[PATCH] swsusp: rework memory shrinker
[linux-2.6/verdex.git] / drivers / cpufreq / cpufreq_conservative.c
blob8878a154ed439ff9d3ad200c2a028ffdcaf1f6a2
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2004 Alexander Clouter <alex-kernel@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/sched.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
37 #define DEF_FREQUENCY_UP_THRESHOLD (80)
38 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
40 /*
41 * The polling frequency of this governor depends on the capability of
42 * the processor. Default polling frequency is 1000 times the transition
43 * latency of the processor. The governor will work on any processor with
44 * transition latency <= 10mS, using appropriate sampling
45 * rate.
46 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
47 * this governor will not work.
48 * All times here are in uS.
50 static unsigned int def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO (2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
54 #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
56 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
57 #define DEF_SAMPLING_DOWN_FACTOR (1)
58 #define MAX_SAMPLING_DOWN_FACTOR (10)
59 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
61 static void do_dbs_timer(void *data);
63 struct cpu_dbs_info_s {
64 struct cpufreq_policy *cur_policy;
65 unsigned int prev_cpu_idle_up;
66 unsigned int prev_cpu_idle_down;
67 unsigned int enable;
68 unsigned int down_skip;
69 unsigned int requested_freq;
71 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
73 static unsigned int dbs_enable; /* number of CPUs using this policy */
76 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
77 * lock and dbs_mutex. cpu_hotplug lock should always be held before
78 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
79 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
80 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
81 * is recursive for the same process. -Venki
83 static DEFINE_MUTEX (dbs_mutex);
84 static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
86 struct dbs_tuners {
87 unsigned int sampling_rate;
88 unsigned int sampling_down_factor;
89 unsigned int up_threshold;
90 unsigned int down_threshold;
91 unsigned int ignore_nice;
92 unsigned int freq_step;
95 static struct dbs_tuners dbs_tuners_ins = {
96 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
97 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
98 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
99 .ignore_nice = 0,
100 .freq_step = 5,
103 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
105 return kstat_cpu(cpu).cpustat.idle +
106 kstat_cpu(cpu).cpustat.iowait +
107 ( dbs_tuners_ins.ignore_nice ?
108 kstat_cpu(cpu).cpustat.nice :
112 /************************** sysfs interface ************************/
113 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
115 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
118 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
120 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
123 #define define_one_ro(_name) \
124 static struct freq_attr _name = \
125 __ATTR(_name, 0444, show_##_name, NULL)
127 define_one_ro(sampling_rate_max);
128 define_one_ro(sampling_rate_min);
130 /* cpufreq_conservative Governor Tunables */
131 #define show_one(file_name, object) \
132 static ssize_t show_##file_name \
133 (struct cpufreq_policy *unused, char *buf) \
135 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
137 show_one(sampling_rate, sampling_rate);
138 show_one(sampling_down_factor, sampling_down_factor);
139 show_one(up_threshold, up_threshold);
140 show_one(down_threshold, down_threshold);
141 show_one(ignore_nice_load, ignore_nice);
142 show_one(freq_step, freq_step);
144 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
145 const char *buf, size_t count)
147 unsigned int input;
148 int ret;
149 ret = sscanf (buf, "%u", &input);
150 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
151 return -EINVAL;
153 mutex_lock(&dbs_mutex);
154 dbs_tuners_ins.sampling_down_factor = input;
155 mutex_unlock(&dbs_mutex);
157 return count;
160 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
161 const char *buf, size_t count)
163 unsigned int input;
164 int ret;
165 ret = sscanf (buf, "%u", &input);
167 mutex_lock(&dbs_mutex);
168 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
169 mutex_unlock(&dbs_mutex);
170 return -EINVAL;
173 dbs_tuners_ins.sampling_rate = input;
174 mutex_unlock(&dbs_mutex);
176 return count;
179 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
180 const char *buf, size_t count)
182 unsigned int input;
183 int ret;
184 ret = sscanf (buf, "%u", &input);
186 mutex_lock(&dbs_mutex);
187 if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
188 mutex_unlock(&dbs_mutex);
189 return -EINVAL;
192 dbs_tuners_ins.up_threshold = input;
193 mutex_unlock(&dbs_mutex);
195 return count;
