2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
52 * ktime_get - get the monotonic time in ktime_t format
54 * returns the time in ktime_t format
56 ktime_t
ktime_get(void)
62 return timespec_to_ktime(now
);
64 EXPORT_SYMBOL_GPL(ktime_get
);
67 * ktime_get_real - get the real (wall-) time in ktime_t format
69 * returns the time in ktime_t format
71 ktime_t
ktime_get_real(void)
77 return timespec_to_ktime(now
);
80 EXPORT_SYMBOL_GPL(ktime_get_real
);
85 * Note: If we want to add new timer bases, we have to skip the two
86 * clock ids captured by the cpu-timers. We do this by holding empty
87 * entries rather than doing math adjustment of the clock ids.
88 * This ensures that we capture erroneous accesses to these clock ids
89 * rather than moving them into the range of valid clock id's.
91 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
97 .index
= CLOCK_REALTIME
,
98 .get_time
= &ktime_get_real
,
99 .resolution
= KTIME_LOW_RES
,
102 .index
= CLOCK_MONOTONIC
,
103 .get_time
= &ktime_get
,
104 .resolution
= KTIME_LOW_RES
,
110 * ktime_get_ts - get the monotonic clock in timespec format
111 * @ts: pointer to timespec variable
113 * The function calculates the monotonic clock from the realtime
114 * clock and the wall_to_monotonic offset and stores the result
115 * in normalized timespec format in the variable pointed to by @ts.
117 void ktime_get_ts(struct timespec
*ts
)
119 struct timespec tomono
;
123 seq
= read_seqbegin(&xtime_lock
);
125 tomono
= wall_to_monotonic
;
127 } while (read_seqretry(&xtime_lock
, seq
));
129 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
,
130 ts
->tv_nsec
+ tomono
.tv_nsec
);
132 EXPORT_SYMBOL_GPL(ktime_get_ts
);
135 * Get the coarse grained time at the softirq based on xtime and
138 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
140 ktime_t xtim
, tomono
;
141 struct timespec xts
, tom
;
145 seq
= read_seqbegin(&xtime_lock
);
146 xts
= current_kernel_time();
147 tom
= wall_to_monotonic
;
148 } while (read_seqretry(&xtime_lock
, seq
));
150 xtim
= timespec_to_ktime(xts
);
151 tomono
= timespec_to_ktime(tom
);
152 base
->clock_base
[CLOCK_REALTIME
].softirq_time
= xtim
;
153 base
->clock_base
[CLOCK_MONOTONIC
].softirq_time
=
154 ktime_add(xtim
, tomono
);
158 * Functions and macros which are different for UP/SMP systems are kept in a
164 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
165 * means that all timers which are tied to this base via timer->base are
166 * locked, and the base itself is locked too.
168 * So __run_timers/migrate_timers can safely modify all timers which could
169 * be found on the lists/queues.
171 * When the timer's base is locked, and the timer removed from list, it is
172 * possible to set timer->base = NULL and drop the lock: the timer remains
176 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
177 unsigned long *flags
)
179 struct hrtimer_clock_base
*base
;
183 if (likely(base
!= NULL
)) {
184 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
185 if (likely(base
== timer
->base
))
187 /* The timer has migrated to another CPU: */
188 spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
195 * Switch the timer base to the current CPU when possible.
197 static inline struct hrtimer_clock_base
*
198 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
201 struct hrtimer_clock_base
*new_base
;
202 struct hrtimer_cpu_base
*new_cpu_base
;
203 int cpu
, preferred_cpu
= -1;
205 cpu
= smp_processor_id();
206 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
207 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(cpu
)) {
208 preferred_cpu
= get_nohz_load_balancer();
209 if (preferred_cpu
>= 0)
215 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
216 new_base
= &new_cpu_base
->clock_base
[base
->index
];
218 if (base
!= new_base
) {
220 * We are trying to schedule the timer on the local CPU.
221 * However we can't change timer's base while it is running,
222 * so we keep it on the same CPU. No hassle vs. reprogramming
223 * the event source in the high resolution case. The softirq
224 * code will take care of this when the timer function has
225 * completed. There is no conflict as we hold the lock until
226 * the timer is enqueued.
228 if (unlikely(hrtimer_callback_running(timer
)))
231 /* See the comment in lock_timer_base() */
233 spin_unlock(&base
->cpu_base
->lock
);
234 spin_lock(&new_base
->cpu_base
->lock
);
236 /* Optimized away for NOHZ=n SMP=n */
237 if (cpu
== preferred_cpu
) {
238 /* Calculate clock monotonic expiry time */
239 #ifdef CONFIG_HIGH_RES_TIMERS
240 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
),
243 ktime_t expires
= hrtimer_get_expires(timer
);
247 * Get the next event on target cpu from the
248 * clock events layer.
249 * This covers the highres=off nohz=on case as well.
