[PATCH] e1000: narrow down the scope of the tipg timer tweak
[linux-2.6/verdex.git] / drivers / net / e1000 / e1000_main.c
blobe04f1ba847fdf4f3c43aa7ef482f21d7796c5e37
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.15-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
43 /* e1000_pci_tbl - PCI Device ID Table
45 * Last entry must be all 0s
47 * Macro expands to...
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
50 static struct pci_device_id e1000_pci_tbl[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1049),
77 INTEL_E1000_ETHERNET_DEVICE(0x104A),
78 INTEL_E1000_ETHERNET_DEVICE(0x104B),
79 INTEL_E1000_ETHERNET_DEVICE(0x104C),
80 INTEL_E1000_ETHERNET_DEVICE(0x104D),
81 INTEL_E1000_ETHERNET_DEVICE(0x105E),
82 INTEL_E1000_ETHERNET_DEVICE(0x105F),
83 INTEL_E1000_ETHERNET_DEVICE(0x1060),
84 INTEL_E1000_ETHERNET_DEVICE(0x1075),
85 INTEL_E1000_ETHERNET_DEVICE(0x1076),
86 INTEL_E1000_ETHERNET_DEVICE(0x1077),
87 INTEL_E1000_ETHERNET_DEVICE(0x1078),
88 INTEL_E1000_ETHERNET_DEVICE(0x1079),
89 INTEL_E1000_ETHERNET_DEVICE(0x107A),
90 INTEL_E1000_ETHERNET_DEVICE(0x107B),
91 INTEL_E1000_ETHERNET_DEVICE(0x107C),
92 INTEL_E1000_ETHERNET_DEVICE(0x107D),
93 INTEL_E1000_ETHERNET_DEVICE(0x107E),
94 INTEL_E1000_ETHERNET_DEVICE(0x107F),
95 INTEL_E1000_ETHERNET_DEVICE(0x108A),
96 INTEL_E1000_ETHERNET_DEVICE(0x108B),
97 INTEL_E1000_ETHERNET_DEVICE(0x108C),
98 INTEL_E1000_ETHERNET_DEVICE(0x1096),
99 INTEL_E1000_ETHERNET_DEVICE(0x1098),
100 INTEL_E1000_ETHERNET_DEVICE(0x1099),
101 INTEL_E1000_ETHERNET_DEVICE(0x109A),
102 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107 INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108 INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109 INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110 /* required last entry */
111 {0,}
114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
116 int e1000_up(struct e1000_adapter *adapter);
117 void e1000_down(struct e1000_adapter *adapter);
118 void e1000_reinit_locked(struct e1000_adapter *adapter);
119 void e1000_reset(struct e1000_adapter *adapter);
120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *txdr);
127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rxdr);
129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
130 struct e1000_tx_ring *tx_ring);
131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
132 struct e1000_rx_ring *rx_ring);
133 void e1000_update_stats(struct e1000_adapter *adapter);
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
138 static void __devexit e1000_remove(struct pci_dev *pdev);
139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
140 static int e1000_sw_init(struct e1000_adapter *adapter);
141 static int e1000_open(struct net_device *netdev);
142 static int e1000_close(struct net_device *netdev);
143 static void e1000_configure_tx(struct e1000_adapter *adapter);
144 static void e1000_configure_rx(struct e1000_adapter *adapter);
145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
149 struct e1000_tx_ring *tx_ring);
150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring);
152 static void e1000_set_multi(struct net_device *netdev);
153 static void e1000_update_phy_info(unsigned long data);
154 static void e1000_watchdog(unsigned long data);
155 static void e1000_82547_tx_fifo_stall(unsigned long data);
156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
159 static int e1000_set_mac(struct net_device *netdev, void *p);
160 static irqreturn_t e1000_intr(int irq, void *data);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t e1000_intr_msi(int irq, void *data);
163 #endif
164 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
165 struct e1000_tx_ring *tx_ring);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device *poll_dev, int *budget);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169 struct e1000_rx_ring *rx_ring,
170 int *work_done, int work_to_do);
171 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
172 struct e1000_rx_ring *rx_ring,
173 int *work_done, int work_to_do);
174 #else
175 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
176 struct e1000_rx_ring *rx_ring);
177 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
178 struct e1000_rx_ring *rx_ring);
179 #endif
180 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
181 struct e1000_rx_ring *rx_ring,
182 int cleaned_count);
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
184 struct e1000_rx_ring *rx_ring,
185 int cleaned_count);
186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
187 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
188 int cmd);
189 void e1000_set_ethtool_ops(struct net_device *netdev);
190 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_tx_timeout(struct net_device *dev);
193 static void e1000_reset_task(struct work_struct *work);
194 static void e1000_smartspeed(struct e1000_adapter *adapter);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
196 struct sk_buff *skb);
198 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
199 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_restore_vlan(struct e1000_adapter *adapter);
203 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
204 #ifdef CONFIG_PM
205 static int e1000_resume(struct pci_dev *pdev);
206 #endif
207 static void e1000_shutdown(struct pci_dev *pdev);
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device *netdev);
212 #endif
214 extern void e1000_check_options(struct e1000_adapter *adapter);
216 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
217 pci_channel_state_t state);
218 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
219 static void e1000_io_resume(struct pci_dev *pdev);
221 static struct pci_error_handlers e1000_err_handler = {
222 .error_detected = e1000_io_error_detected,
223 .slot_reset = e1000_io_slot_reset,
224 .resume = e1000_io_resume,
227 static struct pci_driver e1000_driver = {
228 .name = e1000_driver_name,
229 .id_table = e1000_pci_tbl,
230 .probe = e1000_probe,
231 .remove = __devexit_p(e1000_remove),
232 #ifdef CONFIG_PM
233 /* Power Managment Hooks */
234 .suspend = e1000_suspend,
235 .resume = e1000_resume,
236 #endif
237 .shutdown = e1000_shutdown,
238 .err_handler = &e1000_err_handler
241 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
242 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
243 MODULE_LICENSE("GPL");
244 MODULE_VERSION(DRV_VERSION);
246 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
251 * e1000_init_module - Driver Registration Routine
253 * e1000_init_module is the first routine called when the driver is
254 * loaded. All it does is register with the PCI subsystem.
257 static int __init
258 e1000_init_module(void)
260 int ret;
261 printk(KERN_INFO "%s - version %s\n",
262 e1000_driver_string, e1000_driver_version);
264 printk(KERN_INFO "%s\n", e1000_copyright);
266 ret = pci_register_driver(&e1000_driver);
268 return ret;
271 module_init(e1000_init_module);
274 * e1000_exit_module - Driver Exit Cleanup Routine
276 * e1000_exit_module is called just before the driver is removed
277 * from memory.
280 static void __exit
281 e1000_exit_module(void)
283 pci_unregister_driver(&e1000_driver);
286 module_exit(e1000_exit_module);
288 static int e1000_request_irq(struct e1000_adapter *adapter)
290 struct net_device *netdev = adapter->netdev;
291 int flags, err = 0;
293 flags = IRQF_SHARED;
294 #ifdef CONFIG_PCI_MSI
295 if (adapter->hw.mac_type >= e1000_82571) {
296 adapter->have_msi = TRUE;
297 if ((err = pci_enable_msi(adapter->pdev))) {
298 DPRINTK(PROBE, ERR,
299 "Unable to allocate MSI interrupt Error: %d\n", err);
300 adapter->have_msi = FALSE;
303 if (adapter->have_msi) {
304 flags &= ~IRQF_SHARED;
305 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
306 netdev->name, netdev);
307 if (err)
308 DPRINTK(PROBE, ERR,
309 "Unable to allocate interrupt Error: %d\n", err);
310 } else
311 #endif
312 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
313 netdev->name, netdev)))
314 DPRINTK(PROBE, ERR,
315 "Unable to allocate interrupt Error: %d\n", err);
317 return err;
320 static void e1000_free_irq(struct e1000_adapter *adapter)
322 struct net_device *netdev = adapter->netdev;
324 free_irq(adapter->pdev->irq, netdev);
326 #ifdef CONFIG_PCI_MSI
327 if (adapter->have_msi)
328 pci_disable_msi(adapter->pdev);
329 #endif
333 * e1000_irq_disable - Mask off interrupt generation on the NIC
334 * @adapter: board private structure
337 static void
338 e1000_irq_disable(struct e1000_adapter *adapter)
340 atomic_inc(&adapter->irq_sem);
341 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
342 E1000_WRITE_FLUSH(&adapter->hw);
343 synchronize_irq(adapter->pdev->irq);
347 * e1000_irq_enable - Enable default interrupt generation settings
348 * @adapter: board private structure
351 static void
352 e1000_irq_enable(struct e1000_adapter *adapter)
354 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
355 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
356 E1000_WRITE_FLUSH(&adapter->hw);
360 static void
361 e1000_update_mng_vlan(struct e1000_adapter *adapter)
363 struct net_device *netdev = adapter->netdev;
364 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
365 uint16_t old_vid = adapter->mng_vlan_id;
366 if (adapter->vlgrp) {
367 if (!adapter->vlgrp->vlan_devices[vid]) {
368 if (adapter->hw.mng_cookie.status &
369 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
370 e1000_vlan_rx_add_vid(netdev, vid);
371 adapter->mng_vlan_id = vid;
372 } else
373 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
375 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
376 (vid != old_vid) &&
377 !adapter->vlgrp->vlan_devices[old_vid])
378 e1000_vlan_rx_kill_vid(netdev, old_vid);
379 } else
380 adapter->mng_vlan_id = vid;
385 * e1000_release_hw_control - release control of the h/w to f/w
386 * @adapter: address of board private structure
388 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
389 * For ASF and Pass Through versions of f/w this means that the
390 * driver is no longer loaded. For AMT version (only with 82573) i
391 * of the f/w this means that the network i/f is closed.
395 static void
396 e1000_release_hw_control(struct e1000_adapter *adapter)
398 uint32_t ctrl_ext;
399 uint32_t swsm;
400 uint32_t extcnf;
402 /* Let firmware taken over control of h/w */
403 switch (adapter->hw.mac_type) {
404 case e1000_82571:
405 case e1000_82572:
406 case e1000_80003es2lan:
407 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
408 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
409 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
410 break;
411 case e1000_82573:
412 swsm = E1000_READ_REG(&adapter->hw, SWSM);
413 E1000_WRITE_REG(&adapter->hw, SWSM,
414 swsm & ~E1000_SWSM_DRV_LOAD);
415 case e1000_ich8lan:
416 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
417 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
418 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
419 break;
420 default:
421 break;
426 * e1000_get_hw_control - get control of the h/w from f/w
427 * @adapter: address of board private structure
429 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
430 * For ASF and Pass Through versions of f/w this means that
431 * the driver is loaded. For AMT version (only with 82573)
432 * of the f/w this means that the network i/f is open.
436 static void
437 e1000_get_hw_control(struct e1000_adapter *adapter)
439 uint32_t ctrl_ext;
440 uint32_t swsm;
441 uint32_t extcnf;
443 /* Let firmware know the driver has taken over */
444 switch (adapter->hw.mac_type) {
445 case e1000_82571:
446 case e1000_82572:
447 case e1000_80003es2lan:
448 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
449 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
450 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
451 break;
452 case e1000_82573:
453 swsm = E1000_READ_REG(&adapter->hw, SWSM);
454 E1000_WRITE_REG(&adapter->hw, SWSM,
455 swsm | E1000_SWSM_DRV_LOAD);
456 break;
457 case e1000_ich8lan:
458 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
459 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
460 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
461 break;
462 default:
463 break;
467 static void
468 e1000_init_manageability(struct e1000_adapter *adapter)
470 if (adapter->en_mng_pt) {
471 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
473 /* disable hardware interception of ARP */
474 manc &= ~(E1000_MANC_ARP_EN);
476 /* enable receiving management packets to the host */
477 /* this will probably generate destination unreachable messages
478 * from the host OS, but the packets will be handled on SMBUS */
479 if (adapter->hw.has_manc2h) {
480 uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
482 manc |= E1000_MANC_EN_MNG2HOST;
483 #define E1000_MNG2HOST_PORT_623 (1 << 5)
484 #define E1000_MNG2HOST_PORT_664 (1 << 6)
485 manc2h |= E1000_MNG2HOST_PORT_623;
486 manc2h |= E1000_MNG2HOST_PORT_664;
487 E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
490 E1000_WRITE_REG(&adapter->hw, MANC, manc);
494 static void
495 e1000_release_manageability(struct e1000_adapter *adapter)
497 if (adapter->en_mng_pt) {
498 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
500 /* re-enable hardware interception of ARP */
501 manc |= E1000_MANC_ARP_EN;
503 if (adapter->hw.has_manc2h)
504 manc &= ~E1000_MANC_EN_MNG2HOST;
506 /* don't explicitly have to mess with MANC2H since
507 * MANC has an enable disable that gates MANC2H */
509 E1000_WRITE_REG(&adapter->hw, MANC, manc);
514 e1000_up(struct e1000_adapter *adapter)
516 struct net_device *netdev = adapter->netdev;
517 int i;
519 /* hardware has been reset, we need to reload some things */
521 e1000_set_multi(netdev);
523 e1000_restore_vlan(adapter);
524 e1000_init_manageability(adapter);
526 e1000_configure_tx(adapter);
527 e1000_setup_rctl(adapter);
528 e1000_configure_rx(adapter);
529 /* call E1000_DESC_UNUSED which always leaves
530 * at least 1 descriptor unused to make sure
531 * next_to_use != next_to_clean */
532 for (i = 0; i < adapter->num_rx_queues; i++) {
533 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
534 adapter->alloc_rx_buf(adapter, ring,
535 E1000_DESC_UNUSED(ring));
538 adapter->tx_queue_len = netdev->tx_queue_len;
540 #ifdef CONFIG_E1000_NAPI
541 netif_poll_enable(netdev);
542 #endif
543 e1000_irq_enable(adapter);
545 clear_bit(__E1000_DOWN, &adapter->flags);
547 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
548 return 0;
552 * e1000_power_up_phy - restore link in case the phy was powered down
553 * @adapter: address of board private structure
555 * The phy may be powered down to save power and turn off link when the
556 * driver is unloaded and wake on lan is not enabled (among others)
557 * *** this routine MUST be followed by a call to e1000_reset ***
561 void e1000_power_up_phy(struct e1000_adapter *adapter)
563 uint16_t mii_reg = 0;
565 /* Just clear the power down bit to wake the phy back up */
566 if (adapter->hw.media_type == e1000_media_type_copper) {
567 /* according to the manual, the phy will retain its
568 * settings across a power-down/up cycle */
569 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
570 mii_reg &= ~MII_CR_POWER_DOWN;
571 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
575 static void e1000_power_down_phy(struct e1000_adapter *adapter)
577 /* Power down the PHY so no link is implied when interface is down *
578 * The PHY cannot be powered down if any of the following is TRUE *
579 * (a) WoL is enabled
580 * (b) AMT is active
581 * (c) SoL/IDER session is active */
582 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
583 adapter->hw.media_type == e1000_media_type_copper) {
584 uint16_t mii_reg = 0;
586 switch (adapter->hw.mac_type) {
587 case e1000_82540:
588 case e1000_82545:
589 case e1000_82545_rev_3:
590 case e1000_82546:
591 case e1000_82546_rev_3:
592 case e1000_82541:
593 case e1000_82541_rev_2:
594 case e1000_82547:
595 case e1000_82547_rev_2:
596 if (E1000_READ_REG(&adapter->hw, MANC) &
597 E1000_MANC_SMBUS_EN)
598 goto out;
599 break;
600 case e1000_82571:
601 case e1000_82572:
602 case e1000_82573:
603 case e1000_80003es2lan:
604 case e1000_ich8lan:
605 if (e1000_check_mng_mode(&adapter->hw) ||
606 e1000_check_phy_reset_block(&adapter->hw))
607 goto out;
608 break;
609 default:
610 goto out;
612 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
613 mii_reg |= MII_CR_POWER_DOWN;
614 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
615 mdelay(1);
617 out:
618 return;
621 void
622 e1000_down(struct e1000_adapter *adapter)
624 struct net_device *netdev = adapter->netdev;
626 /* signal that we're down so the interrupt handler does not
627 * reschedule our watchdog timer */
628 set_bit(__E1000_DOWN, &adapter->flags);
630 e1000_irq_disable(adapter);
632 del_timer_sync(&adapter->tx_fifo_stall_timer);
633 del_timer_sync(&adapter->watchdog_timer);
634 del_timer_sync(&adapter->phy_info_timer);
636 #ifdef CONFIG_E1000_NAPI
637 netif_poll_disable(netdev);
638 #endif
639 netdev->tx_queue_len = adapter->tx_queue_len;
640 adapter->link_speed = 0;
641 adapter->link_duplex = 0;
642 netif_carrier_off(netdev);
643 netif_stop_queue(netdev);
645 e1000_reset(adapter);
646 e1000_clean_all_tx_rings(adapter);
647 e1000_clean_all_rx_rings(adapter);
650 void
651 e1000_reinit_locked(struct e1000_adapter *adapter)
653 WARN_ON(in_interrupt());
654 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
655 msleep(1);
656 e1000_down(adapter);
657 e1000_up(adapter);
658 clear_bit(__E1000_RESETTING, &adapter->flags);
661 void
662 e1000_reset(struct e1000_adapter *adapter)
664 uint32_t pba;
665 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
667 /* Repartition Pba for greater than 9k mtu
668 * To take effect CTRL.RST is required.
671 switch (adapter->hw.mac_type) {
672 case e1000_82547:
673 case e1000_82547_rev_2:
674 pba = E1000_PBA_30K;
675 break;
676 case e1000_82571:
677 case e1000_82572:
678 case e1000_80003es2lan:
679 pba = E1000_PBA_38K;
680 break;
681 case e1000_82573:
682 pba = E1000_PBA_12K;
683 break;
684 case e1000_ich8lan:
685 pba = E1000_PBA_8K;
686 break;
687 default:
688 pba = E1000_PBA_48K;
689 break;
692 if ((adapter->hw.mac_type != e1000_82573) &&
693 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
694 pba -= 8; /* allocate more FIFO for Tx */
697 if (adapter->hw.mac_type == e1000_82547) {
698 adapter->tx_fifo_head = 0;
699 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
700 adapter->tx_fifo_size =
701 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
702 atomic_set(&adapter->tx_fifo_stall, 0);
705 E1000_WRITE_REG(&adapter->hw, PBA, pba);
707 /* flow control settings */
708 /* Set the FC high water mark to 90% of the FIFO size.