198 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
199 const char *buf, size_t count)
201 unsigned int input;
202 int ret;
203 ret = sscanf (buf, "%u", &input);
205 mutex_lock(&dbs_mutex);
206 if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
207 mutex_unlock(&dbs_mutex);
208 return -EINVAL;
211 dbs_tuners_ins.down_threshold = input;
212 mutex_unlock(&dbs_mutex);
214 return count;
217 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
218 const char *buf, size_t count)
220 unsigned int input;
221 int ret;
223 unsigned int j;
225 ret = sscanf (buf, "%u", &input);
226 if ( ret != 1 )
227 return -EINVAL;
229 if ( input > 1 )
230 input = 1;
232 mutex_lock(&dbs_mutex);
233 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
234 mutex_unlock(&dbs_mutex);
235 return count;
237 dbs_tuners_ins.ignore_nice = input;
239 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
240 for_each_online_cpu(j) {
241 struct cpu_dbs_info_s *j_dbs_info;
242 j_dbs_info = &per_cpu(cpu_dbs_info, j);
243 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
244 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
246 mutex_unlock(&dbs_mutex);
248 return count;
251 static ssize_t store_freq_step(struct cpufreq_policy *policy,
252 const char *buf, size_t count)
254 unsigned int input;
255 int ret;
257 ret = sscanf (buf, "%u", &input);
259 if ( ret != 1 )
260 return -EINVAL;
262 if ( input > 100 )
263 input = 100;
265 /* no need to test here if freq_step is zero as the user might actually
266 * want this, they would be crazy though :) */
267 mutex_lock(&dbs_mutex);
268 dbs_tuners_ins.freq_step = input;
269 mutex_unlock(&dbs_mutex);
271 return count;
274 #define define_one_rw(_name) \
275 static struct freq_attr _name = \
276 __ATTR(_name, 0644, show_##_name, store_##_name)
278 define_one_rw(sampling_rate);
279 define_one_rw(sampling_down_factor);
280 define_one_rw(up_threshold);
281 define_one_rw(down_threshold);
282 define_one_rw(ignore_nice_load);
283 define_one_rw(freq_step);
285 static struct attribute * dbs_attributes[] = {
286 &sampling_rate_max.attr,
287 &sampling_rate_min.attr,
288 &sampling_rate.attr,
289 &sampling_down_factor.attr,
290 &up_threshold.attr,
291 &down_threshold.attr,
292 &ignore_nice_load.attr,
293 &freq_step.attr,
294 NULL
297 static struct attribute_group dbs_attr_group = {
298 .attrs = dbs_attributes,
299 .name = "conservative",
302 /************************** sysfs end ************************/
304 static void dbs_check_cpu(int cpu)
306 unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
307 unsigned int tmp_idle_ticks, total_idle_ticks;
308 unsigned int freq_step;
309 unsigned int freq_down_sampling_rate;
310 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
311 struct cpufreq_policy *policy;
313 if (!this_dbs_info->enable)
314 return;
316 policy = this_dbs_info->cur_policy;
319 * The default safe range is 20% to 80%
320 * Every sampling_rate, we check
321 * - If current idle time is less than 20%, then we try to
322 * increase frequency
323 * Every sampling_rate*sampling_down_factor, we check
324 * - If current idle time is more than 80%, then we try to
325 * decrease frequency
327 * Any frequency increase takes it to the maximum frequency.
328 * Frequency reduction happens at minimum steps of
329 * 5% (default) of max_frequency
332 /* Check for frequency increase */
333 idle_ticks = UINT_MAX;
335 /* Check for frequency increase */
336 total_idle_ticks = get_cpu_idle_time(cpu);
337 tmp_idle_ticks = total_idle_ticks -
338 this_dbs_info->prev_cpu_idle_up;
339 this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
341 if (tmp_idle_ticks < idle_ticks)
342 idle_ticks = tmp_idle_ticks;
344 /* Scale idle ticks by 100 and compare with up and down ticks */
345 idle_ticks *= 100;
346 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
347 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
349 if (idle_ticks < up_idle_ticks) {
350 this_dbs_info->down_skip = 0;
351 this_dbs_info->prev_cpu_idle_down =
352 this_dbs_info->prev_cpu_idle_up;
354 /* if we are already at full speed then break out early */
355 if (this_dbs_info->requested_freq == policy->max)
356 return;
358 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
360 /* max freq cannot be less than 100. But who knows.... */
361 if (unlikely(freq_step == 0))
362 freq_step = 5;
364 this_dbs_info->requested_freq += freq_step;
365 if (this_dbs_info->requested_freq > policy->max)
366 this_dbs_info->requested_freq = policy->max;
368 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
369 CPUFREQ_RELATION_H);
370 return;
373 /* Check for frequency decrease */
374 this_dbs_info->down_skip++;
375 if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
376 return;
378 /* Check for frequency decrease */
379 total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
380 tmp_idle_ticks = total_idle_ticks -
381 this_dbs_info->prev_cpu_idle_down;
382 this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