251 ktime_t next
= clockevents_get_next_event(cpu
);
253 ktime_t delta
= ktime_sub(expires
, next
);
256 * We do not migrate the timer when it is expiring
257 * before the next event on the target cpu because
258 * we cannot reprogram the target cpu hardware and
259 * we would cause it to fire late.
261 if (delta
.tv64
< 0) {
262 cpu
= smp_processor_id();
263 spin_unlock(&new_base
->cpu_base
->lock
);
264 spin_lock(&base
->cpu_base
->lock
);
269 timer
->base
= new_base
;
274 #else /* CONFIG_SMP */
276 static inline struct hrtimer_clock_base
*
277 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
279 struct hrtimer_clock_base
*base
= timer
->base
;
281 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
286 # define switch_hrtimer_base(t, b, p) (b)
288 #endif /* !CONFIG_SMP */
291 * Functions for the union type storage format of ktime_t which are
292 * too large for inlining:
294 #if BITS_PER_LONG < 64
295 # ifndef CONFIG_KTIME_SCALAR
297 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
299 * @nsec: the scalar nsec value to add
301 * Returns the sum of kt and nsec in ktime_t format
303 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
307 if (likely(nsec
< NSEC_PER_SEC
)) {
310 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
312 tmp
= ktime_set((long)nsec
, rem
);
315 return ktime_add(kt
, tmp
);
318 EXPORT_SYMBOL_GPL(ktime_add_ns
);
321 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
323 * @nsec: the scalar nsec value to subtract
325 * Returns the subtraction of @nsec from @kt in ktime_t format
327 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
331 if (likely(nsec
< NSEC_PER_SEC
)) {
334 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
336 tmp
= ktime_set((long)nsec
, rem
);
339 return ktime_sub(kt
, tmp
);
342 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
343 # endif /* !CONFIG_KTIME_SCALAR */
346 * Divide a ktime value by a nanosecond value
348 u64
ktime_divns(const ktime_t kt
, s64 div
)
353 dclc
= ktime_to_ns(kt
);
354 /* Make sure the divisor is less than 2^32: */
360 do_div(dclc
, (unsigned long) div
);
364 #endif /* BITS_PER_LONG >= 64 */
367 * Add two ktime values and do a safety check for overflow:
369 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
371 ktime_t res
= ktime_add(lhs
, rhs
);
374 * We use KTIME_SEC_MAX here, the maximum timeout which we can
375 * return to user space in a timespec:
377 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
378 res
= ktime_set(KTIME_SEC_MAX
, 0);
383 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
385 static struct debug_obj_descr hrtimer_debug_descr
;
388 * fixup_init is called when:
389 * - an active object is initialized
391 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
393 struct hrtimer
*timer
= addr
;
396 case ODEBUG_STATE_ACTIVE
:
397 hrtimer_cancel(timer
);
398 debug_object_init(timer
, &hrtimer_debug_descr
);
406 * fixup_activate is called when:
407 * - an active object is activated
408 * - an unknown object is activated (might be a statically initialized object)
410 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
414 case ODEBUG_STATE_NOTAVAILABLE
:
418 case ODEBUG_STATE_ACTIVE
:
427 * fixup_free is called when:
428 * - an active object is freed
430 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
432 struct hrtimer
*timer
= addr
;
435 case ODEBUG_STATE_ACTIVE
:
436 hrtimer_cancel(timer
);
437 debug_object_free(timer
, &hrtimer_debug_descr
);
444 static struct debug_obj_descr hrtimer_debug_descr
= {
446 .fixup_init
= hrtimer_fixup_init
,
447 .fixup_activate
= hrtimer_fixup_activate
,
448 .fixup_free
= hrtimer_fixup_free
,
451 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
453 debug_object_init(timer
, &hrtimer_debug_descr
);
456 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
458 debug_object_activate(timer
, &hrtimer_debug_descr
);
461 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
463 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
466 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
468 debug_object_free(timer
, &hrtimer_debug_descr
);
471 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
472 enum hrtimer_mode mode
);
474 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
475 enum hrtimer_mode mode
)
477 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
478 __hrtimer_init(timer
, clock_id
, mode
);
481 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
483 debug_object_free(timer
, &hrtimer_debug_descr
);
487 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
488 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
489 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
492 /* High resolution timer related functions */
493 #ifdef CONFIG_HIGH_RES_TIMERS
496 * High resolution timer enabled ?
498 static int hrtimer_hres_enabled __read_mostly
= 1;
501 * Enable / Disable high resolution mode
503 static int __init
setup_hrtimer_hres(char *str
)
505 if (!strcmp(str
, "off"))
506 hrtimer_hres_enabled
= 0;
507 else if (!strcmp(str
, "on"))
508 hrtimer_hres_enabled
= 1;
514 __setup("highres=", setup_hrtimer_hres
);
517 * hrtimer_high_res_enabled - query, if the highres mode is enabled
519 static inline int hrtimer_is_hres_enabled(void)
521 return hrtimer_hres_enabled
;
525 * Is the high resolution mode active ?
