu);
4822 __set_task_cpu(idle, cpu);
4824 spin_lock_irqsave(&rq->lock, flags);
4825 rq->curr = rq->idle = idle;
4826 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4827 idle->oncpu = 1;
4828 #endif
4829 spin_unlock_irqrestore(&rq->lock, flags);
4831 /* Set the preempt count _outside_ the spinlocks! */
4832 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4833 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4834 #else
4835 task_thread_info(idle)->preempt_count = 0;
4836 #endif
4838 * The idle tasks have their own, simple scheduling class:
4840 idle->sched_class = &idle_sched_class;
4844 * In a system that switches off the HZ timer nohz_cpu_mask
4845 * indicates which cpus entered this state. This is used
4846 * in the rcu update to wait only for active cpus. For system
4847 * which do not switch off the HZ timer nohz_cpu_mask should
4848 * always be CPU_MASK_NONE.
4850 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4852 #ifdef CONFIG_SMP
4854 * This is how migration works:
4856 * 1) we queue a struct migration_req structure in the source CPU's
4857 * runqueue and wake up that CPU's migration thread.
4858 * 2) we down() the locked semaphore => thread blocks.
4859 * 3) migration thread wakes up (implicitly it forces the migrated
4860 * thread off the CPU)
4861 * 4) it gets the migration request and checks whether the migrated
4862 * task is still in the wrong runqueue.
4863 * 5) if it's in the wrong runqueue then the migration thread removes
4864 * it and puts it into the right queue.
4865 * 6) migration thread up()s the semaphore.
4866 * 7) we wake up and the migration is done.
4870 * Change a given task's CPU affinity. Migrate the thread to a
4871 * proper CPU and schedule it away if the CPU it's executing on
4872 * is removed from the allowed bitmask.
4874 * NOTE: the caller must have a valid reference to the task, the
4875 * task must not exit() & deallocate itself prematurely. The
4876 * call is not atomic; no spinlocks may be held.
4878 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4880 struct migration_req req;
4881 unsigned long flags;
4882 struct rq *rq;
4883 int ret = 0;
4885 rq = task_rq_lock(p, &flags);
4886 if (!cpus_intersects(new_mask, cpu_online_map)) {
4887 ret = -EINVAL;
4888 goto out;
4891 p->cpus_allowed = new_mask;
4892 /* Can the task run on the task's current CPU? If so, we're done */
4893 if (cpu_isset(task_cpu(p), new_mask))
4894 goto out;
4896 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4897 /* Need help from migration thread: drop lock and wait. */
4898 task_rq_unlock(rq, &flags);
4899 wake_up_process(rq->migration_thread);
4900 wait_for_completion(&req.done);
4901 tlb_migrate_finish(p->mm);
4902 return 0;
4904 out:
4905 task_rq_unlock(rq, &flags);
4907 return ret;
4909 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4912 * Move (not current) task off this cpu, onto dest cpu. We're doing
4913 * this because either it can't run here any more (set_cpus_allowed()
4914 * away from this CPU, or CPU going down), or because we're
4915 * attempting to rebalance this task on exec (sched_exec).
4917 * So we race with normal scheduler movements, but that's OK, as long
4918 * as the task is no longer on this CPU.
4920 * Returns non-zero if task was successfully migrated.
4922 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4924 struct rq *rq_dest, *rq_src;
4925 int ret = 0, on_rq;
4927 if (unlikely(cpu_is_offline(dest_cpu)))
4928 return ret;
4930 rq_src = cpu_rq(src_cpu);
4931 rq_dest = cpu_rq(dest_cpu);
4933 double_rq_lock(rq_src, rq_dest);
4934 /* Already moved. */
4935 if (task_cpu(p) != src_cpu)
4936 goto out;
4937 /* Affinity changed (again). */
4938 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4939 goto out;
4941 on_rq = p->se.on_rq;
4942 if (on_rq)
4943 deactivate_task(rq_src, p, 0);
4945 set_task_cpu(p, dest_cpu);
4946 if (on_rq) {
4947 activate_task(rq_dest, p, 0);
4948 check_preempt_curr(rq_dest, p);
4950 ret = 1;
4951 out:
4952 double_rq_unlock(rq_src, rq_dest);
4953 return ret;
4957 * migration_thread - this is a highprio system thread that performs
4958 * thread migration by bumping thread off CPU then 'pushing' onto
4959 * another runqueue.
4961 static int migration_thread(void *data)
4963 int cpu = (long)data;
4964 struct rq *rq;
4966 rq = cpu_rq(cpu);
4967 BUG_ON(rq->migration_thread != current);
4969 set_current_state(TASK_INTERRUPTIBLE);
4970 while (!kthread_should_stop()) {
4971 struct migration_req *req;
4972 struct list_head *head;
4974 spin_lock_irq(&rq->lock);
4976 if (cpu_is_offline(cpu)) {
4977 spin_unlock_irq(&rq->lock);
4978 goto wait_to_die;
4981 if (rq->active_balance) {
4982 active_load_balance(rq, cpu);
4983 rq->active_balance = 0;
4986 head = &rq->migration_queue;
4988 if (list_empty(head)) {
4989 spin_unlock_irq(&rq->lock);
4990 schedule();
4991 set_current_state(TASK_INTERRUPTIBLE);
4992 continue;
4994 req = list_entry(head->next, struct migration_req, list);
4995 list_del_init(head->next);
4997 spin_unlock(&rq->lock);
4998 __migrate_task(req->task, cpu, req->dest_cpu);
4999 local_irq_enable();
5001 complete(&req->done);
5003 __set_current_state(TASK_RUNNING);
5004 return 0;
5006 wait_to_die:
5007 /* Wait for kthread_stop */
5008 set_current_state(TASK_INTERRUPTIBLE);
5009 while (!kthread_should_stop()) {
5010 schedule();
5011 set_current_state(TASK_INTERRUPTIBLE);
5013 __set_current_state(TASK_RUNNING);
5014 return 0;
5017 #ifdef CONFIG_HOTPLUG_CPU
5019 * Figure out where task on dead CPU should go, use force if neccessary.
5020 * NOTE: interrupts should be disabled by the caller
5022 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5024 unsigned long flags;
5025 cpumask_t mask;
5026 struct rq *rq;
5027 int dest_cpu;
5029 restart:
5030 /* On same node? */
5031 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5032 cpus_and(mask, mask, p->cpus_allowed);
5033 dest_cpu = any_online_cpu(mask);
5035 /* On any allowed CPU? */
5036 if (dest_cpu == NR_CPUS)
5037 dest_cpu = any_online_cpu(p->cpus_allowed);
5039 /* No more Mr. Nice Guy. */
5040 if (dest_cpu == NR_CPUS) {
5041 rq = task_rq_lock(p, &flags);
5042 cpus_setall(p->cpus_allowed);
5043 dest_cpu = any_online_cpu(p->cpus_allowed);
5044 task_rq_unlock(rq, &flags);
5047 * Don't tell them about moving exiting tasks or
5048 * kernel threads (both mm NULL), since they never
5049 * leave kernel.
