ext4: delayed allocation ENOSPC handling
[linux-2.6/verdex.git] / fs / ext4 / inode.c
bloba6b800c58474782e9db8d98adae518a215cf2b4c
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
44 static inline int ext4_begin_ordered_truncate(struct inode *inode,
45 loff_t new_size)
47 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
48 new_size);
51 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54 * Test whether an inode is a fast symlink.
56 static int ext4_inode_is_fast_symlink(struct inode *inode)
58 int ea_blocks = EXT4_I(inode)->i_file_acl ?
59 (inode->i_sb->s_blocksize >> 9) : 0;
61 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
65 * The ext4 forget function must perform a revoke if we are freeing data
66 * which has been journaled. Metadata (eg. indirect blocks) must be
67 * revoked in all cases.
69 * "bh" may be NULL: a metadata block may have been freed from memory
70 * but there may still be a record of it in the journal, and that record
71 * still needs to be revoked.
73 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
74 struct buffer_head *bh, ext4_fsblk_t blocknr)
76 int err;
78 might_sleep();
80 BUFFER_TRACE(bh, "enter");
82 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
83 "data mode %lx\n",
84 bh, is_metadata, inode->i_mode,
85 test_opt(inode->i_sb, DATA_FLAGS));
87 /* Never use the revoke function if we are doing full data
88 * journaling: there is no need to, and a V1 superblock won't
89 * support it. Otherwise, only skip the revoke on un-journaled
90 * data blocks. */
92 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
93 (!is_metadata && !ext4_should_journal_data(inode))) {
94 if (bh) {
95 BUFFER_TRACE(bh, "call jbd2_journal_forget");
96 return ext4_journal_forget(handle, bh);
98 return 0;
102 * data!=journal && (is_metadata || should_journal_data(inode))
104 BUFFER_TRACE(bh, "call ext4_journal_revoke");
105 err = ext4_journal_revoke(handle, blocknr, bh);
106 if (err)
107 ext4_abort(inode->i_sb, __func__,
108 "error %d when attempting revoke", err);
109 BUFFER_TRACE(bh, "exit");
110 return err;
114 * Work out how many blocks we need to proceed with the next chunk of a
115 * truncate transaction.
117 static unsigned long blocks_for_truncate(struct inode *inode)
119 ext4_lblk_t needed;
121 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
123 /* Give ourselves just enough room to cope with inodes in which
124 * i_blocks is corrupt: we've seen disk corruptions in the past
125 * which resulted in random data in an inode which looked enough
126 * like a regular file for ext4 to try to delete it. Things
127 * will go a bit crazy if that happens, but at least we should
128 * try not to panic the whole kernel. */
129 if (needed < 2)
130 needed = 2;
132 /* But we need to bound the transaction so we don't overflow the
133 * journal. */
134 if (needed > EXT4_MAX_TRANS_DATA)
135 needed = EXT4_MAX_TRANS_DATA;
137 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
141 * Truncate transactions can be complex and absolutely huge. So we need to
142 * be able to restart the transaction at a conventient checkpoint to make
143 * sure we don't overflow the journal.
145 * start_transaction gets us a new handle for a truncate transaction,
146 * and extend_transaction tries to extend the existing one a bit. If
147 * extend fails, we need to propagate the failure up and restart the
148 * transaction in the top-level truncate loop. --sct
150 static handle_t *start_transaction(struct inode *inode)
152 handle_t *result;
154 result = ext4_journal_start(inode, blocks_for_truncate(inode));
155 if (!IS_ERR(result))
156 return result;
158 ext4_std_error(inode->i_sb, PTR_ERR(result));
159 return result;
163 * Try to extend this transaction for the purposes of truncation.
165 * Returns 0 if we managed to create more room. If we can't create more
166 * room, and the transaction must be restarted we return 1.
168 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
170 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
171 return 0;
172 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
173 return 0;
174 return 1;
178 * Restart the transaction associated with *handle. This does a commit,
179 * so before we call here everything must be consistently dirtied against
180 * this transaction.
182 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
184 jbd_debug(2, "restarting handle %p\n", handle);
185 return ext4_journal_restart(handle, blocks_for_truncate(inode));
189 * Called at the last iput() if i_nlink is zero.
191 void ext4_delete_inode (struct inode * inode)
193 handle_t *handle;
195 if (ext4_should_order_data(inode))
196 ext4_begin_ordered_truncate(inode, 0);
197 truncate_inode_pages(&inode->i_data, 0);
199 if (is_bad_inode(inode))
200 goto no_delete;
202 handle = start_transaction(inode);
203 if (IS_ERR(handle)) {
205 * If we're going to skip the normal cleanup, we still need to
206 * make sure that the in-core orphan linked list is properly
207 * cleaned up.
209 ext4_orphan_del(NULL, inode);
210 goto no_delete;
213 if (IS_SYNC(inode))
214 handle->h_sync = 1;
215 inode->i_size = 0;
216 if (inode->i_blocks)
217 ext4_truncate(inode);
219 * Kill off the orphan record which ext4_truncate created.
220 * AKPM: I think this can be inside the above `if'.
221 * Note that ext4_orphan_del() has to be able to cope with the
222 * deletion of a non-existent orphan - this is because we don't
223 * know if ext4_truncate() actually created an orphan record.
224 * (Well, we could do this if we need to, but heck - it works)
226 ext4_orphan_del(handle, inode);
227 EXT4_I(inode)->i_dtime = get_seconds();
230 * One subtle ordering requirement: if anything has gone wrong
231 * (transaction abort, IO errors, whatever), then we can still
232 * do these next steps (the fs will already have been marked as
233 * having errors), but we can't free the inode if the mark_dirty
234 * fails.
236 if (ext4_mark_inode_dirty(handle, inode))
237 /* If that failed, just do the required in-core inode clear. */
238 clear_inode(inode);
239 else
240 ext4_free_inode(handle, inode);
241 ext4_journal_stop(handle);
242 return;
243 no_delete:
244 clear_inode(inode); /* We must guarantee clearing of inode... */
247 typedef struct {
248 __le32 *p;
249 __le32 key;
250 struct buffer_head *bh;
251 } Indirect;
253 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
255 p->key = *(p->p = v);
256 p->bh = bh;
260 * ext4_block_to_path - parse the block number into array of offsets
261 * @inode: inode in question (we are only interested in its superblock)
262 * @i_block: block number to be parsed
263 * @offsets: array to store the offsets in
264 * @boundary: set this non-zero if the referred-to block is likely to be
265 * followed (on disk) by an indirect block.
267 * To store the locations of file's data ext4 uses a data structure common
268 * for UNIX filesystems - tree of pointers anchored in the inode, with
269 * data blocks at leaves and indirect blocks in intermediate nodes.
270 * This function translates the block number into path in that tree -
271 * return value is the path length and @offsets[n] is the offset of
272 * pointer to (n+1)th node in the nth one. If @block is out of range
273 * (negative or too large) warning is printed and zero returned.