527 static inline int hrtimer_hres_active(void)
529 return __get_cpu_var(hrtimer_bases
).hres_active
;
533 * Reprogram the event source with checking both queues for the
535 * Called with interrupts disabled and base->lock held
537 static void hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
)
540 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
543 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
545 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
546 struct hrtimer
*timer
;
550 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
551 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
553 * clock_was_set() has changed base->offset so the
554 * result might be negative. Fix it up to prevent a
555 * false positive in clockevents_program_event()
557 if (expires
.tv64
< 0)
559 if (expires
.tv64
< cpu_base
->expires_next
.tv64
)
560 cpu_base
->expires_next
= expires
;
563 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
564 tick_program_event(cpu_base
->expires_next
, 1);
568 * Shared reprogramming for clock_realtime and clock_monotonic
570 * When a timer is enqueued and expires earlier than the already enqueued
571 * timers, we have to check, whether it expires earlier than the timer for
572 * which the clock event device was armed.
574 * Called with interrupts disabled and base->cpu_base.lock held
576 static int hrtimer_reprogram(struct hrtimer
*timer
,
577 struct hrtimer_clock_base
*base
)
579 ktime_t
*expires_next
= &__get_cpu_var(hrtimer_bases
).expires_next
;
580 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
583 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
586 * When the callback is running, we do not reprogram the clock event
587 * device. The timer callback is either running on a different CPU or
588 * the callback is executed in the hrtimer_interrupt context. The
589 * reprogramming is handled either by the softirq, which called the
590 * callback or at the end of the hrtimer_interrupt.
592 if (hrtimer_callback_running(timer
))
596 * CLOCK_REALTIME timer might be requested with an absolute
597 * expiry time which is less than base->offset. Nothing wrong
598 * about that, just avoid to call into the tick code, which
599 * has now objections against negative expiry values.
601 if (expires
.tv64
< 0)
604 if (expires
.tv64
>= expires_next
->tv64
)
608 * Clockevents returns -ETIME, when the event was in the past.
610 res
= tick_program_event(expires
, 0);
611 if (!IS_ERR_VALUE(res
))
612 *expires_next
= expires
;
618 * Retrigger next event is called after clock was set
620 * Called with interrupts disabled via on_each_cpu()
622 static void retrigger_next_event(void *arg
)
624 struct hrtimer_cpu_base
*base
;
625 struct timespec realtime_offset
;
628 if (!hrtimer_hres_active())
632 seq
= read_seqbegin(&xtime_lock
);
633 set_normalized_timespec(&realtime_offset
,
634 -wall_to_monotonic
.tv_sec
,
635 -wall_to_monotonic
.tv_nsec
);
636 } while (read_seqretry(&xtime_lock
, seq
));
638 base
= &__get_cpu_var(hrtimer_bases
);
640 /* Adjust CLOCK_REALTIME offset */
641 spin_lock(&base
->lock
);
642 base
->clock_base
[CLOCK_REALTIME
].offset
=
643 timespec_to_ktime(realtime_offset
);
645 hrtimer_force_reprogram(base
);
646 spin_unlock(&base
->lock
);
650 * Clock realtime was set
652 * Change the offset of the realtime clock vs. the monotonic
655 * We might have to reprogram the high resolution timer interrupt. On
656 * SMP we call the architecture specific code to retrigger _all_ high
657 * resolution timer interrupts. On UP we just disable interrupts and
658 * call the high resolution interrupt code.
660 void clock_was_set(void)
662 /* Retrigger the CPU local events everywhere */
663 on_each_cpu(retrigger_next_event
, NULL
, 1);
667 * During resume we might have to reprogram the high resolution timer
668 * interrupt (on the local CPU):
670 void hres_timers_resume(void)
672 WARN_ONCE(!irqs_disabled(),
673 KERN_INFO
"hres_timers_resume() called with IRQs enabled!");
675 retrigger_next_event(NULL
);
679 * Initialize the high resolution related parts of cpu_base
681 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
683 base
->expires_next
.tv64
= KTIME_MAX
;
684 base
->hres_active
= 0;
688 * Initialize the high resolution related parts of a hrtimer
690 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
)
696 * When High resolution timers are active, try to reprogram. Note, that in case
697 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
698 * check happens. The timer gets enqueued into the rbtree. The reprogramming
699 * and expiry check is done in the hrtimer_interrupt or in the softirq.
