1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
137 #include <linux/config.h>
138 #include <linux/module.h>
139 #include <linux/moduleparam.h>
140 #include <linux/kernel.h>
141 #include <linux/types.h>
142 #include <linux/slab.h>
143 #include <linux/delay.h>
144 #include <linux/init.h>
145 #include <linux/pci.h>
146 #include <linux/dma-mapping.h>
147 #include <linux/netdevice.h>
148 #include <linux/etherdevice.h>
149 #include <linux/mii.h>
150 #include <linux/if_vlan.h>
151 #include <linux/skbuff.h>
152 #include <linux/ethtool.h>
153 #include <linux/string.h>
154 #include <asm/unaligned.h>
157 #define DRV_NAME "e100"
158 #define DRV_EXT "-NAPI"
159 #define DRV_VERSION "3.4.14-k4"DRV_EXT
160 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
161 #define DRV_COPYRIGHT "Copyright(c) 1999-2005 Intel Corporation"
162 #define PFX DRV_NAME ": "
164 #define E100_WATCHDOG_PERIOD (2 * HZ)
165 #define E100_NAPI_WEIGHT 16
167 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
168 MODULE_AUTHOR(DRV_COPYRIGHT
);
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION
);
172 static int debug
= 3;
173 module_param(debug
, int, 0);
174 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
175 #define DPRINTK(nlevel, klevel, fmt, args...) \
176 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
177 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
178 __FUNCTION__ , ## args))
180 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
181 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
182 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
183 static struct pci_device_id e100_id_table
[] = {
184 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
185 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
186 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
187 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
188 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
189 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
191 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
192 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
193 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
194 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
197 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
198 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
199 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
200 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
205 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
206 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
207 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
208 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
209 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
214 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
215 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
216 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
217 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
218 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
219 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
220 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
221 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
222 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
223 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
224 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
227 MODULE_DEVICE_TABLE(pci
, e100_id_table
);
230 mac_82557_D100_A
= 0,
231 mac_82557_D100_B
= 1,
232 mac_82557_D100_C
= 2,
233 mac_82558_D101_A4
= 4,
234 mac_82558_D101_B0
= 5,
238 mac_82550_D102_C
= 13,
246 phy_100a
= 0x000003E0,
247 phy_100c
= 0x035002A8,
248 phy_82555_tx
= 0x015002A8,
249 phy_nsc_tx
= 0x5C002000,
250 phy_82562_et
= 0x033002A8,
251 phy_82562_em
= 0x032002A8,
252 phy_82562_ek
= 0x031002A8,
253 phy_82562_eh
= 0x017002A8,
254 phy_unknown
= 0xFFFFFFFF,
257 /* CSR (Control/Status Registers) */
282 RU_UNINITIALIZED
= -1,
286 stat_ack_not_ours
= 0x00,
287 stat_ack_sw_gen
= 0x04,
289 stat_ack_cu_idle
= 0x20,
290 stat_ack_frame_rx
= 0x40,
291 stat_ack_cu_cmd_done
= 0x80,
292 stat_ack_not_present
= 0xFF,
293 stat_ack_rx
= (stat_ack_sw_gen
| stat_ack_rnr
| stat_ack_frame_rx
),
294 stat_ack_tx
= (stat_ack_cu_idle
| stat_ack_cu_cmd_done
),
298 irq_mask_none
= 0x00,
306 ruc_load_base
= 0x06,
309 cuc_dump_addr
= 0x40,
310 cuc_dump_stats
= 0x50,
311 cuc_load_base
= 0x60,
312 cuc_dump_reset
= 0x70,
316 cuc_dump_complete
= 0x0000A005,
317 cuc_dump_reset_complete
= 0x0000A007,
321 software_reset
= 0x0000,
323 selective_reset
= 0x0002,
326 enum eeprom_ctrl_lo
{
334 mdi_write
= 0x04000000,
335 mdi_read
= 0x08000000,
336 mdi_ready
= 0x10000000,
346 enum eeprom_offsets
{
347 eeprom_cnfg_mdix
= 0x03,
349 eeprom_config_asf
= 0x0D,
350 eeprom_smbus_addr
= 0x90,
353 enum eeprom_cnfg_mdix
{
354 eeprom_mdix_enabled
= 0x0080,
358 eeprom_id_wol
= 0x0020,
361 enum eeprom_config_asf
{
367 cb_complete
= 0x8000,
396 struct rx
*next
, *prev
;
401 #if defined(__BIG_ENDIAN_BITFIELD)
407 /*0*/ u8
X(byte_count
:6, pad0
:2);
408 /*1*/ u8
X(X(rx_fifo_limit
:4, tx_fifo_limit
:3), pad1
:1);
409 /*2*/ u8 adaptive_ifs
;
410 /*3*/ u8
X(X(X(X(mwi_enable
:1, type_enable
:1), read_align_enable
:1),
411 term_write_cache_line
:1), pad3
:4);
412 /*4*/ u8
X(rx_dma_max_count
:7, pad4
:1);
413 /*5*/ u8
X(tx_dma_max_count
:7, dma_max_count_enable
:1);
414 /*6*/ u8
X(X(X(X(X(X(X(late_scb_update
:1, direct_rx_dma
:1),
415 tno_intr
:1), cna_intr
:1), standard_tcb
:1), standard_stat_counter
:1),
416 rx_discard_overruns
:1), rx_save_bad_frames
:1);
417 /*7*/ u8
X(X(X(X(X(rx_discard_short_frames
:1, tx_underrun_retry
:2),
418 pad7
:2), rx_extended_rfd
:1), tx_two_frames_in_fifo
:1),
420 /*8*/ u8
X(X(mii_mode
:1, pad8
:6), csma_disabled
:1);
421 /*9*/ u8
X(X(X(X(X(rx_tcpudp_checksum
:1, pad9
:3), vlan_arp_tco
:1),
422 link_status_wake
:1), arp_wake
:1), mcmatch_wake
:1);
423 /*10*/ u8
X(X(X(pad10
:3, no_source_addr_insertion
:1), preamble_length
:2),
425 /*11*/ u8
X(linear_priority
:3, pad11
:5);
426 /*12*/ u8
X(X(linear_priority_mode
:1, pad12
:3), ifs
:4);
427 /*13*/ u8 ip_addr_lo
;
428 /*14*/ u8 ip_addr_hi
;
429 /*15*/ u8
X(X(X(X(X(X(X(promiscuous_mode
:1, broadcast_disabled
:1),
430 wait_after_win
:1), pad15_1
:1), ignore_ul_bit
:1), crc_16_bit
:1),
431 pad15_2
:1), crs_or_cdt
:1);
432 /*16*/ u8 fc_delay_lo
;
433 /*17*/ u8 fc_delay_hi
;
434 /*18*/ u8
X(X(X(X(X(rx_stripping
:1, tx_padding
:1), rx_crc_transfer
:1),
435 rx_long_ok
:1), fc_priority_threshold
:3), pad18
:1);
436 /*19*/ u8
X(X(X(X(X(X(X(addr_wake
:1, magic_packet_disable
:1),
437 fc_disable
:1), fc_restop
:1), fc_restart
:1), fc_reject
:1),
438 full_duplex_force
:1), full_duplex_pin
:1);
439 /*20*/ u8
X(X(X(pad20_1
:5, fc_priority_location
:1), multi_ia
:1), pad20_2
:1);
440 /*21*/ u8
X(X(pad21_1
:3, multicast_all
:1), pad21_2
:4);
441 /*22*/ u8
X(X(rx_d102_mode
:1, rx_vlan_drop
:1), pad22
:6);
445 #define E100_MAX_MULTICAST_ADDRS 64
448 u8 addr
[E100_MAX_MULTICAST_ADDRS
* ETH_ALEN
+ 2/*pad*/];
451 /* Important: keep total struct u32-aligned */
452 #define UCODE_SIZE 134
459 u32 ucode
[UCODE_SIZE
];
460 struct config config
;
473 u32 dump_buffer_addr
;
475 struct cb
*next
, *prev
;
481 lb_none
= 0, lb_mac
= 1, lb_phy
= 3,
485 u32 tx_good_frames
, tx_max_collisions
, tx_late_collisions
,
486 tx_underruns
, tx_lost_crs
, tx_deferred
, tx_single_collisions
,
487 tx_multiple_collisions
, tx_total_collisions
;
488 u32 rx_good_frames
, rx_crc_errors
, rx_alignment_errors
,
489 rx_resource_errors
, rx_overrun_errors
, rx_cdt_errors
,
490 rx_short_frame_errors
;
491 u32 fc_xmt_pause
, fc_rcv_pause
, fc_rcv_unsupported
;
492 u16 xmt_tco_frames
, rcv_tco_frames
;
512 struct param_range rfds
;
513 struct param_range cbs
;
517 /* Begin: frequently used values: keep adjacent for cache effect */
518 u32 msg_enable ____cacheline_aligned
;
519 struct net_device
*netdev
;
520 struct pci_dev
*pdev
;
522 struct rx
*rxs ____cacheline_aligned
;
523 struct rx
*rx_to_use
;
524 struct rx
*rx_to_clean
;
525 struct rfd blank_rfd
;
526 enum ru_state ru_running
;
528 spinlock_t cb_lock ____cacheline_aligned
;
530 struct csr __iomem
*csr
;
531 enum scb_cmd_lo cuc_cmd
;
532 unsigned int cbs_avail
;
534 struct cb
*cb_to_use
;
535 struct cb
*cb_to_send
;
536 struct cb
*cb_to_clean
;
538 /* End: frequently used values: keep adjacent for cache effect */
542 promiscuous
= (1 << 1),
543 multicast_all
= (1 << 2),
544 wol_magic
= (1 << 3),
545 ich_10h_workaround
= (1 << 4),
546 } flags ____cacheline_aligned
;
550 struct params params
;
551 struct net_device_stats net_stats
;
552 struct timer_list watchdog
;
553 struct timer_list blink_timer
;
554 struct mii_if_info mii
;
555 struct work_struct tx_timeout_task
;
556 enum loopback loopback
;
561 dma_addr_t cbs_dma_addr
;
567 u32 tx_single_collisions
;
568 u32 tx_multiple_collisions
;
573 u32 rx_fc_unsupported
;
575 u32 rx_over_length_errors
;
583 static inline void e100_write_flush(struct nic
*nic
)
585 /* Flush previous PCI writes through intermediate bridges
586 * by doing a benign read */
587 (void)readb(&nic
->csr
->scb
.status
);
590 static inline void e100_enable_irq(struct nic
*nic
)
594 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
595 writeb(irq_mask_none
, &nic
->csr
->scb
.cmd_hi
);
596 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
597 e100_write_flush(nic
);
600 static inline void e100_disable_irq(struct nic
*nic
)
604 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
605 writeb(irq_mask_all
, &nic
->csr
->scb
.cmd_hi
);
606 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
607 e100_write_flush(nic
);
610 static void e100_hw_reset(struct nic
*nic
)
612 /* Put CU and RU into idle with a selective reset to get
613 * device off of PCI bus */
614 writel(selective_reset
, &nic
->csr
->port
);
615 e100_write_flush(nic
); udelay(20);
617 /* Now fully reset device */
618 writel(software_reset
, &nic
->csr
->port
);
619 e100_write_flush(nic
); udelay(20);
621 /* Mask off our interrupt line - it's unmasked after reset */
622 e100_disable_irq(nic
);
625 static int e100_self_test(struct nic
*nic
)
627 u32 dma_addr
= nic
->dma_addr
+ offsetof(struct mem
, selftest
);
629 /* Passing the self-test is a pretty good indication
630 * that the device can DMA to/from host memory */
632 nic
->mem
->selftest
.signature
= 0;
633 nic
->mem
->selftest
.result
= 0xFFFFFFFF;
635 writel(selftest
| dma_addr
, &nic
->csr
->port
);
636 e100_write_flush(nic
);
637 /* Wait 10 msec for self-test to complete */
640 /* Interrupts are enabled after self-test */
641 e100_disable_irq(nic
);
643 /* Check results of self-test */
644 if(nic
->mem
->selftest
.result
!= 0) {
645 DPRINTK(HW
, ERR
, "Self-test failed: result=0x%08X\n",
646 nic
->mem
->selftest
.result
);
649 if(nic
->mem
->selftest
.signature
== 0) {
650 DPRINTK(HW
, ERR
, "Self-test failed: timed out\n");
657 static void e100_eeprom_write(struct nic
*nic
, u16 addr_len
, u16 addr
, u16 data
)
659 u32 cmd_addr_data
[3];
663 /* Three cmds: write/erase enable, write data, write/erase disable */
664 cmd_addr_data
[0] = op_ewen
<< (addr_len
- 2);
665 cmd_addr_data
[1] = (((op_write
<< addr_len
) | addr
) << 16) |
667 cmd_addr_data
[2] = op_ewds
<< (addr_len
- 2);
669 /* Bit-bang cmds to write word to eeprom */
670 for(j
= 0; j
< 3; j
++) {
673 writeb(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
674 e100_write_flush(nic
); udelay(4);
676 for(i
= 31; i
>= 0; i
--) {
677 ctrl
= (cmd_addr_data
[j
] & (1 << i
)) ?