275 * Note: function doesn't find node addresses, so no IO is needed. All
276 * we need to know is the capacity of indirect blocks (taken from the
277 * inode->i_sb).
281 * Portability note: the last comparison (check that we fit into triple
282 * indirect block) is spelled differently, because otherwise on an
283 * architecture with 32-bit longs and 8Kb pages we might get into trouble
284 * if our filesystem had 8Kb blocks. We might use long long, but that would
285 * kill us on x86. Oh, well, at least the sign propagation does not matter -
286 * i_block would have to be negative in the very beginning, so we would not
287 * get there at all.
290 static int ext4_block_to_path(struct inode *inode,
291 ext4_lblk_t i_block,
292 ext4_lblk_t offsets[4], int *boundary)
294 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
295 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
296 const long direct_blocks = EXT4_NDIR_BLOCKS,
297 indirect_blocks = ptrs,
298 double_blocks = (1 << (ptrs_bits * 2));
299 int n = 0;
300 int final = 0;
302 if (i_block < 0) {
303 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
304 } else if (i_block < direct_blocks) {
305 offsets[n++] = i_block;
306 final = direct_blocks;
307 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
308 offsets[n++] = EXT4_IND_BLOCK;
309 offsets[n++] = i_block;
310 final = ptrs;
311 } else if ((i_block -= indirect_blocks) < double_blocks) {
312 offsets[n++] = EXT4_DIND_BLOCK;
313 offsets[n++] = i_block >> ptrs_bits;
314 offsets[n++] = i_block & (ptrs - 1);
315 final = ptrs;
316 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
317 offsets[n++] = EXT4_TIND_BLOCK;
318 offsets[n++] = i_block >> (ptrs_bits * 2);
319 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
320 offsets[n++] = i_block & (ptrs - 1);
321 final = ptrs;
322 } else {
323 ext4_warning(inode->i_sb, "ext4_block_to_path",
324 "block %lu > max",
325 i_block + direct_blocks +
326 indirect_blocks + double_blocks);
328 if (boundary)
329 *boundary = final - 1 - (i_block & (ptrs - 1));
330 return n;
334 * ext4_get_branch - read the chain of indirect blocks leading to data
335 * @inode: inode in question
336 * @depth: depth of the chain (1 - direct pointer, etc.)
337 * @offsets: offsets of pointers in inode/indirect blocks
338 * @chain: place to store the result
339 * @err: here we store the error value
341 * Function fills the array of triples <key, p, bh> and returns %NULL
342 * if everything went OK or the pointer to the last filled triple
343 * (incomplete one) otherwise. Upon the return chain[i].key contains
344 * the number of (i+1)-th block in the chain (as it is stored in memory,
345 * i.e. little-endian 32-bit), chain[i].p contains the address of that
346 * number (it points into struct inode for i==0 and into the bh->b_data
347 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
348 * block for i>0 and NULL for i==0. In other words, it holds the block
349 * numbers of the chain, addresses they were taken from (and where we can
350 * verify that chain did not change) and buffer_heads hosting these
351 * numbers.
353 * Function stops when it stumbles upon zero pointer (absent block)
354 * (pointer to last triple returned, *@err == 0)
355 * or when it gets an IO error reading an indirect block
356 * (ditto, *@err == -EIO)
357 * or when it reads all @depth-1 indirect blocks successfully and finds
358 * the whole chain, all way to the data (returns %NULL, *err == 0).
360 * Need to be called with
361 * down_read(&EXT4_I(inode)->i_data_sem)
363 static Indirect *ext4_get_branch(struct inode *inode, int depth,
364 ext4_lblk_t *offsets,
365 Indirect chain[4], int *err)
367 struct super_block *sb = inode->i_sb;
368 Indirect *p = chain;
369 struct buffer_head *bh;
371 *err = 0;
372 /* i_data is not going away, no lock needed */
373 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
374 if (!p->key)
375 goto no_block;
376 while (--depth) {
377 bh = sb_bread(sb, le32_to_cpu(p->key));
378 if (!bh)
379 goto failure;
380 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
381 /* Reader: end */
382 if (!p->key)
383 goto no_block;
385 return NULL;
387 failure:
388 *err = -EIO;
389 no_block:
390 return p;
394 * ext4_find_near - find a place for allocation with sufficient locality
395 * @inode: owner
396 * @ind: descriptor of indirect block.
398 * This function returns the preferred place for block allocation.
399 * It is used when heuristic for sequential allocation fails.
400 * Rules are:
401 * + if there is a block to the left of our position - allocate near it.
402 * + if pointer will live in indirect block - allocate near that block.
403 * + if pointer will live in inode - allocate in the same
404 * cylinder group.
406 * In the latter case we colour the starting block by the callers PID to
407 * prevent it from clashing with concurrent allocations for a different inode
408 * in the same block group. The PID is used here so that functionally related
409 * files will be close-by on-disk.
411 * Caller must make sure that @ind is valid and will stay that way.
413 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
415 struct ext4_inode_info *ei = EXT4_I(inode);
416 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
417 __le32 *p;
418 ext4_fsblk_t bg_start;
419 ext4_fsblk_t last_block;
420 ext4_grpblk_t colour;
422 /* Try to find previous block */
423 for (p = ind->p - 1; p >= start; p--) {
424 if (*p)
425 return le32_to_cpu(*p);
428 /* No such thing, so let's try location of indirect block */
429 if (ind->bh)
430 return ind->bh->b_blocknr;
433 * It is going to be referred to from the inode itself? OK, just put it
434 * into the same cylinder group then.
436 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
437 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
439 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
440 colour = (current->pid % 16) *
441 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
442 else
443 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
444 return bg_start + colour;
448 * ext4_find_goal - find a preferred place for allocation.
449 * @inode: owner
450 * @block: block we want
451 * @partial: pointer to the last triple within a chain
453 * Normally this function find the preferred place for block allocation,
454 * returns it.
456 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
457 Indirect *partial)
459 struct ext4_block_alloc_info *block_i;
461 block_i = EXT4_I(inode)->i_block_alloc_info;
464 * try the heuristic for sequential allocation,
465 * failing that at least try to get decent locality.
467 if (block_i && (block == block_i->last_alloc_logical_block + 1)
468 && (block_i->last_alloc_physical_block != 0)) {
469 return block_i->last_alloc_physical_block + 1;
472 return ext4_find_near(inode, partial);
476 * ext4_blks_to_allocate: Look up the block map and count the number
477 * of direct blocks need to be allocated for the given branch.
479 * @branch: chain of indirect blocks
480 * @k: number of blocks need for indirect blocks
481 * @blks: number of data blocks to be mapped.
482 * @blocks_to_boundary: the offset in the indirect block
484 * return the total number of blocks to be allocate, including the
485 * direct and indirect blocks.