701 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
702 struct hrtimer_clock_base
*base
,
705 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
707 spin_unlock(&base
->cpu_base
->lock
);
708 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
709 spin_lock(&base
->cpu_base
->lock
);
711 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
720 * Switch to high resolution mode
722 static int hrtimer_switch_to_hres(void)
724 int cpu
= smp_processor_id();
725 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
728 if (base
->hres_active
)
731 local_irq_save(flags
);
733 if (tick_init_highres()) {
734 local_irq_restore(flags
);
735 printk(KERN_WARNING
"Could not switch to high resolution "
736 "mode on CPU %d\n", cpu
);
739 base
->hres_active
= 1;
740 base
->clock_base
[CLOCK_REALTIME
].resolution
= KTIME_HIGH_RES
;
741 base
->clock_base
[CLOCK_MONOTONIC
].resolution
= KTIME_HIGH_RES
;
743 tick_setup_sched_timer();
745 /* "Retrigger" the interrupt to get things going */
746 retrigger_next_event(NULL
);
747 local_irq_restore(flags
);
748 printk(KERN_DEBUG
"Switched to high resolution mode on CPU %d\n",
755 static inline int hrtimer_hres_active(void) { return 0; }
756 static inline int hrtimer_is_hres_enabled(void) { return 0; }
757 static inline int hrtimer_switch_to_hres(void) { return 0; }
758 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
) { }
759 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
760 struct hrtimer_clock_base
*base
,
765 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
766 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
) { }
768 #endif /* CONFIG_HIGH_RES_TIMERS */
770 #ifdef CONFIG_TIMER_STATS
771 void __timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
, void *addr
)
773 if (timer
->start_site
)
776 timer
->start_site
= addr
;
777 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
778 timer
->start_pid
= current
->pid
;
783 * Counterpart to lock_hrtimer_base above:
786 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
788 spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
792 * hrtimer_forward - forward the timer expiry
793 * @timer: hrtimer to forward
794 * @now: forward past this time
795 * @interval: the interval to forward
797 * Forward the timer expiry so it will expire in the future.
798 * Returns the number of overruns.
800 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
805 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
810 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
811 interval
.tv64
= timer
->base
->resolution
.tv64
;
813 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
814 s64 incr
= ktime_to_ns(interval
);
816 orun
= ktime_divns(delta
, incr
);
817 hrtimer_add_expires_ns(timer
, incr
* orun
);
818 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
821 * This (and the ktime_add() below) is the
822 * correction for exact:
826 hrtimer_add_expires(timer
, interval
);
830 EXPORT_SYMBOL_GPL(hrtimer_forward
);
833 * enqueue_hrtimer - internal function to (re)start a timer
835 * The timer is inserted in expiry order. Insertion into the
836 * red black tree is O(log(n)). Must hold the base lock.
838 * Returns 1 when the new timer is the leftmost timer in the tree.
840 static int enqueue_hrtimer(struct hrtimer
*timer
,
841 struct hrtimer_clock_base
*base
)
843 struct rb_node
**link
= &base
->active
.rb_node
;
844 struct rb_node
*parent
= NULL
;
845 struct hrtimer
*entry
;
848 debug_hrtimer_activate(timer
);
851 * Find the right place in the rbtree:
855 entry
= rb_entry(parent
, struct hrtimer
, node
);
857 * We dont care about collisions. Nodes with
858 * the same expiry time stay together.
860 if (hrtimer_get_expires_tv64(timer
) <
861 hrtimer_get_expires_tv64(entry
)) {
862 link
= &(*link
)->rb_left
;
864 link
= &(*link
)->rb_right
;
870 * Insert the timer to the rbtree and check whether it
871 * replaces the first pending timer
874 base
->first
= &timer
->node
;
876 rb_link_node(&timer
->node
, parent
, link
);
877 rb_insert_color(&timer
->node
, &base
->active
);
879 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
880 * state of a possibly running callback.
882 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
888 * __remove_hrtimer - internal function to remove a timer
890 * Caller must hold the base lock.
892 * High resolution timer mode reprograms the clock event device when the
893 * timer is the one which expires next. The caller can disable this by setting
894 * reprogram to zero. This is useful, when the context does a reprogramming
895 * anyway (e.g. timer interrupt)
897 static void __remove_hrtimer(struct hrtimer
*timer
,
898 struct hrtimer_clock_base
*base
,
899 unsigned long newstate
, int reprogram
)
901 if (timer
->state
& HRTIMER_STATE_ENQUEUED
) {
903 * Remove the timer from the rbtree and replace the
904 * first entry pointer if necessary.
906 if (base
->first
== &timer
->node
) {
907 base
->first
= rb_next(&timer
->node
);
908 /* Reprogram the clock event device. if enabled */
909 if (reprogram
&& hrtimer_hres_active())
910 hrtimer_force_reprogram(base
->cpu_base
);
912 rb_erase(&timer
->node
, &base
->active
);
914 timer
->state
= newstate
;
918 * remove hrtimer, called with base lock held
921 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
923 if (hrtimer_is_queued(timer
)) {
927 * Remove the timer and force reprogramming when high
928 * resolution mode is active and the timer is on the current
929 * CPU. If we remove a timer on another CPU, reprogramming is
930 * skipped. The interrupt event on this CPU is fired and
931 * reprogramming happens in the interrupt handler. This is a
932 * rare case and less expensive than a smp call.