5051 if (p->mm && printk_ratelimit())
5052 printk(KERN_INFO "process %d (%s) no "
5053 "longer affine to cpu%d\n",
5054 p->pid, p->comm, dead_cpu);
5056 if (!__migrate_task(p, dead_cpu, dest_cpu))
5057 goto restart;
5061 * While a dead CPU has no uninterruptible tasks queued at this point,
5062 * it might still have a nonzero ->nr_uninterruptible counter, because
5063 * for performance reasons the counter is not stricly tracking tasks to
5064 * their home CPUs. So we just add the counter to another CPU's counter,
5065 * to keep the global sum constant after CPU-down:
5067 static void migrate_nr_uninterruptible(struct rq *rq_src)
5069 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5070 unsigned long flags;
5072 local_irq_save(flags);
5073 double_rq_lock(rq_src, rq_dest);
5074 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5075 rq_src->nr_uninterruptible = 0;
5076 double_rq_unlock(rq_src, rq_dest);
5077 local_irq_restore(flags);
5080 /* Run through task list and migrate tasks from the dead cpu. */
5081 static void migrate_live_tasks(int src_cpu)
5083 struct task_struct *p, *t;
5085 write_lock_irq(&tasklist_lock);
5087 do_each_thread(t, p) {
5088 if (p == current)
5089 continue;
5091 if (task_cpu(p) == src_cpu)
5092 move_task_off_dead_cpu(src_cpu, p);
5093 } while_each_thread(t, p);
5095 write_unlock_irq(&tasklist_lock);
5099 * Schedules idle task to be the next runnable task on current CPU.
5100 * It does so by boosting its priority to highest possible and adding it to
5101 * the _front_ of the runqueue. Used by CPU offline code.
5103 void sched_idle_next(void)
5105 int this_cpu = smp_processor_id();
5106 struct rq *rq = cpu_rq(this_cpu);
5107 struct task_struct *p = rq->idle;
5108 unsigned long flags;
5110 /* cpu has to be offline */
5111 BUG_ON(cpu_online(this_cpu));
5114 * Strictly not necessary since rest of the CPUs are stopped by now
5115 * and interrupts disabled on the current cpu.
5117 spin_lock_irqsave(&rq->lock, flags);
5119 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5121 /* Add idle task to the _front_ of its priority queue: */
5122 activate_idle_task(p, rq);
5124 spin_unlock_irqrestore(&rq->lock, flags);
5128 * Ensures that the idle task is using init_mm right before its cpu goes
5129 * offline.
5131 void idle_task_exit(void)
5133 struct mm_struct *mm = current->active_mm;
5135 BUG_ON(cpu_online(smp_processor_id()));
5137 if (mm != &init_mm)
5138 switch_mm(mm, &init_mm, current);
5139 mmdrop(mm);
5142 /* called under rq->lock with disabled interrupts */
5143 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5145 struct rq *rq = cpu_rq(dead_cpu);
5147 /* Must be exiting, otherwise would be on tasklist. */
5148 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5150 /* Cannot have done final schedule yet: would have vanished. */
5151 BUG_ON(p->state == TASK_DEAD);
5153 get_task_struct(p);
5156 * Drop lock around migration; if someone else moves it,
5157 * that's OK. No task can be added to this CPU, so iteration is
5158 * fine.
5159 * NOTE: interrupts should be left disabled --dev@
5161 spin_unlock(&rq->lock);
5162 move_task_off_dead_cpu(dead_cpu, p);
5163 spin_lock(&rq->lock);
5165 put_task_struct(p);
5168 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5169 static void migrate_dead_tasks(unsigned int dead_cpu)
5171 struct rq *rq = cpu_rq(dead_cpu);
5172 struct task_struct *next;
5174 for ( ; ; ) {
5175 if (!rq->nr_running)
5176 break;
5177 update_rq_clock(rq);
5178 next = pick_next_task(rq, rq->curr);
5179 if (!next)
5180 break;
5181 migrate_dead(dead_cpu, next);
5185 #endif /* CONFIG_HOTPLUG_CPU */
5187 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5189 static struct ctl_table sd_ctl_dir[] = {
5191 .procname = "sched_domain",
5192 .mode = 0555,
5194 {0,},
5197 static struct ctl_table sd_ctl_root[] = {
5199 .ctl_name = CTL_KERN,
5200 .procname = "kernel",
5201 .mode = 0555,
5202 .child = sd_ctl_dir,
5204 {0,},
5207 static struct ctl_table *sd_alloc_ctl_entry(int n)
5209 struct ctl_table *entry =
5210 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5212 BUG_ON(!entry);
5213 memset(entry, 0, n * sizeof(struct ctl_table));
5215 return entry;
5218 static void
5219 set_table_entry(struct ctl_table *entry,
5220 const char *procname, void *data, int maxlen,
5221 mode_t mode, proc_handler *proc_handler)
5223 entry->procname = procname;
5224 entry->data = data;
5225 entry->maxlen = maxlen;
5226 entry->mode = mode;
5227 entry->proc_handler = proc_handler;
5230 static struct ctl_table *
5231 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5233 struct ctl_table *table = sd_alloc_ctl_entry(14);
5235 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5236 sizeof(long), 0644, proc_doulongvec_minmax);
5237 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5238 sizeof(long), 0644, proc_doulongvec_minmax);
5239 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5240 sizeof(int), 0644, proc_dointvec_minmax);
5241 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5242 sizeof(int), 0644, proc_dointvec_minmax);
5243 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5244 sizeof(int), 0644, proc_dointvec_minmax);
5245 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5246 sizeof(int), 0644, proc_dointvec_minmax);
5247 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5248 sizeof(int), 0644, proc_dointvec_minmax);
5249 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5250 sizeof(int), 0644, proc_dointvec_minmax);
5251 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5252 sizeof(int), 0644, proc_dointvec_minmax);
5253 set_table_entry(&table[10], "cache_nice_tries",
5254 &sd->cache_nice_tries,
5255 sizeof(int), 0644, proc_dointvec_minmax);
5256 set_table_entry(&table[12], "flags", &sd->flags,
5257 sizeof(int), 0644, proc_dointvec_minmax);
5259 return table;
5262 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5264 struct ctl_table *entry, *table;
5265 struct sched_domain *sd;
5266 int domain_num = 0, i;
5267 char buf[32];
5269 for_each_domain(cpu, sd)
5270 domain_num++;
5271 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5273 i = 0;
5274 for_each_domain(cpu, sd) {
5275 snprintf(buf, 32, "domain%d", i);
5276 entry->procname = kstrdup(buf, GFP_KERNEL);
5277 entry->mode = 0555;
5278 entry->child = sd_alloc_ctl_domain_table(sd);
5279 entry++;
5280 i++;
5282 return table;
5285 static struct ctl_table_header *sd_sysctl_header;
5286 static void init_sched_domain_sysctl(void)
5288 int i, cpu_num = num_online_cpus();
5289 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5290 char buf[32];
5292 sd_ctl_dir[0].child = entry;
5294 for (i = 0; i < cpu_num; i++, entry++) {
5295 snprintf(buf, 32, "cpu%d", i);
5296 entry->procname = kstrdup(buf, GFP_KERNEL);
5297 entry->mode = 0555;
5298 entry->child = sd_alloc_ctl_cpu_table(i);
5300 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5302 #else
5303 static void init_sched_domain_sysctl(void)
5306 #endif
5309 * migration_call - callback that gets triggered when a CPU is added.
