sched: RT-balance, avoid overloading
[linux-2.6/verdex.git] / kernel / sched_rt.c
blob9becc3710b609c6b6ae44ce9c413287503c80c49
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #ifdef CONFIG_SMP
7 static cpumask_t rt_overload_mask;
8 static atomic_t rto_count;
9 static inline int rt_overloaded(void)
11 return atomic_read(&rto_count);
13 static inline cpumask_t *rt_overload(void)
15 return &rt_overload_mask;
17 static inline void rt_set_overload(struct rq *rq)
19 rq->rt.overloaded = 1;
20 cpu_set(rq->cpu, rt_overload_mask);
22 * Make sure the mask is visible before we set
23 * the overload count. That is checked to determine
24 * if we should look at the mask. It would be a shame
25 * if we looked at the mask, but the mask was not
26 * updated yet.
28 wmb();
29 atomic_inc(&rto_count);
31 static inline void rt_clear_overload(struct rq *rq)
33 /* the order here really doesn't matter */
34 atomic_dec(&rto_count);
35 cpu_clear(rq->cpu, rt_overload_mask);
36 rq->rt.overloaded = 0;
39 static void update_rt_migration(struct rq *rq)
41 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
42 rt_set_overload(rq);
43 else
44 rt_clear_overload(rq);
46 #endif /* CONFIG_SMP */
49 * Update the current task's runtime statistics. Skip current tasks that
50 * are not in our scheduling class.
52 static void update_curr_rt(struct rq *rq)
54 struct task_struct *curr = rq->curr;
55 u64 delta_exec;
57 if (!task_has_rt_policy(curr))
58 return;
60 delta_exec = rq->clock - curr->se.exec_start;
61 if (unlikely((s64)delta_exec < 0))
62 delta_exec = 0;
64 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
66 curr->se.sum_exec_runtime += delta_exec;
67 curr->se.exec_start = rq->clock;
68 cpuacct_charge(curr, delta_exec);
71 static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
73 WARN_ON(!rt_task(p));
74 rq->rt.rt_nr_running++;
75 #ifdef CONFIG_SMP
76 if (p->prio < rq->rt.highest_prio)
77 rq->rt.highest_prio = p->prio;
78 if (p->nr_cpus_allowed > 1)
79 rq->rt.rt_nr_migratory++;
81 update_rt_migration(rq);
82 #endif /* CONFIG_SMP */
85 static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
87 WARN_ON(!rt_task(p));
88 WARN_ON(!rq->rt.rt_nr_running);
89 rq->rt.rt_nr_running--;
90 #ifdef CONFIG_SMP
91 if (rq->rt.rt_nr_running) {
92 struct rt_prio_array *array;
94 WARN_ON(p->prio < rq->rt.highest_prio);
95 if (p->prio == rq->rt.highest_prio) {
96 /* recalculate */
97 array = &rq->rt.active;
98 rq->rt.highest_prio =
99 sched_find_first_bit(array->bitmap);
100 } /* otherwise leave rq->highest prio alone */
101 } else
102 rq->rt.highest_prio = MAX_RT_PRIO;
103 if (p->nr_cpus_allowed > 1)
104 rq->rt.rt_nr_migratory--;
106 update_rt_migration(rq);
107 #endif /* CONFIG_SMP */
110 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
112 struct rt_prio_array *array = &rq->rt.active;
114 list_add_tail(&p->run_list, array->queue + p->prio);
115 __set_bit(p->prio, array->bitmap);
116 inc_cpu_load(rq, p->se.load.weight);
118 inc_rt_tasks(p, rq);
122 * Adding/removing a task to/from a priority array:
124 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
126 struct rt_prio_array *array = &rq->rt.active;
128 update_curr_rt(rq);
130 list_del(&p->run_list);
131 if (list_empty(array->queue + p->prio))
132 __clear_bit(p->prio, array->bitmap);
133 dec_cpu_load(rq, p->se.load.weight);
135 dec_rt_tasks(p, rq);
139 * Put task to the end of the run list without the overhead of dequeue
140 * followed by enqueue.
142 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
144 struct rt_prio_array *array = &rq->rt.active;
146 list_move_tail(&p->run_list, array->queue + p->prio);
149 static void
150 yield_task_rt(struct rq *rq)
152 requeue_task_rt(rq, rq->curr);
155 #ifdef CONFIG_SMP
156 static int find_lowest_rq(struct task_struct *task);
158 static int select_task_rq_rt(struct task_struct *p, int sync)
160 struct rq *rq = task_rq(p);
163 * If the current task is an RT task, then
164 * try to see if we can wake this RT task up on another
165 * runqueue. Otherwise simply start this RT task
166 * on its current runqueue.