934 debug_hrtimer_deactivate(timer
);
935 timer_stats_hrtimer_clear_start_info(timer
);
936 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
937 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
,
944 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
945 unsigned long delta_ns
, const enum hrtimer_mode mode
,
948 struct hrtimer_clock_base
*base
, *new_base
;
952 base
= lock_hrtimer_base(timer
, &flags
);
954 /* Remove an active timer from the queue: */
955 ret
= remove_hrtimer(timer
, base
);
957 /* Switch the timer base, if necessary: */
958 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
960 if (mode
& HRTIMER_MODE_REL
) {
961 tim
= ktime_add_safe(tim
, new_base
->get_time());
963 * CONFIG_TIME_LOW_RES is a temporary way for architectures
964 * to signal that they simply return xtime in
965 * do_gettimeoffset(). In this case we want to round up by
966 * resolution when starting a relative timer, to avoid short
967 * timeouts. This will go away with the GTOD framework.
969 #ifdef CONFIG_TIME_LOW_RES
970 tim
= ktime_add_safe(tim
, base
->resolution
);
974 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
976 timer_stats_hrtimer_set_start_info(timer
);
978 leftmost
= enqueue_hrtimer(timer
, new_base
);
981 * Only allow reprogramming if the new base is on this CPU.
982 * (it might still be on another CPU if the timer was pending)
984 * XXX send_remote_softirq() ?
986 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
))
987 hrtimer_enqueue_reprogram(timer
, new_base
, wakeup
);
989 unlock_hrtimer_base(timer
, &flags
);
995 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
996 * @timer: the timer to be added
998 * @delta_ns: "slack" range for the timer
999 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1003 * 1 when the timer was active
1005 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1006 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1008 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1010 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1013 * hrtimer_start - (re)start an hrtimer on the current CPU
1014 * @timer: the timer to be added
1016 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1020 * 1 when the timer was active
1023 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1025 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1027 EXPORT_SYMBOL_GPL(hrtimer_start
);
1031 * hrtimer_try_to_cancel - try to deactivate a timer
1032 * @timer: hrtimer to stop
1035 * 0 when the timer was not active
1036 * 1 when the timer was active
1037 * -1 when the timer is currently excuting the callback function and
1040 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1042 struct hrtimer_clock_base
*base
;
1043 unsigned long flags
;
1046 base
= lock_hrtimer_base(timer
, &flags
);
1048 if (!hrtimer_callback_running(timer
))
1049 ret
= remove_hrtimer(timer
, base
);
1051 unlock_hrtimer_base(timer
, &flags
);
1056 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1059 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1060 * @timer: the timer to be cancelled
1063 * 0 when the timer was not active
1064 * 1 when the timer was active
1066 int hrtimer_cancel(struct hrtimer
*timer
)
1069 int ret
= hrtimer_try_to_cancel(timer
);
1076 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1079 * hrtimer_get_remaining - get remaining time for the timer
1080 * @timer: the timer to read
1082 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1084 struct hrtimer_clock_base
*base
;
1085 unsigned long flags
;
1088 base
= lock_hrtimer_base(timer
, &flags
);
1089 rem
= hrtimer_expires_remaining(timer
);
1090 unlock_hrtimer_base(timer
, &flags
);
1094 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1098 * hrtimer_get_next_event - get the time until next expiry event
1100 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1103 ktime_t
hrtimer_get_next_event(void)
1105 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1106 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1107 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1108 unsigned long flags
;
1111 spin_lock_irqsave(&cpu_base
->lock
, flags
);
1113 if (!hrtimer_hres_active()) {
1114 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1115 struct hrtimer
*timer
;
1120 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
1121 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1122 delta
= ktime_sub(delta
, base
->get_time());
1123 if (delta
.tv64
< mindelta
.tv64
)
1124 mindelta
.tv64
= delta
.tv64
;
1128 spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1130 if (mindelta
.tv64
< 0)
1136 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1137 enum hrtimer_mode mode
)
1139 struct hrtimer_cpu_base
*cpu_base
;
1141 memset(timer
, 0, sizeof(struct hrtimer
));
1143 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1145 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1146 clock_id
= CLOCK_MONOTONIC
;
1148 timer
->base
= &cpu_base
->clock_base
[clock_id
];
1149 INIT_LIST_HEAD(&timer
->cb_entry
);
1150 hrtimer_init_timer_hres(timer
);
1152 #ifdef CONFIG_TIMER_STATS
1153 timer
->start_site
= NULL
;
1154 timer
->start_pid
= -1;
1155 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1160 * hrtimer_init - initialize a timer to the given clock
1161 * @timer: the timer to be initialized
1162 * @clock_id: the clock to be used
1163 * @mode: timer mode abs/rel
1165 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1166 enum hrtimer_mode mode
)
1168 debug_hrtimer_init(timer
);
1169 __hrtimer_init(timer
, clock_id
, mode
);
1171 EXPORT_SYMBOL_GPL(hrtimer_init
);
1174 * hrtimer_get_res - get the timer resolution for a clock
1175 * @which_clock: which clock to query
1176 * @tp: pointer to timespec variable to store the resolution
1178 * Store the resolution of the clock selected by @which_clock in the
1179 * variable pointed to by @tp.