679 writeb(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
680 e100_write_flush(nic
); udelay(4);
682 writeb(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
683 e100_write_flush(nic
); udelay(4);
685 /* Wait 10 msec for cmd to complete */
689 writeb(0, &nic
->csr
->eeprom_ctrl_lo
);
690 e100_write_flush(nic
); udelay(4);
694 /* General technique stolen from the eepro100 driver - very clever */
695 static u16
e100_eeprom_read(struct nic
*nic
, u16
*addr_len
, u16 addr
)
702 cmd_addr_data
= ((op_read
<< *addr_len
) | addr
) << 16;
705 writeb(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
706 e100_write_flush(nic
); udelay(4);
708 /* Bit-bang to read word from eeprom */
709 for(i
= 31; i
>= 0; i
--) {
710 ctrl
= (cmd_addr_data
& (1 << i
)) ? eecs
| eedi
: eecs
;
711 writeb(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
712 e100_write_flush(nic
); udelay(4);
714 writeb(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
715 e100_write_flush(nic
); udelay(4);
717 /* Eeprom drives a dummy zero to EEDO after receiving
718 * complete address. Use this to adjust addr_len. */
719 ctrl
= readb(&nic
->csr
->eeprom_ctrl_lo
);
720 if(!(ctrl
& eedo
) && i
> 16) {
721 *addr_len
-= (i
- 16);
725 data
= (data
<< 1) | (ctrl
& eedo
? 1 : 0);
729 writeb(0, &nic
->csr
->eeprom_ctrl_lo
);
730 e100_write_flush(nic
); udelay(4);
732 return le16_to_cpu(data
);
735 /* Load entire EEPROM image into driver cache and validate checksum */
736 static int e100_eeprom_load(struct nic
*nic
)
738 u16 addr
, addr_len
= 8, checksum
= 0;
740 /* Try reading with an 8-bit addr len to discover actual addr len */
741 e100_eeprom_read(nic
, &addr_len
, 0);
742 nic
->eeprom_wc
= 1 << addr_len
;
744 for(addr
= 0; addr
< nic
->eeprom_wc
; addr
++) {
745 nic
->eeprom
[addr
] = e100_eeprom_read(nic
, &addr_len
, addr
);
746 if(addr
< nic
->eeprom_wc
- 1)
747 checksum
+= cpu_to_le16(nic
->eeprom
[addr
]);
750 /* The checksum, stored in the last word, is calculated such that
751 * the sum of words should be 0xBABA */
752 checksum
= le16_to_cpu(0xBABA - checksum
);
753 if(checksum
!= nic
->eeprom
[nic
->eeprom_wc
- 1]) {
754 DPRINTK(PROBE
, ERR
, "EEPROM corrupted\n");
761 /* Save (portion of) driver EEPROM cache to device and update checksum */
762 static int e100_eeprom_save(struct nic
*nic
, u16 start
, u16 count
)
764 u16 addr
, addr_len
= 8, checksum
= 0;
766 /* Try reading with an 8-bit addr len to discover actual addr len */
767 e100_eeprom_read(nic
, &addr_len
, 0);
768 nic
->eeprom_wc
= 1 << addr_len
;
770 if(start
+ count
>= nic
->eeprom_wc
)
773 for(addr
= start
; addr
< start
+ count
; addr
++)
774 e100_eeprom_write(nic
, addr_len
, addr
, nic
->eeprom
[addr
]);
776 /* The checksum, stored in the last word, is calculated such that
777 * the sum of words should be 0xBABA */
778 for(addr
= 0; addr
< nic
->eeprom_wc
- 1; addr
++)
779 checksum
+= cpu_to_le16(nic
->eeprom
[addr
]);
780 nic
->eeprom
[nic
->eeprom_wc
- 1] = le16_to_cpu(0xBABA - checksum
);
781 e100_eeprom_write(nic
, addr_len
, nic
->eeprom_wc
- 1,
782 nic
->eeprom
[nic
->eeprom_wc
- 1]);
787 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
788 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
789 static inline int e100_exec_cmd(struct nic
*nic
, u8 cmd
, dma_addr_t dma_addr
)
795 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
797 /* Previous command is accepted when SCB clears */
798 for(i
= 0; i
< E100_WAIT_SCB_TIMEOUT
; i
++) {
799 if(likely(!readb(&nic
->csr
->scb
.cmd_lo
)))
802 if(unlikely(i
> E100_WAIT_SCB_FAST
))
805 if(unlikely(i
== E100_WAIT_SCB_TIMEOUT
)) {
810 if(unlikely(cmd
!= cuc_resume
))
811 writel(dma_addr
, &nic
->csr
->scb
.gen_ptr
);
812 writeb(cmd
, &nic
->csr
->scb
.cmd_lo
);
815 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
820 static inline int e100_exec_cb(struct nic
*nic
, struct sk_buff
*skb
,
821 void (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
827 spin_lock_irqsave(&nic
->cb_lock
, flags
);
829 if(unlikely(!nic
->cbs_avail
)) {
835 nic
->cb_to_use
= cb
->next
;
839 if(unlikely(!nic
->cbs_avail
))
842 cb_prepare(nic
, cb
, skb
);
844 /* Order is important otherwise we'll be in a race with h/w:
845 * set S-bit in current first, then clear S-bit in previous. */
846 cb
->command
|= cpu_to_le16(cb_s
);
848 cb
->prev
->command
&= cpu_to_le16(~cb_s
);
850 while(nic
->cb_to_send
!= nic
->cb_to_use
) {
851 if(unlikely(e100_exec_cmd(nic
, nic
->cuc_cmd
,
852 nic
->cb_to_send
->dma_addr
))) {
853 /* Ok, here's where things get sticky. It's
854 * possible that we can't schedule the command
855 * because the controller is too busy, so
856 * let's just queue the command and try again
857 * when another command is scheduled. */
860 schedule_work(&nic
->tx_timeout_task
);
864 nic
->cuc_cmd
= cuc_resume
;
865 nic
->cb_to_send
= nic
->cb_to_send
->next
;
870 spin_unlock_irqrestore(&nic
->cb_lock
, flags
);
875 static u16
mdio_ctrl(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
)
880 writel((reg
<< 16) | (addr
<< 21) | dir
| data
, &nic
->csr
->mdi_ctrl
);
882 for(i
= 0; i
< 100; i
++) {
884 if((data_out
= readl(&nic
->csr
->mdi_ctrl
)) & mdi_ready
)
889 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
890 dir
== mdi_read
? "READ" : "WRITE", addr
, reg
, data
, data_out
);
891 return (u16
)data_out
;
894 static int mdio_read(struct net_device
*netdev
, int addr
, int reg
)
896 return mdio_ctrl(netdev_priv(netdev
), addr
, mdi_read
, reg
, 0);
899 static void mdio_write(struct net_device
*netdev
, int addr
, int reg
, int data
)
901 mdio_ctrl(netdev_priv(netdev
), addr
, mdi_write
, reg
, data
);
904 static void e100_get_defaults(struct nic
*nic
)
906 struct param_range rfds
= { .min
= 16, .max
= 256, .count
= 256 };
907 struct param_range cbs
= { .min
= 64, .max
= 256, .count
= 128 };
909 pci_read_config_byte(nic
->pdev
, PCI_REVISION_ID
, &nic
->rev_id
);
910 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
911 nic
->mac
= (nic
->flags
& ich
) ? mac_82559_D101M
: nic
->rev_id
;
912 if(nic
->mac
== mac_unknown
)
913 nic
->mac
= mac_82557_D100_A
;
915 nic
->params
.rfds
= rfds
;
916 nic
->params
.cbs
= cbs
;
918 /* Quadwords to DMA into FIFO before starting frame transmit */
919 nic
->tx_threshold
= 0xE0;
921 /* no interrupt for every tx completion, delay = 256us if not 557*/
922 nic
->tx_command
= cpu_to_le16(cb_tx
| cb_tx_sf
|
923 ((nic
->mac
>= mac_82558_D101_A4
) ? cb_cid
: cb_i
));
925 /* Template for a freshly allocated RFD */
926 nic
->blank_rfd
.command
= cpu_to_le16(cb_el
);
927 nic
->blank_rfd
.rbd
= 0xFFFFFFFF;
928 nic
->blank_rfd
.size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
);
931 nic
->mii
.phy_id_mask
= 0x1F;
932 nic
->mii
.reg_num_mask
= 0x1F;
933 nic
->mii
.dev
= nic
->netdev
;
934 nic
->mii
.mdio_read
= mdio_read
;
935 nic
->mii
.mdio_write
= mdio_write
;
938 static void e100_configure(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
940 struct config
*config
= &cb
->u
.config
;
941 u8
*c
= (u8
*)config
;
943 cb
->command
= cpu_to_le16(cb_config
);
945 memset(config
, 0, sizeof(struct config
));
947 config
->byte_count
= 0x16; /* bytes in this struct */
948 config
->rx_fifo_limit
= 0x8; /* bytes in FIFO before DMA */
949 config
->direct_rx_dma
= 0x1; /* reserved */
950 config
->standard_tcb
= 0x1; /* 1=standard, 0=extended */
951 config
->standard_stat_counter
= 0x1; /* 1=standard, 0=extended */
952 config
->rx_discard_short_frames
= 0x1; /* 1=discard, 0=pass */
953 config
->tx_underrun_retry
= 0x3; /* # of underrun retries */
954 config
->mii_mode
= 0x1; /* 1=MII mode, 0=503 mode */
956 config
->no_source_addr_insertion
= 0x1; /* 1=no, 0=yes */
957 config
->preamble_length
= 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
958 config
->ifs
= 0x6; /* x16 = inter frame spacing */
959 config
->ip_addr_hi
= 0xF2; /* ARP IP filter - not used */
960 config
->pad15_1
= 0x1;
961 config
->pad15_2
= 0x1;
962 config
->crs_or_cdt
= 0x0; /* 0=CRS only, 1=CRS or CDT */
963 config
->fc_delay_hi
= 0x40; /* time delay for fc frame */
964 config
->tx_padding
= 0x1; /* 1=pad short frames */
965 config
->fc_priority_threshold
= 0x7; /* 7=priority fc disabled */
967 config
->full_duplex_pin
= 0x1; /* 1=examine FDX# pin */
968 config
->pad20_1
= 0x1F;
969 config
->fc_priority_location
= 0x1; /* 1=byte#31, 0=byte#19 */
970 config
->pad21_1
= 0x5;
972 config
->adaptive_ifs
= nic
->adaptive_ifs
;
973 config
->loopback
= nic
->loopback
;
975 if(nic
->mii
.force_media
&& nic
->mii
.full_duplex
)
976 config
->full_duplex_force
= 0x1; /* 1=force, 0=auto */
978 if(nic
->flags
& promiscuous
|| nic
->loopback
) {
979 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
980 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
981 config
->promiscuous_mode
= 0x1; /* 1=on, 0=off */
984 if(nic
->flags
& multicast_all
)
985 config
->multicast_all
= 0x1; /* 1=accept, 0=no */
987 /* disable WoL when up */
988 if(netif_running(nic
->netdev
) || !(nic
->flags
& wol_magic
))
989 config
->magic_packet_disable
= 0x1; /* 1=off, 0=on */
991 if(nic
->mac
>= mac_82558_D101_A4
) {
992 config
->fc_disable
= 0x1; /* 1=Tx fc off, 0=Tx fc on */
993 config
->mwi_enable
= 0x1; /* 1=enable, 0=disable */
994 config
->standard_tcb
= 0x0; /* 1=standard, 0=extended */
995 config
->rx_long_ok
= 0x1; /* 1=VLANs ok, 0=standard */
996 if(nic
->mac
>= mac_82559_D101M
)
997 config
->tno_intr
= 0x1; /* TCO stats enable */
999 config
->standard_stat_counter
= 0x0;
1002 DPRINTK(HW
, DEBUG
, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1003 c
[0], c
[1], c
[2], c
[3], c
[4], c
[5], c
[6], c
[7]);
1004 DPRINTK(HW
, DEBUG
, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1005 c
[8], c
[9], c
[10], c
[11], c
[12], c
[13], c
[14], c
[15]);
1006 DPRINTK(HW
, DEBUG
, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1007 c
[16], c
[17], c
[18], c
[19], c
[20], c
[21], c
[22], c
[23]);
1010 /********************************************************/
1011 /* Micro code for 8086:1229 Rev 8 */
1012 /********************************************************/
1014 /* Parameter values for the D101M B-step */
1015 #define D101M_CPUSAVER_TIMER_DWORD 78
1016 #define D101M_CPUSAVER_BUNDLE_DWORD 65