709 * Required to clear last 3 LSB */
710 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
711 /* We can't use 90% on small FIFOs because the remainder
712 * would be less than 1 full frame. In this case, we size
713 * it to allow at least a full frame above the high water
714 * mark. */
715 if (pba < E1000_PBA_16K)
716 fc_high_water_mark = (pba * 1024) - 1600;
718 adapter->hw.fc_high_water = fc_high_water_mark;
719 adapter->hw.fc_low_water = fc_high_water_mark - 8;
720 if (adapter->hw.mac_type == e1000_80003es2lan)
721 adapter->hw.fc_pause_time = 0xFFFF;
722 else
723 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
724 adapter->hw.fc_send_xon = 1;
725 adapter->hw.fc = adapter->hw.original_fc;
727 /* Allow time for pending master requests to run */
728 e1000_reset_hw(&adapter->hw);
729 if (adapter->hw.mac_type >= e1000_82544)
730 E1000_WRITE_REG(&adapter->hw, WUC, 0);
732 if (e1000_init_hw(&adapter->hw))
733 DPRINTK(PROBE, ERR, "Hardware Error\n");
734 e1000_update_mng_vlan(adapter);
736 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
737 if (adapter->hw.mac_type >= e1000_82544 &&
738 adapter->hw.mac_type <= e1000_82547_rev_2 &&
739 adapter->hw.autoneg == 1 &&
740 adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
741 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
742 /* clear phy power management bit if we are in gig only mode,
743 * which if enabled will attempt negotiation to 100Mb, which
744 * can cause a loss of link at power off or driver unload */
745 ctrl &= ~E1000_CTRL_SWDPIN3;
746 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
749 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
750 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
752 e1000_reset_adaptive(&adapter->hw);
753 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
755 if (!adapter->smart_power_down &&
756 (adapter->hw.mac_type == e1000_82571 ||
757 adapter->hw.mac_type == e1000_82572)) {
758 uint16_t phy_data = 0;
759 /* speed up time to link by disabling smart power down, ignore
760 * the return value of this function because there is nothing
761 * different we would do if it failed */
762 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
763 &phy_data);
764 phy_data &= ~IGP02E1000_PM_SPD;
765 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
766 phy_data);
769 e1000_release_manageability(adapter);
773 * e1000_probe - Device Initialization Routine
774 * @pdev: PCI device information struct
775 * @ent: entry in e1000_pci_tbl
777 * Returns 0 on success, negative on failure
779 * e1000_probe initializes an adapter identified by a pci_dev structure.
780 * The OS initialization, configuring of the adapter private structure,
781 * and a hardware reset occur.
784 static int __devinit
785 e1000_probe(struct pci_dev *pdev,
786 const struct pci_device_id *ent)
788 struct net_device *netdev;
789 struct e1000_adapter *adapter;
790 unsigned long mmio_start, mmio_len;
791 unsigned long flash_start, flash_len;
793 static int cards_found = 0;
794 static int global_quad_port_a = 0; /* global ksp3 port a indication */
795 int i, err, pci_using_dac;
796 uint16_t eeprom_data = 0;
797 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
798 if ((err = pci_enable_device(pdev)))
799 return err;
801 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
802 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
803 pci_using_dac = 1;
804 } else {
805 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
806 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
807 E1000_ERR("No usable DMA configuration, aborting\n");
808 goto err_dma;
810 pci_using_dac = 0;
813 if ((err = pci_request_regions(pdev, e1000_driver_name)))
814 goto err_pci_reg;
816 pci_set_master(pdev);
818 err = -ENOMEM;
819 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
820 if (!netdev)
821 goto err_alloc_etherdev;
823 SET_MODULE_OWNER(netdev);
824 SET_NETDEV_DEV(netdev, &pdev->dev);
826 pci_set_drvdata(pdev, netdev);
827 adapter = netdev_priv(netdev);
828 adapter->netdev = netdev;
829 adapter->pdev = pdev;
830 adapter->hw.back = adapter;
831 adapter->msg_enable = (1 << debug) - 1;
833 mmio_start = pci_resource_start(pdev, BAR_0);
834 mmio_len = pci_resource_len(pdev, BAR_0);
836 err = -EIO;
837 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
838 if (!adapter->hw.hw_addr)
839 goto err_ioremap;
841 for (i = BAR_1; i <= BAR_5; i++) {
842 if (pci_resource_len(pdev, i) == 0)
843 continue;
844 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
845 adapter->hw.io_base = pci_resource_start(pdev, i);
846 break;
850 netdev->open = &e1000_open;
851 netdev->stop = &e1000_close;
852 netdev->hard_start_xmit = &e1000_xmit_frame;
853 netdev->get_stats = &e1000_get_stats;
854 netdev->set_multicast_list = &e1000_set_multi;
855 netdev->set_mac_address = &e1000_set_mac;
856 netdev->change_mtu = &e1000_change_mtu;
857 netdev->do_ioctl = &e1000_ioctl;
858 e1000_set_ethtool_ops(netdev);
859 netdev->tx_timeout = &e1000_tx_timeout;
860 netdev->watchdog_timeo = 5 * HZ;
861 #ifdef CONFIG_E1000_NAPI
862 netdev->poll = &e1000_clean;
863 netdev->weight = 64;
864 #endif
865 netdev->vlan_rx_register = e1000_vlan_rx_register;
866 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
867 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
868 #ifdef CONFIG_NET_POLL_CONTROLLER
869 netdev->poll_controller = e1000_netpoll;
870 #endif
871 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
873 netdev->mem_start = mmio_start;
874 netdev->mem_end = mmio_start + mmio_len;
875 netdev->base_addr = adapter->hw.io_base;
877 adapter->bd_number = cards_found;
879 /* setup the private structure */
881 if ((err = e1000_sw_init(adapter)))
882 goto err_sw_init;
884 err = -EIO;
885 /* Flash BAR mapping must happen after e1000_sw_init
886 * because it depends on mac_type */
887 if ((adapter->hw.mac_type == e1000_ich8lan) &&
888 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
889 flash_start = pci_resource_start(pdev, 1);
890 flash_len = pci_resource_len(pdev, 1);
891 adapter->hw.flash_address = ioremap(flash_start, flash_len);
892 if (!adapter->hw.flash_address)
893 goto err_flashmap;
896 if (e1000_check_phy_reset_block(&adapter->hw))
897 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
899 if (adapter->hw.mac_type >= e1000_82543) {
900 netdev->features = NETIF_F_SG |
901 NETIF_F_HW_CSUM |
902 NETIF_F_HW_VLAN_TX |
903 NETIF_F_HW_VLAN_RX |
904 NETIF_F_HW_VLAN_FILTER;
905 if (adapter->hw.mac_type == e1000_ich8lan)
906 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
909 #ifdef NETIF_F_TSO
910 if ((adapter->hw.mac_type >= e1000_82544) &&
911 (adapter->hw.mac_type != e1000_82547))
912 netdev->features |= NETIF_F_TSO;
914 #ifdef CONFIG_DEBUG_SLAB
915 /* 82544's work arounds do not play nicely with DEBUG SLAB */
916 if (adapter->hw.mac_type == e1000_82544)
917 netdev->features &= ~NETIF_F_TSO;
918 #endif
920 #ifdef NETIF_F_TSO6
921 if (adapter->hw.mac_type > e1000_82547_rev_2)
922 netdev->features |= NETIF_F_TSO6;
923 #endif
924 #endif
925 if (pci_using_dac)
926 netdev->features |= NETIF_F_HIGHDMA;
928 netdev->features |= NETIF_F_LLTX;
930 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
932 /* initialize eeprom parameters */
934 if (e1000_init_eeprom_params(&adapter->hw)) {
935 E1000_ERR("EEPROM initialization failed\n");
936 goto err_eeprom;
939 /* before reading the EEPROM, reset the controller to
940 * put the device in a known good starting state */
942 e1000_reset_hw(&adapter->hw);
944 /* make sure the EEPROM is good */
946 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
947 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
948 goto err_eeprom;
951 /* copy the MAC address out of the EEPROM */
953 if (e1000_read_mac_addr(&adapter->hw))
954 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
955 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
956 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
958 if (!is_valid_ether_addr(netdev->perm_addr)) {
959 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
960 goto err_eeprom;
963 e1000_get_bus_info(&adapter->hw);
965 init_timer(&adapter->tx_fifo_stall_timer);
966 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
967 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
969 init_timer(&adapter->watchdog_timer);
970 adapter->watchdog_timer.function = &e1000_watchdog;
971 adapter->watchdog_timer.data = (unsigned long) adapter;
973 init_timer(&adapter->phy_info_timer);
974 adapter->phy_info_timer.function = &e1000_update_phy_info;
975 adapter->phy_info_timer.data = (unsigned long) adapter;
977 INIT_WORK(&adapter->reset_task, e1000_reset_task);
979 e1000_check_options(adapter);
981 /* Initial Wake on LAN setting
982 * If APM wake is enabled in the EEPROM,
983 * enable the ACPI Magic Packet filter
986 switch (adapter->hw.mac_type) {
987 case e1000_82542_rev2_0:
988 case e1000_82542_rev2_1:
989 case e1000_82543:
990 break;
991 case e1000_82544:
992 e1000_read_eeprom(&adapter->hw,
993 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
994 eeprom_apme_mask = E1000_EEPROM_82544_APM;
995 break;
996 case e1000_ich8lan:
997 e1000_read_eeprom(&adapter->hw,
998 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
999 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1000 break;
1001 case e1000_82546:
1002 case e1000_82546_rev_3:
1003 case e1000_82571:
1004 case e1000_80003es2lan:
1005 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1006 e1000_read_eeprom(&adapter->hw,
1007 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1008 break;
1010 /* Fall Through */
1011 default:
1012 e1000_read_eeprom(&adapter->hw,
1013 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1014 break;
1016 if (eeprom_data & eeprom_apme_mask)
1017 adapter->eeprom_wol |= E1000_WUFC_MAG;
1019 /* now that we have the eeprom settings, apply the special cases
1020 * where the eeprom may be wrong or the board simply won't support
1021 * wake on lan on a particular port */
1022 switch (pdev->device) {
1023 case E1000_DEV_ID_82546GB_PCIE:
1024 adapter->eeprom_wol = 0;
1025 break;
1026 case E1000_DEV_ID_82546EB_FIBER:
1027 case E1000_DEV_ID_82546GB_FIBER:
1028 case E1000_DEV_ID_82571EB_FIBER:
1029 /* Wake events only supported on port A for dual fiber
1030 * regardless of eeprom setting */
1031 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1032 adapter->eeprom_wol = 0;
1033 break;
1034 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1035 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1036 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1037 /* if quad port adapter, disable WoL on all but port A */
1038 if (global_quad_port_a != 0)
1039 adapter->eeprom_wol = 0;
1040 else
1041 adapter->quad_port_a = 1;
1042 /* Reset for multiple quad port adapters */
1043 if (++global_quad_port_a == 4)
1044 global_quad_port_a = 0;
1045 break;
1048 /* initialize the wol settings based on the eeprom settings */
1049 adapter->wol = adapter->eeprom_wol;
1051 /* print bus type/speed/width info */
1053 struct e1000_hw *hw = &adapter->hw;
1054 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1055 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1056 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1057 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1058 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1059 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1060 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1061 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1062 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1063 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1064 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1065 "32-bit"));
1068 for (i = 0; i < 6; i++)
1069 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1071 /* reset the hardware with the new settings */
1072 e1000_reset(adapter);
1074 /* If the controller is 82573 and f/w is AMT, do not set
1075 * DRV_LOAD until the interface is up. For all other cases,
1076 * let the f/w know that the h/w is now under the control
1077 * of the driver. */
1078 if (adapter->hw.mac_type != e1000_82573 ||
1079 !e1000_check_mng_mode(&adapter->hw))
1080 e1000_get_hw_control(adapter);
1082 strcpy(netdev->name, "eth%d");
1083 if ((err = register_netdev(netdev)))
1084 goto err_register;
1086 /* tell the stack to leave us alone until e1000_open() is called */
1087 netif_carrier_off(netdev);
1088 netif_stop_queue(netdev);
1090 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1092 cards_found++;
1093 return 0;
1095 err_register:
1096 e1000_release_hw_control(adapter);
1097 err_eeprom:
1098 if (!e1000_check_phy_reset_block(&adapter->hw))
1099 e1000_phy_hw_reset(&adapter->hw);
1101 if (adapter->hw.flash_address)
1102 iounmap(adapter->hw.flash_address);
1103 err_flashmap:
1104 #ifdef CONFIG_E1000_NAPI
1105 for (i = 0; i < adapter->num_rx_queues; i++)
1106 dev_put(&adapter->polling_netdev[i]);
1107 #endif
1109 kfree(adapter->tx_ring);
1110 kfree(adapter->rx_ring);
1111 #ifdef CONFIG_E1000_NAPI
1112 kfree(adapter->polling_netdev);
1113 #endif
1114 err_sw_init:
1115 iounmap(adapter->hw.hw_addr);
1116 err_ioremap:
1117 free_netdev(netdev);
1118 err_alloc_etherdev:
1119 pci_release_regions(pdev);
1120 err_pci_reg:
1121 err_dma:
1122 pci_disable_device(pdev);
1123 return err;
1127 * e1000_remove - Device Removal Routine
1128 * @pdev: PCI device information struct
1130 * e1000_remove is called by the PCI subsystem to alert the driver
1131 * that it should release a PCI device. The could be caused by a
1132 * Hot-Plug event, or because the driver is going to be removed from
1133 * memory.
1136 static void __devexit
1137 e1000_remove(struct pci_dev *pdev)
1139 struct net_device *netdev = pci_get_drvdata(pdev);
1140 struct e1000_adapter *adapter = netdev_priv(netdev);
1141 #ifdef CONFIG_E1000_NAPI
1142 int i;
1143 #endif
1145 flush_scheduled_work();
1147 e1000_release_manageability(adapter);
1149 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1150 * would have already happened in close and is redundant. */
1151 e1000_release_hw_control(adapter);
1153 unregister_netdev(netdev);
1154 #ifdef CONFIG_E1000_NAPI
1155 for (i = 0; i < adapter->num_rx_queues; i++)
1156 dev_put(&adapter->polling_netdev[i]);
1157 #endif
1159 if (!e1000_check_phy_reset_block(&adapter->hw))
1160 e1000_phy_hw_reset(&adapter->hw);
1162 kfree(adapter->tx_ring);
1163 kfree(adapter->rx_ring);
1164 #ifdef CONFIG_E1000_NAPI
1165 kfree(adapter->polling_netdev);
1166 #endif
1168 iounmap(adapter->hw.hw_addr);
1169 if (adapter->hw.flash_address)
1170 iounmap(adapter->hw.flash_address);
1171 pci_release_regions(pdev);
1173 free_netdev(netdev);
1175 pci_disable_device(pdev);
1179 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1180 * @adapter: board private structure to initialize
1182 * e1000_sw_init initializes the Adapter private data structure.
1183 * Fields are initialized based on PCI device information and
1184 * OS network device settings (MTU size).
1187 static int __devinit
1188 e1000_sw_init(struct e1000_adapter *adapter)
1190 struct e1000_hw *hw = &adapter->hw;
1191 struct net_device *netdev = adapter->netdev;
1192 struct pci_dev *pdev = adapter->pdev;
1193 #ifdef CONFIG_E1000_NAPI
1194 int i;
1195 #endif
1197 /* PCI config space info */
1199 hw->vendor_id = pdev->vendor;
1200 hw->device_id = pdev->device;
1201 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1202 hw->subsystem_id = pdev->subsystem_device;
1204 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1206 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1208 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1209 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1210 hw->max_frame_size = netdev->mtu +
1211 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1212 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1214 /* identify the MAC */
1216 if (e1000_set_mac_type(hw)) {
1217 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1218 return -EIO;
1221 switch (hw->mac_type) {
1222 default:
1223 break;
1224 case e1000_82541:
1225 case e1000_82547:
1226 case e1000_82541_rev_2:
1227 case e1000_82547_rev_2:
1228 hw->phy_init_script = 1;
1229 break;
1232 e1000_set_media_type(hw);
1234 hw->wait_autoneg_complete = FALSE;
1235 hw->tbi_compatibility_en = TRUE;
1236 hw->adaptive_ifs = TRUE;
1238 /* Copper options */
1240 if (hw->media_type == e1000_media_type_copper) {
1241 hw->mdix = AUTO_ALL_MODES;
1242 hw->disable_polarity_correction = FALSE;
1243 hw->master_slave = E1000_MASTER_SLAVE;
1246 adapter->num_tx_queues = 1;
1247 adapter->num_rx_queues = 1;
1249 if (e1000_alloc_queues(adapter)) {
1250 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1251 return -ENOMEM;
1254 #ifdef CONFIG_E1000_NAPI
1255 for (i = 0; i < adapter->num_rx_queues; i++) {
1256 adapter->polling_netdev[i].priv = adapter;
1257 adapter->polling_netdev[i].poll = &e1000_clean;
1258 adapter->polling_netdev[i].weight = 64;
1259 dev_hold(&adapter->polling_netdev[i]);
1260 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1262 spin_lock_init(&adapter->tx_queue_lock);
1263 #endif
1265 atomic_set(&adapter->irq_sem, 1);
1266 spin_lock_init(&adapter->stats_lock);
1268 set_bit(__E1000_DOWN, &adapter->flags);
1270 return 0;
1274 * e1000_alloc_queues - Allocate memory for all rings
1275 * @adapter: board private structure to initialize
1277 * We allocate one ring per queue at run-time since we don't know the
1278 * number of queues at compile-time. The polling_netdev array is
1279 * intended for Multiqueue, but should work fine with a single queue.
1282 static int __devinit
1283 e1000_alloc_queues(struct e1000_adapter *adapter)
1285 int size;
1287 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1288 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1289 if (!adapter->tx_ring)
1290 return -ENOMEM;
1291 memset(adapter->tx_ring, 0, size);
1293 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1294 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1295 if (!adapter->rx_ring) {
1296 kfree(adapter->tx_ring);
1297 return -ENOMEM;
1299 memset(adapter->rx_ring, 0, size);
1301 #ifdef CONFIG_E1000_NAPI
1302 size = sizeof(struct net_device) * adapter->num_rx_queues;
1303 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1304 if (!adapter->polling_netdev) {
1305 kfree(adapter->tx_ring);
1306 kfree(adapter->rx_ring);
1307 return -ENOMEM;
1309 memset(adapter->polling_netdev, 0, size);
1310 #endif
1312 return E1000_SUCCESS;
1316 * e1000_open - Called when a network interface is made active
1317 * @netdev: network interface device structure
1319 * Returns 0 on success, negative value on failure
1321 * The open entry point is called when a network interface is made
1322 * active by the system (IFF_UP). At this point all resources needed
1323 * for transmit and receive operations are allocated, the interrupt
1324 * handler is registered with the OS, the watchdog timer is started,
1325 * and the stack is notified that the interface is ready.