5310 * Here we can start up the necessary migration thread for the new CPU.
5312 static int __cpuinit
5313 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5315 struct task_struct *p;
5316 int cpu = (long)hcpu;
5317 unsigned long flags;
5318 struct rq *rq;
5320 switch (action) {
5321 case CPU_LOCK_ACQUIRE:
5322 mutex_lock(&sched_hotcpu_mutex);
5323 break;
5325 case CPU_UP_PREPARE:
5326 case CPU_UP_PREPARE_FROZEN:
5327 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5328 if (IS_ERR(p))
5329 return NOTIFY_BAD;
5330 kthread_bind(p, cpu);
5331 /* Must be high prio: stop_machine expects to yield to it. */
5332 rq = task_rq_lock(p, &flags);
5333 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5334 task_rq_unlock(rq, &flags);
5335 cpu_rq(cpu)->migration_thread = p;
5336 break;
5338 case CPU_ONLINE:
5339 case CPU_ONLINE_FROZEN:
5340 /* Strictly unneccessary, as first user will wake it. */
5341 wake_up_process(cpu_rq(cpu)->migration_thread);
5342 break;
5344 #ifdef CONFIG_HOTPLUG_CPU
5345 case CPU_UP_CANCELED:
5346 case CPU_UP_CANCELED_FROZEN:
5347 if (!cpu_rq(cpu)->migration_thread)
5348 break;
5349 /* Unbind it from offline cpu so it can run. Fall thru. */
5350 kthread_bind(cpu_rq(cpu)->migration_thread,
5351 any_online_cpu(cpu_online_map));
5352 kthread_stop(cpu_rq(cpu)->migration_thread);
5353 cpu_rq(cpu)->migration_thread = NULL;
5354 break;
5356 case CPU_DEAD:
5357 case CPU_DEAD_FROZEN:
5358 migrate_live_tasks(cpu);
5359 rq = cpu_rq(cpu);
5360 kthread_stop(rq->migration_thread);
5361 rq->migration_thread = NULL;
5362 /* Idle task back to normal (off runqueue, low prio) */
5363 rq = task_rq_lock(rq->idle, &flags);
5364 update_rq_clock(rq);
5365 deactivate_task(rq, rq->idle, 0);
5366 rq->idle->static_prio = MAX_PRIO;
5367 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5368 rq->idle->sched_class = &idle_sched_class;
5369 migrate_dead_tasks(cpu);
5370 task_rq_unlock(rq, &flags);
5371 migrate_nr_uninterruptible(rq);
5372 BUG_ON(rq->nr_running != 0);
5374 /* No need to migrate the tasks: it was best-effort if
5375 * they didn't take sched_hotcpu_mutex. Just wake up
5376 * the requestors. */
5377 spin_lock_irq(&rq->lock);
5378 while (!list_empty(&rq->migration_queue)) {
5379 struct migration_req *req;
5381 req = list_entry(rq->migration_queue.next,
5382 struct migration_req, list);
5383 list_del_init(&req->list);
5384 complete(&req->done);
5386 spin_unlock_irq(&rq->lock);
5387 break;
5388 #endif
5389 case CPU_LOCK_RELEASE:
5390 mutex_unlock(&sched_hotcpu_mutex);
5391 break;
5393 return NOTIFY_OK;
5396 /* Register at highest priority so that task migration (migrate_all_tasks)
5397 * happens before everything else.
5399 static struct notifier_block __cpuinitdata migration_notifier = {
5400 .notifier_call = migration_call,
5401 .priority = 10
5404 int __init migration_init(void)
5406 void *cpu = (void *)(long)smp_processor_id();
5407 int err;
5409 /* Start one for the boot CPU: */
5410 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5411 BUG_ON(err == NOTIFY_BAD);
5412 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5413 register_cpu_notifier(&migration_notifier);
5415 return 0;
5417 #endif
5419 #ifdef CONFIG_SMP
5421 /* Number of possible processor ids */
5422 int nr_cpu_ids __read_mostly = NR_CPUS;
5423 EXPORT_SYMBOL(nr_cpu_ids);
5425 #undef SCHED_DOMAIN_DEBUG
5426 #ifdef SCHED_DOMAIN_DEBUG
5427 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5429 int level = 0;
5431 if (!sd) {
5432 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5433 return;
5436 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5438 do {
5439 int i;
5440 char str[NR_CPUS];
5441 struct sched_group *group = sd->groups;
5442 cpumask_t groupmask;
5444 cpumask_scnprintf(str, NR_CPUS, sd->span);
5445 cpus_clear(groupmask);
5447 printk(KERN_DEBUG);
5448 for (i = 0; i < level + 1; i++)
5449 printk(" ");
5450 printk("domain %d: ", level);
5452 if (!(sd->flags & SD_LOAD_BALANCE)) {
5453 printk("does not load-balance\n");
5454 if (sd->parent)
5455 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5456 " has parent");
5457 break;
5460 printk("span %s\n", str);
5462 if (!cpu_isset(cpu, sd->span))
5463 printk(KERN_ERR "ERROR: domain->span does not contain "
5464 "CPU%d\n", cpu);
5465 if (!cpu_isset(cpu, group->cpumask))
5466 printk(KERN_ERR "ERROR: domain->groups does not contain"
5467 " CPU%d\n", cpu);
5469 printk(KERN_DEBUG);
5470 for (i = 0; i < level + 2; i++)
5471 printk(" ");
5472 printk("groups:");
5473 do {
5474 if (!group) {
5475 printk("\n");
5476 printk(KERN_ERR "ERROR: group is NULL\n");
5477 break;
5480 if (!group->__cpu_power) {
5481 printk("\n");
5482 printk(KERN_ERR "ERROR: domain->cpu_power not "
5483 "set\n");
5486 if (!cpus_weight(group->cpumask)) {
5487 printk("\n");
5488 printk(KERN_ERR "ERROR: empty group\n");
5491 if (cpus_intersects(groupmask, group->cpumask)) {
5492 printk("\n");
5493 printk(KERN_ERR "ERROR: repeated CPUs\n");
5496 cpus_or(groupmask, groupmask, group->cpumask);
5498 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5499 printk(" %s", str);
5501 group = group->next;
5502 } while (group != sd->groups);
5503 printk("\n");
5505 if (!cpus_equal(sd->span, groupmask))
5506 printk(KERN_ERR "ERROR: groups don't span "
5507 "domain->span\n");
5509 level++;
5510 sd = sd->parent;
5511 if (!sd)