487 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
488 int blocks_to_boundary)
490 unsigned long count = 0;
493 * Simple case, [t,d]Indirect block(s) has not allocated yet
494 * then it's clear blocks on that path have not allocated
496 if (k > 0) {
497 /* right now we don't handle cross boundary allocation */
498 if (blks < blocks_to_boundary + 1)
499 count += blks;
500 else
501 count += blocks_to_boundary + 1;
502 return count;
505 count++;
506 while (count < blks && count <= blocks_to_boundary &&
507 le32_to_cpu(*(branch[0].p + count)) == 0) {
508 count++;
510 return count;
514 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
515 * @indirect_blks: the number of blocks need to allocate for indirect
516 * blocks
518 * @new_blocks: on return it will store the new block numbers for
519 * the indirect blocks(if needed) and the first direct block,
520 * @blks: on return it will store the total number of allocated
521 * direct blocks
523 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
524 ext4_lblk_t iblock, ext4_fsblk_t goal,
525 int indirect_blks, int blks,
526 ext4_fsblk_t new_blocks[4], int *err)
528 int target, i;
529 unsigned long count = 0, blk_allocated = 0;
530 int index = 0;
531 ext4_fsblk_t current_block = 0;
532 int ret = 0;
535 * Here we try to allocate the requested multiple blocks at once,
536 * on a best-effort basis.
537 * To build a branch, we should allocate blocks for
538 * the indirect blocks(if not allocated yet), and at least
539 * the first direct block of this branch. That's the
540 * minimum number of blocks need to allocate(required)
542 /* first we try to allocate the indirect blocks */
543 target = indirect_blks;
544 while (target > 0) {
545 count = target;
546 /* allocating blocks for indirect blocks and direct blocks */
547 current_block = ext4_new_meta_blocks(handle, inode,
548 goal, &count, err);
549 if (*err)
550 goto failed_out;
552 target -= count;
553 /* allocate blocks for indirect blocks */
554 while (index < indirect_blks && count) {
555 new_blocks[index++] = current_block++;
556 count--;
558 if (count > 0) {
560 * save the new block number
561 * for the first direct block
563 new_blocks[index] = current_block;
564 printk(KERN_INFO "%s returned more blocks than "
565 "requested\n", __func__);
566 WARN_ON(1);
567 break;
571 target = blks - count ;
572 blk_allocated = count;
573 if (!target)
574 goto allocated;
575 /* Now allocate data blocks */
576 count = target;
577 /* allocating blocks for data blocks */
578 current_block = ext4_new_blocks(handle, inode, iblock,
579 goal, &count, err);
580 if (*err && (target == blks)) {
582 * if the allocation failed and we didn't allocate
583 * any blocks before
585 goto failed_out;
587 if (!*err) {
588 if (target == blks) {
590 * save the new block number
591 * for the first direct block
593 new_blocks[index] = current_block;
595 blk_allocated += count;
597 allocated:
598 /* total number of blocks allocated for direct blocks */
599 ret = blk_allocated;
600 *err = 0;
601 return ret;
602 failed_out:
603 for (i = 0; i <index; i++)
604 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
605 return ret;
609 * ext4_alloc_branch - allocate and set up a chain of blocks.
610 * @inode: owner
611 * @indirect_blks: number of allocated indirect blocks
612 * @blks: number of allocated direct blocks
613 * @offsets: offsets (in the blocks) to store the pointers to next.
614 * @branch: place to store the chain in.
616 * This function allocates blocks, zeroes out all but the last one,
617 * links them into chain and (if we are synchronous) writes them to disk.
618 * In other words, it prepares a branch that can be spliced onto the
619 * inode. It stores the information about that chain in the branch[], in
620 * the same format as ext4_get_branch() would do. We are calling it after
621 * we had read the existing part of chain and partial points to the last
622 * triple of that (one with zero ->key). Upon the exit we have the same
623 * picture as after the successful ext4_get_block(), except that in one
624 * place chain is disconnected - *branch->p is still zero (we did not
625 * set the last link), but branch->key contains the number that should
626 * be placed into *branch->p to fill that gap.
628 * If allocation fails we free all blocks we've allocated (and forget
629 * their buffer_heads) and return the error value the from failed
630 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
631 * as described above and return 0.
633 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
634 ext4_lblk_t iblock, int indirect_blks,
635 int *blks, ext4_fsblk_t goal,
636 ext4_lblk_t *offsets, Indirect *branch)
638 int blocksize = inode->i_sb->s_blocksize;
639 int i, n = 0;
640 int err = 0;
641 struct buffer_head *bh;
642 int num;
643 ext4_fsblk_t new_blocks[4];
644 ext4_fsblk_t current_block;
646 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
647 *blks, new_blocks, &err);
648 if (err)
649 return err;
651 branch[0].key = cpu_to_le32(new_blocks[0]);
653 * metadata blocks and data blocks are allocated.
655 for (n = 1; n <= indirect_blks; n++) {
657 * Get buffer_head for parent block, zero it out
658 * and set the pointer to new one, then send
659 * parent to disk.
661 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
662 branch[n].bh = bh;
663 lock_buffer(bh);
664 BUFFER_TRACE(bh, "call get_create_access");
665 err = ext4_journal_get_create_access(handle, bh);
666 if (err) {
667 unlock_buffer(bh);
668 brelse(bh);
669 goto failed;
672 memset(bh->b_data, 0, blocksize);
673 branch[n].p = (__le32 *) bh->b_data + offsets[n];
674 branch[n].key = cpu_to_le32(new_blocks[n]);
675 *branch[n].p = branch[n].key;
676 if ( n == indirect_blks) {
677 current_block = new_blocks[n];
679 * End of chain, update the last new metablock of
680 * the chain to point to the new allocated
681 * data blocks numbers
683 for (i=1; i < num; i++)
684 *(branch[n].p + i) = cpu_to_le32(++current_block);
686 BUFFER_TRACE(bh, "marking uptodate");
687 set_buffer_uptodate(bh);
688 unlock_buffer(bh);
690 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
691 err = ext4_journal_dirty_metadata(handle, bh);
692 if (err)
693 goto failed;
695 *blks = num;
696 return err;
697 failed:
698 /* Allocation failed, free what we already allocated */
699 for (i = 1; i <= n ; i++) {
700 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
701 ext4_journal_forget(handle, branch[i].bh);
703 for (i = 0; i <indirect_blks; i++)
704 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
706 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
708 return err;
712 * ext4_splice_branch - splice the allocated branch onto inode.
713 * @inode: owner
714 * @block: (logical) number of block we are adding
715 * @chain: chain of indirect blocks (with a missing link - see
716 * ext4_alloc_branch)
717 * @where: location of missing link
718 * @num: number of indirect blocks we are adding
719 * @blks: number of direct blocks we are adding
721 * This function fills the missing link and does all housekeeping needed in
722 * inode (->i_blocks, etc.). In case of success we end up with the full
723 * chain to new block and return 0.
725 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
726 ext4_lblk_t block, Indirect *where, int num, int blks)
728 int i;
729 int err = 0;
730 struct ext4_block_alloc_info *block_i;
731 ext4_fsblk_t current_block;
733 block_i = EXT4_I(inode)->i_block_alloc_info;
735 * If we're splicing into a [td]indirect block (as opposed to the
736 * inode) then we need to get write access to the [td]indirect block
737 * before the splice.