1328 static int
1329 e1000_open(struct net_device *netdev)
1331 struct e1000_adapter *adapter = netdev_priv(netdev);
1332 int err;
1334 /* disallow open during test */
1335 if (test_bit(__E1000_TESTING, &adapter->flags))
1336 return -EBUSY;
1338 /* allocate transmit descriptors */
1339 if ((err = e1000_setup_all_tx_resources(adapter)))
1340 goto err_setup_tx;
1342 /* allocate receive descriptors */
1343 if ((err = e1000_setup_all_rx_resources(adapter)))
1344 goto err_setup_rx;
1346 err = e1000_request_irq(adapter);
1347 if (err)
1348 goto err_req_irq;
1350 e1000_power_up_phy(adapter);
1352 if ((err = e1000_up(adapter)))
1353 goto err_up;
1354 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1355 if ((adapter->hw.mng_cookie.status &
1356 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1357 e1000_update_mng_vlan(adapter);
1360 /* If AMT is enabled, let the firmware know that the network
1361 * interface is now open */
1362 if (adapter->hw.mac_type == e1000_82573 &&
1363 e1000_check_mng_mode(&adapter->hw))
1364 e1000_get_hw_control(adapter);
1366 return E1000_SUCCESS;
1368 err_up:
1369 e1000_power_down_phy(adapter);
1370 e1000_free_irq(adapter);
1371 err_req_irq:
1372 e1000_free_all_rx_resources(adapter);
1373 err_setup_rx:
1374 e1000_free_all_tx_resources(adapter);
1375 err_setup_tx:
1376 e1000_reset(adapter);
1378 return err;
1382 * e1000_close - Disables a network interface
1383 * @netdev: network interface device structure
1385 * Returns 0, this is not allowed to fail
1387 * The close entry point is called when an interface is de-activated
1388 * by the OS. The hardware is still under the drivers control, but
1389 * needs to be disabled. A global MAC reset is issued to stop the
1390 * hardware, and all transmit and receive resources are freed.
1393 static int
1394 e1000_close(struct net_device *netdev)
1396 struct e1000_adapter *adapter = netdev_priv(netdev);
1398 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1399 e1000_down(adapter);
1400 e1000_power_down_phy(adapter);
1401 e1000_free_irq(adapter);
1403 e1000_free_all_tx_resources(adapter);
1404 e1000_free_all_rx_resources(adapter);
1406 /* kill manageability vlan ID if supported, but not if a vlan with
1407 * the same ID is registered on the host OS (let 8021q kill it) */
1408 if ((adapter->hw.mng_cookie.status &
1409 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1410 !(adapter->vlgrp &&
1411 adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1412 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1415 /* If AMT is enabled, let the firmware know that the network
1416 * interface is now closed */
1417 if (adapter->hw.mac_type == e1000_82573 &&
1418 e1000_check_mng_mode(&adapter->hw))
1419 e1000_release_hw_control(adapter);
1421 return 0;
1425 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1426 * @adapter: address of board private structure
1427 * @start: address of beginning of memory
1428 * @len: length of memory
1430 static boolean_t
1431 e1000_check_64k_bound(struct e1000_adapter *adapter,
1432 void *start, unsigned long len)
1434 unsigned long begin = (unsigned long) start;
1435 unsigned long end = begin + len;
1437 /* First rev 82545 and 82546 need to not allow any memory
1438 * write location to cross 64k boundary due to errata 23 */
1439 if (adapter->hw.mac_type == e1000_82545 ||
1440 adapter->hw.mac_type == e1000_82546) {
1441 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1444 return TRUE;
1448 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1449 * @adapter: board private structure
1450 * @txdr: tx descriptor ring (for a specific queue) to setup
1452 * Return 0 on success, negative on failure
1455 static int
1456 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1457 struct e1000_tx_ring *txdr)
1459 struct pci_dev *pdev = adapter->pdev;
1460 int size;
1462 size = sizeof(struct e1000_buffer) * txdr->count;
1463 txdr->buffer_info = vmalloc(size);
1464 if (!txdr->buffer_info) {
1465 DPRINTK(PROBE, ERR,
1466 "Unable to allocate memory for the transmit descriptor ring\n");
1467 return -ENOMEM;
1469 memset(txdr->buffer_info, 0, size);
1471 /* round up to nearest 4K */
1473 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1474 E1000_ROUNDUP(txdr->size, 4096);
1476 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1477 if (!txdr->desc) {
1478 setup_tx_desc_die:
1479 vfree(txdr->buffer_info);
1480 DPRINTK(PROBE, ERR,
1481 "Unable to allocate memory for the transmit descriptor ring\n");
1482 return -ENOMEM;
1485 /* Fix for errata 23, can't cross 64kB boundary */
1486 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1487 void *olddesc = txdr->desc;
1488 dma_addr_t olddma = txdr->dma;
1489 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1490 "at %p\n", txdr->size, txdr->desc);
1491 /* Try again, without freeing the previous */
1492 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1493 /* Failed allocation, critical failure */
1494 if (!txdr->desc) {
1495 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1496 goto setup_tx_desc_die;
1499 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1500 /* give up */
1501 pci_free_consistent(pdev, txdr->size, txdr->desc,
1502 txdr->dma);
1503 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1504 DPRINTK(PROBE, ERR,
1505 "Unable to allocate aligned memory "
1506 "for the transmit descriptor ring\n");
1507 vfree(txdr->buffer_info);
1508 return -ENOMEM;
1509 } else {
1510 /* Free old allocation, new allocation was successful */
1511 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1514 memset(txdr->desc, 0, txdr->size);
1516 txdr->next_to_use = 0;
1517 txdr->next_to_clean = 0;
1518 spin_lock_init(&txdr->tx_lock);
1520 return 0;
1524 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1525 * (Descriptors) for all queues
1526 * @adapter: board private structure
1528 * Return 0 on success, negative on failure
1532 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1534 int i, err = 0;
1536 for (i = 0; i < adapter->num_tx_queues; i++) {
1537 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1538 if (err) {
1539 DPRINTK(PROBE, ERR,
1540 "Allocation for Tx Queue %u failed\n", i);
1541 for (i-- ; i >= 0; i--)
1542 e1000_free_tx_resources(adapter,
1543 &adapter->tx_ring[i]);
1544 break;
1548 return err;
1552 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1553 * @adapter: board private structure
1555 * Configure the Tx unit of the MAC after a reset.
1558 static void
1559 e1000_configure_tx(struct e1000_adapter *adapter)
1561 uint64_t tdba;
1562 struct e1000_hw *hw = &adapter->hw;
1563 uint32_t tdlen, tctl, tipg, tarc;
1564 uint32_t ipgr1, ipgr2;
1566 /* Setup the HW Tx Head and Tail descriptor pointers */
1568 switch (adapter->num_tx_queues) {
1569 case 1:
1570 default:
1571 tdba = adapter->tx_ring[0].dma;
1572 tdlen = adapter->tx_ring[0].count *
1573 sizeof(struct e1000_tx_desc);
1574 E1000_WRITE_REG(hw, TDLEN, tdlen);
1575 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1576 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1577 E1000_WRITE_REG(hw, TDT, 0);
1578 E1000_WRITE_REG(hw, TDH, 0);
1579 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1580 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1581 break;
1584 /* Set the default values for the Tx Inter Packet Gap timer */
1585 if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1586 (hw->media_type == e1000_media_type_fiber ||
1587 hw->media_type == e1000_media_type_internal_serdes))
1588 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1589 else
1590 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1592 switch (hw->mac_type) {
1593 case e1000_82542_rev2_0:
1594 case e1000_82542_rev2_1:
1595 tipg = DEFAULT_82542_TIPG_IPGT;
1596 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1597 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1598 break;
1599 case e1000_80003es2lan:
1600 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1601 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1602 break;
1603 default:
1604 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1605 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1606 break;
1608 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1609 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1610 E1000_WRITE_REG(hw, TIPG, tipg);
1612 /* Set the Tx Interrupt Delay register */
1614 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1615 if (hw->mac_type >= e1000_82540)
1616 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1618 /* Program the Transmit Control Register */
1620 tctl = E1000_READ_REG(hw, TCTL);
1621 tctl &= ~E1000_TCTL_CT;
1622 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1623 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1625 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1626 tarc = E1000_READ_REG(hw, TARC0);
1627 /* set the speed mode bit, we'll clear it if we're not at
1628 * gigabit link later */
1629 tarc |= (1 << 21);
1630 E1000_WRITE_REG(hw, TARC0, tarc);
1631 } else if (hw->mac_type == e1000_80003es2lan) {
1632 tarc = E1000_READ_REG(hw, TARC0);
1633 tarc |= 1;
1634 E1000_WRITE_REG(hw, TARC0, tarc);
1635 tarc = E1000_READ_REG(hw, TARC1);
1636 tarc |= 1;
1637 E1000_WRITE_REG(hw, TARC1, tarc);
1640 e1000_config_collision_dist(hw);
1642 /* Setup Transmit Descriptor Settings for eop descriptor */
1643 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1645 /* only set IDE if we are delaying interrupts using the timers */
1646 if (adapter->tx_int_delay)
1647 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1649 if (hw->mac_type < e1000_82543)
1650 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1651 else
1652 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1654 /* Cache if we're 82544 running in PCI-X because we'll
1655 * need this to apply a workaround later in the send path. */
1656 if (hw->mac_type == e1000_82544 &&
1657 hw->bus_type == e1000_bus_type_pcix)
1658 adapter->pcix_82544 = 1;
1660 E1000_WRITE_REG(hw, TCTL, tctl);
1665 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1666 * @adapter: board private structure
1667 * @rxdr: rx descriptor ring (for a specific queue) to setup
1669 * Returns 0 on success, negative on failure
1672 static int
1673 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1674 struct e1000_rx_ring *rxdr)
1676 struct pci_dev *pdev = adapter->pdev;
1677 int size, desc_len;
1679 size = sizeof(struct e1000_buffer) * rxdr->count;
1680 rxdr->buffer_info = vmalloc(size);
1681 if (!rxdr->buffer_info) {
1682 DPRINTK(PROBE, ERR,
1683 "Unable to allocate memory for the receive descriptor ring\n");
1684 return -ENOMEM;
1686 memset(rxdr->buffer_info, 0, size);
1688 size = sizeof(struct e1000_ps_page) * rxdr->count;
1689 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1690 if (!rxdr->ps_page) {
1691 vfree(rxdr->buffer_info);
1692 DPRINTK(PROBE, ERR,
1693 "Unable to allocate memory for the receive descriptor ring\n");
1694 return -ENOMEM;
1696 memset(rxdr->ps_page, 0, size);
1698 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1699 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1700 if (!rxdr->ps_page_dma) {
1701 vfree(rxdr->buffer_info);
1702 kfree(rxdr->ps_page);
1703 DPRINTK(PROBE, ERR,
1704 "Unable to allocate memory for the receive descriptor ring\n");
1705 return -ENOMEM;
1707 memset(rxdr->ps_page_dma, 0, size);
1709 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1710 desc_len = sizeof(struct e1000_rx_desc);
1711 else
1712 desc_len = sizeof(union e1000_rx_desc_packet_split);
1714 /* Round up to nearest 4K */
1716 rxdr->size = rxdr->count * desc_len;
1717 E1000_ROUNDUP(rxdr->size, 4096);
1719 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1721 if (!rxdr->desc) {
1722 DPRINTK(PROBE, ERR,
1723 "Unable to allocate memory for the receive descriptor ring\n");
1724 setup_rx_desc_die:
1725 vfree(rxdr->buffer_info);
1726 kfree(rxdr->ps_page);
1727 kfree(rxdr->ps_page_dma);
1728 return -ENOMEM;
1731 /* Fix for errata 23, can't cross 64kB boundary */
1732 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733 void *olddesc = rxdr->desc;
1734 dma_addr_t olddma = rxdr->dma;
1735 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1736 "at %p\n", rxdr->size, rxdr->desc);
1737 /* Try again, without freeing the previous */
1738 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1739 /* Failed allocation, critical failure */
1740 if (!rxdr->desc) {
1741 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1742 DPRINTK(PROBE, ERR,
1743 "Unable to allocate memory "
1744 "for the receive descriptor ring\n");
1745 goto setup_rx_desc_die;
1748 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1749 /* give up */
1750 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1751 rxdr->dma);
1752 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1753 DPRINTK(PROBE, ERR,
1754 "Unable to allocate aligned memory "
1755 "for the receive descriptor ring\n");
1756 goto setup_rx_desc_die;
1757 } else {
1758 /* Free old allocation, new allocation was successful */
1759 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1762 memset(rxdr->desc, 0, rxdr->size);
1764 rxdr->next_to_clean = 0;
1765 rxdr->next_to_use = 0;
1767 return 0;
1771 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1772 * (Descriptors) for all queues
1773 * @adapter: board private structure
1775 * Return 0 on success, negative on failure
1779 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1781 int i, err = 0;
1783 for (i = 0; i < adapter->num_rx_queues; i++) {
1784 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1785 if (err) {
1786 DPRINTK(PROBE, ERR,
1787 "Allocation for Rx Queue %u failed\n", i);
1788 for (i-- ; i >= 0; i--)
1789 e1000_free_rx_resources(adapter,
1790 &adapter->rx_ring[i]);
1791 break;
1795 return err;
1799 * e1000_setup_rctl - configure the receive control registers
1800 * @adapter: Board private structure
1802 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1803 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1804 static void
1805 e1000_setup_rctl(struct e1000_adapter *adapter)
1807 uint32_t rctl, rfctl;
1808 uint32_t psrctl = 0;
1809 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1810 uint32_t pages = 0;
1811 #endif
1813 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1815 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1817 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1818 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1819 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1821 if (adapter->hw.tbi_compatibility_on == 1)
1822 rctl |= E1000_RCTL_SBP;
1823 else
1824 rctl &= ~E1000_RCTL_SBP;
1826 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1827 rctl &= ~E1000_RCTL_LPE;
1828 else
1829 rctl |= E1000_RCTL_LPE;
1831 /* Setup buffer sizes */
1832 rctl &= ~E1000_RCTL_SZ_4096;
1833 rctl |= E1000_RCTL_BSEX;
1834 switch (adapter->rx_buffer_len) {
1835 case E1000_RXBUFFER_256:
1836 rctl |= E1000_RCTL_SZ_256;
1837 rctl &= ~E1000_RCTL_BSEX;
1838 break;
1839 case E1000_RXBUFFER_512:
1840 rctl |= E1000_RCTL_SZ_512;
1841 rctl &= ~E1000_RCTL_BSEX;
1842 break;
1843 case E1000_RXBUFFER_1024:
1844 rctl |= E1000_RCTL_SZ_1024;
1845 rctl &= ~E1000_RCTL_BSEX;
1846 break;
1847 case E1000_RXBUFFER_2048:
1848 default:
1849 rctl |= E1000_RCTL_SZ_2048;
1850 rctl &= ~E1000_RCTL_BSEX;
1851 break;
1852 case E1000_RXBUFFER_4096:
1853 rctl |= E1000_RCTL_SZ_4096;
1854 break;
1855 case E1000_RXBUFFER_8192:
1856 rctl |= E1000_RCTL_SZ_8192;
1857 break;
1858 case E1000_RXBUFFER_16384:
1859 rctl |= E1000_RCTL_SZ_16384;
1860 break;
1863 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1864 /* 82571 and greater support packet-split where the protocol
1865 * header is placed in skb->data and the packet data is
1866 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1867 * In the case of a non-split, skb->data is linearly filled,
1868 * followed by the page buffers. Therefore, skb->data is
1869 * sized to hold the largest protocol header.
1871 /* allocations using alloc_page take too long for regular MTU
1872 * so only enable packet split for jumbo frames */
1873 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1874 if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1875 PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1876 adapter->rx_ps_pages = pages;
1877 else
1878 adapter->rx_ps_pages = 0;
1879 #endif
1880 if (adapter->rx_ps_pages) {
1881 /* Configure extra packet-split registers */
1882 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1883 rfctl |= E1000_RFCTL_EXTEN;
1884 /* disable packet split support for IPv6 extension headers,
1885 * because some malformed IPv6 headers can hang the RX */
1886 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1887 E1000_RFCTL_NEW_IPV6_EXT_DIS);
1889 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1891 rctl |= E1000_RCTL_DTYP_PS;
1893 psrctl |= adapter->rx_ps_bsize0 >>
1894 E1000_PSRCTL_BSIZE0_SHIFT;
1896 switch (adapter->rx_ps_pages) {
1897 case 3:
1898 psrctl |= PAGE_SIZE <<
1899 E1000_PSRCTL_BSIZE3_SHIFT;
1900 case 2:
1901 psrctl |= PAGE_SIZE <<
1902 E1000_PSRCTL_BSIZE2_SHIFT;
1903 case 1:
1904 psrctl |= PAGE_SIZE >>
1905 E1000_PSRCTL_BSIZE1_SHIFT;
1906 break;
1909 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1912 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1916 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1917 * @adapter: board private structure
1919 * Configure the Rx unit of the MAC after a reset.