1017 #define D101M_CPUSAVER_MIN_SIZE_DWORD 126
1019 #define D101M_B_RCVBUNDLE_UCODE \
1021 0x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
1022 0x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
1023 0x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
1024 0x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
1025 0x00380438, 0x00000000, 0x00140000, 0x00380555, \
1026 0x00308000, 0x00100662, 0x00100561, 0x000E0408, \
1027 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1028 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1029 0x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
1030 0x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
1031 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1032 0x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
1033 0x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
1034 0x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
1035 0x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
1036 0x00041000, 0x00010004, 0x00130826, 0x000C0006, \
1037 0x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
1038 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1039 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1040 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1041 0x00101210, 0x00380C34, 0x00000000, 0x00000000, \
1042 0x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
1043 0x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
1044 0x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
1045 0x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
1046 0x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
1047 0x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
1048 0x00130826, 0x000C0001, 0x00220559, 0x00101313, \
1049 0x00380559, 0x00000000, 0x00000000, 0x00000000, \
1050 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1051 0x00000000, 0x00130831, 0x0010090B, 0x00124813, \
1052 0x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
1053 0x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1056 /********************************************************/
1057 /* Micro code for 8086:1229 Rev 9 */
1058 /********************************************************/
1060 /* Parameter values for the D101S */
1061 #define D101S_CPUSAVER_TIMER_DWORD 78
1062 #define D101S_CPUSAVER_BUNDLE_DWORD 67
1063 #define D101S_CPUSAVER_MIN_SIZE_DWORD 128
1065 #define D101S_RCVBUNDLE_UCODE \
1067 0x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
1068 0x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
1069 0x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
1070 0x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
1071 0x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
1072 0x00308000, 0x00100610, 0x00100561, 0x000E0408, \
1073 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1074 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1075 0x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
1076 0x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
1077 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1078 0x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
1079 0x003A047E, 0x00044010, 0x00380819, 0x00000000, \
1080 0x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
1081 0x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
1082 0x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
1083 0x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
1084 0x00101313, 0x00380700, 0x00000000, 0x00000000, \
1085 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1086 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1087 0x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
1088 0x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
1089 0x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
1090 0x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
1091 0x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
1092 0x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
1093 0x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
1094 0x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
1095 0x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
1096 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1097 0x00000000, 0x00000000, 0x00000000, 0x00130831, \
1098 0x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
1099 0x00041000, 0x00010004, 0x00380700 \
1102 /********************************************************/
1103 /* Micro code for the 8086:1229 Rev F/10 */
1104 /********************************************************/
1106 /* Parameter values for the D102 E-step */
1107 #define D102_E_CPUSAVER_TIMER_DWORD 42
1108 #define D102_E_CPUSAVER_BUNDLE_DWORD 54
1109 #define D102_E_CPUSAVER_MIN_SIZE_DWORD 46
1111 #define D102_E_RCVBUNDLE_UCODE \
1113 0x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
1114 0x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
1115 0x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
1116 0x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
1117 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1118 0x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
1119 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1120 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1121 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1122 0x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
1123 0x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
1124 0x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
1125 0x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
1126 0x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
1127 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1128 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1129 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1130 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
1131 0x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
1132 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1133 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1134 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1135 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1136 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1137 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1138 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1139 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1140 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1141 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1142 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1143 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1144 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1145 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1148 static void e100_load_ucode(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1152 u32 ucode
[UCODE_SIZE
+ 1];
1158 { D101M_B_RCVBUNDLE_UCODE
,
1160 D101M_CPUSAVER_TIMER_DWORD
,
1161 D101M_CPUSAVER_BUNDLE_DWORD
,
1162 D101M_CPUSAVER_MIN_SIZE_DWORD
},
1163 { D101S_RCVBUNDLE_UCODE
,
1165 D101S_CPUSAVER_TIMER_DWORD
,
1166 D101S_CPUSAVER_BUNDLE_DWORD
,
1167 D101S_CPUSAVER_MIN_SIZE_DWORD
},
1168 { D102_E_RCVBUNDLE_UCODE
,
1170 D102_E_CPUSAVER_TIMER_DWORD
,
1171 D102_E_CPUSAVER_BUNDLE_DWORD
,
1172 D102_E_CPUSAVER_MIN_SIZE_DWORD
},
1173 { D102_E_RCVBUNDLE_UCODE
,
1175 D102_E_CPUSAVER_TIMER_DWORD
,
1176 D102_E_CPUSAVER_BUNDLE_DWORD
,
1177 D102_E_CPUSAVER_MIN_SIZE_DWORD
},
1182 /*************************************************************************
1183 * CPUSaver parameters
1185 * All CPUSaver parameters are 16-bit literals that are part of a
1186 * "move immediate value" instruction. By changing the value of
1187 * the literal in the instruction before the code is loaded, the
1188 * driver can change the algorithm.
1190 * INTDELAY - This loads the dead-man timer with its inital value.
1191 * When this timer expires the interrupt is asserted, and the
1192 * timer is reset each time a new packet is received. (see
1193 * BUNDLEMAX below to set the limit on number of chained packets)
1194 * The current default is 0x600 or 1536. Experiments show that
1195 * the value should probably stay within the 0x200 - 0x1000.
1198 * This sets the maximum number of frames that will be bundled. In
1199 * some situations, such as the TCP windowing algorithm, it may be
1200 * better to limit the growth of the bundle size than let it go as
1201 * high as it can, because that could cause too much added latency.
1202 * The default is six, because this is the number of packets in the
1203 * default TCP window size. A value of 1 would make CPUSaver indicate
1204 * an interrupt for every frame received. If you do not want to put
1205 * a limit on the bundle size, set this value to xFFFF.
1208 * This contains a bit-mask describing the minimum size frame that
1209 * will be bundled. The default masks the lower 7 bits, which means
1210 * that any frame less than 128 bytes in length will not be bundled,
1211 * but will instead immediately generate an interrupt. This does
1212 * not affect the current bundle in any way. Any frame that is 128
1213 * bytes or large will be bundled normally. This feature is meant
1214 * to provide immediate indication of ACK frames in a TCP environment.
1215 * Customers were seeing poor performance when a machine with CPUSaver
1216 * enabled was sending but not receiving. The delay introduced when
1217 * the ACKs were received was enough to reduce total throughput, because
1218 * the sender would sit idle until the ACK was finally seen.
1220 * The current default is 0xFF80, which masks out the lower 7 bits.
1221 * This means that any frame which is x7F (127) bytes or smaller
1222 * will cause an immediate interrupt. Because this value must be a
1223 * bit mask, there are only a few valid values that can be used. To
1224 * turn this feature off, the driver can write the value xFFFF to the
1225 * lower word of this instruction (in the same way that the other
1226 * parameters are used). Likewise, a value of 0xF800 (2047) would
1227 * cause an interrupt to be generated for every frame, because all
1228 * standard Ethernet frames are <= 2047 bytes in length.