739 if (where->bh) {
740 BUFFER_TRACE(where->bh, "get_write_access");
741 err = ext4_journal_get_write_access(handle, where->bh);
742 if (err)
743 goto err_out;
745 /* That's it */
747 *where->p = where->key;
750 * Update the host buffer_head or inode to point to more just allocated
751 * direct blocks blocks
753 if (num == 0 && blks > 1) {
754 current_block = le32_to_cpu(where->key) + 1;
755 for (i = 1; i < blks; i++)
756 *(where->p + i ) = cpu_to_le32(current_block++);
760 * update the most recently allocated logical & physical block
761 * in i_block_alloc_info, to assist find the proper goal block for next
762 * allocation
764 if (block_i) {
765 block_i->last_alloc_logical_block = block + blks - 1;
766 block_i->last_alloc_physical_block =
767 le32_to_cpu(where[num].key) + blks - 1;
770 /* We are done with atomic stuff, now do the rest of housekeeping */
772 inode->i_ctime = ext4_current_time(inode);
773 ext4_mark_inode_dirty(handle, inode);
775 /* had we spliced it onto indirect block? */
776 if (where->bh) {
778 * If we spliced it onto an indirect block, we haven't
779 * altered the inode. Note however that if it is being spliced
780 * onto an indirect block at the very end of the file (the
781 * file is growing) then we *will* alter the inode to reflect
782 * the new i_size. But that is not done here - it is done in
783 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
785 jbd_debug(5, "splicing indirect only\n");
786 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
787 err = ext4_journal_dirty_metadata(handle, where->bh);
788 if (err)
789 goto err_out;
790 } else {
792 * OK, we spliced it into the inode itself on a direct block.
793 * Inode was dirtied above.
795 jbd_debug(5, "splicing direct\n");
797 return err;
799 err_out:
800 for (i = 1; i <= num; i++) {
801 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
802 ext4_journal_forget(handle, where[i].bh);
803 ext4_free_blocks(handle, inode,
804 le32_to_cpu(where[i-1].key), 1, 0);
806 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
808 return err;
812 * Allocation strategy is simple: if we have to allocate something, we will
813 * have to go the whole way to leaf. So let's do it before attaching anything
814 * to tree, set linkage between the newborn blocks, write them if sync is
815 * required, recheck the path, free and repeat if check fails, otherwise
816 * set the last missing link (that will protect us from any truncate-generated
817 * removals - all blocks on the path are immune now) and possibly force the
818 * write on the parent block.
819 * That has a nice additional property: no special recovery from the failed
820 * allocations is needed - we simply release blocks and do not touch anything
821 * reachable from inode.
823 * `handle' can be NULL if create == 0.
825 * return > 0, # of blocks mapped or allocated.
826 * return = 0, if plain lookup failed.
827 * return < 0, error case.
830 * Need to be called with
831 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
832 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
834 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
835 ext4_lblk_t iblock, unsigned long maxblocks,
836 struct buffer_head *bh_result,
837 int create, int extend_disksize)
839 int err = -EIO;
840 ext4_lblk_t offsets[4];
841 Indirect chain[4];
842 Indirect *partial;
843 ext4_fsblk_t goal;
844 int indirect_blks;
845 int blocks_to_boundary = 0;
846 int depth;
847 struct ext4_inode_info *ei = EXT4_I(inode);
848 int count = 0;
849 ext4_fsblk_t first_block = 0;
852 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
853 J_ASSERT(handle != NULL || create == 0);
854 depth = ext4_block_to_path(inode, iblock, offsets,
855 &blocks_to_boundary);
857 if (depth == 0)
858 goto out;
860 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
862 /* Simplest case - block found, no allocation needed */
863 if (!partial) {
864 first_block = le32_to_cpu(chain[depth - 1].key);
865 clear_buffer_new(bh_result);
866 count++;
867 /*map more blocks*/
868 while (count < maxblocks && count <= blocks_to_boundary) {
869 ext4_fsblk_t blk;
871 blk = le32_to_cpu(*(chain[depth-1].p + count));
873 if (blk == first_block + count)
874 count++;
875 else
876 break;
878 goto got_it;
881 /* Next simple case - plain lookup or failed read of indirect block */
882 if (!create || err == -EIO)
883 goto cleanup;
886 * Okay, we need to do block allocation. Lazily initialize the block
887 * allocation info here if necessary
889 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
890 ext4_init_block_alloc_info(inode);
892 goal = ext4_find_goal(inode, iblock, partial);
894 /* the number of blocks need to allocate for [d,t]indirect blocks */
895 indirect_blks = (chain + depth) - partial - 1;
898 * Next look up the indirect map to count the totoal number of
899 * direct blocks to allocate for this branch.
901 count = ext4_blks_to_allocate(partial, indirect_blks,
902 maxblocks, blocks_to_boundary);
904 * Block out ext4_truncate while we alter the tree
906 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
907 &count, goal,
908 offsets + (partial - chain), partial);
911 * The ext4_splice_branch call will free and forget any buffers
912 * on the new chain if there is a failure, but that risks using
913 * up transaction credits, especially for bitmaps where the
914 * credits cannot be returned. Can we handle this somehow? We
915 * may need to return -EAGAIN upwards in the worst case. --sct
917 if (!err)
918 err = ext4_splice_branch(handle, inode, iblock,
919 partial, indirect_blks, count);
921 * i_disksize growing is protected by i_data_sem. Don't forget to
922 * protect it if you're about to implement concurrent
923 * ext4_get_block() -bzzz
925 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
926 ei->i_disksize = inode->i_size;
927 if (err)
928 goto cleanup;
930 set_buffer_new(bh_result);
931 got_it:
932 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
933 if (count > blocks_to_boundary)
934 set_buffer_boundary(bh_result);
935 err = count;
936 /* Clean up and exit */
937 partial = chain + depth - 1; /* the whole chain */
938 cleanup:
939 while (partial > chain) {
940 BUFFER_TRACE(partial->bh, "call brelse");
941 brelse(partial->bh);
942 partial--;
944 BUFFER_TRACE(bh_result, "returned");
945 out:
946 return err;
949 /* Maximum number of blocks we map for direct IO at once. */
950 #define DIO_MAX_BLOCKS 4096
952 * Number of credits we need for writing DIO_MAX_BLOCKS:
953 * We need sb + group descriptor + bitmap + inode -> 4
954 * For B blocks with A block pointers per block we need:
955 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
956 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
958 #define DIO_CREDITS 25
964 * ext4_ext4 get_block() wrapper function
965 * It will do a look up first, and returns if the blocks already mapped.
966 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
967 * and store the allocated blocks in the result buffer head and mark it
968 * mapped.
970 * If file type is extents based, it will call ext4_ext_get_blocks(),
971 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
972 * based files
974 * On success, it returns the number of blocks being mapped or allocate.