1922 static void
1923 e1000_configure_rx(struct e1000_adapter *adapter)
1925 uint64_t rdba;
1926 struct e1000_hw *hw = &adapter->hw;
1927 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1929 if (adapter->rx_ps_pages) {
1930 /* this is a 32 byte descriptor */
1931 rdlen = adapter->rx_ring[0].count *
1932 sizeof(union e1000_rx_desc_packet_split);
1933 adapter->clean_rx = e1000_clean_rx_irq_ps;
1934 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1935 } else {
1936 rdlen = adapter->rx_ring[0].count *
1937 sizeof(struct e1000_rx_desc);
1938 adapter->clean_rx = e1000_clean_rx_irq;
1939 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1942 /* disable receives while setting up the descriptors */
1943 rctl = E1000_READ_REG(hw, RCTL);
1944 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1946 /* set the Receive Delay Timer Register */
1947 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1949 if (hw->mac_type >= e1000_82540) {
1950 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1951 if (adapter->itr_setting != 0)
1952 E1000_WRITE_REG(hw, ITR,
1953 1000000000 / (adapter->itr * 256));
1956 if (hw->mac_type >= e1000_82571) {
1957 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1958 /* Reset delay timers after every interrupt */
1959 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1960 #ifdef CONFIG_E1000_NAPI
1961 /* Auto-Mask interrupts upon ICR access */
1962 ctrl_ext |= E1000_CTRL_EXT_IAME;
1963 E1000_WRITE_REG(hw, IAM, 0xffffffff);
1964 #endif
1965 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1966 E1000_WRITE_FLUSH(hw);
1969 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1970 * the Base and Length of the Rx Descriptor Ring */
1971 switch (adapter->num_rx_queues) {
1972 case 1:
1973 default:
1974 rdba = adapter->rx_ring[0].dma;
1975 E1000_WRITE_REG(hw, RDLEN, rdlen);
1976 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1977 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1978 E1000_WRITE_REG(hw, RDT, 0);
1979 E1000_WRITE_REG(hw, RDH, 0);
1980 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1981 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1982 break;
1985 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1986 if (hw->mac_type >= e1000_82543) {
1987 rxcsum = E1000_READ_REG(hw, RXCSUM);
1988 if (adapter->rx_csum == TRUE) {
1989 rxcsum |= E1000_RXCSUM_TUOFL;
1991 /* Enable 82571 IPv4 payload checksum for UDP fragments
1992 * Must be used in conjunction with packet-split. */
1993 if ((hw->mac_type >= e1000_82571) &&
1994 (adapter->rx_ps_pages)) {
1995 rxcsum |= E1000_RXCSUM_IPPCSE;
1997 } else {
1998 rxcsum &= ~E1000_RXCSUM_TUOFL;
1999 /* don't need to clear IPPCSE as it defaults to 0 */
2001 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2004 /* enable early receives on 82573, only takes effect if using > 2048
2005 * byte total frame size. for example only for jumbo frames */
2006 #define E1000_ERT_2048 0x100
2007 if (hw->mac_type == e1000_82573)
2008 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2010 /* Enable Receives */
2011 E1000_WRITE_REG(hw, RCTL, rctl);
2015 * e1000_free_tx_resources - Free Tx Resources per Queue
2016 * @adapter: board private structure
2017 * @tx_ring: Tx descriptor ring for a specific queue
2019 * Free all transmit software resources
2022 static void
2023 e1000_free_tx_resources(struct e1000_adapter *adapter,
2024 struct e1000_tx_ring *tx_ring)
2026 struct pci_dev *pdev = adapter->pdev;
2028 e1000_clean_tx_ring(adapter, tx_ring);
2030 vfree(tx_ring->buffer_info);
2031 tx_ring->buffer_info = NULL;
2033 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2035 tx_ring->desc = NULL;
2039 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2040 * @adapter: board private structure
2042 * Free all transmit software resources
2045 void
2046 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2048 int i;
2050 for (i = 0; i < adapter->num_tx_queues; i++)
2051 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2054 static void
2055 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2056 struct e1000_buffer *buffer_info)
2058 if (buffer_info->dma) {
2059 pci_unmap_page(adapter->pdev,
2060 buffer_info->dma,
2061 buffer_info->length,
2062 PCI_DMA_TODEVICE);
2063 buffer_info->dma = 0;
2065 if (buffer_info->skb) {
2066 dev_kfree_skb_any(buffer_info->skb);
2067 buffer_info->skb = NULL;
2069 /* buffer_info must be completely set up in the transmit path */
2073 * e1000_clean_tx_ring - Free Tx Buffers
2074 * @adapter: board private structure
2075 * @tx_ring: ring to be cleaned
2078 static void
2079 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2080 struct e1000_tx_ring *tx_ring)
2082 struct e1000_buffer *buffer_info;
2083 unsigned long size;
2084 unsigned int i;
2086 /* Free all the Tx ring sk_buffs */
2088 for (i = 0; i < tx_ring->count; i++) {
2089 buffer_info = &tx_ring->buffer_info[i];
2090 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2093 size = sizeof(struct e1000_buffer) * tx_ring->count;
2094 memset(tx_ring->buffer_info, 0, size);
2096 /* Zero out the descriptor ring */
2098 memset(tx_ring->desc, 0, tx_ring->size);
2100 tx_ring->next_to_use = 0;
2101 tx_ring->next_to_clean = 0;
2102 tx_ring->last_tx_tso = 0;
2104 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2105 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2109 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2110 * @adapter: board private structure
2113 static void
2114 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2116 int i;
2118 for (i = 0; i < adapter->num_tx_queues; i++)
2119 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2123 * e1000_free_rx_resources - Free Rx Resources
2124 * @adapter: board private structure
2125 * @rx_ring: ring to clean the resources from
2127 * Free all receive software resources
2130 static void
2131 e1000_free_rx_resources(struct e1000_adapter *adapter,
2132 struct e1000_rx_ring *rx_ring)
2134 struct pci_dev *pdev = adapter->pdev;
2136 e1000_clean_rx_ring(adapter, rx_ring);
2138 vfree(rx_ring->buffer_info);
2139 rx_ring->buffer_info = NULL;
2140 kfree(rx_ring->ps_page);
2141 rx_ring->ps_page = NULL;
2142 kfree(rx_ring->ps_page_dma);
2143 rx_ring->ps_page_dma = NULL;
2145 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2147 rx_ring->desc = NULL;
2151 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2152 * @adapter: board private structure
2154 * Free all receive software resources
2157 void
2158 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2160 int i;
2162 for (i = 0; i < adapter->num_rx_queues; i++)
2163 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2167 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2168 * @adapter: board private structure
2169 * @rx_ring: ring to free buffers from
2172 static void
2173 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2174 struct e1000_rx_ring *rx_ring)
2176 struct e1000_buffer *buffer_info;
2177 struct e1000_ps_page *ps_page;
2178 struct e1000_ps_page_dma *ps_page_dma;
2179 struct pci_dev *pdev = adapter->pdev;
2180 unsigned long size;
2181 unsigned int i, j;
2183 /* Free all the Rx ring sk_buffs */
2184 for (i = 0; i < rx_ring->count; i++) {
2185 buffer_info = &rx_ring->buffer_info[i];
2186 if (buffer_info->skb) {
2187 pci_unmap_single(pdev,
2188 buffer_info->dma,
2189 buffer_info->length,
2190 PCI_DMA_FROMDEVICE);
2192 dev_kfree_skb(buffer_info->skb);
2193 buffer_info->skb = NULL;
2195 ps_page = &rx_ring->ps_page[i];
2196 ps_page_dma = &rx_ring->ps_page_dma[i];
2197 for (j = 0; j < adapter->rx_ps_pages; j++) {
2198 if (!ps_page->ps_page[j]) break;
2199 pci_unmap_page(pdev,
2200 ps_page_dma->ps_page_dma[j],
2201 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2202 ps_page_dma->ps_page_dma[j] = 0;
2203 put_page(ps_page->ps_page[j]);
2204 ps_page->ps_page[j] = NULL;
2208 size = sizeof(struct e1000_buffer) * rx_ring->count;
2209 memset(rx_ring->buffer_info, 0, size);
2210 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2211 memset(rx_ring->ps_page, 0, size);
2212 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2213 memset(rx_ring->ps_page_dma, 0, size);
2215 /* Zero out the descriptor ring */
2217 memset(rx_ring->desc, 0, rx_ring->size);
2219 rx_ring->next_to_clean = 0;
2220 rx_ring->next_to_use = 0;
2222 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2223 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2227 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2228 * @adapter: board private structure
2231 static void
2232 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2234 int i;
2236 for (i = 0; i < adapter->num_rx_queues; i++)
2237 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2240 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2241 * and memory write and invalidate disabled for certain operations
2243 static void
2244 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2246 struct net_device *netdev = adapter->netdev;
2247 uint32_t rctl;
2249 e1000_pci_clear_mwi(&adapter->hw);
2251 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2252 rctl |= E1000_RCTL_RST;
2253 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2254 E1000_WRITE_FLUSH(&adapter->hw);
2255 mdelay(5);
2257 if (netif_running(netdev))
2258 e1000_clean_all_rx_rings(adapter);
2261 static void
2262 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2264 struct net_device *netdev = adapter->netdev;
2265 uint32_t rctl;
2267 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2268 rctl &= ~E1000_RCTL_RST;
2269 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2270 E1000_WRITE_FLUSH(&adapter->hw);
2271 mdelay(5);
2273 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2274 e1000_pci_set_mwi(&adapter->hw);
2276 if (netif_running(netdev)) {
2277 /* No need to loop, because 82542 supports only 1 queue */
2278 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2279 e1000_configure_rx(adapter);
2280 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2285 * e1000_set_mac - Change the Ethernet Address of the NIC
2286 * @netdev: network interface device structure
2287 * @p: pointer to an address structure
2289 * Returns 0 on success, negative on failure
2292 static int
2293 e1000_set_mac(struct net_device *netdev, void *p)
2295 struct e1000_adapter *adapter = netdev_priv(netdev);
2296 struct sockaddr *addr = p;
2298 if (!is_valid_ether_addr(addr->sa_data))
2299 return -EADDRNOTAVAIL;
2301 /* 82542 2.0 needs to be in reset to write receive address registers */
2303 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2304 e1000_enter_82542_rst(adapter);
2306 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2307 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2309 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2311 /* With 82571 controllers, LAA may be overwritten (with the default)
2312 * due to controller reset from the other port. */
2313 if (adapter->hw.mac_type == e1000_82571) {
2314 /* activate the work around */
2315 adapter->hw.laa_is_present = 1;
2317 /* Hold a copy of the LAA in RAR[14] This is done so that
2318 * between the time RAR[0] gets clobbered and the time it
2319 * gets fixed (in e1000_watchdog), the actual LAA is in one
2320 * of the RARs and no incoming packets directed to this port
2321 * are dropped. Eventaully the LAA will be in RAR[0] and
2322 * RAR[14] */
2323 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2324 E1000_RAR_ENTRIES - 1);
2327 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2328 e1000_leave_82542_rst(adapter);
2330 return 0;
2334 * e1000_set_multi - Multicast and Promiscuous mode set
2335 * @netdev: network interface device structure
2337 * The set_multi entry point is called whenever the multicast address
2338 * list or the network interface flags are updated. This routine is
2339 * responsible for configuring the hardware for proper multicast,
2340 * promiscuous mode, and all-multi behavior.
2343 static void
2344 e1000_set_multi(struct net_device *netdev)
2346 struct e1000_adapter *adapter = netdev_priv(netdev);
2347 struct e1000_hw *hw = &adapter->hw;
2348 struct dev_mc_list *mc_ptr;
2349 uint32_t rctl;
2350 uint32_t hash_value;
2351 int i, rar_entries = E1000_RAR_ENTRIES;
2352 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2353 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2354 E1000_NUM_MTA_REGISTERS;
2356 if (adapter->hw.mac_type == e1000_ich8lan)
2357 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2359 /* reserve RAR[14] for LAA over-write work-around */
2360 if (adapter->hw.mac_type == e1000_82571)
2361 rar_entries--;
2363 /* Check for Promiscuous and All Multicast modes */
2365 rctl = E1000_READ_REG(hw, RCTL);
2367 if (netdev->flags & IFF_PROMISC) {
2368 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2369 } else if (netdev->flags & IFF_ALLMULTI) {
2370 rctl |= E1000_RCTL_MPE;
2371 rctl &= ~E1000_RCTL_UPE;
2372 } else {
2373 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2376 E1000_WRITE_REG(hw, RCTL, rctl);
2378 /* 82542 2.0 needs to be in reset to write receive address registers */
2380 if (hw->mac_type == e1000_82542_rev2_0)
2381 e1000_enter_82542_rst(adapter);
2383 /* load the first 14 multicast address into the exact filters 1-14
2384 * RAR 0 is used for the station MAC adddress
2385 * if there are not 14 addresses, go ahead and clear the filters
2386 * -- with 82571 controllers only 0-13 entries are filled here
2388 mc_ptr = netdev->mc_list;
2390 for (i = 1; i < rar_entries; i++) {
2391 if (mc_ptr) {
2392 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2393 mc_ptr = mc_ptr->next;
2394 } else {
2395 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2396 E1000_WRITE_FLUSH(hw);
2397 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2398 E1000_WRITE_FLUSH(hw);
2402 /* clear the old settings from the multicast hash table */
2404 for (i = 0; i < mta_reg_count; i++) {
2405 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2406 E1000_WRITE_FLUSH(hw);
2409 /* load any remaining addresses into the hash table */
2411 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2412 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2413 e1000_mta_set(hw, hash_value);
2416 if (hw->mac_type == e1000_82542_rev2_0)
2417 e1000_leave_82542_rst(adapter);
2420 /* Need to wait a few seconds after link up to get diagnostic information from
2421 * the phy */
2423 static void
2424 e1000_update_phy_info(unsigned long data)
2426 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2427 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2431 * e1000_82547_tx_fifo_stall - Timer Call-back
2432 * @data: pointer to adapter cast into an unsigned long
2435 static void
2436 e1000_82547_tx_fifo_stall(unsigned long data)
2438 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2439 struct net_device *netdev = adapter->netdev;
2440 uint32_t tctl;
2442 if (atomic_read(&adapter->tx_fifo_stall)) {
2443 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2444 E1000_READ_REG(&adapter->hw, TDH)) &&
2445 (E1000_READ_REG(&adapter->hw, TDFT) ==
2446 E1000_READ_REG(&adapter->hw, TDFH)) &&
2447 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2448 E1000_READ_REG(&adapter->hw, TDFHS))) {
2449 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2450 E1000_WRITE_REG(&adapter->hw, TCTL,
2451 tctl & ~E1000_TCTL_EN);
2452 E1000_WRITE_REG(&adapter->hw, TDFT,
2453 adapter->tx_head_addr);
2454 E1000_WRITE_REG(&adapter->hw, TDFH,
2455 adapter->tx_head_addr);
2456 E1000_WRITE_REG(&adapter->hw, TDFTS,
2457 adapter->tx_head_addr);
2458 E1000_WRITE_REG(&adapter->hw, TDFHS,
2459 adapter->tx_head_addr);
2460 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2461 E1000_WRITE_FLUSH(&adapter->hw);
2463 adapter->tx_fifo_head = 0;
2464 atomic_set(&adapter->tx_fifo_stall, 0);
2465 netif_wake_queue(netdev);
2466 } else {
2467 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2473 * e1000_watchdog - Timer Call-back
2474 * @data: pointer to adapter cast into an unsigned long
2476 static void
2477 e1000_watchdog(unsigned long data)
2479 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2480 struct net_device *netdev = adapter->netdev;
2481 struct e1000_tx_ring *txdr = adapter->tx_ring;
2482 uint32_t link, tctl;
2483 int32_t ret_val;
2485 ret_val = e1000_check_for_link(&adapter->hw);
2486 if ((ret_val == E1000_ERR_PHY) &&
2487 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2488 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2489 /* See e1000_kumeran_lock_loss_workaround() */
2490 DPRINTK(LINK, INFO,
2491 "Gigabit has been disabled, downgrading speed\n");
2494 if (adapter->hw.mac_type == e1000_82573) {
2495 e1000_enable_tx_pkt_filtering(&adapter->hw);
2496 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2497 e1000_update_mng_vlan(adapter);
2500 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2501 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2502 link = !adapter->hw.serdes_link_down;
2503 else
2504 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2506 if (link) {
2507 if (!netif_carrier_ok(netdev)) {
2508 boolean_t txb2b = 1;
2509 e1000_get_speed_and_duplex(&adapter->hw,
2510 &adapter->link_speed,
2511 &adapter->link_duplex);
2513 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2514 adapter->link_speed,
2515 adapter->link_duplex == FULL_DUPLEX ?
2516 "Full Duplex" : "Half Duplex");
2518 /* tweak tx_queue_len according to speed/duplex
2519 * and adjust the timeout factor */
2520 netdev->tx_queue_len = adapter->tx_queue_len;
2521 adapter->tx_timeout_factor = 1;
2522 switch (adapter->link_speed) {
2523 case SPEED_10:
2524 txb2b = 0;
2525 netdev->tx_queue_len = 10;
2526 adapter->tx_timeout_factor = 8;
2527 break;
2528 case SPEED_100:
2529 txb2b = 0;
2530 netdev->tx_queue_len = 100;
2531 /* maybe add some timeout factor ? */
2532 break;
2535 if ((adapter->hw.mac_type == e1000_82571 ||
2536 adapter->hw.mac_type == e1000_82572) &&
2537 txb2b == 0) {
2538 uint32_t tarc0;
2539 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2540 tarc0 &= ~(1 << 21);
2541 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2544 #ifdef NETIF_F_TSO
2545 /* disable TSO for pcie and 10/100 speeds, to avoid
2546 * some hardware issues */
2547 if (!adapter->tso_force &&
2548 adapter->hw.bus_type == e1000_bus_type_pci_express){
2549 switch (adapter->link_speed) {
2550 case SPEED_10:
2551 case SPEED_100:
2552 DPRINTK(PROBE,INFO,
2553 "10/100 speed: disabling TSO\n");
2554 netdev->features &= ~NETIF_F_TSO;
2555 #ifdef NETIF_F_TSO6
2556 netdev->features &= ~NETIF_F_TSO6;
2557 #endif
2558 break;
2559 case SPEED_1000:
2560 netdev->features |= NETIF_F_TSO;
2561 #ifdef NETIF_F_TSO6
2562 netdev->features |= NETIF_F_TSO6;
2563 #endif
2564 break;
2565 default:
2566 /* oops */
2567 break;
2570 #endif
2572 /* enable transmits in the hardware, need to do this
2573 * after setting TARC0 */
2574 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2575 tctl |= E1000_TCTL_EN;
2576 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2578 netif_carrier_on(netdev);
2579 netif_wake_queue(netdev);
2580 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2581 adapter->smartspeed = 0;
2582 } else {
2583 /* make sure the receive unit is started */
2584 if (adapter->hw.rx_needs_kicking) {
2585 struct e1000_hw *hw = &adapter->hw;
2586 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2587 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2590 } else {
2591 if (netif_carrier_ok(netdev)) {
2592 adapter->link_speed = 0;
2593 adapter->link_duplex = 0;
2594 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2595 netif_carrier_off(netdev);
2596 netif_stop_queue(netdev);
2597 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2599 /* 80003ES2LAN workaround--
2600 * For packet buffer work-around on link down event;
2601 * disable receives in the ISR and
2602 * reset device here in the watchdog
2604 if (adapter->hw.mac_type == e1000_80003es2lan)
2605 /* reset device */
2606 schedule_work(&adapter->reset_task);
2609 e1000_smartspeed(adapter);
2612 e1000_update_stats(adapter);
2614 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2615 adapter->tpt_old = adapter->stats.tpt;
2616 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2617 adapter->colc_old = adapter->stats.colc;
2619 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2620 adapter->gorcl_old = adapter->stats.gorcl;
2621 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2622 adapter->gotcl_old = adapter->stats.gotcl;
2624 e1000_update_adaptive(&adapter->hw);
2626 if (!netif_carrier_ok(netdev)) {
2627 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2628 /* We've lost link, so the controller stops DMA,
2629 * but we've got queued Tx work that's never going
2630 * to get done, so reset controller to flush Tx.
2631 * (Do the reset outside of interrupt context). */
2632 adapter->tx_timeout_count++;
2633 schedule_work(&adapter->reset_task);
2637 /* Cause software interrupt to ensure rx ring is cleaned */
2638 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2640 /* Force detection of hung controller every watchdog period */
2641 adapter->detect_tx_hung = TRUE;
2643 /* With 82571 controllers, LAA may be overwritten due to controller
2644 * reset from the other port. Set the appropriate LAA in RAR[0] */
2645 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2646 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2648 /* Reset the timer */
2649 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2652 enum latency_range {
2653 lowest_latency = 0,
2654 low_latency = 1,
2655 bulk_latency = 2,
2656 latency_invalid = 255
2660 * e1000_update_itr - update the dynamic ITR value based on statistics
2661 * Stores a new ITR value based on packets and byte
2662 * counts during the last interrupt. The advantage of per interrupt
2663 * computation is faster updates and more accurate ITR for the current
2664 * traffic pattern. Constants in this function were computed
2665 * based on theoretical maximum wire speed and thresholds were set based
2666 * on testing data as well as attempting to minimize response time
2667 * while increasing bulk throughput.