1229 *************************************************************************/
1231 /* if you wish to disable the ucode functionality, while maintaining the
1232 * workarounds it provides, set the following defines to:
1237 #define BUNDLESMALL 1
1238 #define BUNDLEMAX (u16)6
1239 #define INTDELAY (u16)1536 /* 0x600 */
1241 /* do not load u-code for ICH devices */
1242 if (nic
->flags
& ich
)
1245 /* Search for ucode match against h/w rev_id */
1246 for (opts
= ucode_opts
; opts
->mac
; opts
++) {
1248 u32
*ucode
= opts
->ucode
;
1249 if (nic
->mac
!= opts
->mac
)
1252 /* Insert user-tunable settings */
1253 ucode
[opts
->timer_dword
] &= 0xFFFF0000;
1254 ucode
[opts
->timer_dword
] |= INTDELAY
;
1255 ucode
[opts
->bundle_dword
] &= 0xFFFF0000;
1256 ucode
[opts
->bundle_dword
] |= BUNDLEMAX
;
1257 ucode
[opts
->min_size_dword
] &= 0xFFFF0000;
1258 ucode
[opts
->min_size_dword
] |= (BUNDLESMALL
) ? 0xFFFF : 0xFF80;
1260 for (i
= 0; i
< UCODE_SIZE
; i
++)
1261 cb
->u
.ucode
[i
] = cpu_to_le32(ucode
[i
]);
1262 cb
->command
= cpu_to_le16(cb_ucode
);
1267 cb
->command
= cpu_to_le16(cb_nop
);
1270 static void e100_setup_iaaddr(struct nic
*nic
, struct cb
*cb
,
1271 struct sk_buff
*skb
)
1273 cb
->command
= cpu_to_le16(cb_iaaddr
);
1274 memcpy(cb
->u
.iaaddr
, nic
->netdev
->dev_addr
, ETH_ALEN
);
1277 static void e100_dump(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1279 cb
->command
= cpu_to_le16(cb_dump
);
1280 cb
->u
.dump_buffer_addr
= cpu_to_le32(nic
->dma_addr
+
1281 offsetof(struct mem
, dump_buf
));
1284 #define NCONFIG_AUTO_SWITCH 0x0080
1285 #define MII_NSC_CONG MII_RESV1
1286 #define NSC_CONG_ENABLE 0x0100
1287 #define NSC_CONG_TXREADY 0x0400
1288 #define ADVERTISE_FC_SUPPORTED 0x0400
1289 static int e100_phy_init(struct nic
*nic
)
1291 struct net_device
*netdev
= nic
->netdev
;
1293 u16 bmcr
, stat
, id_lo
, id_hi
, cong
;
1295 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1296 for(addr
= 0; addr
< 32; addr
++) {
1297 nic
->mii
.phy_id
= (addr
== 0) ? 1 : (addr
== 1) ? 0 : addr
;
1298 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1299 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1300 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1301 if(!((bmcr
== 0xFFFF) || ((stat
== 0) && (bmcr
== 0))))
1304 DPRINTK(HW
, DEBUG
, "phy_addr = %d\n", nic
->mii
.phy_id
);
1308 /* Selected the phy and isolate the rest */
1309 for(addr
= 0; addr
< 32; addr
++) {
1310 if(addr
!= nic
->mii
.phy_id
) {
1311 mdio_write(netdev
, addr
, MII_BMCR
, BMCR_ISOLATE
);
1313 bmcr
= mdio_read(netdev
, addr
, MII_BMCR
);
1314 mdio_write(netdev
, addr
, MII_BMCR
,
1315 bmcr
& ~BMCR_ISOLATE
);
1320 id_lo
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID1
);
1321 id_hi
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID2
);
1322 nic
->phy
= (u32
)id_hi
<< 16 | (u32
)id_lo
;
1323 DPRINTK(HW
, DEBUG
, "phy ID = 0x%08X\n", nic
->phy
);
1325 /* Handle National tx phys */
1326 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1327 if((nic
->phy
& NCS_PHY_MODEL_MASK
) == phy_nsc_tx
) {
1328 /* Disable congestion control */
1329 cong
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
);
1330 cong
|= NSC_CONG_TXREADY
;
1331 cong
&= ~NSC_CONG_ENABLE
;
1332 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
, cong
);
1335 if((nic
->mac
>= mac_82550_D102
) || ((nic
->flags
& ich
) &&
1336 (mdio_read(netdev
, nic
->mii
.phy_id
, MII_TPISTATUS
) & 0x8000))) {
1337 /* enable/disable MDI/MDI-X auto-switching.
1338 MDI/MDI-X auto-switching is disabled for 82551ER/QM chips */
1339 if((nic
->mac
== mac_82551_E
) || (nic
->mac
== mac_82551_F
) ||
1340 (nic
->mac
== mac_82551_10
) || (nic
->mii
.force_media
) ||
1341 !(nic
->eeprom
[eeprom_cnfg_mdix
] & eeprom_mdix_enabled
))
1342 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
, 0);
1344 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
, NCONFIG_AUTO_SWITCH
);
1350 static int e100_hw_init(struct nic
*nic
)
1356 DPRINTK(HW
, ERR
, "e100_hw_init\n");
1357 if(!in_interrupt() && (err
= e100_self_test(nic
)))
1360 if((err
= e100_phy_init(nic
)))
1362 if((err
= e100_exec_cmd(nic
, cuc_load_base
, 0)))
1364 if((err
= e100_exec_cmd(nic
, ruc_load_base
, 0)))
1366 if((err
= e100_exec_cb(nic
, NULL
, e100_load_ucode
)))
1368 if((err
= e100_exec_cb(nic
, NULL
, e100_configure
)))
1370 if((err
= e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
)))
1372 if((err
= e100_exec_cmd(nic
, cuc_dump_addr
,
1373 nic
->dma_addr
+ offsetof(struct mem
, stats
))))
1375 if((err
= e100_exec_cmd(nic
, cuc_dump_reset
, 0)))
1378 e100_disable_irq(nic
);
1383 static void e100_multi(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1385 struct net_device
*netdev
= nic
->netdev
;
1386 struct dev_mc_list
*list
= netdev
->mc_list
;
1387 u16 i
, count
= min(netdev
->mc_count
, E100_MAX_MULTICAST_ADDRS
);
1389 cb
->command
= cpu_to_le16(cb_multi
);
1390 cb
->u
.multi
.count
= cpu_to_le16(count
* ETH_ALEN
);
1391 for(i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
1392 memcpy(&cb
->u
.multi
.addr
[i
*ETH_ALEN
], &list
->dmi_addr
,
1396 static void e100_set_multicast_list(struct net_device
*netdev
)
1398 struct nic
*nic
= netdev_priv(netdev
);
1400 DPRINTK(HW
, DEBUG
, "mc_count=%d, flags=0x%04X\n",
1401 netdev
->mc_count
, netdev
->flags
);
1403 if(netdev
->flags
& IFF_PROMISC
)
1404 nic
->flags
|= promiscuous
;
1406 nic
->flags
&= ~promiscuous
;
1408 if(netdev
->flags
& IFF_ALLMULTI
||
1409 netdev
->mc_count
> E100_MAX_MULTICAST_ADDRS
)
1410 nic
->flags
|= multicast_all
;
1412 nic
->flags
&= ~multicast_all
;
1414 e100_exec_cb(nic
, NULL
, e100_configure
);
1415 e100_exec_cb(nic
, NULL
, e100_multi
);
1418 static void e100_update_stats(struct nic
*nic
)
1420 struct net_device_stats
*ns
= &nic
->net_stats
;
1421 struct stats
*s
= &nic
->mem
->stats
;
1422 u32
*complete
= (nic
->mac
< mac_82558_D101_A4
) ? &s
->fc_xmt_pause
:
1423 (nic
->mac
< mac_82559_D101M
) ? (u32
*)&s
->xmt_tco_frames
:
1426 /* Device's stats reporting may take several microseconds to
1427 * complete, so where always waiting for results of the
1428 * previous command. */
1430 if(*complete
== le32_to_cpu(cuc_dump_reset_complete
)) {
1432 nic
->tx_frames
= le32_to_cpu(s
->tx_good_frames
);
1433 nic
->tx_collisions
= le32_to_cpu(s
->tx_total_collisions
);
1434 ns
->tx_aborted_errors
+= le32_to_cpu(s
->tx_max_collisions
);
1435 ns
->tx_window_errors
+= le32_to_cpu(s
->tx_late_collisions
);
1436 ns
->tx_carrier_errors
+= le32_to_cpu(s
->tx_lost_crs
);
1437 ns
->tx_fifo_errors
+= le32_to_cpu(s
->tx_underruns
);
1438 ns
->collisions
+= nic
->tx_collisions
;
1439 ns
->tx_errors
+= le32_to_cpu(s
->tx_max_collisions
) +
1440 le32_to_cpu(s
->tx_lost_crs
);
1441 ns
->rx_length_errors
+= le32_to_cpu(s
->rx_short_frame_errors
) +
1442 nic
->rx_over_length_errors
;
1443 ns
->rx_crc_errors
+= le32_to_cpu(s
->rx_crc_errors
);
1444 ns
->rx_frame_errors
+= le32_to_cpu(s
->rx_alignment_errors
);
1445 ns
->rx_over_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1446 ns
->rx_fifo_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1447 ns
->rx_missed_errors
+= le32_to_cpu(s
->rx_resource_errors
);
1448 ns
->rx_errors
+= le32_to_cpu(s
->rx_crc_errors
) +
1449 le32_to_cpu(s
->rx_alignment_errors
) +
1450 le32_to_cpu(s
->rx_short_frame_errors
) +
1451 le32_to_cpu(s
->rx_cdt_errors
);
1452 nic
->tx_deferred
+= le32_to_cpu(s
->tx_deferred
);
1453 nic
->tx_single_collisions
+=
1454 le32_to_cpu(s
->tx_single_collisions
);
1455 nic
->tx_multiple_collisions
+=
1456 le32_to_cpu(s
->tx_multiple_collisions
);
1457 if(nic
->mac
>= mac_82558_D101_A4
) {
1458 nic
->tx_fc_pause
+= le32_to_cpu(s
->fc_xmt_pause
);
1459 nic
->rx_fc_pause
+= le32_to_cpu(s
->fc_rcv_pause
);
1460 nic
->rx_fc_unsupported
+=
1461 le32_to_cpu(s
->fc_rcv_unsupported
);
1462 if(nic
->mac
>= mac_82559_D101M
) {
1463 nic
->tx_tco_frames
+=
1464 le16_to_cpu(s
->xmt_tco_frames
);
1465 nic
->rx_tco_frames
+=
1466 le16_to_cpu(s
->rcv_tco_frames
);
1472 if(e100_exec_cmd(nic
, cuc_dump_reset
, 0))
1473 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_dump_reset failed\n");
1476 static void e100_adjust_adaptive_ifs(struct nic
*nic
, int speed
, int duplex
)
1478 /* Adjust inter-frame-spacing (IFS) between two transmits if
1479 * we're getting collisions on a half-duplex connection. */
1481 if(duplex
== DUPLEX_HALF
) {
1482 u32 prev
= nic
->adaptive_ifs
;
1483 u32 min_frames
= (speed
== SPEED_100
) ? 1000 : 100;
1485 if((nic
->tx_frames
/ 32 < nic
->tx_collisions
) &&
1486 (nic
->tx_frames
> min_frames
)) {
1487 if(nic
->adaptive_ifs
< 60)
1488 nic
->adaptive_ifs
+= 5;
1489 } else if (nic
->tx_frames
< min_frames
) {
1490 if(nic
->adaptive_ifs
>= 5)
1491 nic
->adaptive_ifs
-= 5;
1493 if(nic
->adaptive_ifs
!= prev
)
1494 e100_exec_cb(nic
, NULL
, e100_configure
);
1498 static void e100_watchdog(unsigned long data
)
1500 struct nic
*nic
= (struct nic
*)data
;
1501 struct ethtool_cmd cmd
;
1503 DPRINTK(TIMER
, DEBUG
, "right now = %ld\n", jiffies
);
1505 /* mii library handles link maintenance tasks */
1507 mii_ethtool_gset(&nic
->mii
, &cmd
);
1509 if(mii_link_ok(&nic
->mii
) && !netif_carrier_ok(nic
->netdev
)) {
1510 DPRINTK(LINK
, INFO
, "link up, %sMbps, %s-duplex\n",
1511 cmd
.speed
== SPEED_100
? "100" : "10",
1512 cmd
.duplex
== DUPLEX_FULL
? "full" : "half");
1513 } else if(!mii_link_ok(&nic
->mii
) && netif_carrier_ok(nic
->netdev
)) {
1514 DPRINTK(LINK
, INFO
, "link down\n");
1517 mii_check_link(&nic
->mii
);
1519 /* Software generated interrupt to recover from (rare) Rx
1520 * allocation failure.