5512 continue;
5514 if (!cpus_subset(groupmask, sd->span))
5515 printk(KERN_ERR "ERROR: parent span is not a superset "
5516 "of domain->span\n");
5518 } while (sd);
5520 #else
5521 # define sched_domain_debug(sd, cpu) do { } while (0)
5522 #endif
5524 static int sd_degenerate(struct sched_domain *sd)
5526 if (cpus_weight(sd->span) == 1)
5527 return 1;
5529 /* Following flags need at least 2 groups */
5530 if (sd->flags & (SD_LOAD_BALANCE |
5531 SD_BALANCE_NEWIDLE |
5532 SD_BALANCE_FORK |
5533 SD_BALANCE_EXEC |
5534 SD_SHARE_CPUPOWER |
5535 SD_SHARE_PKG_RESOURCES)) {
5536 if (sd->groups != sd->groups->next)
5537 return 0;
5540 /* Following flags don't use groups */
5541 if (sd->flags & (SD_WAKE_IDLE |
5542 SD_WAKE_AFFINE |
5543 SD_WAKE_BALANCE))
5544 return 0;
5546 return 1;
5549 static int
5550 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5552 unsigned long cflags = sd->flags, pflags = parent->flags;
5554 if (sd_degenerate(parent))
5555 return 1;
5557 if (!cpus_equal(sd->span, parent->span))
5558 return 0;
5560 /* Does parent contain flags not in child? */
5561 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5562 if (cflags & SD_WAKE_AFFINE)
5563 pflags &= ~SD_WAKE_BALANCE;
5564 /* Flags needing groups don't count if only 1 group in parent */
5565 if (parent->groups == parent->groups->next) {
5566 pflags &= ~(SD_LOAD_BALANCE |
5567 SD_BALANCE_NEWIDLE |
5568 SD_BALANCE_FORK |
5569 SD_BALANCE_EXEC |
5570 SD_SHARE_CPUPOWER |
5571 SD_SHARE_PKG_RESOURCES);
5573 if (~cflags & pflags)
5574 return 0;
5576 return 1;
5580 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5581 * hold the hotplug lock.
5583 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5585 struct rq *rq = cpu_rq(cpu);
5586 struct sched_domain *tmp;
5588 /* Remove the sched domains which do not contribute to scheduling. */
5589 for (tmp = sd; tmp; tmp = tmp->parent) {
5590 struct sched_domain *parent = tmp->parent;
5591 if (!parent)
5592 break;
5593 if (sd_parent_degenerate(tmp, parent)) {
5594 tmp->parent = parent->parent;
5595 if (parent->parent)
5596 parent->parent->child = tmp;
5600 if (sd && sd_degenerate(sd)) {
5601 sd = sd->parent;
5602 if (sd)
5603 sd->child = NULL;
5606 sched_domain_debug(sd, cpu);
5608 rcu_assign_pointer(rq->sd, sd);
5611 /* cpus with isolated domains */
5612 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5614 /* Setup the mask of cpus configured for isolated domains */
5615 static int __init isolated_cpu_setup(char *str)
5617 int ints[NR_CPUS], i;
5619 str = get_options(str, ARRAY_SIZE(ints), ints);
5620 cpus_clear(cpu_isolated_map);
5621 for (i = 1; i <= ints[0]; i++)
5622 if (ints[i] < NR_CPUS)
5623 cpu_set(ints[i], cpu_isolated_map);
5624 return 1;
5627 __setup ("isolcpus=", isolated_cpu_setup);
5630 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5631 * to a function which identifies what group(along with sched group) a CPU
5632 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5633 * (due to the fact that we keep track of groups covered with a cpumask_t).
5635 * init_sched_build_groups will build a circular linked list of the groups
5636 * covered by the given span, and will set each group's ->cpumask correctly,
5637 * and ->cpu_power to 0.
5639 static void
5640 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5641 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5642 struct sched_group **sg))
5644 struct sched_group *first = NULL, *last = NULL;
5645 cpumask_t covered = CPU_MASK_NONE;
5646 int i;
5648 for_each_cpu_mask(i, span) {
5649 struct sched_group *sg;
5650 int group = group_fn(i, cpu_map, &sg);
5651 int j;
5653 if (cpu_isset(i, covered))
5654 continue;
5656 sg->cpumask = CPU_MASK_NONE;
5657 sg->__cpu_power = 0;
5659 for_each_cpu_mask(j, span) {
5660 if (group_fn(j, cpu_map, NULL) != group)
5661 continue;
5663 cpu_set(j, covered);
5664 cpu_set(j, sg->cpumask);
5666 if (!first)
5667 first = sg;
5668 if (last)
5669 last->next = sg;
5670 last = sg;
5672 last->next = first;
5675 #define SD_NODES_PER_DOMAIN 16
5677 #ifdef CONFIG_NUMA
5680 * find_next_best_node - find the next node to include in a sched_domain
5681 * @node: node whose sched_domain we're building
5682 * @used_nodes: nodes already in the sched_domain
5684 * Find the next node to include in a given scheduling domain. Simply
5685 * finds the closest node not already in the @used_nodes map.
5687 * Should use nodemask_t.
5689 static int find_next_best_node(int node, unsigned long *used_nodes)
5691 int i, n, val, min_val, best_node = 0;
5693 min_val = INT_MAX;
5695 for (i = 0; i < MAX_NUMNODES; i++) {
5696 /* Start at @node */
5697 n = (node + i) % MAX_NUMNODES;
5699 if (!nr_cpus_node(n))
5700 continue;
5702 /* Skip already used nodes */
5703 if (test_bit(n, used_nodes))
5704 continue;
5706 /* Simple min distance search */
5707 val = node_distance(node, n);
5709 if (val < min_val) {
5710 min_val = val;
5711 best_node = n;
5715 set_bit(best_node, used_nodes);
5716 return best_node;
5720 * sched_domain_node_span - get a cpumask for a node's sched_domain
5721 * @node: node whose cpumask we're constructing
5722 * @size: number of nodes to include in this span
5724 * Given a node, construct a good cpumask for its sched_domain to span. It
5725 * should be one that prevents unnecessary balancing, but also spreads tasks
5726 * out optimally.