2668 * this functionality is controlled by the InterruptThrottleRate module
2669 * parameter (see e1000_param.c)
2670 * @adapter: pointer to adapter
2671 * @itr_setting: current adapter->itr
2672 * @packets: the number of packets during this measurement interval
2673 * @bytes: the number of bytes during this measurement interval
2675 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2676 uint16_t itr_setting,
2677 int packets,
2678 int bytes)
2680 unsigned int retval = itr_setting;
2681 struct e1000_hw *hw = &adapter->hw;
2683 if (unlikely(hw->mac_type < e1000_82540))
2684 goto update_itr_done;
2686 if (packets == 0)
2687 goto update_itr_done;
2689 switch (itr_setting) {
2690 case lowest_latency:
2691 /* jumbo frames get bulk treatment*/
2692 if (bytes/packets > 8000)
2693 retval = bulk_latency;
2694 else if ((packets < 5) && (bytes > 512))
2695 retval = low_latency;
2696 break;
2697 case low_latency: /* 50 usec aka 20000 ints/s */
2698 if (bytes > 10000) {
2699 /* jumbo frames need bulk latency setting */
2700 if (bytes/packets > 8000)
2701 retval = bulk_latency;
2702 else if ((packets < 10) || ((bytes/packets) > 1200))
2703 retval = bulk_latency;
2704 else if ((packets > 35))
2705 retval = lowest_latency;
2706 } else if (bytes/packets > 2000)
2707 retval = bulk_latency;
2708 else if (packets <= 2 && bytes < 512)
2709 retval = lowest_latency;
2710 break;
2711 case bulk_latency: /* 250 usec aka 4000 ints/s */
2712 if (bytes > 25000) {
2713 if (packets > 35)
2714 retval = low_latency;
2715 } else if (bytes < 6000) {
2716 retval = low_latency;
2718 break;
2721 update_itr_done:
2722 return retval;
2725 static void e1000_set_itr(struct e1000_adapter *adapter)
2727 struct e1000_hw *hw = &adapter->hw;
2728 uint16_t current_itr;
2729 uint32_t new_itr = adapter->itr;
2731 if (unlikely(hw->mac_type < e1000_82540))
2732 return;
2734 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2735 if (unlikely(adapter->link_speed != SPEED_1000)) {
2736 current_itr = 0;
2737 new_itr = 4000;
2738 goto set_itr_now;
2741 adapter->tx_itr = e1000_update_itr(adapter,
2742 adapter->tx_itr,
2743 adapter->total_tx_packets,
2744 adapter->total_tx_bytes);
2745 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2746 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2747 adapter->tx_itr = low_latency;
2749 adapter->rx_itr = e1000_update_itr(adapter,
2750 adapter->rx_itr,
2751 adapter->total_rx_packets,
2752 adapter->total_rx_bytes);
2753 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2754 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2755 adapter->rx_itr = low_latency;
2757 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2759 switch (current_itr) {
2760 /* counts and packets in update_itr are dependent on these numbers */
2761 case lowest_latency:
2762 new_itr = 70000;
2763 break;
2764 case low_latency:
2765 new_itr = 20000; /* aka hwitr = ~200 */
2766 break;
2767 case bulk_latency:
2768 new_itr = 4000;
2769 break;
2770 default:
2771 break;
2774 set_itr_now:
2775 if (new_itr != adapter->itr) {
2776 /* this attempts to bias the interrupt rate towards Bulk
2777 * by adding intermediate steps when interrupt rate is
2778 * increasing */
2779 new_itr = new_itr > adapter->itr ?
2780 min(adapter->itr + (new_itr >> 2), new_itr) :
2781 new_itr;
2782 adapter->itr = new_itr;
2783 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2786 return;
2789 #define E1000_TX_FLAGS_CSUM 0x00000001
2790 #define E1000_TX_FLAGS_VLAN 0x00000002
2791 #define E1000_TX_FLAGS_TSO 0x00000004
2792 #define E1000_TX_FLAGS_IPV4 0x00000008
2793 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2794 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2796 static int
2797 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2798 struct sk_buff *skb)
2800 #ifdef NETIF_F_TSO
2801 struct e1000_context_desc *context_desc;
2802 struct e1000_buffer *buffer_info;
2803 unsigned int i;
2804 uint32_t cmd_length = 0;
2805 uint16_t ipcse = 0, tucse, mss;
2806 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2807 int err;
2809 if (skb_is_gso(skb)) {
2810 if (skb_header_cloned(skb)) {
2811 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2812 if (err)
2813 return err;
2816 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2817 mss = skb_shinfo(skb)->gso_size;
2818 if (skb->protocol == htons(ETH_P_IP)) {
2819 skb->nh.iph->tot_len = 0;
2820 skb->nh.iph->check = 0;
2821 skb->h.th->check =
2822 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2823 skb->nh.iph->daddr,
2825 IPPROTO_TCP,
2827 cmd_length = E1000_TXD_CMD_IP;
2828 ipcse = skb->h.raw - skb->data - 1;
2829 #ifdef NETIF_F_TSO6
2830 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2831 skb->nh.ipv6h->payload_len = 0;
2832 skb->h.th->check =
2833 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2834 &skb->nh.ipv6h->daddr,
2836 IPPROTO_TCP,
2838 ipcse = 0;
2839 #endif
2841 ipcss = skb->nh.raw - skb->data;
2842 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2843 tucss = skb->h.raw - skb->data;
2844 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2845 tucse = 0;
2847 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2848 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2850 i = tx_ring->next_to_use;
2851 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2852 buffer_info = &tx_ring->buffer_info[i];
2854 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2855 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2856 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2857 context_desc->upper_setup.tcp_fields.tucss = tucss;
2858 context_desc->upper_setup.tcp_fields.tucso = tucso;
2859 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2860 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2861 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2862 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2864 buffer_info->time_stamp = jiffies;
2865 buffer_info->next_to_watch = i;
2867 if (++i == tx_ring->count) i = 0;
2868 tx_ring->next_to_use = i;
2870 return TRUE;
2872 #endif
2874 return FALSE;
2877 static boolean_t
2878 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2879 struct sk_buff *skb)
2881 struct e1000_context_desc *context_desc;
2882 struct e1000_buffer *buffer_info;
2883 unsigned int i;
2884 uint8_t css;
2886 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2887 css = skb->h.raw - skb->data;
2889 i = tx_ring->next_to_use;
2890 buffer_info = &tx_ring->buffer_info[i];
2891 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2893 context_desc->upper_setup.tcp_fields.tucss = css;
2894 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
2895 context_desc->upper_setup.tcp_fields.tucse = 0;
2896 context_desc->tcp_seg_setup.data = 0;
2897 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2899 buffer_info->time_stamp = jiffies;
2900 buffer_info->next_to_watch = i;
2902 if (unlikely(++i == tx_ring->count)) i = 0;
2903 tx_ring->next_to_use = i;
2905 return TRUE;
2908 return FALSE;
2911 #define E1000_MAX_TXD_PWR 12
2912 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2914 static int
2915 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2916 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2917 unsigned int nr_frags, unsigned int mss)
2919 struct e1000_buffer *buffer_info;
2920 unsigned int len = skb->len;
2921 unsigned int offset = 0, size, count = 0, i;
2922 unsigned int f;
2923 len -= skb->data_len;
2925 i = tx_ring->next_to_use;
2927 while (len) {
2928 buffer_info = &tx_ring->buffer_info[i];
2929 size = min(len, max_per_txd);
2930 #ifdef NETIF_F_TSO
2931 /* Workaround for Controller erratum --
2932 * descriptor for non-tso packet in a linear SKB that follows a
2933 * tso gets written back prematurely before the data is fully
2934 * DMA'd to the controller */
2935 if (!skb->data_len && tx_ring->last_tx_tso &&
2936 !skb_is_gso(skb)) {
2937 tx_ring->last_tx_tso = 0;
2938 size -= 4;
2941 /* Workaround for premature desc write-backs
2942 * in TSO mode. Append 4-byte sentinel desc */
2943 if (unlikely(mss && !nr_frags && size == len && size > 8))
2944 size -= 4;
2945 #endif
2946 /* work-around for errata 10 and it applies
2947 * to all controllers in PCI-X mode
2948 * The fix is to make sure that the first descriptor of a
2949 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2951 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2952 (size > 2015) && count == 0))
2953 size = 2015;
2955 /* Workaround for potential 82544 hang in PCI-X. Avoid
2956 * terminating buffers within evenly-aligned dwords. */
2957 if (unlikely(adapter->pcix_82544 &&
2958 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2959 size > 4))
2960 size -= 4;
2962 buffer_info->length = size;
2963 buffer_info->dma =
2964 pci_map_single(adapter->pdev,
2965 skb->data + offset,
2966 size,
2967 PCI_DMA_TODEVICE);
2968 buffer_info->time_stamp = jiffies;
2969 buffer_info->next_to_watch = i;
2971 len -= size;
2972 offset += size;
2973 count++;
2974 if (unlikely(++i == tx_ring->count)) i = 0;
2977 for (f = 0; f < nr_frags; f++) {
2978 struct skb_frag_struct *frag;
2980 frag = &skb_shinfo(skb)->frags[f];
2981 len = frag->size;
2982 offset = frag->page_offset;
2984 while (len) {
2985 buffer_info = &tx_ring->buffer_info[i];
2986 size = min(len, max_per_txd);
2987 #ifdef NETIF_F_TSO
2988 /* Workaround for premature desc write-backs
2989 * in TSO mode. Append 4-byte sentinel desc */
2990 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2991 size -= 4;
2992 #endif
2993 /* Workaround for potential 82544 hang in PCI-X.
2994 * Avoid terminating buffers within evenly-aligned
2995 * dwords. */
2996 if (unlikely(adapter->pcix_82544 &&
2997 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2998 size > 4))
2999 size -= 4;
3001 buffer_info->length = size;
3002 buffer_info->dma =
3003 pci_map_page(adapter->pdev,
3004 frag->page,
3005 offset,
3006 size,
3007 PCI_DMA_TODEVICE);
3008 buffer_info->time_stamp = jiffies;
3009 buffer_info->next_to_watch = i;
3011 len -= size;
3012 offset += size;
3013 count++;
3014 if (unlikely(++i == tx_ring->count)) i = 0;
3018 i = (i == 0) ? tx_ring->count - 1 : i - 1;
3019 tx_ring->buffer_info[i].skb = skb;
3020 tx_ring->buffer_info[first].next_to_watch = i;
3022 return count;
3025 static void
3026 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3027 int tx_flags, int count)
3029 struct e1000_tx_desc *tx_desc = NULL;
3030 struct e1000_buffer *buffer_info;
3031 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3032 unsigned int i;
3034 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3035 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3036 E1000_TXD_CMD_TSE;
3037 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3039 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3040 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3043 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3044 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3045 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3048 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3049 txd_lower |= E1000_TXD_CMD_VLE;
3050 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3053 i = tx_ring->next_to_use;
3055 while (count--) {
3056 buffer_info = &tx_ring->buffer_info[i];
3057 tx_desc = E1000_TX_DESC(*tx_ring, i);
3058 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3059 tx_desc->lower.data =
3060 cpu_to_le32(txd_lower | buffer_info->length);
3061 tx_desc->upper.data = cpu_to_le32(txd_upper);
3062 if (unlikely(++i == tx_ring->count)) i = 0;
3065 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3067 /* Force memory writes to complete before letting h/w
3068 * know there are new descriptors to fetch. (Only
3069 * applicable for weak-ordered memory model archs,
3070 * such as IA-64). */
3071 wmb();
3073 tx_ring->next_to_use = i;
3074 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3075 /* we need this if more than one processor can write to our tail
3076 * at a time, it syncronizes IO on IA64/Altix systems */
3077 mmiowb();
3081 * 82547 workaround to avoid controller hang in half-duplex environment.
3082 * The workaround is to avoid queuing a large packet that would span
3083 * the internal Tx FIFO ring boundary by notifying the stack to resend
3084 * the packet at a later time. This gives the Tx FIFO an opportunity to
3085 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3086 * to the beginning of the Tx FIFO.
3089 #define E1000_FIFO_HDR 0x10
3090 #define E1000_82547_PAD_LEN 0x3E0
3092 static int
3093 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3095 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3096 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3098 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3100 if (adapter->link_duplex != HALF_DUPLEX)
3101 goto no_fifo_stall_required;
3103 if (atomic_read(&adapter->tx_fifo_stall))
3104 return 1;
3106 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3107 atomic_set(&adapter->tx_fifo_stall, 1);
3108 return 1;
3111 no_fifo_stall_required:
3112 adapter->tx_fifo_head += skb_fifo_len;
3113 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3114 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3115 return 0;
3118 #define MINIMUM_DHCP_PACKET_SIZE 282
3119 static int
3120 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3122 struct e1000_hw *hw = &adapter->hw;
3123 uint16_t length, offset;
3124 if (vlan_tx_tag_present(skb)) {
3125 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3126 ( adapter->hw.mng_cookie.status &
3127 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3128 return 0;
3130 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3131 struct ethhdr *eth = (struct ethhdr *) skb->data;
3132 if ((htons(ETH_P_IP) == eth->h_proto)) {
3133 const struct iphdr *ip =
3134 (struct iphdr *)((uint8_t *)skb->data+14);
3135 if (IPPROTO_UDP == ip->protocol) {
3136 struct udphdr *udp =
3137 (struct udphdr *)((uint8_t *)ip +
3138 (ip->ihl << 2));
3139 if (ntohs(udp->dest) == 67) {
3140 offset = (uint8_t *)udp + 8 - skb->data;
3141 length = skb->len - offset;
3143 return e1000_mng_write_dhcp_info(hw,
3144 (uint8_t *)udp + 8,
3145 length);
3150 return 0;
3153 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3155 struct e1000_adapter *adapter = netdev_priv(netdev);
3156 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3158 netif_stop_queue(netdev);
3159 /* Herbert's original patch had:
3160 * smp_mb__after_netif_stop_queue();
3161 * but since that doesn't exist yet, just open code it. */
3162 smp_mb();
3164 /* We need to check again in a case another CPU has just
3165 * made room available. */
3166 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3167 return -EBUSY;
3169 /* A reprieve! */
3170 netif_start_queue(netdev);
3171 ++adapter->restart_queue;
3172 return 0;
3175 static int e1000_maybe_stop_tx(struct net_device *netdev,
3176 struct e1000_tx_ring *tx_ring, int size)
3178 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3179 return 0;
3180 return __e1000_maybe_stop_tx(netdev, size);
3183 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3184 static int
3185 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3187 struct e1000_adapter *adapter = netdev_priv(netdev);
3188 struct e1000_tx_ring *tx_ring;
3189 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3190 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3191 unsigned int tx_flags = 0;
3192 unsigned int len = skb->len;
3193 unsigned long flags;
3194 unsigned int nr_frags = 0;
3195 unsigned int mss = 0;
3196 int count = 0;
3197 int tso;
3198 unsigned int f;
3199 len -= skb->data_len;
3201 /* This goes back to the question of how to logically map a tx queue
3202 * to a flow. Right now, performance is impacted slightly negatively
3203 * if using multiple tx queues. If the stack breaks away from a
3204 * single qdisc implementation, we can look at this again. */
3205 tx_ring = adapter->tx_ring;
3207 if (unlikely(skb->len <= 0)) {
3208 dev_kfree_skb_any(skb);
3209 return NETDEV_TX_OK;
3212 /* 82571 and newer doesn't need the workaround that limited descriptor
3213 * length to 4kB */
3214 if (adapter->hw.mac_type >= e1000_82571)
3215 max_per_txd = 8192;
3217 #ifdef NETIF_F_TSO
3218 mss = skb_shinfo(skb)->gso_size;
3219 /* The controller does a simple calculation to
3220 * make sure there is enough room in the FIFO before
3221 * initiating the DMA for each buffer. The calc is:
3222 * 4 = ceil(buffer len/mss). To make sure we don't
3223 * overrun the FIFO, adjust the max buffer len if mss
3224 * drops. */
3225 if (mss) {
3226 uint8_t hdr_len;
3227 max_per_txd = min(mss << 2, max_per_txd);
3228 max_txd_pwr = fls(max_per_txd) - 1;
3230 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3231 * points to just header, pull a few bytes of payload from
3232 * frags into skb->data */
3233 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3234 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3235 switch (adapter->hw.mac_type) {
3236 unsigned int pull_size;
3237 case e1000_82571:
3238 case e1000_82572:
3239 case e1000_82573:
3240 case e1000_ich8lan:
3241 pull_size = min((unsigned int)4, skb->data_len);
3242 if (!__pskb_pull_tail(skb, pull_size)) {
3243 DPRINTK(DRV, ERR,
3244 "__pskb_pull_tail failed.\n");
3245 dev_kfree_skb_any(skb);
3246 return NETDEV_TX_OK;
3248 len = skb->len - skb->data_len;
3249 break;
3250 default:
3251 /* do nothing */
3252 break;
3257 /* reserve a descriptor for the offload context */
3258 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3259 count++;
3260 count++;
3261 #else
3262 if (skb->ip_summed == CHECKSUM_PARTIAL)
3263 count++;
3264 #endif
3266 #ifdef NETIF_F_TSO
3267 /* Controller Erratum workaround */
3268 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3269 count++;
3270 #endif
3272 count += TXD_USE_COUNT(len, max_txd_pwr);
3274 if (adapter->pcix_82544)
3275 count++;
3277 /* work-around for errata 10 and it applies to all controllers
3278 * in PCI-X mode, so add one more descriptor to the count
3280 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3281 (len > 2015)))
3282 count++;
3284 nr_frags = skb_shinfo(skb)->nr_frags;
3285 for (f = 0; f < nr_frags; f++)
3286 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3287 max_txd_pwr);
3288 if (adapter->pcix_82544)
3289 count += nr_frags;
3292 if (adapter->hw.tx_pkt_filtering &&
3293 (adapter->hw.mac_type == e1000_82573))
3294 e1000_transfer_dhcp_info(adapter, skb);
3296 local_irq_save(flags);
3297 if (!spin_trylock(&tx_ring->tx_lock)) {
3298 /* Collision - tell upper layer to requeue */
3299 local_irq_restore(flags);
3300 return NETDEV_TX_LOCKED;
3303 /* need: count + 2 desc gap to keep tail from touching
3304 * head, otherwise try next time */
3305 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3306 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3307 return NETDEV_TX_BUSY;
3310 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3311 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3312 netif_stop_queue(netdev);
3313 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3314 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3315 return NETDEV_TX_BUSY;
3319 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3320 tx_flags |= E1000_TX_FLAGS_VLAN;
3321 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3324 first = tx_ring->next_to_use;
3326 tso = e1000_tso(adapter, tx_ring, skb);
3327 if (tso < 0) {
3328 dev_kfree_skb_any(skb);
3329 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3330 return NETDEV_TX_OK;
3333 if (likely(tso)) {
3334 tx_ring->last_tx_tso = 1;
3335 tx_flags |= E1000_TX_FLAGS_TSO;
3336 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3337 tx_flags |= E1000_TX_FLAGS_CSUM;
3339 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3340 * 82571 hardware supports TSO capabilities for IPv6 as well...
3341 * no longer assume, we must. */
3342 if (likely(skb->protocol == htons(ETH_P_IP)))
3343 tx_flags |= E1000_TX_FLAGS_IPV4;
3345 e1000_tx_queue(adapter, tx_ring, tx_flags,
3346 e1000_tx_map(adapter, tx_ring, skb, first,
3347 max_per_txd, nr_frags, mss));
3349 netdev->trans_start = jiffies;
3351 /* Make sure there is space in the ring for the next send. */
3352 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3354 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3355 return NETDEV_TX_OK;
3359 * e1000_tx_timeout - Respond to a Tx Hang
3360 * @netdev: network interface device structure
3363 static void
3364 e1000_tx_timeout(struct net_device *netdev)
3366 struct e1000_adapter *adapter = netdev_priv(netdev);
3368 /* Do the reset outside of interrupt context */
3369 adapter->tx_timeout_count++;
3370 schedule_work(&adapter->reset_task);
3373 static void
3374 e1000_reset_task(struct work_struct *work)
3376 struct e1000_adapter *adapter =
3377 container_of(work, struct e1000_adapter, reset_task);
3379 e1000_reinit_locked(adapter);
3383 * e1000_get_stats - Get System Network Statistics
3384 * @netdev: network interface device structure
3386 * Returns the address of the device statistics structure.