1521 * Unfortunately have to use a spinlock to not re-enable interrupts
1522 * accidentally, due to hardware that shares a register between the
1523 * interrupt mask bit and the SW Interrupt generation bit */
1524 spin_lock_irq(&nic
->cmd_lock
);
1525 writeb(readb(&nic
->csr
->scb
.cmd_hi
) | irq_sw_gen
,&nic
->csr
->scb
.cmd_hi
);
1526 spin_unlock_irq(&nic
->cmd_lock
);
1527 e100_write_flush(nic
);
1529 e100_update_stats(nic
);
1530 e100_adjust_adaptive_ifs(nic
, cmd
.speed
, cmd
.duplex
);
1532 if(nic
->mac
<= mac_82557_D100_C
)
1533 /* Issue a multicast command to workaround a 557 lock up */
1534 e100_set_multicast_list(nic
->netdev
);
1536 if(nic
->flags
& ich
&& cmd
.speed
==SPEED_10
&& cmd
.duplex
==DUPLEX_HALF
)
1537 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1538 nic
->flags
|= ich_10h_workaround
;
1540 nic
->flags
&= ~ich_10h_workaround
;
1542 mod_timer(&nic
->watchdog
, jiffies
+ E100_WATCHDOG_PERIOD
);
1545 static inline void e100_xmit_prepare(struct nic
*nic
, struct cb
*cb
,
1546 struct sk_buff
*skb
)
1548 cb
->command
= nic
->tx_command
;
1549 /* interrupt every 16 packets regardless of delay */
1550 if((nic
->cbs_avail
& ~15) == nic
->cbs_avail
)
1551 cb
->command
|= cpu_to_le16(cb_i
);
1552 cb
->u
.tcb
.tbd_array
= cb
->dma_addr
+ offsetof(struct cb
, u
.tcb
.tbd
);
1553 cb
->u
.tcb
.tcb_byte_count
= 0;
1554 cb
->u
.tcb
.threshold
= nic
->tx_threshold
;
1555 cb
->u
.tcb
.tbd_count
= 1;
1556 cb
->u
.tcb
.tbd
.buf_addr
= cpu_to_le32(pci_map_single(nic
->pdev
,
1557 skb
->data
, skb
->len
, PCI_DMA_TODEVICE
));
1558 /* check for mapping failure? */
1559 cb
->u
.tcb
.tbd
.size
= cpu_to_le16(skb
->len
);
1562 static int e100_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
1564 struct nic
*nic
= netdev_priv(netdev
);
1567 if(nic
->flags
& ich_10h_workaround
) {
1568 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1569 Issue a NOP command followed by a 1us delay before
1570 issuing the Tx command. */
1571 if(e100_exec_cmd(nic
, cuc_nop
, 0))
1572 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_nop failed\n");
1576 err
= e100_exec_cb(nic
, skb
, e100_xmit_prepare
);
1580 /* We queued the skb, but now we're out of space. */
1581 DPRINTK(TX_ERR
, DEBUG
, "No space for CB\n");
1582 netif_stop_queue(netdev
);
1585 /* This is a hard error - log it. */
1586 DPRINTK(TX_ERR
, DEBUG
, "Out of Tx resources, returning skb\n");
1587 netif_stop_queue(netdev
);
1591 netdev
->trans_start
= jiffies
;
1595 static inline int e100_tx_clean(struct nic
*nic
)
1600 spin_lock(&nic
->cb_lock
);
1602 DPRINTK(TX_DONE
, DEBUG
, "cb->status = 0x%04X\n",
1603 nic
->cb_to_clean
->status
);
1605 /* Clean CBs marked complete */
1606 for(cb
= nic
->cb_to_clean
;
1607 cb
->status
& cpu_to_le16(cb_complete
);
1608 cb
= nic
->cb_to_clean
= cb
->next
) {
1609 if(likely(cb
->skb
!= NULL
)) {
1610 nic
->net_stats
.tx_packets
++;
1611 nic
->net_stats
.tx_bytes
+= cb
->skb
->len
;
1613 pci_unmap_single(nic
->pdev
,
1614 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1615 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1617 dev_kfree_skb_any(cb
->skb
);
1625 spin_unlock(&nic
->cb_lock
);
1627 /* Recover from running out of Tx resources in xmit_frame */
1628 if(unlikely(tx_cleaned
&& netif_queue_stopped(nic
->netdev
)))
1629 netif_wake_queue(nic
->netdev
);
1634 static void e100_clean_cbs(struct nic
*nic
)
1637 while(nic
->cbs_avail
!= nic
->params
.cbs
.count
) {
1638 struct cb
*cb
= nic
->cb_to_clean
;
1640 pci_unmap_single(nic
->pdev
,
1641 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1642 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1644 dev_kfree_skb(cb
->skb
);
1646 nic
->cb_to_clean
= nic
->cb_to_clean
->next
;
1649 pci_free_consistent(nic
->pdev
,
1650 sizeof(struct cb
) * nic
->params
.cbs
.count
,
1651 nic
->cbs
, nic
->cbs_dma_addr
);
1655 nic
->cuc_cmd
= cuc_start
;
1656 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
=
1660 static int e100_alloc_cbs(struct nic
*nic
)
1663 unsigned int i
, count
= nic
->params
.cbs
.count
;
1665 nic
->cuc_cmd
= cuc_start
;
1666 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= NULL
;
1669 nic
->cbs
= pci_alloc_consistent(nic
->pdev
,
1670 sizeof(struct cb
) * count
, &nic
->cbs_dma_addr
);
1674 for(cb
= nic
->cbs
, i
= 0; i
< count
; cb
++, i
++) {
1675 cb
->next
= (i
+ 1 < count
) ? cb
+ 1 : nic
->cbs
;
1676 cb
->prev
= (i
== 0) ? nic
->cbs
+ count
- 1 : cb
- 1;
1678 cb
->dma_addr
= nic
->cbs_dma_addr
+ i
* sizeof(struct cb
);
1679 cb
->link
= cpu_to_le32(nic
->cbs_dma_addr
+
1680 ((i
+1) % count
) * sizeof(struct cb
));
1684 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= nic
->cbs
;
1685 nic
->cbs_avail
= count
;
1690 static inline void e100_start_receiver(struct nic
*nic
, struct rx
*rx
)
1692 if(!nic
->rxs
) return;
1693 if(RU_SUSPENDED
!= nic
->ru_running
) return;
1695 /* handle init time starts */
1696 if(!rx
) rx
= nic
->rxs
;
1698 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1700 e100_exec_cmd(nic
, ruc_start
, rx
->dma_addr
);
1701 nic
->ru_running
= RU_RUNNING
;
1705 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1706 static inline int e100_rx_alloc_skb(struct nic
*nic
, struct rx
*rx
)
1708 if(!(rx
->skb
= dev_alloc_skb(RFD_BUF_LEN
+ NET_IP_ALIGN
)))
1711 /* Align, init, and map the RFD. */
1712 rx
->skb
->dev
= nic
->netdev
;
1713 skb_reserve(rx
->skb
, NET_IP_ALIGN
);
1714 memcpy(rx
->skb
->data
, &nic
->blank_rfd
, sizeof(struct rfd
));
1715 rx
->dma_addr
= pci_map_single(nic
->pdev
, rx
->skb
->data
,
1716 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1718 if(pci_dma_mapping_error(rx
->dma_addr
)) {
1719 dev_kfree_skb_any(rx
->skb
);
1725 /* Link the RFD to end of RFA by linking previous RFD to
1726 * this one, and clearing EL bit of previous. */
1728 struct rfd
*prev_rfd
= (struct rfd
*)rx
->prev
->skb
->data
;
1729 put_unaligned(cpu_to_le32(rx
->dma_addr
),
1730 (u32
*)&prev_rfd
->link
);
1732 prev_rfd
->command
&= ~cpu_to_le16(cb_el
);
1733 pci_dma_sync_single_for_device(nic
->pdev
, rx
->prev
->dma_addr
,
1734 sizeof(struct rfd
), PCI_DMA_TODEVICE
);
1740 static inline int e100_rx_indicate(struct nic
*nic
, struct rx
*rx
,
1741 unsigned int *work_done
, unsigned int work_to_do
)
1743 struct sk_buff
*skb
= rx
->skb
;
1744 struct rfd
*rfd
= (struct rfd
*)skb
->data
;
1745 u16 rfd_status
, actual_size
;
1747 if(unlikely(work_done
&& *work_done
>= work_to_do
))
1750 /* Need to sync before taking a peek at cb_complete bit */
1751 pci_dma_sync_single_for_cpu(nic
->pdev
, rx
->dma_addr
,
1752 sizeof(struct rfd
), PCI_DMA_FROMDEVICE
);
1753 rfd_status
= le16_to_cpu(rfd
->status
);
1755 DPRINTK(RX_STATUS
, DEBUG
, "status=0x%04X\n", rfd_status
);
1757 /* If data isn't ready, nothing to indicate */
1758 if(unlikely(!(rfd_status
& cb_complete
)))
1761 /* Get actual data size */
1762 actual_size
= le16_to_cpu(rfd
->actual_size
) & 0x3FFF;
1763 if(unlikely(actual_size
> RFD_BUF_LEN
- sizeof(struct rfd
)))
1764 actual_size
= RFD_BUF_LEN
- sizeof(struct rfd
);
1767 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1768 RFD_BUF_LEN
, PCI_DMA_FROMDEVICE
);
1770 /* this allows for a fast restart without re-enabling interrupts */
1771 if(le16_to_cpu(rfd
->command
) & cb_el
)
1772 nic
->ru_running
= RU_SUSPENDED
;
1774 /* Pull off the RFD and put the actual data (minus eth hdr) */
1775 skb_reserve(skb
, sizeof(struct rfd
));
1776 skb_put(skb
, actual_size
);
1777 skb
->protocol
= eth_type_trans(skb
, nic
->netdev
);
1779 if(unlikely(!(rfd_status
& cb_ok
))) {
1780 /* Don't indicate if hardware indicates errors */
1781 dev_kfree_skb_any(skb
);
1782 } else if(actual_size
> ETH_DATA_LEN
+ VLAN_ETH_HLEN
) {
1783 /* Don't indicate oversized frames */
1784 nic
->rx_over_length_errors
++;
1785 dev_kfree_skb_any(skb
);
1787 nic
->net_stats
.rx_packets
++;
1788 nic
->net_stats
.rx_bytes
+= actual_size
;
1789 nic
->netdev
->last_rx
= jiffies
;
1790 netif_receive_skb(skb
);
1800 static inline void e100_rx_clean(struct nic
*nic
, unsigned int *work_done
,
1801 unsigned int work_to_do
)
1804 int restart_required
= 0;
1805 struct rx
*rx_to_start
= NULL
;
1807 /* are we already rnr? then pay attention!!! this ensures that