384 if (tmp_idle_ticks < idle_ticks)
385 idle_ticks = tmp_idle_ticks;
387 /* Scale idle ticks by 100 and compare with up and down ticks */
388 idle_ticks *= 100;
389 this_dbs_info->down_skip = 0;
391 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
392 dbs_tuners_ins.sampling_down_factor;
393 down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
394 usecs_to_jiffies(freq_down_sampling_rate);
396 if (idle_ticks > down_idle_ticks) {
398 * if we are already at the lowest speed then break out early
399 * or if we 'cannot' reduce the speed as the user might want
400 * freq_step to be zero
402 if (this_dbs_info->requested_freq == policy->min
403 || dbs_tuners_ins.freq_step == 0)
404 return;
406 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
408 /* max freq cannot be less than 100. But who knows.... */
409 if (unlikely(freq_step == 0))
410 freq_step = 5;
412 this_dbs_info->requested_freq -= freq_step;
413 if (this_dbs_info->requested_freq < policy->min)
414 this_dbs_info->requested_freq = policy->min;
416 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
417 CPUFREQ_RELATION_H);
418 return;
422 static void do_dbs_timer(void *data)
424 int i;
425 lock_cpu_hotplug();
426 mutex_lock(&dbs_mutex);
427 for_each_online_cpu(i)
428 dbs_check_cpu(i);
429 schedule_delayed_work(&dbs_work,
430 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
431 mutex_unlock(&dbs_mutex);
432 unlock_cpu_hotplug();
435 static inline void dbs_timer_init(void)
437 INIT_WORK(&dbs_work, do_dbs_timer, NULL);
438 schedule_delayed_work(&dbs_work,
439 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
440 return;
443 static inline void dbs_timer_exit(void)
445 cancel_delayed_work(&dbs_work);
446 return;
449 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
450 unsigned int event)
452 unsigned int cpu = policy->cpu;
453 struct cpu_dbs_info_s *this_dbs_info;
454 unsigned int j;
456 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
458 switch (event) {
459 case CPUFREQ_GOV_START:
460 if ((!cpu_online(cpu)) ||
461 (!policy->cur))
462 return -EINVAL;
464 if (policy->cpuinfo.transition_latency >
465 (TRANSITION_LATENCY_LIMIT * 1000))
466 return -EINVAL;
467 if (this_dbs_info->enable) /* Already enabled */
468 break;
470 mutex_lock(&dbs_mutex);
471 for_each_cpu_mask(j, policy->cpus) {
472 struct cpu_dbs_info_s *j_dbs_info;
473 j_dbs_info = &per_cpu(cpu_dbs_info, j);
474 j_dbs_info->cur_policy = policy;
476 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
477 j_dbs_info->prev_cpu_idle_down
478 = j_dbs_info->prev_cpu_idle_up;
480 this_dbs_info->enable = 1;
481 this_dbs_info->down_skip = 0;
482 this_dbs_info->requested_freq = policy->cur;
483 sysfs_create_group(&policy->kobj, &dbs_attr_group);
484 dbs_enable++;
486 * Start the timerschedule work, when this governor
487 * is used for first time
489 if (dbs_enable == 1) {
490 unsigned int latency;
491 /* policy latency is in nS. Convert it to uS first */
492 latency = policy->cpuinfo.transition_latency / 1000;
493 if (latency == 0)
494 latency = 1;
496 def_sampling_rate = 10 * latency *
497 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
499 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
500 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
502 dbs_tuners_ins.sampling_rate = def_sampling_rate;
504 dbs_timer_init();
507 mutex_unlock(&dbs_mutex);
508 break;
510 case CPUFREQ_GOV_STOP:
511 mutex_lock(&dbs_mutex);
512 this_dbs_info->enable = 0;
513 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
514 dbs_enable--;
516 * Stop the timerschedule work, when this governor
517 * is used for first time
519 if (dbs_enable == 0)
520 dbs_timer_exit();
522 mutex_unlock(&dbs_mutex);
524 break;
526 case CPUFREQ_GOV_LIMITS:
527 lock_cpu_hotplug();
528 mutex_lock(&dbs_mutex);
529 if (policy->max < this_dbs_info->cur_policy->cur)
530 __cpufreq_driver_target(
531 this_dbs_info->cur_policy,
532 policy->max, CPUFREQ_RELATION_H);
533 else if (policy->min > this_dbs_info->cur_policy->cur)
534 __cpufreq_driver_target(
535 this_dbs_info->cur_policy,
536 policy->min, CPUFREQ_RELATION_L);
537 mutex_unlock(&dbs_mutex);
538 unlock_cpu_hotplug();
539 break;
541 return 0;
544 static struct cpufreq_governor cpufreq_gov_dbs = {
545 .name = "conservative",
546 .governor = cpufreq_governor_dbs,
547 .owner = THIS_MODULE,
550 static int __init cpufreq_gov_dbs_init(void)
552 return cpufreq_register_governor(&cpufreq_gov_dbs);
555 static void __exit cpufreq_gov_dbs_exit(void)
557 /* Make sure that the scheduled work is indeed not running */
558 flush_scheduled_work();
560 cpufreq_unregister_governor(&cpufreq_gov_dbs);
564 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
565 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
566 "Low Latency Frequency Transition capable processors "
567 "optimised for use in a battery environment");
568 MODULE_LICENSE ("GPL");
570 module_init(cpufreq_gov_dbs_init);
571 module_exit(cpufreq_gov_dbs_exit);