975 * if create==0 and the blocks are pre-allocated and uninitialized block,
976 * the result buffer head is unmapped. If the create ==1, it will make sure
977 * the buffer head is mapped.
979 * It returns 0 if plain look up failed (blocks have not been allocated), in
980 * that casem, buffer head is unmapped
982 * It returns the error in case of allocation failure.
984 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
985 unsigned long max_blocks, struct buffer_head *bh,
986 int create, int extend_disksize, int flag)
988 int retval;
990 clear_buffer_mapped(bh);
993 * Try to see if we can get the block without requesting
994 * for new file system block.
996 down_read((&EXT4_I(inode)->i_data_sem));
997 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
998 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
999 bh, 0, 0);
1000 } else {
1001 retval = ext4_get_blocks_handle(handle,
1002 inode, block, max_blocks, bh, 0, 0);
1004 up_read((&EXT4_I(inode)->i_data_sem));
1006 /* If it is only a block(s) look up */
1007 if (!create)
1008 return retval;
1011 * Returns if the blocks have already allocated
1013 * Note that if blocks have been preallocated
1014 * ext4_ext_get_block() returns th create = 0
1015 * with buffer head unmapped.
1017 if (retval > 0 && buffer_mapped(bh))
1018 return retval;
1021 * New blocks allocate and/or writing to uninitialized extent
1022 * will possibly result in updating i_data, so we take
1023 * the write lock of i_data_sem, and call get_blocks()
1024 * with create == 1 flag.
1026 down_write((&EXT4_I(inode)->i_data_sem));
1029 * if the caller is from delayed allocation writeout path
1030 * we have already reserved fs blocks for allocation
1031 * let the underlying get_block() function know to
1032 * avoid double accounting
1034 if (flag)
1035 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1037 * We need to check for EXT4 here because migrate
1038 * could have changed the inode type in between
1040 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1041 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1042 bh, create, extend_disksize);
1043 } else {
1044 retval = ext4_get_blocks_handle(handle, inode, block,
1045 max_blocks, bh, create, extend_disksize);
1047 if (retval > 0 && buffer_new(bh)) {
1049 * We allocated new blocks which will result in
1050 * i_data's format changing. Force the migrate
1051 * to fail by clearing migrate flags
1053 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1054 ~EXT4_EXT_MIGRATE;
1058 if (flag) {
1059 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1061 * Update reserved blocks/metadata blocks
1062 * after successful block allocation
1063 * which were deferred till now
1065 if ((retval > 0) && buffer_delay(bh))
1066 ext4_da_release_space(inode, retval, 0);
1069 up_write((&EXT4_I(inode)->i_data_sem));
1070 return retval;
1073 static int ext4_get_block(struct inode *inode, sector_t iblock,
1074 struct buffer_head *bh_result, int create)
1076 handle_t *handle = ext4_journal_current_handle();
1077 int ret = 0, started = 0;
1078 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1080 if (create && !handle) {
1081 /* Direct IO write... */
1082 if (max_blocks > DIO_MAX_BLOCKS)
1083 max_blocks = DIO_MAX_BLOCKS;
1084 handle = ext4_journal_start(inode, DIO_CREDITS +
1085 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1086 if (IS_ERR(handle)) {
1087 ret = PTR_ERR(handle);
1088 goto out;
1090 started = 1;
1093 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1094 max_blocks, bh_result, create, 0, 0);
1095 if (ret > 0) {
1096 bh_result->b_size = (ret << inode->i_blkbits);
1097 ret = 0;
1099 if (started)
1100 ext4_journal_stop(handle);
1101 out:
1102 return ret;
1106 * `handle' can be NULL if create is zero
1108 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1109 ext4_lblk_t block, int create, int *errp)
1111 struct buffer_head dummy;
1112 int fatal = 0, err;
1114 J_ASSERT(handle != NULL || create == 0);
1116 dummy.b_state = 0;
1117 dummy.b_blocknr = -1000;
1118 buffer_trace_init(&dummy.b_history);
1119 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1120 &dummy, create, 1, 0);
1122 * ext4_get_blocks_handle() returns number of blocks
1123 * mapped. 0 in case of a HOLE.
1125 if (err > 0) {
1126 if (err > 1)
1127 WARN_ON(1);
1128 err = 0;
1130 *errp = err;
1131 if (!err && buffer_mapped(&dummy)) {
1132 struct buffer_head *bh;
1133 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1134 if (!bh) {
1135 *errp = -EIO;
1136 goto err;
1138 if (buffer_new(&dummy)) {
1139 J_ASSERT(create != 0);
1140 J_ASSERT(handle != NULL);
1143 * Now that we do not always journal data, we should
1144 * keep in mind whether this should always journal the
1145 * new buffer as metadata. For now, regular file
1146 * writes use ext4_get_block instead, so it's not a
1147 * problem.
1149 lock_buffer(bh);
1150 BUFFER_TRACE(bh, "call get_create_access");
1151 fatal = ext4_journal_get_create_access(handle, bh);
1152 if (!fatal && !buffer_uptodate(bh)) {
1153 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1154 set_buffer_uptodate(bh);
1156 unlock_buffer(bh);
1157 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1158 err = ext4_journal_dirty_metadata(handle, bh);
1159 if (!fatal)
1160 fatal = err;
1161 } else {
1162 BUFFER_TRACE(bh, "not a new buffer");
1164 if (fatal) {
1165 *errp = fatal;
1166 brelse(bh);
1167 bh = NULL;
1169 return bh;
1171 err:
1172 return NULL;
1175 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1176 ext4_lblk_t block, int create, int *err)
1178 struct buffer_head * bh;
1180 bh = ext4_getblk(handle, inode, block, create, err);
1181 if (!bh)
1182 return bh;
1183 if (buffer_uptodate(bh))
1184 return bh;
1185 ll_rw_block(READ_META, 1, &bh);
1186 wait_on_buffer(bh);
1187 if (buffer_uptodate(bh))
1188 return bh;
1189 put_bh(bh);
1190 *err = -EIO;
1191 return NULL;
1194 static int walk_page_buffers( handle_t *handle,
1195 struct buffer_head *head,
1196 unsigned from,
1197 unsigned to,
1198 int *partial,
1199 int (*fn)( handle_t *handle,
1200 struct buffer_head *bh))
1202 struct buffer_head *bh;
1203 unsigned block_start, block_end;
1204 unsigned blocksize = head->b_size;
1205 int err, ret = 0;
1206 struct buffer_head *next;
1208 for ( bh = head, block_start = 0;
1209 ret == 0 && (bh != head || !block_start);
1210 block_start = block_end, bh = next)
1212 next = bh->b_this_page;
1213 block_end = block_start + blocksize;
1214 if (block_end <= from || block_start >= to) {
1215 if (partial && !buffer_uptodate(bh))
1216 *partial = 1;
1217 continue;
1219 err = (*fn)(handle, bh);
1220 if (!ret)
1221 ret = err;
1223 return ret;
1227 * To preserve ordering, it is essential that the hole instantiation and
1228 * the data write be encapsulated in a single transaction. We cannot
1229 * close off a transaction and start a new one between the ext4_get_block()
1230 * and the commit_write(). So doing the jbd2_journal_start at the start of
1231 * prepare_write() is the right place.