5728 static cpumask_t sched_domain_node_span(int node)
5730 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5731 cpumask_t span, nodemask;
5732 int i;
5734 cpus_clear(span);
5735 bitmap_zero(used_nodes, MAX_NUMNODES);
5737 nodemask = node_to_cpumask(node);
5738 cpus_or(span, span, nodemask);
5739 set_bit(node, used_nodes);
5741 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5742 int next_node = find_next_best_node(node, used_nodes);
5744 nodemask = node_to_cpumask(next_node);
5745 cpus_or(span, span, nodemask);
5748 return span;
5750 #endif
5752 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5755 * SMT sched-domains:
5757 #ifdef CONFIG_SCHED_SMT
5758 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5759 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5761 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5762 struct sched_group **sg)
5764 if (sg)
5765 *sg = &per_cpu(sched_group_cpus, cpu);
5766 return cpu;
5768 #endif
5771 * multi-core sched-domains:
5773 #ifdef CONFIG_SCHED_MC
5774 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5775 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5776 #endif
5778 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5779 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5780 struct sched_group **sg)
5782 int group;
5783 cpumask_t mask = cpu_sibling_map[cpu];
5784 cpus_and(mask, mask, *cpu_map);
5785 group = first_cpu(mask);
5786 if (sg)
5787 *sg = &per_cpu(sched_group_core, group);
5788 return group;
5790 #elif defined(CONFIG_SCHED_MC)
5791 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5792 struct sched_group **sg)
5794 if (sg)
5795 *sg = &per_cpu(sched_group_core, cpu);
5796 return cpu;
5798 #endif
5800 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5801 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5803 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5804 struct sched_group **sg)
5806 int group;
5807 #ifdef CONFIG_SCHED_MC
5808 cpumask_t mask = cpu_coregroup_map(cpu);
5809 cpus_and(mask, mask, *cpu_map);
5810 group = first_cpu(mask);
5811 #elif defined(CONFIG_SCHED_SMT)
5812 cpumask_t mask = cpu_sibling_map[cpu];
5813 cpus_and(mask, mask, *cpu_map);
5814 group = first_cpu(mask);
5815 #else
5816 group = cpu;
5817 #endif
5818 if (sg)
5819 *sg = &per_cpu(sched_group_phys, group);
5820 return group;
5823 #ifdef CONFIG_NUMA
5825 * The init_sched_build_groups can't handle what we want to do with node
5826 * groups, so roll our own. Now each node has its own list of groups which
5827 * gets dynamically allocated.
5829 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5830 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5832 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5833 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5835 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5836 struct sched_group **sg)
5838 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5839 int group;
5841 cpus_and(nodemask, nodemask, *cpu_map);
5842 group = first_cpu(nodemask);
5844 if (sg)
5845 *sg = &per_cpu(sched_group_allnodes, group);
5846 return group;
5849 static void init_numa_sched_groups_power(struct sched_group *group_head)
5851 struct sched_group *sg = group_head;
5852 int j;
5854 if (!sg)
5855 return;
5856 next_sg:
5857 for_each_cpu_mask(j, sg->cpumask) {
5858 struct sched_domain *sd;
5860 sd = &per_cpu(phys_domains, j);
5861 if (j != first_cpu(sd->groups->cpumask)) {
5863 * Only add "power" once for each
5864 * physical package.
5866 continue;
5869 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5871 sg = sg->next;
5872 if (sg != group_head)
5873 goto next_sg;
5875 #endif
5877 #ifdef CONFIG_NUMA
5878 /* Free memory allocated for various sched_group structures */
5879 static void free_sched_groups(const cpumask_t *cpu_map)
5881 int cpu, i;
5883 for_each_cpu_mask(cpu, *cpu_map) {
5884 struct sched_group **sched_group_nodes
5885 = sched_group_nodes_bycpu[cpu];
5887 if (!sched_group_nodes)
5888 continue;
5890 for (i = 0; i < MAX_NUMNODES; i++) {
5891 cpumask_t nodemask = node_to_cpumask(i);
5892 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5894 cpus_and(nodemask, nodemask, *cpu_map);
5895 if (cpus_empty(nodemask))
5896 continue;
5898 if (sg == NULL)
5899 continue;
5900 sg = sg->next;
5901 next_sg:
5902 oldsg = sg;
5903 sg = sg->next;
5904 kfree(oldsg);
5905 if (oldsg != sched_group_nodes[i])
5906 goto next_sg;
5908 kfree(sched_group_nodes);
5909 sched_group_nodes_bycpu[cpu] = NULL;
5912 #else
5913 static void free_sched_groups(const cpumask_t *cpu_map)
5916 #endif
5919 * Initialize sched groups cpu_power.
5921 * cpu_power indicates the capacity of sched group, which is used while
5922 * distributing the load between different sched groups in a sched domain.
5923 * Typically cpu_power for all the groups in a sched domain will be same unless
5924 * there are asymmetries in the topology. If there are asymmetries, group
5925 * having more cpu_power will pickup more load compared to the group having
5926 * less cpu_power.
5928 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5929 * the maximum number of tasks a group can handle in the presence of other idle
5930 * or lightly loaded groups in the same sched domain.
5932 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5934 struct sched_domain *child;
5935 struct sched_group *group;
5937 WARN_ON(!sd || !sd->groups);
5939 if (cpu != first_cpu(sd->groups->cpumask))
5940 return;
5942 child = sd->child;
5944 sd->groups->__cpu_power = 0;
5947 * For perf policy, if the groups in child domain share resources
5948 * (for example cores sharing some portions of the cache hierarchy
5949 * or SMT), then set this domain groups cpu_power such that each group
5950 * can handle only one task, when there are other idle groups in the
5951 * same sched domain.
5953 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5954 (child->flags &
5955 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5956 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5957 return;
5961 * add cpu_power of each child group to this groups cpu_power
5963 group = child->groups;
5964 do {
5965 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5966 group = group->next;
5967 } while (group != child->groups);
5971 * Build sched domains for a given set of cpus and attach the sched domains
5972 * to the individual cpus
5974 static int build_sched_domains(const cpumask_t *cpu_map)
5976 int i;
5977 #ifdef CONFIG_NUMA
5978 struct sched_group **sched_group_nodes = NULL;
5979 int sd_allnodes = 0;
5982 * Allocate the per-node list of sched groups
5984 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5985 GFP_KERNEL);
5986 if (!sched_group_nodes) {
5987 printk(KERN_WARNING "Can not alloc sched group node list\n");
5988 return -ENOMEM;
5990 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5991 #endif
5994 * Set up domains for cpus specified by the cpu_map.