1808 * the state machine progression never allows a start with a
1809 * partially cleaned list, avoiding a race between hardware
1810 * and rx_to_clean when in NAPI mode */
1811 if(RU_SUSPENDED
== nic
->ru_running
)
1812 restart_required
= 1;
1814 /* Indicate newly arrived packets */
1815 for(rx
= nic
->rx_to_clean
; rx
->skb
; rx
= nic
->rx_to_clean
= rx
->next
) {
1816 int err
= e100_rx_indicate(nic
, rx
, work_done
, work_to_do
);
1817 if(-EAGAIN
== err
) {
1818 /* hit quota so have more work to do, restart once
1819 * cleanup is complete */
1820 restart_required
= 0;
1822 } else if(-ENODATA
== err
)
1823 break; /* No more to clean */
1826 /* save our starting point as the place we'll restart the receiver */
1827 if(restart_required
)
1828 rx_to_start
= nic
->rx_to_clean
;
1830 /* Alloc new skbs to refill list */
1831 for(rx
= nic
->rx_to_use
; !rx
->skb
; rx
= nic
->rx_to_use
= rx
->next
) {
1832 if(unlikely(e100_rx_alloc_skb(nic
, rx
)))
1833 break; /* Better luck next time (see watchdog) */
1836 if(restart_required
) {
1838 writeb(stat_ack_rnr
, &nic
->csr
->scb
.stat_ack
);
1839 e100_start_receiver(nic
, rx_to_start
);
1845 static void e100_rx_clean_list(struct nic
*nic
)
1848 unsigned int i
, count
= nic
->params
.rfds
.count
;
1850 nic
->ru_running
= RU_UNINITIALIZED
;
1853 for(rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
1855 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1856 RFD_BUF_LEN
, PCI_DMA_FROMDEVICE
);
1857 dev_kfree_skb(rx
->skb
);
1864 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1867 static int e100_rx_alloc_list(struct nic
*nic
)
1870 unsigned int i
, count
= nic
->params
.rfds
.count
;
1872 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1873 nic
->ru_running
= RU_UNINITIALIZED
;
1875 if(!(nic
->rxs
= kmalloc(sizeof(struct rx
) * count
, GFP_ATOMIC
)))
1877 memset(nic
->rxs
, 0, sizeof(struct rx
) * count
);
1879 for(rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
1880 rx
->next
= (i
+ 1 < count
) ? rx
+ 1 : nic
->rxs
;
1881 rx
->prev
= (i
== 0) ? nic
->rxs
+ count
- 1 : rx
- 1;
1882 if(e100_rx_alloc_skb(nic
, rx
)) {
1883 e100_rx_clean_list(nic
);
1888 nic
->rx_to_use
= nic
->rx_to_clean
= nic
->rxs
;
1889 nic
->ru_running
= RU_SUSPENDED
;
1894 static irqreturn_t
e100_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
1896 struct net_device
*netdev
= dev_id
;
1897 struct nic
*nic
= netdev_priv(netdev
);
1898 u8 stat_ack
= readb(&nic
->csr
->scb
.stat_ack
);
1900 DPRINTK(INTR
, DEBUG
, "stat_ack = 0x%02X\n", stat_ack
);
1902 if(stat_ack
== stat_ack_not_ours
|| /* Not our interrupt */
1903 stat_ack
== stat_ack_not_present
) /* Hardware is ejected */
1906 /* Ack interrupt(s) */
1907 writeb(stat_ack
, &nic
->csr
->scb
.stat_ack
);
1909 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1910 if(stat_ack
& stat_ack_rnr
)
1911 nic
->ru_running
= RU_SUSPENDED
;
1913 if(likely(netif_rx_schedule_prep(netdev
))) {
1914 e100_disable_irq(nic
);
1915 __netif_rx_schedule(netdev
);
1921 static int e100_poll(struct net_device
*netdev
, int *budget
)
1923 struct nic
*nic
= netdev_priv(netdev
);
1924 unsigned int work_to_do
= min(netdev
->quota
, *budget
);
1925 unsigned int work_done
= 0;
1928 e100_rx_clean(nic
, &work_done
, work_to_do
);
1929 tx_cleaned
= e100_tx_clean(nic
);
1931 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1932 if((!tx_cleaned
&& (work_done
== 0)) || !netif_running(netdev
)) {
1933 netif_rx_complete(netdev
);
1934 e100_enable_irq(nic
);
1938 *budget
-= work_done
;
1939 netdev
->quota
-= work_done
;
1944 #ifdef CONFIG_NET_POLL_CONTROLLER
1945 static void e100_netpoll(struct net_device
*netdev
)
1947 struct nic
*nic
= netdev_priv(netdev
);
1949 e100_disable_irq(nic
);
1950 e100_intr(nic
->pdev
->irq
, netdev
, NULL
);
1952 e100_enable_irq(nic
);
1956 static struct net_device_stats
*e100_get_stats(struct net_device
*netdev
)
1958 struct nic
*nic
= netdev_priv(netdev
);
1959 return &nic
->net_stats
;
1962 static int e100_set_mac_address(struct net_device
*netdev
, void *p
)
1964 struct nic
*nic
= netdev_priv(netdev
);
1965 struct sockaddr
*addr
= p
;
1967 if (!is_valid_ether_addr(addr
->sa_data
))
1968 return -EADDRNOTAVAIL
;
1970 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1971 e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
);
1976 static int e100_change_mtu(struct net_device
*netdev
, int new_mtu
)
1978 if(new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_DATA_LEN
)
1980 netdev
->mtu
= new_mtu
;
1985 static int e100_asf(struct nic
*nic
)
1987 /* ASF can be enabled from eeprom */
1988 return((nic
->pdev
->device
>= 0x1050) && (nic
->pdev
->device
<= 0x1057) &&
1989 (nic
->eeprom
[eeprom_config_asf
] & eeprom_asf
) &&
1990 !(nic
->eeprom
[eeprom_config_asf
] & eeprom_gcl
) &&
1991 ((nic
->eeprom
[eeprom_smbus_addr
] & 0xFF) != 0xFE));
1995 static int e100_up(struct nic
*nic
)
1999 if((err
= e100_rx_alloc_list(nic
)))
2001 if((err
= e100_alloc_cbs(nic
)))
2002 goto err_rx_clean_list
;
2003 if((err
= e100_hw_init(nic
)))
2005 e100_set_multicast_list(nic
->netdev
);
2006 e100_start_receiver(nic
, NULL
);
2007 mod_timer(&nic
->watchdog
, jiffies
);
2008 if((err
= request_irq(nic
->pdev
->irq
, e100_intr
, SA_SHIRQ
,
2009 nic
->netdev
->name
, nic
->netdev
)))
2011 netif_wake_queue(nic
->netdev
);
2012 netif_poll_enable(nic
->netdev
);
2013 /* enable ints _after_ enabling poll, preventing a race between
2014 * disable ints+schedule */
2015 e100_enable_irq(nic
);
2019 del_timer_sync(&nic
->watchdog
);
2021 e100_clean_cbs(nic
);
2023 e100_rx_clean_list(nic
);
2027 static void e100_down(struct nic
*nic
)
2029 /* wait here for poll to complete */
2030 netif_poll_disable(nic
->netdev
);
2031 netif_stop_queue(nic
->netdev
);
2033 free_irq(nic
->pdev
->irq
, nic
->netdev
);
2034 del_timer_sync(&nic
->watchdog
);
2035 netif_carrier_off(nic
->netdev
);
2036 e100_clean_cbs(nic
);
2037 e100_rx_clean_list(nic
);
2040 static void e100_tx_timeout(struct net_device
*netdev
)
2042 struct nic
*nic
= netdev_priv(netdev
);
2044 /* Reset outside of interrupt context, to avoid request_irq
2045 * in interrupt context */
2046 schedule_work(&nic
->tx_timeout_task
);
2049 static void e100_tx_timeout_task(struct net_device
*netdev
)
2051 struct nic
*nic
= netdev_priv(netdev
);
2053 DPRINTK(TX_ERR
, DEBUG
, "scb.status=0x%02X\n",
2054 readb(&nic
->csr
->scb
.status
));
2055 e100_down(netdev_priv(netdev
));
2056 e100_up(netdev_priv(netdev
));
2059 static int e100_loopback_test(struct nic
*nic
, enum loopback loopback_mode
)
2062 struct sk_buff
*skb
;
2064 /* Use driver resources to perform internal MAC or PHY
2065 * loopback test. A single packet is prepared and transmitted
2066 * in loopback mode, and the test passes if the received
2067 * packet compares byte-for-byte to the transmitted packet. */
2069 if((err
= e100_rx_alloc_list(nic
)))
2071 if((err
= e100_alloc_cbs(nic
)))
2074 /* ICH PHY loopback is broken so do MAC loopback instead */
2075 if(nic
->flags
& ich
&& loopback_mode
== lb_phy
)
2076 loopback_mode
= lb_mac
;
2078 nic
->loopback
= loopback_mode
;
2079 if((err
= e100_hw_init(nic
)))
2080 goto err_loopback_none
;
2082 if(loopback_mode
== lb_phy
)
2083 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
,
2086 e100_start_receiver(nic
, NULL
);
2088 if(!(skb
= dev_alloc_skb(ETH_DATA_LEN
))) {
2090 goto err_loopback_none
;
2092 skb_put(skb
, ETH_DATA_LEN
);
2093 memset(skb
->data
, 0xFF, ETH_DATA_LEN
);
2094 e100_xmit_frame(skb
, nic
->netdev
);
2098 if(memcmp(nic
->rx_to_clean
->skb
->data
+ sizeof(struct rfd
),
2099 skb
->data
, ETH_DATA_LEN
))
2103 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
, 0);
2104 nic
->loopback
= lb_none
;
2106 e100_clean_cbs(nic
);
2108 e100_rx_clean_list(nic
);
2112 #define MII_LED_CONTROL 0x1B
2113 static void e100_blink_led(unsigned long data
)
2115 struct nic
*nic
= (struct nic
*)data
;
2123 nic
->leds
= (nic
->leds
& led_on
) ? led_off
:
2124 (nic
->mac
< mac_82559_D101M
) ? led_on_557
: led_on_559
;
2125 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_LED_CONTROL
, nic
->leds
);
2126 mod_timer(&nic
->blink_timer
, jiffies
+ HZ
/ 4);
2129 static int e100_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2131 struct nic
*nic