3387 * The statistics are actually updated from the timer callback.
3390 static struct net_device_stats *
3391 e1000_get_stats(struct net_device *netdev)
3393 struct e1000_adapter *adapter = netdev_priv(netdev);
3395 /* only return the current stats */
3396 return &adapter->net_stats;
3400 * e1000_change_mtu - Change the Maximum Transfer Unit
3401 * @netdev: network interface device structure
3402 * @new_mtu: new value for maximum frame size
3404 * Returns 0 on success, negative on failure
3407 static int
3408 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3410 struct e1000_adapter *adapter = netdev_priv(netdev);
3411 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3412 uint16_t eeprom_data = 0;
3414 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3415 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3416 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3417 return -EINVAL;
3420 /* Adapter-specific max frame size limits. */
3421 switch (adapter->hw.mac_type) {
3422 case e1000_undefined ... e1000_82542_rev2_1:
3423 case e1000_ich8lan:
3424 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3425 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3426 return -EINVAL;
3428 break;
3429 case e1000_82573:
3430 /* Jumbo Frames not supported if:
3431 * - this is not an 82573L device
3432 * - ASPM is enabled in any way (0x1A bits 3:2) */
3433 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3434 &eeprom_data);
3435 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3436 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3437 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3438 DPRINTK(PROBE, ERR,
3439 "Jumbo Frames not supported.\n");
3440 return -EINVAL;
3442 break;
3444 /* ERT will be enabled later to enable wire speed receives */
3446 /* fall through to get support */
3447 case e1000_82571:
3448 case e1000_82572:
3449 case e1000_80003es2lan:
3450 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3451 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3452 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3453 return -EINVAL;
3455 break;
3456 default:
3457 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3458 break;
3461 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3462 * means we reserve 2 more, this pushes us to allocate from the next
3463 * larger slab size
3464 * i.e. RXBUFFER_2048 --> size-4096 slab */
3466 if (max_frame <= E1000_RXBUFFER_256)
3467 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3468 else if (max_frame <= E1000_RXBUFFER_512)
3469 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3470 else if (max_frame <= E1000_RXBUFFER_1024)
3471 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3472 else if (max_frame <= E1000_RXBUFFER_2048)
3473 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3474 else if (max_frame <= E1000_RXBUFFER_4096)
3475 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3476 else if (max_frame <= E1000_RXBUFFER_8192)
3477 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3478 else if (max_frame <= E1000_RXBUFFER_16384)
3479 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3481 /* adjust allocation if LPE protects us, and we aren't using SBP */
3482 if (!adapter->hw.tbi_compatibility_on &&
3483 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3484 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3485 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3487 netdev->mtu = new_mtu;
3488 adapter->hw.max_frame_size = max_frame;
3490 if (netif_running(netdev))
3491 e1000_reinit_locked(adapter);
3493 return 0;
3497 * e1000_update_stats - Update the board statistics counters
3498 * @adapter: board private structure
3501 void
3502 e1000_update_stats(struct e1000_adapter *adapter)
3504 struct e1000_hw *hw = &adapter->hw;
3505 struct pci_dev *pdev = adapter->pdev;
3506 unsigned long flags;
3507 uint16_t phy_tmp;
3509 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3512 * Prevent stats update while adapter is being reset, or if the pci
3513 * connection is down.
3515 if (adapter->link_speed == 0)
3516 return;
3517 if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3518 return;
3520 spin_lock_irqsave(&adapter->stats_lock, flags);
3522 /* these counters are modified from e1000_adjust_tbi_stats,
3523 * called from the interrupt context, so they must only
3524 * be written while holding adapter->stats_lock
3527 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3528 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3529 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3530 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3531 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3532 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3533 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3535 if (adapter->hw.mac_type != e1000_ich8lan) {
3536 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3537 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3538 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3539 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3540 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3541 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3544 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3545 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3546 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3547 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3548 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3549 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3550 adapter->stats.dc += E1000_READ_REG(hw, DC);
3551 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3552 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3553 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3554 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3555 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3556 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3557 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3558 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3559 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3560 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3561 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3562 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3563 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3564 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3565 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3566 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3567 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3568 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3569 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3571 if (adapter->hw.mac_type != e1000_ich8lan) {
3572 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3573 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3574 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3575 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3576 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3577 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3580 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3581 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3583 /* used for adaptive IFS */
3585 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3586 adapter->stats.tpt += hw->tx_packet_delta;
3587 hw->collision_delta = E1000_READ_REG(hw, COLC);
3588 adapter->stats.colc += hw->collision_delta;
3590 if (hw->mac_type >= e1000_82543) {
3591 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3592 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3593 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3594 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3595 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3596 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3598 if (hw->mac_type > e1000_82547_rev_2) {
3599 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3600 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3602 if (adapter->hw.mac_type != e1000_ich8lan) {
3603 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3604 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3605 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3606 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3607 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3608 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3609 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3613 /* Fill out the OS statistics structure */
3614 adapter->net_stats.rx_packets = adapter->stats.gprc;
3615 adapter->net_stats.tx_packets = adapter->stats.gptc;
3616 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3617 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3618 adapter->net_stats.multicast = adapter->stats.mprc;
3619 adapter->net_stats.collisions = adapter->stats.colc;
3621 /* Rx Errors */
3623 /* RLEC on some newer hardware can be incorrect so build
3624 * our own version based on RUC and ROC */
3625 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3626 adapter->stats.crcerrs + adapter->stats.algnerrc +
3627 adapter->stats.ruc + adapter->stats.roc +
3628 adapter->stats.cexterr;
3629 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3630 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3631 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3632 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3633 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3635 /* Tx Errors */
3636 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3637 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3638 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3639 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3640 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3641 if (adapter->hw.bad_tx_carr_stats_fd &&
3642 adapter->link_duplex == FULL_DUPLEX) {
3643 adapter->net_stats.tx_carrier_errors = 0;
3644 adapter->stats.tncrs = 0;
3647 /* Tx Dropped needs to be maintained elsewhere */
3649 /* Phy Stats */
3650 if (hw->media_type == e1000_media_type_copper) {
3651 if ((adapter->link_speed == SPEED_1000) &&
3652 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3653 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3654 adapter->phy_stats.idle_errors += phy_tmp;
3657 if ((hw->mac_type <= e1000_82546) &&
3658 (hw->phy_type == e1000_phy_m88) &&
3659 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3660 adapter->phy_stats.receive_errors += phy_tmp;
3663 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3665 #ifdef CONFIG_PCI_MSI
3668 * e1000_intr_msi - Interrupt Handler
3669 * @irq: interrupt number
3670 * @data: pointer to a network interface device structure
3673 static
3674 irqreturn_t e1000_intr_msi(int irq, void *data)
3676 struct net_device *netdev = data;
3677 struct e1000_adapter *adapter = netdev_priv(netdev);
3678 struct e1000_hw *hw = &adapter->hw;
3679 #ifndef CONFIG_E1000_NAPI
3680 int i;
3681 #endif
3683 /* this code avoids the read of ICR but has to get 1000 interrupts
3684 * at every link change event before it will notice the change */
3685 if (++adapter->detect_link >= 1000) {
3686 uint32_t icr = E1000_READ_REG(hw, ICR);
3687 #ifdef CONFIG_E1000_NAPI
3688 /* read ICR disables interrupts using IAM, so keep up with our
3689 * enable/disable accounting */
3690 atomic_inc(&adapter->irq_sem);
3691 #endif
3692 adapter->detect_link = 0;
3693 if ((icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) &&
3694 (icr & E1000_ICR_INT_ASSERTED)) {
3695 hw->get_link_status = 1;
3696 /* 80003ES2LAN workaround--
3697 * For packet buffer work-around on link down event;
3698 * disable receives here in the ISR and
3699 * reset adapter in watchdog
3701 if (netif_carrier_ok(netdev) &&
3702 (adapter->hw.mac_type == e1000_80003es2lan)) {
3703 /* disable receives */
3704 uint32_t rctl = E1000_READ_REG(hw, RCTL);
3705 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3707 /* guard against interrupt when we're going down */
3708 if (!test_bit(__E1000_DOWN, &adapter->flags))
3709 mod_timer(&adapter->watchdog_timer,
3710 jiffies + 1);
3712 } else {
3713 E1000_WRITE_REG(hw, ICR, (0xffffffff & ~(E1000_ICR_RXSEQ |
3714 E1000_ICR_LSC)));
3715 /* bummer we have to flush here, but things break otherwise as
3716 * some event appears to be lost or delayed and throughput
3717 * drops. In almost all tests this flush is un-necessary */
3718 E1000_WRITE_FLUSH(hw);
3719 #ifdef CONFIG_E1000_NAPI
3720 /* Interrupt Auto-Mask (IAM)...upon writing ICR, interrupts are
3721 * masked. No need for the IMC write, but it does mean we
3722 * should account for it ASAP. */
3723 atomic_inc(&adapter->irq_sem);
3724 #endif
3727 #ifdef CONFIG_E1000_NAPI
3728 if (likely(netif_rx_schedule_prep(netdev))) {
3729 adapter->total_tx_bytes = 0;
3730 adapter->total_tx_packets = 0;
3731 adapter->total_rx_bytes = 0;
3732 adapter->total_rx_packets = 0;
3733 __netif_rx_schedule(netdev);
3734 } else
3735 e1000_irq_enable(adapter);
3736 #else
3737 adapter->total_tx_bytes = 0;
3738 adapter->total_rx_bytes = 0;
3739 adapter->total_tx_packets = 0;
3740 adapter->total_rx_packets = 0;
3742 for (i = 0; i < E1000_MAX_INTR; i++)
3743 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3744 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3745 break;
3747 if (likely(adapter->itr_setting & 3))
3748 e1000_set_itr(adapter);
3749 #endif
3751 return IRQ_HANDLED;
3753 #endif
3756 * e1000_intr - Interrupt Handler
3757 * @irq: interrupt number
3758 * @data: pointer to a network interface device structure
3761 static irqreturn_t
3762 e1000_intr(int irq, void *data)
3764 struct net_device *netdev = data;
3765 struct e1000_adapter *adapter = netdev_priv(netdev);
3766 struct e1000_hw *hw = &adapter->hw;
3767 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3768 #ifndef CONFIG_E1000_NAPI
3769 int i;
3770 #endif
3771 if (unlikely(!icr))
3772 return IRQ_NONE; /* Not our interrupt */
3774 #ifdef CONFIG_E1000_NAPI
3775 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3776 * not set, then the adapter didn't send an interrupt */
3777 if (unlikely(hw->mac_type >= e1000_82571 &&
3778 !(icr & E1000_ICR_INT_ASSERTED)))
3779 return IRQ_NONE;
3781 /* Interrupt Auto-Mask...upon reading ICR,
3782 * interrupts are masked. No need for the
3783 * IMC write, but it does mean we should
3784 * account for it ASAP. */
3785 if (likely(hw->mac_type >= e1000_82571))
3786 atomic_inc(&adapter->irq_sem);
3787 #endif
3789 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3790 hw->get_link_status = 1;
3791 /* 80003ES2LAN workaround--
3792 * For packet buffer work-around on link down event;
3793 * disable receives here in the ISR and
3794 * reset adapter in watchdog
3796 if (netif_carrier_ok(netdev) &&
3797 (adapter->hw.mac_type == e1000_80003es2lan)) {
3798 /* disable receives */
3799 rctl = E1000_READ_REG(hw, RCTL);
3800 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3802 /* guard against interrupt when we're going down */
3803 if (!test_bit(__E1000_DOWN, &adapter->flags))
3804 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3807 #ifdef CONFIG_E1000_NAPI
3808 if (unlikely(hw->mac_type < e1000_82571)) {
3809 /* disable interrupts, without the synchronize_irq bit */
3810 atomic_inc(&adapter->irq_sem);
3811 E1000_WRITE_REG(hw, IMC, ~0);
3812 E1000_WRITE_FLUSH(hw);
3814 if (likely(netif_rx_schedule_prep(netdev))) {
3815 adapter->total_tx_bytes = 0;
3816 adapter->total_tx_packets = 0;
3817 adapter->total_rx_bytes = 0;
3818 adapter->total_rx_packets = 0;
3819 __netif_rx_schedule(netdev);
3820 } else
3821 /* this really should not happen! if it does it is basically a
3822 * bug, but not a hard error, so enable ints and continue */
3823 e1000_irq_enable(adapter);
3824 #else
3825 /* Writing IMC and IMS is needed for 82547.
3826 * Due to Hub Link bus being occupied, an interrupt
3827 * de-assertion message is not able to be sent.
3828 * When an interrupt assertion message is generated later,
3829 * two messages are re-ordered and sent out.
3830 * That causes APIC to think 82547 is in de-assertion
3831 * state, while 82547 is in assertion state, resulting
3832 * in dead lock. Writing IMC forces 82547 into
3833 * de-assertion state.
3835 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3836 atomic_inc(&adapter->irq_sem);
3837 E1000_WRITE_REG(hw, IMC, ~0);
3840 adapter->total_tx_bytes = 0;
3841 adapter->total_rx_bytes = 0;
3842 adapter->total_tx_packets = 0;
3843 adapter->total_rx_packets = 0;
3845 for (i = 0; i < E1000_MAX_INTR; i++)
3846 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3847 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3848 break;
3850 if (likely(adapter->itr_setting & 3))
3851 e1000_set_itr(adapter);
3853 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3854 e1000_irq_enable(adapter);
3856 #endif
3857 return IRQ_HANDLED;
3860 #ifdef CONFIG_E1000_NAPI
3862 * e1000_clean - NAPI Rx polling callback
3863 * @adapter: board private structure
3866 static int
3867 e1000_clean(struct net_device *poll_dev, int *budget)
3869 struct e1000_adapter *adapter;
3870 int work_to_do = min(*budget, poll_dev->quota);
3871 int tx_cleaned = 0, work_done = 0;
3873 /* Must NOT use netdev_priv macro here. */
3874 adapter = poll_dev->priv;
3876 /* Keep link state information with original netdev */
3877 if (!netif_carrier_ok(poll_dev))
3878 goto quit_polling;
3880 /* e1000_clean is called per-cpu. This lock protects
3881 * tx_ring[0] from being cleaned by multiple cpus
3882 * simultaneously. A failure obtaining the lock means
3883 * tx_ring[0] is currently being cleaned anyway. */
3884 if (spin_trylock(&adapter->tx_queue_lock)) {
3885 tx_cleaned = e1000_clean_tx_irq(adapter,
3886 &adapter->tx_ring[0]);
3887 spin_unlock(&adapter->tx_queue_lock);
3890 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3891 &work_done, work_to_do);
3893 *budget -= work_done;
3894 poll_dev->quota -= work_done;
3896 /* If no Tx and not enough Rx work done, exit the polling mode */
3897 if ((!tx_cleaned && (work_done == 0)) ||
3898 !netif_running(poll_dev)) {
3899 quit_polling:
3900 if (likely(adapter->itr_setting & 3))
3901 e1000_set_itr(adapter);
3902 netif_rx_complete(poll_dev);
3903 e1000_irq_enable(adapter);
3904 return 0;
3907 return 1;
3910 #endif
3912 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3913 * @adapter: board private structure
3916 static boolean_t
3917 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3918 struct e1000_tx_ring *tx_ring)
3920 struct net_device *netdev = adapter->netdev;
3921 struct e1000_tx_desc *tx_desc, *eop_desc;
3922 struct e1000_buffer *buffer_info;
3923 unsigned int i, eop;
3924 #ifdef CONFIG_E1000_NAPI
3925 unsigned int count = 0;
3926 #endif
3927 boolean_t cleaned = FALSE;
3928 unsigned int total_tx_bytes=0, total_tx_packets=0;
3930 i = tx_ring->next_to_clean;
3931 eop = tx_ring->buffer_info[i].next_to_watch;
3932 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3934 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3935 for (cleaned = FALSE; !cleaned; ) {
3936 tx_desc = E1000_TX_DESC(*tx_ring, i);
3937 buffer_info = &tx_ring->buffer_info[i];
3938 cleaned = (i == eop);
3940 if (cleaned) {
3941 struct sk_buff *skb = buffer_info->skb;
3942 unsigned int segs = skb_shinfo(skb)->gso_segs;
3943 total_tx_packets += segs;
3944 total_tx_packets++;
3945 total_tx_bytes += skb->len;
3947 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3948 tx_desc->upper.data = 0;
3950 if (unlikely(++i == tx_ring->count)) i = 0;
3953 eop = tx_ring->buffer_info[i].next_to_watch;
3954 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3955 #ifdef CONFIG_E1000_NAPI
3956 #define E1000_TX_WEIGHT 64
3957 /* weight of a sort for tx, to avoid endless transmit cleanup */
3958 if (count++ == E1000_TX_WEIGHT) break;
3959 #endif
3962 tx_ring->next_to_clean = i;
3964 #define TX_WAKE_THRESHOLD 32
3965 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3966 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3967 /* Make sure that anybody stopping the queue after this
3968 * sees the new next_to_clean.
3970 smp_mb();
3971 if (netif_queue_stopped(netdev)) {
3972 netif_wake_queue(netdev);
3973 ++adapter->restart_queue;
3977 if (adapter->detect_tx_hung) {
3978 /* Detect a transmit hang in hardware, this serializes the
3979 * check with the clearing of time_stamp and movement of i */
3980 adapter->detect_tx_hung = FALSE;
3981 if (tx_ring->buffer_info[eop].dma &&
3982 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3983 (adapter->tx_timeout_factor * HZ))
3984 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3985 E1000_STATUS_TXOFF)) {
3987 /* detected Tx unit hang */
3988 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3989 " Tx Queue <%lu>\n"
3990 " TDH <%x>\n"
3991 " TDT <%x>\n"
3992 " next_to_use <%x>\n"
3993 " next_to_clean <%x>\n"
3994 "buffer_info[next_to_clean]\n"
3995 " time_stamp <%lx>\n"
3996 " next_to_watch <%x>\n"
3997 " jiffies <%lx>\n"
3998 " next_to_watch.status <%x>\n",
3999 (unsigned long)((tx_ring - adapter->tx_ring) /
4000 sizeof(struct e1000_tx_ring)),
4001 readl(adapter->hw.hw_addr + tx_ring->tdh),
4002 readl(adapter->hw.hw_addr + tx_ring->tdt),
4003 tx_ring->next_to_use,
4004 tx_ring->next_to_clean,
4005 tx_ring->buffer_info[eop].time_stamp,
4006 eop,
4007 jiffies,
4008 eop_desc->upper.fields.status);
4009 netif_stop_queue(netdev);
4012 adapter->total_tx_bytes += total_tx_bytes;
4013 adapter->total_tx_packets += total_tx_packets;
4014 return cleaned;
4018 * e1000_rx_checksum - Receive Checksum Offload for 82543
4019 * @adapter: board private structure
4020 * @status_err: receive descriptor status and error fields
4021 * @csum: receive descriptor csum field
4022 * @sk_buff: socket buffer with received data
4025 static void
4026 e1000_rx_checksum(struct e1000_adapter *adapter,
4027 uint32_t status_err, uint32_t csum,
4028 struct sk_buff *skb)
4030 uint16_t status = (uint16_t)status_err;
4031 uint8_t errors = (uint8_t)(status_err >> 24);
4032 skb->ip_summed = CHECKSUM_NONE;
4034 /* 82543 or newer only */
4035 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4036 /* Ignore Checksum bit is set */
4037 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4038 /* TCP/UDP checksum error bit is set */
4039 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4040 /* let the stack verify checksum errors */
4041 adapter->hw_csum_err++;
4042 return;
4044 /* TCP/UDP Checksum has not been calculated */
4045 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4046 if (!(status & E1000_RXD_STAT_TCPCS))
4047 return;
4048 } else {
4049 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4050 return;
4052 /* It must be a TCP or UDP packet with a valid checksum */
4053 if (likely(status & E1000_RXD_STAT_TCPCS)) {
4054 /* TCP checksum is good */
4055 skb->ip_summed = CHECKSUM_UNNECESSARY;
4056 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4057 /* IP fragment with UDP payload */
4058 /* Hardware complements the payload checksum, so we undo it
4059 * and then put the value in host order for further stack use.