5996 for_each_cpu_mask(i, *cpu_map) {
5997 struct sched_domain *sd = NULL, *p;
5998 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6000 cpus_and(nodemask, nodemask, *cpu_map);
6002 #ifdef CONFIG_NUMA
6003 if (cpus_weight(*cpu_map) >
6004 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6005 sd = &per_cpu(allnodes_domains, i);
6006 *sd = SD_ALLNODES_INIT;
6007 sd->span = *cpu_map;
6008 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6009 p = sd;
6010 sd_allnodes = 1;
6011 } else
6012 p = NULL;
6014 sd = &per_cpu(node_domains, i);
6015 *sd = SD_NODE_INIT;
6016 sd->span = sched_domain_node_span(cpu_to_node(i));
6017 sd->parent = p;
6018 if (p)
6019 p->child = sd;
6020 cpus_and(sd->span, sd->span, *cpu_map);
6021 #endif
6023 p = sd;
6024 sd = &per_cpu(phys_domains, i);
6025 *sd = SD_CPU_INIT;
6026 sd->span = nodemask;
6027 sd->parent = p;
6028 if (p)
6029 p->child = sd;
6030 cpu_to_phys_group(i, cpu_map, &sd->groups);
6032 #ifdef CONFIG_SCHED_MC
6033 p = sd;
6034 sd = &per_cpu(core_domains, i);
6035 *sd = SD_MC_INIT;
6036 sd->span = cpu_coregroup_map(i);
6037 cpus_and(sd->span, sd->span, *cpu_map);
6038 sd->parent = p;
6039 p->child = sd;
6040 cpu_to_core_group(i, cpu_map, &sd->groups);
6041 #endif
6043 #ifdef CONFIG_SCHED_SMT
6044 p = sd;
6045 sd = &per_cpu(cpu_domains, i);
6046 *sd = SD_SIBLING_INIT;
6047 sd->span = cpu_sibling_map[i];
6048 cpus_and(sd->span, sd->span, *cpu_map);
6049 sd->parent = p;
6050 p->child = sd;
6051 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6052 #endif
6055 #ifdef CONFIG_SCHED_SMT
6056 /* Set up CPU (sibling) groups */
6057 for_each_cpu_mask(i, *cpu_map) {
6058 cpumask_t this_sibling_map = cpu_sibling_map[i];
6059 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6060 if (i != first_cpu(this_sibling_map))
6061 continue;
6063 init_sched_build_groups(this_sibling_map, cpu_map,
6064 &cpu_to_cpu_group);
6066 #endif
6068 #ifdef CONFIG_SCHED_MC
6069 /* Set up multi-core groups */
6070 for_each_cpu_mask(i, *cpu_map) {
6071 cpumask_t this_core_map = cpu_coregroup_map(i);
6072 cpus_and(this_core_map, this_core_map, *cpu_map);
6073 if (i != first_cpu(this_core_map))
6074 continue;
6075 init_sched_build_groups(this_core_map, cpu_map,
6076 &cpu_to_core_group);
6078 #endif
6080 /* Set up physical groups */
6081 for (i = 0; i < MAX_NUMNODES; i++) {
6082 cpumask_t nodemask = node_to_cpumask(i);
6084 cpus_and(nodemask, nodemask, *cpu_map);
6085 if (cpus_empty(nodemask))
6086 continue;
6088 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6091 #ifdef CONFIG_NUMA
6092 /* Set up node groups */
6093 if (sd_allnodes)
6094 init_sched_build_groups(*cpu_map, cpu_map,
6095 &cpu_to_allnodes_group);
6097 for (i = 0; i < MAX_NUMNODES; i++) {
6098 /* Set up node groups */
6099 struct sched_group *sg, *prev;
6100 cpumask_t nodemask = node_to_cpumask(i);
6101 cpumask_t domainspan;
6102 cpumask_t covered = CPU_MASK_NONE;
6103 int j;
6105 cpus_and(nodemask, nodemask, *cpu_map);
6106 if (cpus_empty(nodemask)) {
6107 sched_group_nodes[i] = NULL;
6108 continue;
6111 domainspan = sched_domain_node_span(i);
6112 cpus_and(domainspan, domainspan, *cpu_map);
6114 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6115 if (!sg) {
6116 printk(KERN_WARNING "Can not alloc domain group for "
6117 "node %d\n", i);
6118 goto error;
6120 sched_group_nodes[i] = sg;
6121 for_each_cpu_mask(j, nodemask) {
6122 struct sched_domain *sd;
6124 sd = &per_cpu(node_domains, j);
6125 sd->groups = sg;
6127 sg->__cpu_power = 0;
6128 sg->cpumask = nodemask;
6129 sg->next = sg;
6130 cpus_or(covered, covered, nodemask);
6131 prev = sg;
6133 for (j = 0; j < MAX_NUMNODES; j++) {
6134 cpumask_t tmp, notcovered;
6135 int n = (i + j) % MAX_NUMNODES;
6137 cpus_complement(notcovered, covered);
6138 cpus_and(tmp, notcovered, *cpu_map);
6139 cpus_and(tmp, tmp, domainspan);
6140 if (cpus_empty(tmp))
6141 break;
6143 nodemask = node_to_cpumask(n);
6144 cpus_and(tmp, tmp, nodemask);
6145 if (cpus_empty(tmp))
6146 continue;
6148 sg = kmalloc_node(sizeof(struct sched_group),
6149 GFP_KERNEL, i);
6150 if (!sg) {
6151 printk(KERN_WARNING
6152 "Can not alloc domain group for node %d\n", j);
6153 goto error;
6155 sg->__cpu_power = 0;
6156 sg->cpumask = tmp;
6157 sg->next = prev->next;
6158 cpus_or(covered, covered, tmp);
6159 prev->next = sg;
6160 prev = sg;
6163 #endif
6165 /* Calculate CPU power for physical packages and nodes */
6166 #ifdef CONFIG_SCHED_SMT
6167 for_each_cpu_mask(i, *cpu_map) {
6168 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6170 init_sched_groups_power(i, sd);
6172 #endif
6173 #ifdef CONFIG_SCHED_MC
6174 for_each_cpu_mask(i, *cpu_map) {
6175 struct sched_domain *sd = &per_cpu(core_domains, i);
6177 init_sched_groups_power(i, sd);
6179 #endif
6181 for_each_cpu_mask(i, *cpu_map) {
6182 struct sched_domain *sd = &per_cpu(phys_domains, i);
6184 init_sched_groups_power(i, sd);
6187 #ifdef CONFIG_NUMA
6188 for (i = 0; i < MAX_NUMNODES; i++)
6189 init_numa_sched_groups_power(sched_group_nodes[i]);
6191 if (sd_allnodes) {
6192 struct sched_group *sg;
6194 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6195 init_numa_sched_groups_power(sg);
6197 #endif
6199 /* Attach the domains */
6200 for_each_cpu_mask(i, *cpu_map) {
6201 struct sched_domain *sd;
6202 #ifdef CONFIG_SCHED_SMT
6203 sd = &per_cpu(cpu_domains, i);
6204 #elif defined(CONFIG_SCHED_MC)
6205 sd = &per_cpu(core_domains, i);
6206 #else
6207 sd = &per_cpu(phys_domains, i);
6208 #endif
6209 cpu_attach_domain(sd, i);
6212 return 0;
6214 #ifdef CONFIG_NUMA
6215 error:
6216 free_sched_groups(cpu_map);
6217 return -ENOMEM;
6218 #endif
6221 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6223 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6225 cpumask_t cpu_default_map;
6226 int err;
6229 * Setup mask for cpus without special case scheduling requirements.