= netdev_priv(netdev
);
2132 return mii_ethtool_gset(&nic
->mii
, cmd
);
2135 static int e100_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2137 struct nic
*nic
= netdev_priv(netdev
);
2140 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, BMCR_RESET
);
2141 err
= mii_ethtool_sset(&nic
->mii
, cmd
);
2142 e100_exec_cb(nic
, NULL
, e100_configure
);
2147 static void e100_get_drvinfo(struct net_device
*netdev
,
2148 struct ethtool_drvinfo
*info
)
2150 struct nic
*nic
= netdev_priv(netdev
);
2151 strcpy(info
->driver
, DRV_NAME
);
2152 strcpy(info
->version
, DRV_VERSION
);
2153 strcpy(info
->fw_version
, "N/A");
2154 strcpy(info
->bus_info
, pci_name(nic
->pdev
));
2157 static int e100_get_regs_len(struct net_device
*netdev
)
2159 struct nic
*nic
= netdev_priv(netdev
);
2160 #define E100_PHY_REGS 0x1C
2161 #define E100_REGS_LEN 1 + E100_PHY_REGS + \
2162 sizeof(nic->mem->dump_buf) / sizeof(u32)
2163 return E100_REGS_LEN
* sizeof(u32
);
2166 static void e100_get_regs(struct net_device
*netdev
,
2167 struct ethtool_regs
*regs
, void *p
)
2169 struct nic
*nic
= netdev_priv(netdev
);
2173 regs
->version
= (1 << 24) | nic
->rev_id
;
2174 buff
[0] = readb(&nic
->csr
->scb
.cmd_hi
) << 24 |
2175 readb(&nic
->csr
->scb
.cmd_lo
) << 16 |
2176 readw(&nic
->csr
->scb
.status
);
2177 for(i
= E100_PHY_REGS
; i
>= 0; i
--)
2178 buff
[1 + E100_PHY_REGS
- i
] =
2179 mdio_read(netdev
, nic
->mii
.phy_id
, i
);
2180 memset(nic
->mem
->dump_buf
, 0, sizeof(nic
->mem
->dump_buf
));
2181 e100_exec_cb(nic
, NULL
, e100_dump
);
2183 memcpy(&buff
[2 + E100_PHY_REGS
], nic
->mem
->dump_buf
,
2184 sizeof(nic
->mem
->dump_buf
));
2187 static void e100_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2189 struct nic
*nic
= netdev_priv(netdev
);
2190 wol
->supported
= (nic
->mac
>= mac_82558_D101_A4
) ? WAKE_MAGIC
: 0;
2191 wol
->wolopts
= (nic
->flags
& wol_magic
) ? WAKE_MAGIC
: 0;
2194 static int e100_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2196 struct nic
*nic
= netdev_priv(netdev
);
2198 if(wol
->wolopts
!= WAKE_MAGIC
&& wol
->wolopts
!= 0)
2202 nic
->flags
|= wol_magic
;
2204 nic
->flags
&= ~wol_magic
;
2206 e100_exec_cb(nic
, NULL
, e100_configure
);
2211 static u32
e100_get_msglevel(struct net_device
*netdev
)
2213 struct nic
*nic
= netdev_priv(netdev
);
2214 return nic
->msg_enable
;
2217 static void e100_set_msglevel(struct net_device
*netdev
, u32 value
)
2219 struct nic
*nic
= netdev_priv(netdev
);
2220 nic
->msg_enable
= value
;
2223 static int e100_nway_reset(struct net_device
*netdev
)
2225 struct nic
*nic
= netdev_priv(netdev
);
2226 return mii_nway_restart(&nic
->mii
);
2229 static u32
e100_get_link(struct net_device
*netdev
)
2231 struct nic
*nic
= netdev_priv(netdev
);
2232 return mii_link_ok(&nic
->mii
);
2235 static int e100_get_eeprom_len(struct net_device
*netdev
)
2237 struct nic
*nic
= netdev_priv(netdev
);
2238 return nic
->eeprom_wc
<< 1;
2241 #define E100_EEPROM_MAGIC 0x1234
2242 static int e100_get_eeprom(struct net_device
*netdev
,
2243 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2245 struct nic
*nic
= netdev_priv(netdev
);
2247 eeprom
->magic
= E100_EEPROM_MAGIC
;
2248 memcpy(bytes
, &((u8
*)nic
->eeprom
)[eeprom
->offset
], eeprom
->len
);
2253 static int e100_set_eeprom(struct net_device
*netdev
,
2254 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2256 struct nic
*nic
= netdev_priv(netdev
);
2258 if(eeprom
->magic
!= E100_EEPROM_MAGIC
)
2261 memcpy(&((u8
*)nic
->eeprom
)[eeprom
->offset
], bytes
, eeprom
->len
);
2263 return e100_eeprom_save(nic
, eeprom
->offset
>> 1,
2264 (eeprom
->len
>> 1) + 1);
2267 static void e100_get_ringparam(struct net_device
*netdev
,
2268 struct ethtool_ringparam
*ring
)
2270 struct nic
*nic
= netdev_priv(netdev
);
2271 struct param_range
*rfds
= &nic
->params
.rfds
;
2272 struct param_range
*cbs
= &nic
->params
.cbs
;
2274 ring
->rx_max_pending
= rfds
->max
;
2275 ring
->tx_max_pending
= cbs
->max
;
2276 ring
->rx_mini_max_pending
= 0;
2277 ring
->rx_jumbo_max_pending
= 0;
2278 ring
->rx_pending
= rfds
->count
;
2279 ring
->tx_pending
= cbs
->count
;
2280 ring
->rx_mini_pending
= 0;
2281 ring
->rx_jumbo_pending
= 0;
2284 static int e100_set_ringparam(struct net_device
*netdev
,
2285 struct ethtool_ringparam
*ring
)
2287 struct nic
*nic
= netdev_priv(netdev
);
2288 struct param_range
*rfds
= &nic
->params
.rfds
;
2289 struct param_range
*cbs
= &nic
->params
.cbs
;
2291 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
2294 if(netif_running(netdev
))
2296 rfds
->count
= max(ring
->rx_pending
, rfds
->min
);
2297 rfds
->count
= min(rfds
->count
, rfds
->max
);
2298 cbs
->count
= max(ring
->tx_pending
, cbs
->min
);
2299 cbs
->count
= min(cbs
->count
, cbs
->max
);
2300 DPRINTK(DRV
, INFO
, "Ring Param settings: rx: %d, tx %d\n",
2301 rfds
->count
, cbs
->count
);
2302 if(netif_running(netdev
))
2308 static const char e100_gstrings_test
[][ETH_GSTRING_LEN
] = {
2309 "Link test (on/offline)",
2310 "Eeprom test (on/offline)",
2311 "Self test (offline)",
2312 "Mac loopback (offline)",
2313 "Phy loopback (offline)",
2315 #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2317 static int e100_diag_test_count(struct net_device
*netdev
)
2319 return E100_TEST_LEN
;
2322 static void e100_diag_test(struct net_device
*netdev
,
2323 struct ethtool_test
*test
, u64
*data
)
2325 struct ethtool_cmd cmd
;
2326 struct nic
*nic
= netdev_priv(netdev
);
2329 memset(data
, 0, E100_TEST_LEN
* sizeof(u64
));
2330 data
[0] = !mii_link_ok(&nic
->mii
);
2331 data
[1] = e100_eeprom_load(nic
);
2332 if(test
->flags
& ETH_TEST_FL_OFFLINE
) {
2334 /* save speed, duplex & autoneg settings */
2335 err
= mii_ethtool_gset(&nic
->mii
, &cmd
);
2337 if(netif_running(netdev
))
2339 data
[2] = e100_self_test(nic
);
2340 data
[3] = e100_loopback_test(nic
, lb_mac
);
2341 data
[4] = e100_loopback_test(nic
, lb_phy
);
2343 /* restore speed, duplex & autoneg settings */
2344 err
= mii_ethtool_sset(&nic
->mii
, &cmd
);
2346 if(netif_running(netdev
))
2349 for(i
= 0; i
< E100_TEST_LEN
; i
++)
2350 test
->flags
|= data
[i
] ? ETH_TEST_FL_FAILED
: 0;
2352 msleep_interruptible(4 * 1000);
2355 static int e100_phys_id(struct net_device
*netdev
, u32 data
)
2357 struct nic
*nic
= netdev_priv(netdev
);
2359 if(!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
2360 data
= (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
2361 mod_timer(&nic
->blink_timer
, jiffies
);
2362 msleep_interruptible(data
* 1000);
2363 del_timer_sync(&nic
->blink_timer
);
2364 mdio_write(netdev
, nic
->mii
.phy_id
, MII_LED_CONTROL
, 0);
2369 static const char e100_gstrings_stats
[][ETH_GSTRING_LEN
] = {
2370 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2371 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2372 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2373 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2374 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2375 "tx_heartbeat_errors", "tx_window_errors",
2376 /* device-specific stats */
2377 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2378 "tx_flow_control_pause", "rx_flow_control_pause",
2379 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2381 #define E100_NET_STATS_LEN 21
2382 #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2384 static int e100_get_stats_count(struct net_device
*netdev
)
2386 return E100_STATS_LEN
;
2389 static void e100_get_ethtool_stats(struct net_device
*netdev
,
2390 struct ethtool_stats
*stats
, u64
*data
)
2392 struct nic
*nic
= netdev_priv(netdev
);
2395 for(i
= 0; i
< E100_NET_STATS_LEN
; i
++)
2396 data
[i
] = ((unsigned long *)&nic
->net_stats
)[i
];
2398 data
[i
++] = nic
->tx_deferred
;
2399 data
[i
++] = nic
->tx_single_collisions
;
2400 data
[i
++] = nic
->tx_multiple_collisions
;
2401 data
[i
++] = nic
->tx_fc_pause
;
2402 data
[i
++] = nic
->rx_fc_pause
;
2403 data
[i
++] = nic
->rx_fc_unsupported
;
2404 data
[i
++] = nic
->tx_tco_frames
;
2405 data
[i
++] = nic
->rx_tco_frames
;
2408 static void e100_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2412 memcpy(data
, *e100_gstrings_test
, sizeof(e100_gstrings_test
));
2415 memcpy(data
, *e100_gstrings_stats
, sizeof(e100_gstrings_stats
));