1181 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1183 struct hrtimer_cpu_base
*cpu_base
;
1185 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1186 *tp
= ktime_to_timespec(cpu_base
->clock_base
[which_clock
].resolution
);
1190 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1192 static void __run_hrtimer(struct hrtimer
*timer
)
1194 struct hrtimer_clock_base
*base
= timer
->base
;
1195 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1196 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1199 WARN_ON(!irqs_disabled());
1201 debug_hrtimer_deactivate(timer
);
1202 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1203 timer_stats_account_hrtimer(timer
);
1204 fn
= timer
->function
;
1207 * Because we run timers from hardirq context, there is no chance
1208 * they get migrated to another cpu, therefore its safe to unlock
1211 spin_unlock(&cpu_base
->lock
);
1212 restart
= fn(timer
);
1213 spin_lock(&cpu_base
->lock
);
1216 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1217 * we do not reprogramm the event hardware. Happens either in
1218 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1220 if (restart
!= HRTIMER_NORESTART
) {
1221 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1222 enqueue_hrtimer(timer
, base
);
1224 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1227 #ifdef CONFIG_HIGH_RES_TIMERS
1229 static int force_clock_reprogram
;
1232 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1233 * is hanging, which could happen with something that slows the interrupt
1234 * such as the tracing. Then we force the clock reprogramming for each future
1235 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1236 * threshold that we will overwrite.
1237 * The next tick event will be scheduled to 3 times we currently spend on
1238 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1239 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1240 * let it running without serious starvation.
1244 hrtimer_interrupt_hanging(struct clock_event_device
*dev
,
1247 force_clock_reprogram
= 1;
1248 dev
->min_delta_ns
= (unsigned long)try_time
.tv64
* 3;
1249 printk(KERN_WARNING
"hrtimer: interrupt too slow, "
1250 "forcing clock min delta to %lu ns\n", dev
->min_delta_ns
);
1253 * High resolution timer interrupt
1254 * Called with interrupts disabled
1256 void hrtimer_interrupt(struct clock_event_device
*dev
)
1258 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1259 struct hrtimer_clock_base
*base
;
1260 ktime_t expires_next
, now
;
1264 BUG_ON(!cpu_base
->hres_active
);
1265 cpu_base
->nr_events
++;
1266 dev
->next_event
.tv64
= KTIME_MAX
;
1269 /* 5 retries is enough to notice a hang */
1270 if (!(++nr_retries
% 5))
1271 hrtimer_interrupt_hanging(dev
, ktime_sub(ktime_get(), now
));
1275 expires_next
.tv64
= KTIME_MAX
;
1277 base
= cpu_base
->clock_base
;
1279 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1281 struct rb_node
*node
;
1283 spin_lock(&cpu_base
->lock
);
1285 basenow
= ktime_add(now
, base
->offset
);
1287 while ((node
= base
->first
)) {
1288 struct hrtimer
*timer
;
1290 timer
= rb_entry(node
, struct hrtimer
, node
);
1293 * The immediate goal for using the softexpires is
1294 * minimizing wakeups, not running timers at the
1295 * earliest interrupt after their soft expiration.
1296 * This allows us to avoid using a Priority Search
1297 * Tree, which can answer a stabbing querry for
1298 * overlapping intervals and instead use the simple
1299 * BST we already have.
1300 * We don't add extra wakeups by delaying timers that
1301 * are right-of a not yet expired timer, because that
1302 * timer will have to trigger a wakeup anyway.
1305 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1308 expires
= ktime_sub(hrtimer_get_expires(timer
),
1310 if (expires
.tv64
< expires_next
.tv64
)
1311 expires_next
= expires
;
1315 __run_hrtimer(timer
);
1317 spin_unlock(&cpu_base
->lock
);
1321 cpu_base
->expires_next
= expires_next
;
1323 /* Reprogramming necessary ? */
1324 if (expires_next
.tv64
!= KTIME_MAX
) {
1325 if (tick_program_event(expires_next
, force_clock_reprogram
))
1331 * local version of hrtimer_peek_ahead_timers() called with interrupts
1334 static void __hrtimer_peek_ahead_timers(void)
1336 struct tick_device
*td
;
1338 if (!hrtimer_hres_active())
1341 td
= &__get_cpu_var(tick_cpu_device
);
1342 if (td
&& td
->evtdev
)
1343 hrtimer_interrupt(td
->evtdev
);
1347 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1349 * hrtimer_peek_ahead_timers will peek at the timer queue of
1350 * the current cpu and check if there are any timers for which
1351 * the soft expires time has passed. If any such timers exist,
1352 * they are run immediately and then removed from the timer queue.