6230 * For now this just excludes isolated cpus, but could be used to
6231 * exclude other special cases in the future.
6233 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6235 err = build_sched_domains(&cpu_default_map);
6237 return err;
6240 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6242 free_sched_groups(cpu_map);
6246 * Detach sched domains from a group of cpus specified in cpu_map
6247 * These cpus will now be attached to the NULL domain
6249 static void detach_destroy_domains(const cpumask_t *cpu_map)
6251 int i;
6253 for_each_cpu_mask(i, *cpu_map)
6254 cpu_attach_domain(NULL, i);
6255 synchronize_sched();
6256 arch_destroy_sched_domains(cpu_map);
6260 * Partition sched domains as specified by the cpumasks below.
6261 * This attaches all cpus from the cpumasks to the NULL domain,
6262 * waits for a RCU quiescent period, recalculates sched
6263 * domain information and then attaches them back to the
6264 * correct sched domains
6265 * Call with hotplug lock held
6267 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6269 cpumask_t change_map;
6270 int err = 0;
6272 cpus_and(*partition1, *partition1, cpu_online_map);
6273 cpus_and(*partition2, *partition2, cpu_online_map);
6274 cpus_or(change_map, *partition1, *partition2);
6276 /* Detach sched domains from all of the affected cpus */
6277 detach_destroy_domains(&change_map);
6278 if (!cpus_empty(*partition1))
6279 err = build_sched_domains(partition1);
6280 if (!err && !cpus_empty(*partition2))
6281 err = build_sched_domains(partition2);
6283 return err;
6286 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6287 static int arch_reinit_sched_domains(void)
6289 int err;
6291 mutex_lock(&sched_hotcpu_mutex);
6292 detach_destroy_domains(&cpu_online_map);
6293 err = arch_init_sched_domains(&cpu_online_map);
6294 mutex_unlock(&sched_hotcpu_mutex);
6296 return err;
6299 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6301 int ret;
6303 if (buf[0] != '0' && buf[0] != '1')
6304 return -EINVAL;
6306 if (smt)
6307 sched_smt_power_savings = (buf[0] == '1');
6308 else
6309 sched_mc_power_savings = (buf[0] == '1');
6311 ret = arch_reinit_sched_domains();
6313 return ret ? ret : count;
6316 #ifdef CONFIG_SCHED_MC
6317 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6319 return sprintf(page, "%u\n", sched_mc_power_savings);
6321 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6322 const char *buf, size_t count)
6324 return sched_power_savings_store(buf, count, 0);
6326 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6327 sched_mc_power_savings_store);
6328 #endif
6330 #ifdef CONFIG_SCHED_SMT
6331 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6333 return sprintf(page, "%u\n", sched_smt_power_savings);
6335 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6336 const char *buf, size_t count)
6338 return sched_power_savings_store(buf, count, 1);
6340 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6341 sched_smt_power_savings_store);
6342 #endif
6344 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6346 int err = 0;
6348 #ifdef CONFIG_SCHED_SMT
6349 if (smt_capable())
6350 err = sysfs_create_file(&cls->kset.kobj,
6351 &attr_sched_smt_power_savings.attr);
6352 #endif
6353 #ifdef CONFIG_SCHED_MC
6354 if (!err && mc_capable())
6355 err = sysfs_create_file(&cls->kset.kobj,
6356 &attr_sched_mc_power_savings.attr);
6357 #endif
6358 return err;
6360 #endif
6363 * Force a reinitialization of the sched domains hierarchy. The domains
6364 * and groups cannot be updated in place without racing with the balancing
6365 * code, so we temporarily attach all running cpus to the NULL domain
6366 * which will prevent rebalancing while the sched domains are recalculated.
6368 static int update_sched_domains(struct notifier_block *nfb,
6369 unsigned long action, void *hcpu)
6371 switch (action) {
6372 case CPU_UP_PREPARE:
6373 case CPU_UP_PREPARE_FROZEN:
6374 case CPU_DOWN_PREPARE:
6375 case CPU_DOWN_PREPARE_FROZEN:
6376 detach_destroy_domains(&cpu_online_map);
6377 return NOTIFY_OK;
6379 case CPU_UP_CANCELED:
6380 case CPU_UP_CANCELED_FROZEN:
6381 case CPU_DOWN_FAILED:
6382 case CPU_DOWN_FAILED_FROZEN:
6383 case CPU_ONLINE:
6384 case CPU_ONLINE_FROZEN:
6385 case CPU_DEAD:
6386 case CPU_DEAD_FROZEN:
6388 * Fall through and re-initialise the domains.