1233 * Also, this function can nest inside ext4_writepage() ->
1234 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1235 * has generated enough buffer credits to do the whole page. So we won't
1236 * block on the journal in that case, which is good, because the caller may
1237 * be PF_MEMALLOC.
1239 * By accident, ext4 can be reentered when a transaction is open via
1240 * quota file writes. If we were to commit the transaction while thus
1241 * reentered, there can be a deadlock - we would be holding a quota
1242 * lock, and the commit would never complete if another thread had a
1243 * transaction open and was blocking on the quota lock - a ranking
1244 * violation.
1246 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1247 * will _not_ run commit under these circumstances because handle->h_ref
1248 * is elevated. We'll still have enough credits for the tiny quotafile
1249 * write.
1251 static int do_journal_get_write_access(handle_t *handle,
1252 struct buffer_head *bh)
1254 if (!buffer_mapped(bh) || buffer_freed(bh))
1255 return 0;
1256 return ext4_journal_get_write_access(handle, bh);
1259 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1260 loff_t pos, unsigned len, unsigned flags,
1261 struct page **pagep, void **fsdata)
1263 struct inode *inode = mapping->host;
1264 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1265 handle_t *handle;
1266 int retries = 0;
1267 struct page *page;
1268 pgoff_t index;
1269 unsigned from, to;
1271 index = pos >> PAGE_CACHE_SHIFT;
1272 from = pos & (PAGE_CACHE_SIZE - 1);
1273 to = from + len;
1275 retry:
1276 handle = ext4_journal_start(inode, needed_blocks);
1277 if (IS_ERR(handle)) {
1278 ret = PTR_ERR(handle);
1279 goto out;
1282 page = __grab_cache_page(mapping, index);
1283 if (!page) {
1284 ext4_journal_stop(handle);
1285 ret = -ENOMEM;
1286 goto out;
1288 *pagep = page;
1290 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1291 ext4_get_block);
1293 if (!ret && ext4_should_journal_data(inode)) {
1294 ret = walk_page_buffers(handle, page_buffers(page),
1295 from, to, NULL, do_journal_get_write_access);
1298 if (ret) {
1299 unlock_page(page);
1300 ext4_journal_stop(handle);
1301 page_cache_release(page);
1304 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1305 goto retry;
1306 out:
1307 return ret;
1310 /* For write_end() in data=journal mode */
1311 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1313 if (!buffer_mapped(bh) || buffer_freed(bh))
1314 return 0;
1315 set_buffer_uptodate(bh);
1316 return ext4_journal_dirty_metadata(handle, bh);
1320 * We need to pick up the new inode size which generic_commit_write gave us
1321 * `file' can be NULL - eg, when called from page_symlink().
1323 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1324 * buffers are managed internally.
1326 static int ext4_ordered_write_end(struct file *file,
1327 struct address_space *mapping,
1328 loff_t pos, unsigned len, unsigned copied,
1329 struct page *page, void *fsdata)
1331 handle_t *handle = ext4_journal_current_handle();
1332 struct inode *inode = mapping->host;
1333 unsigned from, to;
1334 int ret = 0, ret2;
1336 from = pos & (PAGE_CACHE_SIZE - 1);
1337 to = from + len;
1339 ret = ext4_jbd2_file_inode(handle, inode);
1341 if (ret == 0) {
1343 * generic_write_end() will run mark_inode_dirty() if i_size
1344 * changes. So let's piggyback the i_disksize mark_inode_dirty
1345 * into that.
1347 loff_t new_i_size;
1349 new_i_size = pos + copied;
1350 if (new_i_size > EXT4_I(inode)->i_disksize)
1351 EXT4_I(inode)->i_disksize = new_i_size;
1352 ret2 = generic_write_end(file, mapping, pos, len, copied,
1353 page, fsdata);
1354 copied = ret2;
1355 if (ret2 < 0)
1356 ret = ret2;
1358 ret2 = ext4_journal_stop(handle);
1359 if (!ret)
1360 ret = ret2;
1362 return ret ? ret : copied;
1365 static int ext4_writeback_write_end(struct file *file,
1366 struct address_space *mapping,
1367 loff_t pos, unsigned len, unsigned copied,
1368 struct page *page, void *fsdata)
1370 handle_t *handle = ext4_journal_current_handle();
1371 struct inode *inode = mapping->host;
1372 int ret = 0, ret2;
1373 loff_t new_i_size;
1375 new_i_size = pos + copied;
1376 if (new_i_size > EXT4_I(inode)->i_disksize)
1377 EXT4_I(inode)->i_disksize = new_i_size;
1379 ret2 = generic_write_end(file, mapping, pos, len, copied,
1380 page, fsdata);
1381 copied = ret2;
1382 if (ret2 < 0)
1383 ret = ret2;
1385 ret2 = ext4_journal_stop(handle);
1386 if (!ret)
1387 ret = ret2;
1389 return ret ? ret : copied;
1392 static int ext4_journalled_write_end(struct file *file,
1393 struct address_space *mapping,
1394 loff_t pos, unsigned len, unsigned copied,
1395 struct page *page, void *fsdata)
1397 handle_t *handle = ext4_journal_current_handle();
1398 struct inode *inode = mapping->host;
1399 int ret = 0, ret2;
1400 int partial = 0;
1401 unsigned from, to;
1403 from = pos & (PAGE_CACHE_SIZE - 1);
1404 to = from + len;
1406 if (copied < len) {
1407 if (!PageUptodate(page))
1408 copied = 0;
1409 page_zero_new_buffers(page, from+copied, to);
1412 ret = walk_page_buffers(handle, page_buffers(page), from,
1413 to, &partial, write_end_fn);
1414 if (!partial)
1415 SetPageUptodate(page);
1416 if (pos+copied > inode->i_size)
1417 i_size_write(inode, pos+copied);
1418 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1419 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1420 EXT4_I(inode)->i_disksize = inode->i_size;
1421 ret2 = ext4_mark_inode_dirty(handle, inode);
1422 if (!ret)
1423 ret = ret2;
1426 unlock_page(page);
1427 ret2 = ext4_journal_stop(handle);
1428 if (!ret)
1429 ret = ret2;
1430 page_cache_release(page);
1432 return ret ? ret : copied;
1435 * Calculate the number of metadata blocks need to reserve
1436 * to allocate @blocks for non extent file based file
1438 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1440 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1441 int ind_blks, dind_blks, tind_blks;
1443 /* number of new indirect blocks needed */
1444 ind_blks = (blocks + icap - 1) / icap;
1446 dind_blks = (ind_blks + icap - 1) / icap;
1448 tind_blks = 1;
1450 return ind_blks + dind_blks + tind_blks;
1454 * Calculate the number of metadata blocks need to reserve
1455 * to allocate given number of blocks
1457 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1459 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1460 return ext4_ext_calc_metadata_amount(inode, blocks);
1462 return ext4_indirect_calc_metadata_amount(inode, blocks);
1465 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1467 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1468 unsigned long md_needed, mdblocks, total = 0;
1471 * recalculate the amount of metadata blocks to reserve
1472 * in order to allocate nrblocks
1473 * worse case is one extent per block
1475 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1476 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1477 mdblocks = ext4_calc_metadata_amount(inode, total);