4061 csum = ntohl(csum ^ 0xFFFF);
4062 skb->csum = csum;
4063 skb->ip_summed = CHECKSUM_COMPLETE;
4065 adapter->hw_csum_good++;
4069 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4070 * @adapter: board private structure
4073 static boolean_t
4074 #ifdef CONFIG_E1000_NAPI
4075 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4076 struct e1000_rx_ring *rx_ring,
4077 int *work_done, int work_to_do)
4078 #else
4079 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4080 struct e1000_rx_ring *rx_ring)
4081 #endif
4083 struct net_device *netdev = adapter->netdev;
4084 struct pci_dev *pdev = adapter->pdev;
4085 struct e1000_rx_desc *rx_desc, *next_rxd;
4086 struct e1000_buffer *buffer_info, *next_buffer;
4087 unsigned long flags;
4088 uint32_t length;
4089 uint8_t last_byte;
4090 unsigned int i;
4091 int cleaned_count = 0;
4092 boolean_t cleaned = FALSE;
4093 unsigned int total_rx_bytes=0, total_rx_packets=0;
4095 i = rx_ring->next_to_clean;
4096 rx_desc = E1000_RX_DESC(*rx_ring, i);
4097 buffer_info = &rx_ring->buffer_info[i];
4099 while (rx_desc->status & E1000_RXD_STAT_DD) {
4100 struct sk_buff *skb;
4101 u8 status;
4103 #ifdef CONFIG_E1000_NAPI
4104 if (*work_done >= work_to_do)
4105 break;
4106 (*work_done)++;
4107 #endif
4108 status = rx_desc->status;
4109 skb = buffer_info->skb;
4110 buffer_info->skb = NULL;
4112 prefetch(skb->data - NET_IP_ALIGN);
4114 if (++i == rx_ring->count) i = 0;
4115 next_rxd = E1000_RX_DESC(*rx_ring, i);
4116 prefetch(next_rxd);
4118 next_buffer = &rx_ring->buffer_info[i];
4120 cleaned = TRUE;
4121 cleaned_count++;
4122 pci_unmap_single(pdev,
4123 buffer_info->dma,
4124 buffer_info->length,
4125 PCI_DMA_FROMDEVICE);
4127 length = le16_to_cpu(rx_desc->length);
4129 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4130 /* All receives must fit into a single buffer */
4131 E1000_DBG("%s: Receive packet consumed multiple"
4132 " buffers\n", netdev->name);
4133 /* recycle */
4134 buffer_info->skb = skb;
4135 goto next_desc;
4138 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4139 last_byte = *(skb->data + length - 1);
4140 if (TBI_ACCEPT(&adapter->hw, status,
4141 rx_desc->errors, length, last_byte)) {
4142 spin_lock_irqsave(&adapter->stats_lock, flags);
4143 e1000_tbi_adjust_stats(&adapter->hw,
4144 &adapter->stats,
4145 length, skb->data);
4146 spin_unlock_irqrestore(&adapter->stats_lock,
4147 flags);
4148 length--;
4149 } else {
4150 /* recycle */
4151 buffer_info->skb = skb;
4152 goto next_desc;
4156 /* adjust length to remove Ethernet CRC, this must be
4157 * done after the TBI_ACCEPT workaround above */
4158 length -= 4;
4160 /* probably a little skewed due to removing CRC */
4161 total_rx_bytes += length;
4162 total_rx_packets++;
4164 /* code added for copybreak, this should improve
4165 * performance for small packets with large amounts
4166 * of reassembly being done in the stack */
4167 #define E1000_CB_LENGTH 256
4168 if (length < E1000_CB_LENGTH) {
4169 struct sk_buff *new_skb =
4170 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4171 if (new_skb) {
4172 skb_reserve(new_skb, NET_IP_ALIGN);
4173 memcpy(new_skb->data - NET_IP_ALIGN,
4174 skb->data - NET_IP_ALIGN,
4175 length + NET_IP_ALIGN);
4176 /* save the skb in buffer_info as good */
4177 buffer_info->skb = skb;
4178 skb = new_skb;
4180 /* else just continue with the old one */
4182 /* end copybreak code */
4183 skb_put(skb, length);
4185 /* Receive Checksum Offload */
4186 e1000_rx_checksum(adapter,
4187 (uint32_t)(status) |
4188 ((uint32_t)(rx_desc->errors) << 24),
4189 le16_to_cpu(rx_desc->csum), skb);
4191 skb->protocol = eth_type_trans(skb, netdev);
4192 #ifdef CONFIG_E1000_NAPI
4193 if (unlikely(adapter->vlgrp &&
4194 (status & E1000_RXD_STAT_VP))) {
4195 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4196 le16_to_cpu(rx_desc->special) &
4197 E1000_RXD_SPC_VLAN_MASK);
4198 } else {
4199 netif_receive_skb(skb);
4201 #else /* CONFIG_E1000_NAPI */
4202 if (unlikely(adapter->vlgrp &&
4203 (status & E1000_RXD_STAT_VP))) {
4204 vlan_hwaccel_rx(skb, adapter->vlgrp,
4205 le16_to_cpu(rx_desc->special) &
4206 E1000_RXD_SPC_VLAN_MASK);
4207 } else {
4208 netif_rx(skb);
4210 #endif /* CONFIG_E1000_NAPI */
4211 netdev->last_rx = jiffies;
4213 next_desc:
4214 rx_desc->status = 0;
4216 /* return some buffers to hardware, one at a time is too slow */
4217 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4218 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4219 cleaned_count = 0;
4222 /* use prefetched values */
4223 rx_desc = next_rxd;
4224 buffer_info = next_buffer;
4226 rx_ring->next_to_clean = i;
4228 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4229 if (cleaned_count)
4230 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4232 adapter->total_rx_packets += total_rx_packets;
4233 adapter->total_rx_bytes += total_rx_bytes;
4234 return cleaned;
4238 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4239 * @adapter: board private structure
4242 static boolean_t
4243 #ifdef CONFIG_E1000_NAPI
4244 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4245 struct e1000_rx_ring *rx_ring,
4246 int *work_done, int work_to_do)
4247 #else
4248 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4249 struct e1000_rx_ring *rx_ring)
4250 #endif
4252 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4253 struct net_device *netdev = adapter->netdev;
4254 struct pci_dev *pdev = adapter->pdev;
4255 struct e1000_buffer *buffer_info, *next_buffer;
4256 struct e1000_ps_page *ps_page;
4257 struct e1000_ps_page_dma *ps_page_dma;
4258 struct sk_buff *skb;
4259 unsigned int i, j;
4260 uint32_t length, staterr;
4261 int cleaned_count = 0;
4262 boolean_t cleaned = FALSE;
4263 unsigned int total_rx_bytes=0, total_rx_packets=0;
4265 i = rx_ring->next_to_clean;
4266 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4267 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4268 buffer_info = &rx_ring->buffer_info[i];
4270 while (staterr & E1000_RXD_STAT_DD) {
4271 ps_page = &rx_ring->ps_page[i];
4272 ps_page_dma = &rx_ring->ps_page_dma[i];
4273 #ifdef CONFIG_E1000_NAPI
4274 if (unlikely(*work_done >= work_to_do))
4275 break;
4276 (*work_done)++;
4277 #endif
4278 skb = buffer_info->skb;
4280 /* in the packet split case this is header only */
4281 prefetch(skb->data - NET_IP_ALIGN);
4283 if (++i == rx_ring->count) i = 0;
4284 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4285 prefetch(next_rxd);
4287 next_buffer = &rx_ring->buffer_info[i];
4289 cleaned = TRUE;
4290 cleaned_count++;
4291 pci_unmap_single(pdev, buffer_info->dma,
4292 buffer_info->length,
4293 PCI_DMA_FROMDEVICE);
4295 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4296 E1000_DBG("%s: Packet Split buffers didn't pick up"
4297 " the full packet\n", netdev->name);
4298 dev_kfree_skb_irq(skb);
4299 goto next_desc;
4302 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4303 dev_kfree_skb_irq(skb);
4304 goto next_desc;
4307 length = le16_to_cpu(rx_desc->wb.middle.length0);
4309 if (unlikely(!length)) {
4310 E1000_DBG("%s: Last part of the packet spanning"
4311 " multiple descriptors\n", netdev->name);
4312 dev_kfree_skb_irq(skb);
4313 goto next_desc;
4316 /* Good Receive */
4317 skb_put(skb, length);
4320 /* this looks ugly, but it seems compiler issues make it
4321 more efficient than reusing j */
4322 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4324 /* page alloc/put takes too long and effects small packet
4325 * throughput, so unsplit small packets and save the alloc/put*/
4326 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
4327 u8 *vaddr;
4328 /* there is no documentation about how to call
4329 * kmap_atomic, so we can't hold the mapping
4330 * very long */
4331 pci_dma_sync_single_for_cpu(pdev,
4332 ps_page_dma->ps_page_dma[0],
4333 PAGE_SIZE,
4334 PCI_DMA_FROMDEVICE);
4335 vaddr = kmap_atomic(ps_page->ps_page[0],
4336 KM_SKB_DATA_SOFTIRQ);
4337 memcpy(skb->tail, vaddr, l1);
4338 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4339 pci_dma_sync_single_for_device(pdev,
4340 ps_page_dma->ps_page_dma[0],
4341 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4342 /* remove the CRC */
4343 l1 -= 4;
4344 skb_put(skb, l1);
4345 goto copydone;
4346 } /* if */
4349 for (j = 0; j < adapter->rx_ps_pages; j++) {
4350 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4351 break;
4352 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4353 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4354 ps_page_dma->ps_page_dma[j] = 0;
4355 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4356 length);
4357 ps_page->ps_page[j] = NULL;
4358 skb->len += length;
4359 skb->data_len += length;
4360 skb->truesize += length;
4363 /* strip the ethernet crc, problem is we're using pages now so
4364 * this whole operation can get a little cpu intensive */
4365 pskb_trim(skb, skb->len - 4);
4367 copydone:
4368 total_rx_bytes += skb->len;
4369 total_rx_packets++;
4371 e1000_rx_checksum(adapter, staterr,
4372 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4373 skb->protocol = eth_type_trans(skb, netdev);
4375 if (likely(rx_desc->wb.upper.header_status &
4376 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4377 adapter->rx_hdr_split++;
4378 #ifdef CONFIG_E1000_NAPI
4379 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4380 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4381 le16_to_cpu(rx_desc->wb.middle.vlan) &
4382 E1000_RXD_SPC_VLAN_MASK);
4383 } else {
4384 netif_receive_skb(skb);
4386 #else /* CONFIG_E1000_NAPI */
4387 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4388 vlan_hwaccel_rx(skb, adapter->vlgrp,
4389 le16_to_cpu(rx_desc->wb.middle.vlan) &
4390 E1000_RXD_SPC_VLAN_MASK);
4391 } else {
4392 netif_rx(skb);
4394 #endif /* CONFIG_E1000_NAPI */
4395 netdev->last_rx = jiffies;
4397 next_desc:
4398 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4399 buffer_info->skb = NULL;
4401 /* return some buffers to hardware, one at a time is too slow */
4402 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4403 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4404 cleaned_count = 0;
4407 /* use prefetched values */
4408 rx_desc = next_rxd;
4409 buffer_info = next_buffer;
4411 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4413 rx_ring->next_to_clean = i;
4415 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4416 if (cleaned_count)
4417 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4419 adapter->total_rx_packets += total_rx_packets;
4420 adapter->total_rx_bytes += total_rx_bytes;
4421 return cleaned;
4425 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4426 * @adapter: address of board private structure
4429 static void
4430 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4431 struct e1000_rx_ring *rx_ring,
4432 int cleaned_count)
4434 struct net_device *netdev = adapter->netdev;
4435 struct pci_dev *pdev = adapter->pdev;
4436 struct e1000_rx_desc *rx_desc;
4437 struct e1000_buffer *buffer_info;
4438 struct sk_buff *skb;
4439 unsigned int i;
4440 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4442 i = rx_ring->next_to_use;
4443 buffer_info = &rx_ring->buffer_info[i];
4445 while (cleaned_count--) {
4446 skb = buffer_info->skb;
4447 if (skb) {
4448 skb_trim(skb, 0);
4449 goto map_skb;
4452 skb = netdev_alloc_skb(netdev, bufsz);
4453 if (unlikely(!skb)) {
4454 /* Better luck next round */
4455 adapter->alloc_rx_buff_failed++;
4456 break;
4459 /* Fix for errata 23, can't cross 64kB boundary */
4460 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4461 struct sk_buff *oldskb = skb;
4462 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4463 "at %p\n", bufsz, skb->data);
4464 /* Try again, without freeing the previous */
4465 skb = netdev_alloc_skb(netdev, bufsz);
4466 /* Failed allocation, critical failure */
4467 if (!skb) {
4468 dev_kfree_skb(oldskb);
4469 break;
4472 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4473 /* give up */
4474 dev_kfree_skb(skb);
4475 dev_kfree_skb(oldskb);
4476 break; /* while !buffer_info->skb */
4479 /* Use new allocation */
4480 dev_kfree_skb(oldskb);
4482 /* Make buffer alignment 2 beyond a 16 byte boundary
4483 * this will result in a 16 byte aligned IP header after
4484 * the 14 byte MAC header is removed
4486 skb_reserve(skb, NET_IP_ALIGN);
4488 buffer_info->skb = skb;
4489 buffer_info->length = adapter->rx_buffer_len;
4490 map_skb:
4491 buffer_info->dma = pci_map_single(pdev,
4492 skb->data,
4493 adapter->rx_buffer_len,
4494 PCI_DMA_FROMDEVICE);
4496 /* Fix for errata 23, can't cross 64kB boundary */
4497 if (!e1000_check_64k_bound(adapter,
4498 (void *)(unsigned long)buffer_info->dma,
4499 adapter->rx_buffer_len)) {
4500 DPRINTK(RX_ERR, ERR,
4501 "dma align check failed: %u bytes at %p\n",
4502 adapter->rx_buffer_len,
4503 (void *)(unsigned long)buffer_info->dma);
4504 dev_kfree_skb(skb);
4505 buffer_info->skb = NULL;
4507 pci_unmap_single(pdev, buffer_info->dma,
4508 adapter->rx_buffer_len,
4509 PCI_DMA_FROMDEVICE);
4511 break; /* while !buffer_info->skb */
4513 rx_desc = E1000_RX_DESC(*rx_ring, i);
4514 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4516 if (unlikely(++i == rx_ring->count))
4517 i = 0;
4518 buffer_info = &rx_ring->buffer_info[i];
4521 if (likely(rx_ring->next_to_use != i)) {
4522 rx_ring->next_to_use = i;
4523 if (unlikely(i-- == 0))
4524 i = (rx_ring->count - 1);
4526 /* Force memory writes to complete before letting h/w
4527 * know there are new descriptors to fetch. (Only
4528 * applicable for weak-ordered memory model archs,
4529 * such as IA-64). */
4530 wmb();
4531 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4536 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4537 * @adapter: address of board private structure
4540 static void
4541 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4542 struct e1000_rx_ring *rx_ring,
4543 int cleaned_count)
4545 struct net_device *netdev = adapter->netdev;
4546 struct pci_dev *pdev = adapter->pdev;
4547 union e1000_rx_desc_packet_split *rx_desc;
4548 struct e1000_buffer *buffer_info;
4549 struct e1000_ps_page *ps_page;
4550 struct e1000_ps_page_dma *ps_page_dma;
4551 struct sk_buff *skb;
4552 unsigned int i, j;
4554 i = rx_ring->next_to_use;
4555 buffer_info = &rx_ring->buffer_info[i];
4556 ps_page = &rx_ring->ps_page[i];
4557 ps_page_dma = &rx_ring->ps_page_dma[i];
4559 while (cleaned_count--) {
4560 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4562 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4563 if (j < adapter->rx_ps_pages) {
4564 if (likely(!ps_page->ps_page[j])) {
4565 ps_page->ps_page[j] =
4566 alloc_page(GFP_ATOMIC);
4567 if (unlikely(!ps_page->ps_page[j])) {
4568 adapter->alloc_rx_buff_failed++;
4569 goto no_buffers;
4571 ps_page_dma->ps_page_dma[j] =
4572 pci_map_page(pdev,
4573 ps_page->ps_page[j],
4574 0, PAGE_SIZE,
4575 PCI_DMA_FROMDEVICE);
4577 /* Refresh the desc even if buffer_addrs didn't
4578 * change because each write-back erases
4579 * this info.
4581 rx_desc->read.buffer_addr[j+1] =
4582 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4583 } else
4584 rx_desc->read.buffer_addr[j+1] = ~0;
4587 skb = netdev_alloc_skb(netdev,
4588 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4590 if (unlikely(!skb)) {
4591 adapter->alloc_rx_buff_failed++;
4592 break;
4595 /* Make buffer alignment 2 beyond a 16 byte boundary
4596 * this will result in a 16 byte aligned IP header after
4597 * the 14 byte MAC header is removed
4599 skb_reserve(skb, NET_IP_ALIGN);
4601 buffer_info->skb = skb;
4602 buffer_info->length = adapter->rx_ps_bsize0;
4603 buffer_info->dma = pci_map_single(pdev, skb->data,
4604 adapter->rx_ps_bsize0,
4605 PCI_DMA_FROMDEVICE);
4607 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4609 if (unlikely(++i == rx_ring->count)) i = 0;
4610 buffer_info = &rx_ring->buffer_info[i];
4611 ps_page = &rx_ring->ps_page[i];
4612 ps_page_dma = &rx_ring->ps_page_dma[i];
4615 no_buffers:
4616 if (likely(rx_ring->next_to_use != i)) {
4617 rx_ring->next_to_use = i;
4618 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4620 /* Force memory writes to complete before letting h/w
4621 * know there are new descriptors to fetch. (Only
4622 * applicable for weak-ordered memory model archs,
4623 * such as IA-64). */
4624 wmb();
4625 /* Hardware increments by 16 bytes, but packet split
4626 * descriptors are 32 bytes...so we increment tail
4627 * twice as much.