168 * We want to avoid overloading runqueues. Even if
169 * the RT task is of higher priority than the current RT task.
170 * RT tasks behave differently than other tasks. If
171 * one gets preempted, we try to push it off to another queue.
172 * So trying to keep a preempting RT task on the same
173 * cache hot CPU will force the running RT task to
174 * a cold CPU. So we waste all the cache for the lower
175 * RT task in hopes of saving some of a RT task
176 * that is just being woken and probably will have
177 * cold cache anyway.
179 if (unlikely(rt_task(rq->curr))) {
180 int cpu = find_lowest_rq(p);
182 return (cpu == -1) ? task_cpu(p) : cpu;
186 * Otherwise, just let it ride on the affined RQ and the
187 * post-schedule router will push the preempted task away
189 return task_cpu(p);
191 #endif /* CONFIG_SMP */
194 * Preempt the current task with a newly woken task if needed:
196 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
198 if (p->prio < rq->curr->prio)
199 resched_task(rq->curr);
202 static struct task_struct *pick_next_task_rt(struct rq *rq)
204 struct rt_prio_array *array = &rq->rt.active;
205 struct task_struct *next;
206 struct list_head *queue;
207 int idx;
209 idx = sched_find_first_bit(array->bitmap);
210 if (idx >= MAX_RT_PRIO)
211 return NULL;
213 queue = array->queue + idx;
214 next = list_entry(queue->next, struct task_struct, run_list);
216 next->se.exec_start = rq->clock;
218 return next;
221 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
223 update_curr_rt(rq);
224 p->se.exec_start = 0;
227 #ifdef CONFIG_SMP
228 /* Only try algorithms three times */
229 #define RT_MAX_TRIES 3
231 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
232 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
234 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
236 if (!task_running(rq, p) &&
237 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
238 (p->nr_cpus_allowed > 1))
239 return 1;
240 return 0;
243 /* Return the second highest RT task, NULL otherwise */
244 static struct task_struct *pick_next_highest_task_rt(struct rq *rq,
245 int cpu)
247 struct rt_prio_array *array = &rq->rt.active;
248 struct task_struct *next;
249 struct list_head *queue;
250 int idx;
252 assert_spin_locked(&rq->lock);
254 if (likely(rq->rt.rt_nr_running < 2))
255 return NULL;
257 idx = sched_find_first_bit(array->bitmap);
258 if (unlikely(idx >= MAX_RT_PRIO)) {
259 WARN_ON(1); /* rt_nr_running is bad */
260 return NULL;
263 queue = array->queue + idx;
264 BUG_ON(list_empty(queue));
266 next = list_entry(queue->next, struct task_struct, run_list);
267 if (unlikely(pick_rt_task(rq, next, cpu)))
268 goto out;
270 if (queue->next->next != queue) {
271 /* same prio task */
272 next = list_entry(queue->next->next, struct task_struct, run_list);
273 if (pick_rt_task(rq, next, cpu))
274 goto out;
277 retry:
278 /* slower, but more flexible */
279 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
280 if (unlikely(idx >= MAX_RT_PRIO))
281 return NULL;
283 queue = array->queue + idx;
284 BUG_ON(list_empty(queue));
286 list_for_each_entry(next, queue, run_list) {
287 if (pick_rt_task(rq, next, cpu))
288 goto out;
291 goto retry;
293 out:
294 return next;
297 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
298 static DEFINE_PER_CPU(cpumask_t, valid_cpu_mask);
300 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
302 int cpu;
303 cpumask_t *valid_mask = &__get_cpu_var(valid_cpu_mask);
304 int lowest_prio = -1;
305 int ret = 0;
307 cpus_clear(*lowest_mask);
308 cpus_and(*valid_mask, cpu_online_map, task->cpus_allowed);
311 * Scan each rq for the lowest prio.