1478 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1480 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1481 total = md_needed + nrblocks;
1483 if (ext4_has_free_blocks(sbi, total) < total) {
1484 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1485 return -ENOSPC;
1488 /* reduce fs free blocks counter */
1489 percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1491 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1492 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1494 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1495 return 0; /* success */
1498 void ext4_da_release_space(struct inode *inode, int used, int to_free)
1500 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1501 int total, mdb, mdb_free, release;
1503 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1504 /* recalculate the number of metablocks still need to be reserved */
1505 total = EXT4_I(inode)->i_reserved_data_blocks - used - to_free;
1506 mdb = ext4_calc_metadata_amount(inode, total);
1508 /* figure out how many metablocks to release */
1509 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1510 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1512 /* Account for allocated meta_blocks */
1513 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1515 release = to_free + mdb_free;
1517 /* update fs free blocks counter for truncate case */
1518 percpu_counter_add(&sbi->s_freeblocks_counter, release);
1520 /* update per-inode reservations */
1521 BUG_ON(used + to_free > EXT4_I(inode)->i_reserved_data_blocks);
1522 EXT4_I(inode)->i_reserved_data_blocks -= (used + to_free);
1524 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1525 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1526 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1527 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1530 static void ext4_da_page_release_reservation(struct page *page,
1531 unsigned long offset)
1533 int to_release = 0;
1534 struct buffer_head *head, *bh;
1535 unsigned int curr_off = 0;
1537 head = page_buffers(page);
1538 bh = head;
1539 do {
1540 unsigned int next_off = curr_off + bh->b_size;
1542 if ((offset <= curr_off) && (buffer_delay(bh))) {
1543 to_release++;
1544 clear_buffer_delay(bh);
1546 curr_off = next_off;
1547 } while ((bh = bh->b_this_page) != head);
1548 ext4_da_release_space(page->mapping->host, 0, to_release);
1552 * Delayed allocation stuff
1555 struct mpage_da_data {
1556 struct inode *inode;
1557 struct buffer_head lbh; /* extent of blocks */
1558 unsigned long first_page, next_page; /* extent of pages */
1559 get_block_t *get_block;
1560 struct writeback_control *wbc;
1564 * mpage_da_submit_io - walks through extent of pages and try to write
1565 * them with __mpage_writepage()
1567 * @mpd->inode: inode
1568 * @mpd->first_page: first page of the extent
1569 * @mpd->next_page: page after the last page of the extent
1570 * @mpd->get_block: the filesystem's block mapper function
1572 * By the time mpage_da_submit_io() is called we expect all blocks
1573 * to be allocated. this may be wrong if allocation failed.
1575 * As pages are already locked by write_cache_pages(), we can't use it
1577 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1579 struct address_space *mapping = mpd->inode->i_mapping;
1580 struct mpage_data mpd_pp = {
1581 .bio = NULL,
1582 .last_block_in_bio = 0,
1583 .get_block = mpd->get_block,
1584 .use_writepage = 1,
1586 int ret = 0, err, nr_pages, i;
1587 unsigned long index, end;
1588 struct pagevec pvec;
1590 BUG_ON(mpd->next_page <= mpd->first_page);
1592 pagevec_init(&pvec, 0);
1593 index = mpd->first_page;
1594 end = mpd->next_page - 1;
1596 while (index <= end) {
1597 /* XXX: optimize tail */
1598 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1599 if (nr_pages == 0)
1600 break;
1601 for (i = 0; i < nr_pages; i++) {
1602 struct page *page = pvec.pages[i];
1604 index = page->index;
1605 if (index > end)
1606 break;
1607 index++;
1609 err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1612 * In error case, we have to continue because
1613 * remaining pages are still locked
1614 * XXX: unlock and re-dirty them?
1616 if (ret == 0)
1617 ret = err;
1619 pagevec_release(&pvec);
1621 if (mpd_pp.bio)
1622 mpage_bio_submit(WRITE, mpd_pp.bio);
1624 return ret;
1628 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1630 * @mpd->inode - inode to walk through
1631 * @exbh->b_blocknr - first block on a disk
1632 * @exbh->b_size - amount of space in bytes
1633 * @logical - first logical block to start assignment with
1635 * the function goes through all passed space and put actual disk
1636 * block numbers into buffer heads, dropping BH_Delay
1638 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1639 struct buffer_head *exbh)
1641 struct inode *inode = mpd->inode;
1642 struct address_space *mapping = inode->i_mapping;
1643 int blocks = exbh->b_size >> inode->i_blkbits;
1644 sector_t pblock = exbh->b_blocknr, cur_logical;
1645 struct buffer_head *head, *bh;
1646 unsigned long index, end;
1647 struct pagevec pvec;
1648 int nr_pages, i;
1650 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1651 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1652 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1654 pagevec_init(&pvec, 0);
1656 while (index <= end) {
1657 /* XXX: optimize tail */
1658 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1659 if (nr_pages == 0)
1660 break;
1661 for (i = 0; i < nr_pages; i++) {
1662 struct page *page = pvec.pages[i];
1664 index = page->index;
1665 if (index > end)
1666 break;
1667 index++;
1669 BUG_ON(!PageLocked(page));
1670 BUG_ON(PageWriteback(page));
1671 BUG_ON(!page_has_buffers(page));
1673 bh = page_buffers(page);
1674 head = bh;
1676 /* skip blocks out of the range */
1677 do {
1678 if (cur_logical >= logical)
1679 break;
1680 cur_logical++;
1681 } while ((bh = bh->b_this_page) != head);
1683 do {
1684 if (cur_logical >= logical + blocks)
1685 break;
1687 if (buffer_delay(bh)) {
1688 bh->b_blocknr = pblock;
1689 clear_buffer_delay(bh);
1690 } else if (buffer_mapped(bh)) {
1691 BUG_ON(bh->b_blocknr != pblock);
1694 cur_logical++;
1695 pblock++;
1696 } while ((bh = bh->b_this_page) != head);
1698 pagevec_release(&pvec);
1704 * __unmap_underlying_blocks - just a helper function to unmap
1705 * set of blocks described by @bh
1707 static inline void __unmap_underlying_blocks(struct inode *inode,
1708 struct buffer_head *bh)
1710 struct block_device *bdev = inode->i_sb->s_bdev;
1711 int blocks, i;
1713 blocks = bh->b_size >> inode->i_blkbits;
1714 for (i = 0; i < blocks; i++)
1715 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1719 * mpage_da_map_blocks - go through given space
1721 * @mpd->lbh - bh describing space
1722 * @mpd->get_block - the filesystem's block mapper function
1724 * The function skips space we know is already mapped to disk blocks.