4629 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4634 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4635 * @adapter:
4638 static void
4639 e1000_smartspeed(struct e1000_adapter *adapter)
4641 uint16_t phy_status;
4642 uint16_t phy_ctrl;
4644 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4645 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4646 return;
4648 if (adapter->smartspeed == 0) {
4649 /* If Master/Slave config fault is asserted twice,
4650 * we assume back-to-back */
4651 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4652 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4653 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4654 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4655 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4656 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4657 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4658 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4659 phy_ctrl);
4660 adapter->smartspeed++;
4661 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4662 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4663 &phy_ctrl)) {
4664 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4665 MII_CR_RESTART_AUTO_NEG);
4666 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4667 phy_ctrl);
4670 return;
4671 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4672 /* If still no link, perhaps using 2/3 pair cable */
4673 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4674 phy_ctrl |= CR_1000T_MS_ENABLE;
4675 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4676 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4677 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4678 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4679 MII_CR_RESTART_AUTO_NEG);
4680 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4683 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4684 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4685 adapter->smartspeed = 0;
4689 * e1000_ioctl -
4690 * @netdev:
4691 * @ifreq:
4692 * @cmd:
4695 static int
4696 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4698 switch (cmd) {
4699 case SIOCGMIIPHY:
4700 case SIOCGMIIREG:
4701 case SIOCSMIIREG:
4702 return e1000_mii_ioctl(netdev, ifr, cmd);
4703 default:
4704 return -EOPNOTSUPP;
4709 * e1000_mii_ioctl -
4710 * @netdev:
4711 * @ifreq:
4712 * @cmd:
4715 static int
4716 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4718 struct e1000_adapter *adapter = netdev_priv(netdev);
4719 struct mii_ioctl_data *data = if_mii(ifr);
4720 int retval;
4721 uint16_t mii_reg;
4722 uint16_t spddplx;
4723 unsigned long flags;
4725 if (adapter->hw.media_type != e1000_media_type_copper)
4726 return -EOPNOTSUPP;
4728 switch (cmd) {
4729 case SIOCGMIIPHY:
4730 data->phy_id = adapter->hw.phy_addr;
4731 break;
4732 case SIOCGMIIREG:
4733 if (!capable(CAP_NET_ADMIN))
4734 return -EPERM;
4735 spin_lock_irqsave(&adapter->stats_lock, flags);
4736 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4737 &data->val_out)) {
4738 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4739 return -EIO;
4741 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4742 break;
4743 case SIOCSMIIREG:
4744 if (!capable(CAP_NET_ADMIN))
4745 return -EPERM;
4746 if (data->reg_num & ~(0x1F))
4747 return -EFAULT;
4748 mii_reg = data->val_in;
4749 spin_lock_irqsave(&adapter->stats_lock, flags);
4750 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4751 mii_reg)) {
4752 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4753 return -EIO;
4755 if (adapter->hw.media_type == e1000_media_type_copper) {
4756 switch (data->reg_num) {
4757 case PHY_CTRL:
4758 if (mii_reg & MII_CR_POWER_DOWN)
4759 break;
4760 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4761 adapter->hw.autoneg = 1;
4762 adapter->hw.autoneg_advertised = 0x2F;
4763 } else {
4764 if (mii_reg & 0x40)
4765 spddplx = SPEED_1000;
4766 else if (mii_reg & 0x2000)
4767 spddplx = SPEED_100;
4768 else
4769 spddplx = SPEED_10;
4770 spddplx += (mii_reg & 0x100)
4771 ? DUPLEX_FULL :
4772 DUPLEX_HALF;
4773 retval = e1000_set_spd_dplx(adapter,
4774 spddplx);
4775 if (retval) {
4776 spin_unlock_irqrestore(
4777 &adapter->stats_lock,
4778 flags);
4779 return retval;
4782 if (netif_running(adapter->netdev))
4783 e1000_reinit_locked(adapter);
4784 else
4785 e1000_reset(adapter);
4786 break;
4787 case M88E1000_PHY_SPEC_CTRL:
4788 case M88E1000_EXT_PHY_SPEC_CTRL:
4789 if (e1000_phy_reset(&adapter->hw)) {
4790 spin_unlock_irqrestore(
4791 &adapter->stats_lock, flags);
4792 return -EIO;
4794 break;
4796 } else {
4797 switch (data->reg_num) {
4798 case PHY_CTRL:
4799 if (mii_reg & MII_CR_POWER_DOWN)
4800 break;
4801 if (netif_running(adapter->netdev))
4802 e1000_reinit_locked(adapter);
4803 else
4804 e1000_reset(adapter);
4805 break;
4808 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4809 break;
4810 default:
4811 return -EOPNOTSUPP;
4813 return E1000_SUCCESS;
4816 void
4817 e1000_pci_set_mwi(struct e1000_hw *hw)
4819 struct e1000_adapter *adapter = hw->back;
4820 int ret_val = pci_set_mwi(adapter->pdev);
4822 if (ret_val)
4823 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4826 void
4827 e1000_pci_clear_mwi(struct e1000_hw *hw)
4829 struct e1000_adapter *adapter = hw->back;
4831 pci_clear_mwi(adapter->pdev);
4834 void
4835 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4837 struct e1000_adapter *adapter = hw->back;
4839 pci_read_config_word(adapter->pdev, reg, value);
4842 void
4843 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4845 struct e1000_adapter *adapter = hw->back;
4847 pci_write_config_word(adapter->pdev, reg, *value);
4850 int32_t
4851 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4853 struct e1000_adapter *adapter = hw->back;
4854 uint16_t cap_offset;
4856 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4857 if (!cap_offset)
4858 return -E1000_ERR_CONFIG;
4860 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4862 return E1000_SUCCESS;
4865 void
4866 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4868 outl(value, port);
4871 static void
4872 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4874 struct e1000_adapter *adapter = netdev_priv(netdev);
4875 uint32_t ctrl, rctl;
4877 e1000_irq_disable(adapter);
4878 adapter->vlgrp = grp;
4880 if (grp) {
4881 /* enable VLAN tag insert/strip */
4882 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4883 ctrl |= E1000_CTRL_VME;
4884 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4886 if (adapter->hw.mac_type != e1000_ich8lan) {
4887 /* enable VLAN receive filtering */
4888 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4889 rctl |= E1000_RCTL_VFE;
4890 rctl &= ~E1000_RCTL_CFIEN;
4891 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4892 e1000_update_mng_vlan(adapter);
4894 } else {
4895 /* disable VLAN tag insert/strip */
4896 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4897 ctrl &= ~E1000_CTRL_VME;
4898 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4900 if (adapter->hw.mac_type != e1000_ich8lan) {
4901 /* disable VLAN filtering */
4902 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4903 rctl &= ~E1000_RCTL_VFE;
4904 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4905 if (adapter->mng_vlan_id !=
4906 (uint16_t)E1000_MNG_VLAN_NONE) {
4907 e1000_vlan_rx_kill_vid(netdev,
4908 adapter->mng_vlan_id);
4909 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4914 e1000_irq_enable(adapter);
4917 static void
4918 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4920 struct e1000_adapter *adapter = netdev_priv(netdev);
4921 uint32_t vfta, index;
4923 if ((adapter->hw.mng_cookie.status &
4924 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4925 (vid == adapter->mng_vlan_id))
4926 return;
4927 /* add VID to filter table */
4928 index = (vid >> 5) & 0x7F;
4929 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4930 vfta |= (1 << (vid & 0x1F));
4931 e1000_write_vfta(&adapter->hw, index, vfta);
4934 static void
4935 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4937 struct e1000_adapter *adapter = netdev_priv(netdev);
4938 uint32_t vfta, index;
4940 e1000_irq_disable(adapter);
4942 if (adapter->vlgrp)
4943 adapter->vlgrp->vlan_devices[vid] = NULL;
4945 e1000_irq_enable(adapter);
4947 if ((adapter->hw.mng_cookie.status &
4948 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4949 (vid == adapter->mng_vlan_id)) {
4950 /* release control to f/w */
4951 e1000_release_hw_control(adapter);
4952 return;
4955 /* remove VID from filter table */
4956 index = (vid >> 5) & 0x7F;
4957 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4958 vfta &= ~(1 << (vid & 0x1F));
4959 e1000_write_vfta(&adapter->hw, index, vfta);
4962 static void
4963 e1000_restore_vlan(struct e1000_adapter *adapter)
4965 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4967 if (adapter->vlgrp) {
4968 uint16_t vid;
4969 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4970 if (!adapter->vlgrp->vlan_devices[vid])
4971 continue;
4972 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4978 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4980 adapter->hw.autoneg = 0;
4982 /* Fiber NICs only allow 1000 gbps Full duplex */
4983 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4984 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4985 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4986 return -EINVAL;
4989 switch (spddplx) {
4990 case SPEED_10 + DUPLEX_HALF:
4991 adapter->hw.forced_speed_duplex = e1000_10_half;
4992 break;
4993 case SPEED_10 + DUPLEX_FULL:
4994 adapter->hw.forced_speed_duplex = e1000_10_full;
4995 break;
4996 case SPEED_100 + DUPLEX_HALF:
4997 adapter->hw.forced_speed_duplex = e1000_100_half;
4998 break;
4999 case SPEED_100 + DUPLEX_FULL:
5000 adapter->hw.forced_speed_duplex = e1000_100_full;
5001 break;
5002 case SPEED_1000 + DUPLEX_FULL:
5003 adapter->hw.autoneg = 1;
5004 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5005 break;
5006 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5007 default:
5008 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5009 return -EINVAL;
5011 return 0;
5014 #ifdef CONFIG_PM
5015 /* Save/restore 16 or 64 dwords of PCI config space depending on which
5016 * bus we're on (PCI(X) vs. PCI-E)
5018 #define PCIE_CONFIG_SPACE_LEN 256
5019 #define PCI_CONFIG_SPACE_LEN 64
5020 static int
5021 e1000_pci_save_state(struct e1000_adapter *adapter)
5023 struct pci_dev *dev = adapter->pdev;
5024 int size;
5025 int i;
5027 if (adapter->hw.mac_type >= e1000_82571)
5028 size = PCIE_CONFIG_SPACE_LEN;
5029 else
5030 size = PCI_CONFIG_SPACE_LEN;
5032 WARN_ON(adapter->config_space != NULL);
5034 adapter->config_space = kmalloc(size, GFP_KERNEL);
5035 if (!adapter->config_space) {
5036 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
5037 return -ENOMEM;
5039 for (i = 0; i < (size / 4); i++)
5040 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
5041 return 0;
5044 static void
5045 e1000_pci_restore_state(struct e1000_adapter *adapter)
5047 struct pci_dev *dev = adapter->pdev;
5048 int size;
5049 int i;
5051 if (adapter->config_space == NULL)
5052 return;
5054 if (adapter->hw.mac_type >= e1000_82571)
5055 size = PCIE_CONFIG_SPACE_LEN;
5056 else
5057 size = PCI_CONFIG_SPACE_LEN;
5058 for (i = 0; i < (size / 4); i++)
5059 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
5060 kfree(adapter->config_space);
5061 adapter->config_space = NULL;
5062 return;
5064 #endif /* CONFIG_PM */
5066 static int
5067 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5069 struct net_device *netdev = pci_get_drvdata(pdev);
5070 struct e1000_adapter *adapter = netdev_priv(netdev);
5071 uint32_t ctrl, ctrl_ext, rctl, status;
5072 uint32_t wufc = adapter->wol;
5073 #ifdef CONFIG_PM
5074 int retval = 0;
5075 #endif
5077 netif_device_detach(netdev);
5079 if (netif_running(netdev)) {
5080 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5081 e1000_down(adapter);
5084 #ifdef CONFIG_PM
5085 /* Implement our own version of pci_save_state(pdev) because pci-
5086 * express adapters have 256-byte config spaces. */
5087 retval = e1000_pci_save_state(adapter);
5088 if (retval)
5089 return retval;
5090 #endif
5092 status = E1000_READ_REG(&adapter->hw, STATUS);
5093 if (status & E1000_STATUS_LU)
5094 wufc &= ~E1000_WUFC_LNKC;
5096 if (wufc) {
5097 e1000_setup_rctl(adapter);
5098 e1000_set_multi(netdev);
5100 /* turn on all-multi mode if wake on multicast is enabled */
5101 if (wufc & E1000_WUFC_MC) {
5102 rctl = E1000_READ_REG(&adapter->hw, RCTL);
5103 rctl |= E1000_RCTL_MPE;
5104 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5107 if (adapter->hw.mac_type >= e1000_82540) {
5108 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5109 /* advertise wake from D3Cold */
5110 #define E1000_CTRL_ADVD3WUC 0x00100000
5111 /* phy power management enable */
5112 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5113 ctrl |= E1000_CTRL_ADVD3WUC |
5114 E1000_CTRL_EN_PHY_PWR_MGMT;
5115 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5118 if (adapter->hw.media_type == e1000_media_type_fiber ||
5119 adapter->hw.media_type == e1000_media_type_internal_serdes) {
5120 /* keep the laser running in D3 */
5121 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5122 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5123 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5126 /* Allow time for pending master requests to run */
5127 e1000_disable_pciex_master(&adapter->hw);
5129 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5130 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5131 pci_enable_wake(pdev, PCI_D3hot, 1);
5132 pci_enable_wake(pdev, PCI_D3cold, 1);
5133 } else {
5134 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5135 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5136 pci_enable_wake(pdev, PCI_D3hot, 0);
5137 pci_enable_wake(pdev, PCI_D3cold, 0);
5140 e1000_release_manageability(adapter);
5142 /* make sure adapter isn't asleep if manageability is enabled */
5143 if (adapter->en_mng_pt) {
5144 pci_enable_wake(pdev, PCI_D3hot, 1);
5145 pci_enable_wake(pdev, PCI_D3cold, 1);
5148 if (adapter->hw.phy_type == e1000_phy_igp_3)
5149 e1000_phy_powerdown_workaround(&adapter->hw);
5151 if (netif_running(netdev))
5152 e1000_free_irq(adapter);
5154 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5155 * would have already happened in close and is redundant. */
5156 e1000_release_hw_control(adapter);
5158 pci_disable_device(pdev);
5160 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5162 return 0;
5165 #ifdef CONFIG_PM
5166 static int
5167 e1000_resume(struct pci_dev *pdev)
5169 struct net_device *netdev = pci_get_drvdata(pdev);
5170 struct e1000_adapter *adapter = netdev_priv(netdev);
5171 uint32_t err;
5173 pci_set_power_state(pdev, PCI_D0);
5174 e1000_pci_restore_state(adapter);
5175 if ((err = pci_enable_device(pdev))) {
5176 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5177 return err;
5179 pci_set_master(pdev);
5181 pci_enable_wake(pdev, PCI_D3hot, 0);
5182 pci_enable_wake(pdev, PCI_D3cold, 0);
5184 if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5185 return err;
5187 e1000_power_up_phy(adapter);
5188 e1000_reset(adapter);
5189 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5191 e1000_init_manageability(adapter);
5193 if (netif_running(netdev))
5194 e1000_up(adapter);
5196 netif_device_attach(netdev);
5198 /* If the controller is 82573 and f/w is AMT, do not set
5199 * DRV_LOAD until the interface is up. For all other cases,
5200 * let the f/w know that the h/w is now under the control
5201 * of the driver. */
5202 if (adapter->hw.mac_type != e1000_82573 ||
5203 !e1000_check_mng_mode(&adapter->hw))
5204 e1000_get_hw_control(adapter);
5206 return 0;
5208 #endif
5210 static void e1000_shutdown(struct pci_dev *pdev)
5212 e1000_suspend(pdev, PMSG_SUSPEND);
5215 #ifdef CONFIG_NET_POLL_CONTROLLER
5217 * Polling 'interrupt' - used by things like netconsole to send skbs
5218 * without having to re-enable interrupts. It's not called while
5219 * the interrupt routine is executing.
5221 static void
5222 e1000_netpoll(struct net_device *netdev)
5224 struct e1000_adapter *adapter = netdev_priv(netdev);
5226 disable_irq(adapter->pdev->irq);
5227 e1000_intr(adapter->pdev->irq, netdev);
5228 e1000_clean_tx_irq(adapter, adapter->tx_ring);
5229 #ifndef CONFIG_E1000_NAPI
5230 adapter->clean_rx(adapter, adapter->rx_ring);
5231 #endif
5232 enable_irq(adapter->pdev->irq);
5234 #endif
5237 * e1000_io_error_detected - called when PCI error is detected
5238 * @pdev: Pointer to PCI device
5239 * @state: The current pci conneection state
5241 * This function is called after a PCI bus error affecting
5242 * this device has been detected.
5244 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5246 struct net_device *netdev = pci_get_drvdata(pdev);
5247 struct e1000_adapter *adapter = netdev->priv;
5249 netif_device_detach(netdev);
5251 if (netif_running(netdev))
5252 e1000_down(adapter);
5253 pci_disable_device(pdev);
5255 /* Request a slot slot reset. */
5256 return PCI_ERS_RESULT_NEED_RESET;
5260 * e1000_io_slot_reset - called after the pci bus has been reset.
5261 * @pdev: Pointer to PCI device
5263 * Restart the card from scratch, as if from a cold-boot. Implementation
5264 * resembles the first-half of the e1000_resume routine.
5266 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5268 struct net_device *netdev = pci_get_drvdata(pdev);
5269 struct e1000_adapter *adapter = netdev->priv;
5271 if (pci_enable_device(pdev)) {
5272 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5273 return PCI_ERS_RESULT_DISCONNECT;
5275 pci_set_master(pdev);
5277 pci_enable_wake(pdev, PCI_D3hot, 0);
5278 pci_enable_wake(pdev, PCI_D3cold, 0);
5280 e1000_reset(adapter);
5281 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5283 return PCI_ERS_RESULT_RECOVERED;
5287 * e1000_io_resume - called when traffic can start flowing again.
5288 * @pdev: Pointer to PCI device
5290 * This callback is called when the error recovery driver tells us that
5291 * its OK to resume normal operation. Implementation resembles the
5292 * second-half of the e1000_resume routine.
5294 static void e1000_io_resume(struct pci_dev *pdev)
5296 struct net_device *netdev = pci_get_drvdata(pdev);
5297 struct e1000_adapter *adapter = netdev->priv;
5299 e1000_init_manageability(adapter);
5301 if (netif_running(netdev)) {
5302 if (e1000_up(adapter)) {
5303 printk("e1000: can't bring device back up after reset\n");
5304 return;
5308 netif_device_attach(netdev);
5310 /* If the controller is 82573 and f/w is AMT, do not set
5311 * DRV_LOAD until the interface is up. For all other cases,
5312 * let the f/w know that the h/w is now under the control
5313 * of the driver. */
5314 if (adapter->hw.mac_type != e1000_82573 ||
5315 !e1000_check_mng_mode(&adapter->hw))
5316 e1000_get_hw_control(adapter);
5320 /* e1000_main.c */