1355 void hrtimer_peek_ahead_timers(void)
1357 unsigned long flags
;
1359 local_irq_save(flags
);
1360 __hrtimer_peek_ahead_timers();
1361 local_irq_restore(flags
);
1364 static void run_hrtimer_softirq(struct softirq_action
*h
)
1366 hrtimer_peek_ahead_timers();
1369 #else /* CONFIG_HIGH_RES_TIMERS */
1371 static inline void __hrtimer_peek_ahead_timers(void) { }
1373 #endif /* !CONFIG_HIGH_RES_TIMERS */
1376 * Called from timer softirq every jiffy, expire hrtimers:
1378 * For HRT its the fall back code to run the softirq in the timer
1379 * softirq context in case the hrtimer initialization failed or has
1380 * not been done yet.
1382 void hrtimer_run_pending(void)
1384 if (hrtimer_hres_active())
1388 * This _is_ ugly: We have to check in the softirq context,
1389 * whether we can switch to highres and / or nohz mode. The
1390 * clocksource switch happens in the timer interrupt with
1391 * xtime_lock held. Notification from there only sets the
1392 * check bit in the tick_oneshot code, otherwise we might
1393 * deadlock vs. xtime_lock.
1395 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1396 hrtimer_switch_to_hres();
1400 * Called from hardirq context every jiffy
1402 void hrtimer_run_queues(void)
1404 struct rb_node
*node
;
1405 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1406 struct hrtimer_clock_base
*base
;
1407 int index
, gettime
= 1;
1409 if (hrtimer_hres_active())
1412 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1413 base
= &cpu_base
->clock_base
[index
];
1419 hrtimer_get_softirq_time(cpu_base
);
1423 spin_lock(&cpu_base
->lock
);
1425 while ((node
= base
->first
)) {
1426 struct hrtimer
*timer
;
1428 timer
= rb_entry(node
, struct hrtimer
, node
);
1429 if (base
->softirq_time
.tv64
<=
1430 hrtimer_get_expires_tv64(timer
))
1433 __run_hrtimer(timer
);
1435 spin_unlock(&cpu_base
->lock
);
1440 * Sleep related functions:
1442 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1444 struct hrtimer_sleeper
*t
=
1445 container_of(timer
, struct hrtimer_sleeper
, timer
);
1446 struct task_struct
*task
= t
->task
;
1450 wake_up_process(task
);
1452 return HRTIMER_NORESTART
;
1455 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1457 sl
->timer
.function
= hrtimer_wakeup
;
1461 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1463 hrtimer_init_sleeper(t
, current
);
1466 set_current_state(TASK_INTERRUPTIBLE
);
1467 hrtimer_start_expires(&t
->timer
, mode
);
1468 if (!hrtimer_active(&t
->timer
))
1471 if (likely(t
->task
))
1474 hrtimer_cancel(&t
->timer
);
1475 mode
= HRTIMER_MODE_ABS
;
1477 } while (t
->task
&& !signal_pending(current
));
1479 __set_current_state(TASK_RUNNING
);
1481 return t
->task
== NULL
;
1484 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1486 struct timespec rmt
;
1489 rem
= hrtimer_expires_remaining(timer
);
1492 rmt
= ktime_to_timespec(rem
);
1494 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1500 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1502 struct hrtimer_sleeper t
;
1503 struct timespec __user
*rmtp
;
1506 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.index
,
1508 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1510 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1513 rmtp
= restart
->nanosleep
.rmtp
;
1515 ret
= update_rmtp(&t
.timer
, rmtp
);
1520 /* The other values in restart are already filled in */
1521 ret
= -ERESTART_RESTARTBLOCK
;
1523 destroy_hrtimer_on_stack(&t
.timer
);
1527 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1528 const enum hrtimer_mode mode
, const clockid_t clockid
)
1530 struct restart_block
*restart
;
1531 struct hrtimer_sleeper t
;
1533 unsigned long slack
;
1535 slack
= current
->timer_slack_ns
;
1536 if (rt_task(current
))
1539 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1540 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1541 if (do_nanosleep(&t
, mode
))
1544 /* Absolute timers do not update the rmtp value and restart: */
1545 if (mode
== HRTIMER_MODE_ABS
) {
1546 ret
= -ERESTARTNOHAND
;
1551 ret
= update_rmtp(&t
.timer
, rmtp
);
1556 restart
= ¤t_thread_info()->restart_block
;
1557 restart
->fn
= hrtimer_nanosleep_restart
;
1558 restart
->nanosleep
.index
= t
.timer
.base
->index
;
1559 restart
->nanosleep
.rmtp
= rmtp
;
1560 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1562 ret
= -ERESTART_RESTARTBLOCK
;
1564 destroy_hrtimer_on_stack(&t
.timer
);
1568 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1569 struct timespec __user
*, rmtp
)
1573 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1576 if (!timespec_valid(&tu
))
1579 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1583 * Functions related to boot-time initialization:
1585 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1587 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1590 spin_lock_init(&cpu_base
->lock
);
1592 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1593 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1595 hrtimer_init_hres(cpu_base
);
1598 #ifdef CONFIG_HOTPLUG_CPU
1600 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1601 struct hrtimer_clock_base
*new_base
)
1603 struct hrtimer
*timer
;
1604 struct rb_node
*node
;
1606 while ((node
= rb_first(&old_base
->active
))) {
1607 timer
= rb_entry(node
, struct hrtimer
, node
);
1608 BUG_ON(hrtimer_callback_running(timer
));
1609 debug_hrtimer_deactivate(timer
);
1612 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1613 * timer could be seen as !active and just vanish away
1614 * under us on another CPU
1616 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1617 timer
->base
= new_base
;
1619 * Enqueue the timers on the new cpu. This does not
1620 * reprogram the event device in case the timer
1621 * expires before the earliest on this CPU, but we run
1622 * hrtimer_interrupt after we migrated everything to
1623 * sort out already expired timers and reprogram the
1626 enqueue_hrtimer(timer
, new_base
);
1628 /* Clear the migration state bit */
1629 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1633 static void migrate_hrtimers(int scpu
)
1635 struct hrtimer_cpu_base
*old_base
, *new_base
;
1638 BUG_ON(cpu_online(scpu
));
1639 tick_cancel_sched_timer(scpu
);
1641 local_irq_disable();
1642 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1643 new_base
= &__get_cpu_var(hrtimer_bases
);
1645 * The caller is globally serialized and nobody else
1646 * takes two locks at once, deadlock is not possible.