313 for_each_cpu_mask(cpu, *valid_mask) {
314 struct rq *rq = cpu_rq(cpu);
316 /* We look for lowest RT prio or non-rt CPU */
317 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
318 if (ret)
319 cpus_clear(*lowest_mask);
320 cpu_set(rq->cpu, *lowest_mask);
321 return 1;
324 /* no locking for now */
325 if ((rq->rt.highest_prio > task->prio)
326 && (rq->rt.highest_prio >= lowest_prio)) {
327 if (rq->rt.highest_prio > lowest_prio) {
328 /* new low - clear old data */
329 lowest_prio = rq->rt.highest_prio;
330 cpus_clear(*lowest_mask);
332 cpu_set(rq->cpu, *lowest_mask);
333 ret = 1;
337 return ret;
340 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
342 int first;
344 /* "this_cpu" is cheaper to preempt than a remote processor */
345 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
346 return this_cpu;
348 first = first_cpu(*mask);
349 if (first != NR_CPUS)
350 return first;
352 return -1;
355 static int find_lowest_rq(struct task_struct *task)
357 struct sched_domain *sd;
358 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
359 int this_cpu = smp_processor_id();
360 int cpu = task_cpu(task);
362 if (!find_lowest_cpus(task, lowest_mask))
363 return -1;
366 * At this point we have built a mask of cpus representing the
367 * lowest priority tasks in the system. Now we want to elect
368 * the best one based on our affinity and topology.
370 * We prioritize the last cpu that the task executed on since
371 * it is most likely cache-hot in that location.
373 if (cpu_isset(cpu, *lowest_mask))
374 return cpu;
377 * Otherwise, we consult the sched_domains span maps to figure
378 * out which cpu is logically closest to our hot cache data.
380 if (this_cpu == cpu)
381 this_cpu = -1; /* Skip this_cpu opt if the same */
383 for_each_domain(cpu, sd) {
384 if (sd->flags & SD_WAKE_AFFINE) {
385 cpumask_t domain_mask;
386 int best_cpu;
388 cpus_and(domain_mask, sd->span, *lowest_mask);
390 best_cpu = pick_optimal_cpu(this_cpu,
391 &domain_mask);
392 if (best_cpu != -1)
393 return best_cpu;
398 * And finally, if there were no matches within the domains
399 * just give the caller *something* to work with from the compatible
400 * locations.
402 return pick_optimal_cpu(this_cpu, lowest_mask);
405 /* Will lock the rq it finds */
406 static struct rq *find_lock_lowest_rq(struct task_struct *task,
407 struct rq *rq)
409 struct rq *lowest_rq = NULL;
410 int cpu;
411 int tries;
413 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
414 cpu = find_lowest_rq(task);
416 if ((cpu == -1) || (cpu == rq->cpu))
417 break;
419 lowest_rq = cpu_rq(cpu);
421 /* if the prio of this runqueue changed, try again */
422 if (double_lock_balance(rq, lowest_rq)) {
424 * We had to unlock the run queue. In
425 * the mean time, task could have
426 * migrated already or had its affinity changed.
427 * Also make sure that it wasn't scheduled on its rq.
429 if (unlikely(task_rq(task) != rq ||
430 !cpu_isset(lowest_rq->cpu, task->cpus_allowed) ||
431 task_running(rq, task) ||
432 !task->se.on_rq)) {
433 spin_unlock(&lowest_rq->lock);
434 lowest_rq = NULL;
435 break;
439 /* If this rq is still suitable use it. */
440 if (lowest_rq->rt.highest_prio > task->prio)
441 break;
443 /* try again */
444 spin_unlock(&lowest_rq->lock);
445 lowest_rq = NULL;
448 return lowest_rq;
452 * If the current CPU has more than one RT task, see if the non
453 * running task can migrate over to a CPU that is running a task
454 * of lesser priority.
456 static int push_rt_task(struct rq *rq)
458 struct task_struct *next_task;
459 struct rq *lowest_rq;
460 int ret = 0;
461 int paranoid = RT_MAX_TRIES;
463 assert_spin_locked(&rq->lock);
465 if (!rq->rt.overloaded)
466 return 0;
468 next_task = pick_next_highest_task_rt(rq, -1);
469 if (!next_task)
470 return 0;
472 retry:
473 if (unlikely(next_task == rq->curr)) {
474 WARN_ON(1);
475 return 0;
479 * It's possible that the next_task slipped in of
480 * higher priority than current. If that's the case
481 * just reschedule current.
483 if (unlikely(next_task->prio < rq->curr->prio)) {
484 resched_task(rq->curr);
485 return 0;
488 /* We might release rq lock */
489 get_task_struct(next_task);
491 /* find_lock_lowest_rq locks the rq if found */
492 lowest_rq = find_lock_lowest_rq(next_task, rq);
493 if (!lowest_rq) {
494 struct task_struct *task;
496 * find lock_lowest_rq releases rq->lock
497 * so it is possible that next_task has changed.