2420 static struct ethtool_ops e100_ethtool_ops
= {
2421 .get_settings
= e100_get_settings
,
2422 .set_settings
= e100_set_settings
,
2423 .get_drvinfo
= e100_get_drvinfo
,
2424 .get_regs_len
= e100_get_regs_len
,
2425 .get_regs
= e100_get_regs
,
2426 .get_wol
= e100_get_wol
,
2427 .set_wol
= e100_set_wol
,
2428 .get_msglevel
= e100_get_msglevel
,
2429 .set_msglevel
= e100_set_msglevel
,
2430 .nway_reset
= e100_nway_reset
,
2431 .get_link
= e100_get_link
,
2432 .get_eeprom_len
= e100_get_eeprom_len
,
2433 .get_eeprom
= e100_get_eeprom
,
2434 .set_eeprom
= e100_set_eeprom
,
2435 .get_ringparam
= e100_get_ringparam
,
2436 .set_ringparam
= e100_set_ringparam
,
2437 .self_test_count
= e100_diag_test_count
,
2438 .self_test
= e100_diag_test
,
2439 .get_strings
= e100_get_strings
,
2440 .phys_id
= e100_phys_id
,
2441 .get_stats_count
= e100_get_stats_count
,
2442 .get_ethtool_stats
= e100_get_ethtool_stats
,
2443 .get_perm_addr
= ethtool_op_get_perm_addr
,
2446 static int e100_do_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2448 struct nic
*nic
= netdev_priv(netdev
);
2450 return generic_mii_ioctl(&nic
->mii
, if_mii(ifr
), cmd
, NULL
);
2453 static int e100_alloc(struct nic
*nic
)
2455 nic
->mem
= pci_alloc_consistent(nic
->pdev
, sizeof(struct mem
),
2457 return nic
->mem
? 0 : -ENOMEM
;
2460 static void e100_free(struct nic
*nic
)
2463 pci_free_consistent(nic
->pdev
, sizeof(struct mem
),
2464 nic
->mem
, nic
->dma_addr
);
2469 static int e100_open(struct net_device
*netdev
)
2471 struct nic
*nic
= netdev_priv(netdev
);
2474 netif_carrier_off(netdev
);
2475 if((err
= e100_up(nic
)))
2476 DPRINTK(IFUP
, ERR
, "Cannot open interface, aborting.\n");
2480 static int e100_close(struct net_device
*netdev
)
2482 e100_down(netdev_priv(netdev
));
2486 static int __devinit
e100_probe(struct pci_dev
*pdev
,
2487 const struct pci_device_id
*ent
)
2489 struct net_device
*netdev
;
2493 if(!(netdev
= alloc_etherdev(sizeof(struct nic
)))) {
2494 if(((1 << debug
) - 1) & NETIF_MSG_PROBE
)
2495 printk(KERN_ERR PFX
"Etherdev alloc failed, abort.\n");
2499 netdev
->open
= e100_open
;
2500 netdev
->stop
= e100_close
;
2501 netdev
->hard_start_xmit
= e100_xmit_frame
;
2502 netdev
->get_stats
= e100_get_stats
;
2503 netdev
->set_multicast_list
= e100_set_multicast_list
;
2504 netdev
->set_mac_address
= e100_set_mac_address
;
2505 netdev
->change_mtu
= e100_change_mtu
;
2506 netdev
->do_ioctl
= e100_do_ioctl
;
2507 SET_ETHTOOL_OPS(netdev
, &e100_ethtool_ops
);
2508 netdev
->tx_timeout
= e100_tx_timeout
;
2509 netdev
->watchdog_timeo
= E100_WATCHDOG_PERIOD
;
2510 netdev
->poll
= e100_poll
;
2511 netdev
->weight
= E100_NAPI_WEIGHT
;
2512 #ifdef CONFIG_NET_POLL_CONTROLLER
2513 netdev
->poll_controller
= e100_netpoll
;
2515 strcpy(netdev
->name
, pci_name(pdev
));
2517 nic
= netdev_priv(netdev
);
2518 nic
->netdev
= netdev
;
2520 nic
->msg_enable
= (1 << debug
) - 1;
2521 pci_set_drvdata(pdev
, netdev
);
2523 if((err
= pci_enable_device(pdev
))) {
2524 DPRINTK(PROBE
, ERR
, "Cannot enable PCI device, aborting.\n");
2525 goto err_out_free_dev
;
2528 if(!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
2529 DPRINTK(PROBE
, ERR
, "Cannot find proper PCI device "
2530 "base address, aborting.\n");
2532 goto err_out_disable_pdev
;
2535 if((err
= pci_request_regions(pdev
, DRV_NAME
))) {
2536 DPRINTK(PROBE
, ERR
, "Cannot obtain PCI resources, aborting.\n");
2537 goto err_out_disable_pdev
;
2540 if((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
2541 DPRINTK(PROBE
, ERR
, "No usable DMA configuration, aborting.\n");
2542 goto err_out_free_res
;
2545 SET_MODULE_OWNER(netdev
);
2546 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2548 nic
->csr
= ioremap(pci_resource_start(pdev
, 0), sizeof(struct csr
));
2550 DPRINTK(PROBE
, ERR
, "Cannot map device registers, aborting.\n");
2552 goto err_out_free_res
;
2555 if(ent
->driver_data
)
2560 e100_get_defaults(nic
);
2562 /* locks must be initialized before calling hw_reset */
2563 spin_lock_init(&nic
->cb_lock
);
2564 spin_lock_init(&nic
->cmd_lock
);
2566 /* Reset the device before pci_set_master() in case device is in some
2567 * funky state and has an interrupt pending - hint: we don't have the
2568 * interrupt handler registered yet. */
2571 pci_set_master(pdev
);
2573 init_timer(&nic
->watchdog
);
2574 nic
->watchdog
.function
= e100_watchdog
;
2575 nic
->watchdog
.data
= (unsigned long)nic
;
2576 init_timer(&nic
->blink_timer
);
2577 nic
->blink_timer
.function
= e100_blink_led
;
2578 nic
->blink_timer
.data
= (unsigned long)nic
;
2580 INIT_WORK(&nic
->tx_timeout_task
,
2581 (void (*)(void *))e100_tx_timeout_task
, netdev
);
2583 if((err
= e100_alloc(nic
))) {
2584 DPRINTK(PROBE
, ERR
, "Cannot alloc driver memory, aborting.\n");
2585 goto err_out_iounmap
;
2588 if((err
= e100_eeprom_load(nic
)))
2593 memcpy(netdev
->dev_addr
, nic
->eeprom
, ETH_ALEN
);
2594 memcpy(netdev
->perm_addr
, nic
->eeprom
, ETH_ALEN
);
2595 if(!is_valid_ether_addr(netdev
->perm_addr
)) {
2596 DPRINTK(PROBE
, ERR
, "Invalid MAC address from "
2597 "EEPROM, aborting.\n");
2602 /* Wol magic packet can be enabled from eeprom */
2603 if((nic
->mac
>= mac_82558_D101_A4
) &&
2604 (nic
->eeprom
[eeprom_id
] & eeprom_id_wol
))
2605 nic
->flags
|= wol_magic
;
2607 /* ack any pending wake events, disable PME */
2608 pci_enable_wake(pdev
, 0, 0);
2610 strcpy(netdev
->name
, "eth%d");
2611 if((err
= register_netdev(netdev
))) {
2612 DPRINTK(PROBE
, ERR
, "Cannot register net device, aborting.\n");
2616 DPRINTK(PROBE
, INFO
, "addr 0x%lx, irq %d, "
2617 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
2618 pci_resource_start(pdev
, 0), pdev
->irq
,
2619 netdev
->dev_addr
[0], netdev
->dev_addr
[1], netdev
->dev_addr
[2],
2620 netdev
->dev_addr
[3], netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
2629 pci_release_regions(pdev
);
2630 err_out_disable_pdev
:
2631 pci_disable_device(pdev
);
2633 pci_set_drvdata(pdev
, NULL
);
2634 free_netdev(netdev
);
2638 static void __devexit
e100_remove(struct pci_dev
*pdev
)
2640 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2643 struct nic
*nic
= netdev_priv(netdev
);
2644 unregister_netdev(netdev
);
2647 free_netdev(netdev
);
2648 pci_release_regions(pdev
);
2649 pci_disable_device(pdev
);
2650 pci_set_drvdata(pdev
, NULL
);
2655 static int e100_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2657 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2658 struct nic
*nic
= netdev_priv(netdev
);
2660 if(netif_running(netdev
))
2663 netif_device_detach(netdev
);
2665 pci_save_state(pdev
);
2666 pci_enable_wake(pdev
, pci_choose_state(pdev
, state
), nic
->flags
& (wol_magic
| e100_asf(nic
)));
2667 pci_disable_device(pdev
);
2668 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
2673 static int e100_resume(struct pci_dev
*pdev
)
2675 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2676 struct nic
*nic
= netdev_priv(netdev
);
2678 pci_set_power_state(pdev
, PCI_D0
);
2679 pci_restore_state(pdev
);
2680 /* ack any pending wake events, disable PME */
2681 pci_enable_wake(pdev
, 0, 0);
2682 if(e100_hw_init(nic
))
2683 DPRINTK(HW
, ERR
, "e100_hw_init failed\n");
2685 netif_device_attach(netdev
);
2686 if(netif_running(netdev
))
2694 static void e100_shutdown(struct pci_dev
*pdev
)
2696 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2697 struct nic
*nic
= netdev_priv(netdev
);
2700 pci_enable_wake(pdev
, 0, nic
->flags
& (wol_magic
| e100_asf(nic
)));
2702 pci_enable_wake(pdev
, 0, nic
->flags
& (wol_magic
));
2707 static struct pci_driver e100_driver
= {
2709 .id_table
= e100_id_table
,
2710 .probe
= e100_probe
,
2711 .remove
= __devexit_p(e100_remove
),
2713 .suspend
= e100_suspend
,
2714 .resume
= e100_resume
,
2716 .shutdown
= e100_shutdown
,
2719 static int __init
e100_init_module(void)
2721 if(((1 << debug
) - 1) & NETIF_MSG_DRV
) {
2722 printk(KERN_INFO PFX
"%s, %s\n", DRV_DESCRIPTION
, DRV_VERSION
);
2723 printk(KERN_INFO PFX
"%s\n", DRV_COPYRIGHT
);
2725 return pci_module_init(&e100_driver
);
2728 static void __exit
e100_cleanup_module(void)
2730 pci_unregister_driver(&e100_driver
);
2733 module_init(e100_init_module
);
2734 module_exit(e100_cleanup_module
);