6390 break;
6391 default:
6392 return NOTIFY_DONE;
6395 /* The hotplug lock is already held by cpu_up/cpu_down */
6396 arch_init_sched_domains(&cpu_online_map);
6398 return NOTIFY_OK;
6401 void __init sched_init_smp(void)
6403 cpumask_t non_isolated_cpus;
6405 mutex_lock(&sched_hotcpu_mutex);
6406 arch_init_sched_domains(&cpu_online_map);
6407 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6408 if (cpus_empty(non_isolated_cpus))
6409 cpu_set(smp_processor_id(), non_isolated_cpus);
6410 mutex_unlock(&sched_hotcpu_mutex);
6411 /* XXX: Theoretical race here - CPU may be hotplugged now */
6412 hotcpu_notifier(update_sched_domains, 0);
6414 init_sched_domain_sysctl();
6416 /* Move init over to a non-isolated CPU */
6417 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6418 BUG();
6420 #else
6421 void __init sched_init_smp(void)
6424 #endif /* CONFIG_SMP */
6426 int in_sched_functions(unsigned long addr)
6428 /* Linker adds these: start and end of __sched functions */
6429 extern char __sched_text_start[], __sched_text_end[];
6431 return in_lock_functions(addr) ||
6432 (addr >= (unsigned long)__sched_text_start
6433 && addr < (unsigned long)__sched_text_end);
6436 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6438 cfs_rq->tasks_timeline = RB_ROOT;
6439 cfs_rq->fair_clock = 1;
6440 #ifdef CONFIG_FAIR_GROUP_SCHED
6441 cfs_rq->rq = rq;
6442 #endif
6445 void __init sched_init(void)
6447 int highest_cpu = 0;
6448 int i, j;
6451 * Link up the scheduling class hierarchy:
6453 rt_sched_class.next = &fair_sched_class;
6454 fair_sched_class.next = &idle_sched_class;
6455 idle_sched_class.next = NULL;
6457 for_each_possible_cpu(i) {
6458 struct rt_prio_array *array;
6459 struct rq *rq;
6461 rq = cpu_rq(i);
6462 spin_lock_init(&rq->lock);
6463 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6464 rq->nr_running = 0;
6465 rq->clock = 1;
6466 init_cfs_rq(&rq->cfs, rq);
6467 #ifdef CONFIG_FAIR_GROUP_SCHED
6468 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6469 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6470 #endif
6472 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6473 rq->cpu_load[j] = 0;
6474 #ifdef CONFIG_SMP
6475 rq->sd = NULL;
6476 rq->active_balance = 0;
6477 rq->next_balance = jiffies;
6478 rq->push_cpu = 0;
6479 rq->cpu = i;
6480 rq->migration_thread = NULL;
6481 INIT_LIST_HEAD(&rq->migration_queue);
6482 #endif
6483 atomic_set(&rq->nr_iowait, 0);
6485 array = &rq->rt.active;
6486 for (j = 0; j < MAX_RT_PRIO; j++) {
6487 INIT_LIST_HEAD(array->queue + j);
6488 __clear_bit(j, array->bitmap);
6490 highest_cpu = i;
6491 /* delimiter for bitsearch: */
6492 __set_bit(MAX_RT_PRIO, array->bitmap);
6495 set_load_weight(&init_task);
6497 #ifdef CONFIG_PREEMPT_NOTIFIERS
6498 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6499 #endif
6501 #ifdef CONFIG_SMP
6502 nr_cpu_ids = highest_cpu + 1;
6503 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6504 #endif
6506 #ifdef CONFIG_RT_MUTEXES
6507 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6508 #endif
6511 * The boot idle thread does lazy MMU switching as well:
6513 atomic_inc(&init_mm.mm_count);
6514 enter_lazy_tlb(&init_mm, current);
6517 * Make us the idle thread. Technically, schedule() should not be
6518 * called from this thread, however somewhere below it might be,
6519 * but because we are the idle thread, we just pick up running again
6520 * when this runqueue becomes "idle".
6522 init_idle(current, smp_processor_id());
6524 * During early bootup we pretend to be a normal task:
6526 current->sched_class = &fair_sched_class;
6529 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6530 void __might_sleep(char *file, int line)
6532 #ifdef in_atomic
6533 static unsigned long prev_jiffy; /* ratelimiting */
6535 if ((in_atomic() || irqs_disabled()) &&
6536 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6537 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6538 return;
6539 prev_jiffy = jiffies;
6540 printk(KERN_ERR "BUG: sleeping function called from invalid"
6541 " context at %s:%d\n", file, line);
6542 printk("in_atomic():%d, irqs_disabled():%d\n",
6543 in_atomic(), irqs_disabled());
6544 debug_show_held_locks(current);
6545 if (irqs_disabled())
6546 print_irqtrace_events(current);
6547 dump_stack();
6549 #endif
6551 EXPORT_SYMBOL(__might_sleep);
6552 #endif
6554 #ifdef CONFIG_MAGIC_SYSRQ
6555 void normalize_rt_tasks(void)
6557 struct task_struct *g, *p;
6558 unsigned long flags;
6559 struct rq *rq;
6560 int on_rq;
6562 read_lock_irq(&tasklist_lock);
6563 do_each_thread(g, p) {
6564 p->se.fair_key = 0;
6565 p->se.wait_runtime = 0;
6566 p->se.exec_start = 0;
6567 p->se.wait_start_fair = 0;
6568 #ifdef CONFIG_SCHEDSTATS
6569 p->se.wait_start = 0;
6570 p->se.sleep_start = 0;
6571 p->se.block_start = 0;
6572 #endif
6573 task_rq(p)->cfs.fair_clock = 0;
6574 task_rq(p)->clock = 0;
6576 if (!rt_task(p)) {
6578 * Renice negative nice level userspace
6579 * tasks back to 0:
6581 if (TASK_NICE(p) < 0 && p->mm)
6582 set_user_nice(p, 0);
6583 continue;
6586 spin_lock_irqsave(&p->pi_lock, flags);
6587 rq = __task_rq_lock(p);
6588 #ifdef CONFIG_SMP
6590 * Do not touch the migration thread:
6592 if (p == rq->migration_thread)
6593 goto out_unlock;
6594 #endif
6596 update_rq_clock(rq);
6597 on_rq = p->se.on_rq;
6598 if (on_rq)
6599 deactivate_task(rq, p, 0);
6600 __setscheduler(rq, p, SCHED_NORMAL, 0);
6601 if (on_rq) {
6602 activate_task(rq, p, 0);
6603 resched_task(rq->curr);
6605 #ifdef CONFIG_SMP
6606 out_unlock:
6607 #endif
6608 __task_rq_unlock(rq);
6609 spin_unlock_irqrestore(&p->pi_lock, flags);
6610 } while_each_thread(g, p);
6612 read_unlock_irq(&tasklist_lock);
6615 #endif /* CONFIG_MAGIC_SYSRQ */
6617 #ifdef CONFIG_IA64
6619 * These functions are only useful for the IA64 MCA handling.
6621 * They can only be called when the whole system has been
6622 * stopped - every CPU needs to be quiescent, and no scheduling
6623 * activity can take place. Using them for anything else would
6624 * be a serious bug, and as a result, they aren't even visible
6625 * under any other configuration.
6629 * curr_task - return the current task for a given cpu.
6630 * @cpu: the processor in question.
6632 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6634 struct task_struct *curr_task(int cpu)
6636 return cpu_curr(cpu);
6640 * set_curr_task - set the current task for a given cpu.
6641 * @cpu: the processor in question.
6642 * @p: the task pointer to set.
6644 * Description: This function must only be used when non-maskable interrupts
6645 * are serviced on a separate stack. It allows the architecture to switch the
6646 * notion of the current task on a cpu in a non-blocking manner. This function
6647 * must be called with all CPU's synchronized, and interrupts disabled, the
6648 * and caller must save the original value of the current task (see
6649 * curr_task() above) and restore that value before reenabling interrupts and
6650 * re-starting the system.
6652 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6654 void set_curr_task(int cpu, struct task_struct *p)
6656 cpu_curr(cpu) = p;
6659 #endif