498 * If it has, then try again.
500 task = pick_next_highest_task_rt(rq, -1);
501 if (unlikely(task != next_task) && task && paranoid--) {
502 put_task_struct(next_task);
503 next_task = task;
504 goto retry;
506 goto out;
509 assert_spin_locked(&lowest_rq->lock);
511 deactivate_task(rq, next_task, 0);
512 set_task_cpu(next_task, lowest_rq->cpu);
513 activate_task(lowest_rq, next_task, 0);
515 resched_task(lowest_rq->curr);
517 spin_unlock(&lowest_rq->lock);
519 ret = 1;
520 out:
521 put_task_struct(next_task);
523 return ret;
527 * TODO: Currently we just use the second highest prio task on
528 * the queue, and stop when it can't migrate (or there's
529 * no more RT tasks). There may be a case where a lower
530 * priority RT task has a different affinity than the
531 * higher RT task. In this case the lower RT task could
532 * possibly be able to migrate where as the higher priority
533 * RT task could not. We currently ignore this issue.
534 * Enhancements are welcome!
536 static void push_rt_tasks(struct rq *rq)
538 /* push_rt_task will return true if it moved an RT */
539 while (push_rt_task(rq))
543 static int pull_rt_task(struct rq *this_rq)
545 struct task_struct *next;
546 struct task_struct *p;
547 struct rq *src_rq;
548 cpumask_t *rto_cpumask;
549 int this_cpu = this_rq->cpu;
550 int cpu;
551 int ret = 0;
553 assert_spin_locked(&this_rq->lock);
556 * If cpusets are used, and we have overlapping
557 * run queue cpusets, then this algorithm may not catch all.
558 * This is just the price you pay on trying to keep
559 * dirtying caches down on large SMP machines.
561 if (likely(!rt_overloaded()))
562 return 0;
564 next = pick_next_task_rt(this_rq);
566 rto_cpumask = rt_overload();
568 for_each_cpu_mask(cpu, *rto_cpumask) {
569 if (this_cpu == cpu)
570 continue;
572 src_rq = cpu_rq(cpu);
573 if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
575 * It is possible that overlapping cpusets
576 * will miss clearing a non overloaded runqueue.
577 * Clear it now.
579 if (double_lock_balance(this_rq, src_rq)) {
580 /* unlocked our runqueue lock */
581 struct task_struct *old_next = next;
582 next = pick_next_task_rt(this_rq);
583 if (next != old_next)
584 ret = 1;
586 if (likely(src_rq->rt.rt_nr_running <= 1))
588 * Small chance that this_rq->curr changed
589 * but it's really harmless here.
591 rt_clear_overload(this_rq);
592 else
594 * Heh, the src_rq is now overloaded, since
595 * we already have the src_rq lock, go straight
596 * to pulling tasks from it.
598 goto try_pulling;
599 spin_unlock(&src_rq->lock);
600 continue;
604 * We can potentially drop this_rq's lock in
605 * double_lock_balance, and another CPU could
606 * steal our next task - hence we must cause
607 * the caller to recalculate the next task
608 * in that case:
610 if (double_lock_balance(this_rq, src_rq)) {
611 struct task_struct *old_next = next;
612 next = pick_next_task_rt(this_rq);
613 if (next != old_next)
614 ret = 1;
618 * Are there still pullable RT tasks?
620 if (src_rq->rt.rt_nr_running <= 1) {
621 spin_unlock(&src_rq->lock);
622 continue;
625 try_pulling:
626 p = pick_next_highest_task_rt(src_rq, this_cpu);
629 * Do we have an RT task that preempts
630 * the to-be-scheduled task?
632 if (p && (!next || (p->prio < next->prio))) {
633 WARN_ON(p == src_rq->curr);
634 WARN_ON(!p->se.on_rq);
637 * There's a chance that p is higher in priority
638 * than what's currently running on its cpu.
639 * This is just that p is wakeing up and hasn't
640 * had a chance to schedule. We only pull
641 * p if it is lower in priority than the
642 * current task on the run queue or
643 * this_rq next task is lower in prio than
644 * the current task on that rq.