1648 spin_lock(&new_base
->lock
);
1649 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1651 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1652 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1653 &new_base
->clock_base
[i
]);
1656 spin_unlock(&old_base
->lock
);
1657 spin_unlock(&new_base
->lock
);
1659 /* Check, if we got expired work to do */
1660 __hrtimer_peek_ahead_timers();
1664 #endif /* CONFIG_HOTPLUG_CPU */
1666 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1667 unsigned long action
, void *hcpu
)
1669 int scpu
= (long)hcpu
;
1673 case CPU_UP_PREPARE
:
1674 case CPU_UP_PREPARE_FROZEN
:
1675 init_hrtimers_cpu(scpu
);
1678 #ifdef CONFIG_HOTPLUG_CPU
1680 case CPU_DYING_FROZEN
:
1681 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1684 case CPU_DEAD_FROZEN
:
1686 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1687 migrate_hrtimers(scpu
);
1699 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1700 .notifier_call
= hrtimer_cpu_notify
,
1703 void __init
hrtimers_init(void)
1705 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1706 (void *)(long)smp_processor_id());
1707 register_cpu_notifier(&hrtimers_nb
);
1708 #ifdef CONFIG_HIGH_RES_TIMERS
1709 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1714 * schedule_hrtimeout_range - sleep until timeout
1715 * @expires: timeout value (ktime_t)
1716 * @delta: slack in expires timeout (ktime_t)
1717 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1719 * Make the current task sleep until the given expiry time has
1720 * elapsed. The routine will return immediately unless
1721 * the current task state has been set (see set_current_state()).
1723 * The @delta argument gives the kernel the freedom to schedule the
1724 * actual wakeup to a time that is both power and performance friendly.
1725 * The kernel give the normal best effort behavior for "@expires+@delta",
1726 * but may decide to fire the timer earlier, but no earlier than @expires.
1728 * You can set the task state as follows -
1730 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1731 * pass before the routine returns.
1733 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1734 * delivered to the current task.
1736 * The current task state is guaranteed to be TASK_RUNNING when this
1739 * Returns 0 when the timer has expired otherwise -EINTR
1741 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1742 const enum hrtimer_mode mode
)
1744 struct hrtimer_sleeper t
;
1747 * Optimize when a zero timeout value is given. It does not
1748 * matter whether this is an absolute or a relative time.
1750 if (expires
&& !expires
->tv64
) {
1751 __set_current_state(TASK_RUNNING
);
1756 * A NULL parameter means "inifinte"
1760 __set_current_state(TASK_RUNNING
);
1764 hrtimer_init_on_stack(&t
.timer
, CLOCK_MONOTONIC
, mode
);
1765 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1767 hrtimer_init_sleeper(&t
, current
);
1769 hrtimer_start_expires(&t
.timer
, mode
);
1770 if (!hrtimer_active(&t
.timer
))
1776 hrtimer_cancel(&t
.timer
);
1777 destroy_hrtimer_on_stack(&t
.timer
);
1779 __set_current_state(TASK_RUNNING
);
1781 return !t
.task
? 0 : -EINTR
;
1783 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1786 * schedule_hrtimeout - sleep until timeout
1787 * @expires: timeout value (ktime_t)
1788 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1790 * Make the current task sleep until the given expiry time has
1791 * elapsed. The routine will return immediately unless
1792 * the current task state has been set (see set_current_state()).
1794 * You can set the task state as follows -
1796 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1797 * pass before the routine returns.
1799 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1800 * delivered to the current task.
1802 * The current task state is guaranteed to be TASK_RUNNING when this
1805 * Returns 0 when the timer has expired otherwise -EINTR
1807 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1808 const enum hrtimer_mode mode
)
1810 return schedule_hrtimeout_range(expires
, 0, mode
);
1812 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);