646 if (p->prio < src_rq->curr->prio ||
647 (next && next->prio < src_rq->curr->prio))
648 goto bail;
650 ret = 1;
652 deactivate_task(src_rq, p, 0);
653 set_task_cpu(p, this_cpu);
654 activate_task(this_rq, p, 0);
656 * We continue with the search, just in
657 * case there's an even higher prio task
658 * in another runqueue. (low likelyhood
659 * but possible)
663 * Update next so that we won't pick a task
664 * on another cpu with a priority lower (or equal)
665 * than the one we just picked.
667 next = p;
670 bail:
671 spin_unlock(&src_rq->lock);
674 return ret;
677 static void schedule_balance_rt(struct rq *rq,
678 struct task_struct *prev)
680 /* Try to pull RT tasks here if we lower this rq's prio */
681 if (unlikely(rt_task(prev)) &&
682 rq->rt.highest_prio > prev->prio)
683 pull_rt_task(rq);
686 static void schedule_tail_balance_rt(struct rq *rq)
689 * If we have more than one rt_task queued, then
690 * see if we can push the other rt_tasks off to other CPUS.
691 * Note we may release the rq lock, and since
692 * the lock was owned by prev, we need to release it
693 * first via finish_lock_switch and then reaquire it here.
695 if (unlikely(rq->rt.overloaded)) {
696 spin_lock_irq(&rq->lock);
697 push_rt_tasks(rq);
698 spin_unlock_irq(&rq->lock);
703 static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
705 if (unlikely(rt_task(p)) &&
706 !task_running(rq, p) &&
707 (p->prio >= rq->rt.highest_prio) &&
708 rq->rt.overloaded)
709 push_rt_tasks(rq);
712 static unsigned long
713 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
714 unsigned long max_load_move,
715 struct sched_domain *sd, enum cpu_idle_type idle,
716 int *all_pinned, int *this_best_prio)
718 /* don't touch RT tasks */
719 return 0;
722 static int
723 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
724 struct sched_domain *sd, enum cpu_idle_type idle)
726 /* don't touch RT tasks */
727 return 0;
729 static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
731 int weight = cpus_weight(*new_mask);
733 BUG_ON(!rt_task(p));
736 * Update the migration status of the RQ if we have an RT task
737 * which is running AND changing its weight value.
739 if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
740 struct rq *rq = task_rq(p);
742 if ((p->nr_cpus_allowed <= 1) && (weight > 1))
743 rq->rt.rt_nr_migratory++;
744 else if((p->nr_cpus_allowed > 1) && (weight <= 1)) {
745 BUG_ON(!rq->rt.rt_nr_migratory);
746 rq->rt.rt_nr_migratory--;
749 update_rt_migration(rq);
752 p->cpus_allowed = *new_mask;
753 p->nr_cpus_allowed = weight;
755 #else /* CONFIG_SMP */
756 # define schedule_tail_balance_rt(rq) do { } while (0)
757 # define schedule_balance_rt(rq, prev) do { } while (0)
758 # define wakeup_balance_rt(rq, p) do { } while (0)
759 #endif /* CONFIG_SMP */
761 static void task_tick_rt(struct rq *rq, struct task_struct *p)
763 update_curr_rt(rq);
766 * RR tasks need a special form of timeslice management.
767 * FIFO tasks have no timeslices.
769 if (p->policy != SCHED_RR)
770 return;
772 if (--p->time_slice)
773 return;
775 p->time_slice = DEF_TIMESLICE;
778 * Requeue to the end of queue if we are not the only element
779 * on the queue:
781 if (p->run_list.prev != p->run_list.next) {
782 requeue_task_rt(rq, p);
783 set_tsk_need_resched(p);
787 static void set_curr_task_rt(struct rq *rq)
789 struct task_struct *p = rq->curr;
791 p->se.exec_start = rq->clock;
794 const struct sched_class rt_sched_class = {
795 .next = &fair_sched_class,
796 .enqueue_task = enqueue_task_rt,
797 .dequeue_task = dequeue_task_rt,
798 .yield_task = yield_task_rt,
799 #ifdef CONFIG_SMP
800 .select_task_rq = select_task_rq_rt,
801 #endif /* CONFIG_SMP */
803 .check_preempt_curr = check_preempt_curr_rt,
805 .pick_next_task = pick_next_task_rt,
806 .put_prev_task = put_prev_task_rt,
808 #ifdef CONFIG_SMP
809 .load_balance = load_balance_rt,
810 .move_one_task = move_one_task_rt,
811 .set_cpus_allowed = set_cpus_allowed_rt,
812 #endif
814 .set_curr_task = set_curr_task_rt,
815 .task_tick = task_tick_rt,