1726 * The function ignores errors ->get_block() returns, thus real
1727 * error handling is postponed to __mpage_writepage()
1729 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1731 struct buffer_head *lbh = &mpd->lbh;
1732 int err = 0, remain = lbh->b_size;
1733 sector_t next = lbh->b_blocknr;
1734 struct buffer_head new;
1737 * We consider only non-mapped and non-allocated blocks
1739 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1740 return;
1742 while (remain) {
1743 new.b_state = lbh->b_state;
1744 new.b_blocknr = 0;
1745 new.b_size = remain;
1746 err = mpd->get_block(mpd->inode, next, &new, 1);
1747 if (err) {
1749 * Rather than implement own error handling
1750 * here, we just leave remaining blocks
1751 * unallocated and try again with ->writepage()
1753 break;
1755 BUG_ON(new.b_size == 0);
1757 if (buffer_new(&new))
1758 __unmap_underlying_blocks(mpd->inode, &new);
1761 * If blocks are delayed marked, we need to
1762 * put actual blocknr and drop delayed bit
1764 if (buffer_delay(lbh))
1765 mpage_put_bnr_to_bhs(mpd, next, &new);
1767 /* go for the remaining blocks */
1768 next += new.b_size >> mpd->inode->i_blkbits;
1769 remain -= new.b_size;
1773 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay))
1776 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1778 * @mpd->lbh - extent of blocks
1779 * @logical - logical number of the block in the file
1780 * @bh - bh of the block (used to access block's state)
1782 * the function is used to collect contig. blocks in same state
1784 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1785 sector_t logical, struct buffer_head *bh)
1787 struct buffer_head *lbh = &mpd->lbh;
1788 sector_t next;
1790 next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1793 * First block in the extent
1795 if (lbh->b_size == 0) {
1796 lbh->b_blocknr = logical;
1797 lbh->b_size = bh->b_size;
1798 lbh->b_state = bh->b_state & BH_FLAGS;
1799 return;
1803 * Can we merge the block to our big extent?
1805 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1806 lbh->b_size += bh->b_size;
1807 return;
1811 * We couldn't merge the block to our extent, so we
1812 * need to flush current extent and start new one
1814 mpage_da_map_blocks(mpd);
1817 * Now start a new extent
1819 lbh->b_size = bh->b_size;
1820 lbh->b_state = bh->b_state & BH_FLAGS;
1821 lbh->b_blocknr = logical;
1825 * __mpage_da_writepage - finds extent of pages and blocks
1827 * @page: page to consider
1828 * @wbc: not used, we just follow rules
1829 * @data: context
1831 * The function finds extents of pages and scan them for all blocks.
1833 static int __mpage_da_writepage(struct page *page,
1834 struct writeback_control *wbc, void *data)
1836 struct mpage_da_data *mpd = data;
1837 struct inode *inode = mpd->inode;
1838 struct buffer_head *bh, *head, fake;
1839 sector_t logical;
1842 * Can we merge this page to current extent?
1844 if (mpd->next_page != page->index) {
1846 * Nope, we can't. So, we map non-allocated blocks
1847 * and start IO on them using __mpage_writepage()
1849 if (mpd->next_page != mpd->first_page) {
1850 mpage_da_map_blocks(mpd);
1851 mpage_da_submit_io(mpd);
1855 * Start next extent of pages ...
1857 mpd->first_page = page->index;
1860 * ... and blocks
1862 mpd->lbh.b_size = 0;
1863 mpd->lbh.b_state = 0;
1864 mpd->lbh.b_blocknr = 0;
1867 mpd->next_page = page->index + 1;
1868 logical = (sector_t) page->index <<
1869 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1871 if (!page_has_buffers(page)) {
1873 * There is no attached buffer heads yet (mmap?)
1874 * we treat the page asfull of dirty blocks
1876 bh = &fake;
1877 bh->b_size = PAGE_CACHE_SIZE;
1878 bh->b_state = 0;
1879 set_buffer_dirty(bh);
1880 set_buffer_uptodate(bh);
1881 mpage_add_bh_to_extent(mpd, logical, bh);
1882 } else {
1884 * Page with regular buffer heads, just add all dirty ones
1886 head = page_buffers(page);
1887 bh = head;
1888 do {
1889 BUG_ON(buffer_locked(bh));
1890 if (buffer_dirty(bh))
1891 mpage_add_bh_to_extent(mpd, logical, bh);
1892 logical++;
1893 } while ((bh = bh->b_this_page) != head);
1896 return 0;
1900 * mpage_da_writepages - walk the list of dirty pages of the given
1901 * address space, allocates non-allocated blocks, maps newly-allocated
1902 * blocks to existing bhs and issue IO them
1904 * @mapping: address space structure to write
1905 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1906 * @get_block: the filesystem's block mapper function.
1908 * This is a library function, which implements the writepages()
1909 * address_space_operation.
1911 * In order to avoid duplication of logic that deals with partial pages,
1912 * multiple bio per page, etc, we find non-allocated blocks, allocate
1913 * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1915 * It's important that we call __mpage_writepage() only once for each
1916 * involved page, otherwise we'd have to implement more complicated logic
1917 * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1919 * See comments to mpage_writepages()
1921 static int mpage_da_writepages(struct address_space *mapping,
1922 struct writeback_control *wbc,
1923 get_block_t get_block)
1925 struct mpage_da_data mpd;
1926 int ret;
1928 if (!get_block)
1929 return generic_writepages(mapping, wbc);
1931 mpd.wbc = wbc;
1932 mpd.inode = mapping->host;
1933 mpd.lbh.b_size = 0;
1934 mpd.lbh.b_state = 0;
1935 mpd.lbh.b_blocknr = 0;
1936 mpd.first_page = 0;
1937 mpd.next_page = 0;
1938 mpd.get_block = get_block;
1940 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
1943 * Handle last extent of pages
1945 if (mpd.next_page != mpd.first_page) {
1946 mpage_da_map_blocks(&mpd);
1947 mpage_da_submit_io(&mpd);
1950 return ret;
1954 * this is a special callback for ->write_begin() only
1955 * it's intention is to return mapped block or reserve space
1957 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1958 struct buffer_head *bh_result, int create)
1960 int ret = 0;
1962 BUG_ON(create == 0);
1963 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1966 * first, we need to know whether the block is allocated already
1967 * preallocated blocks are unmapped but should treated
1968 * the same as allocated blocks.
1970 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
1971 if ((ret == 0) && !buffer_delay(bh_result)) {
1972 /* the block isn't (pre)allocated yet, let's reserve space */
1974 * XXX: __block_prepare_write() unmaps passed block,
1975 * is it OK?
1977 ret = ext4_da_reserve_space(inode, 1);
1978 if (ret)
1979 /* not enough space to reserve */
1980 return ret;
1982 map_bh(bh_result, inode->i_sb, 0);
1983 set_buffer_new(bh_result);
1984 set_buffer_delay(bh_result);
1985 } else if (ret > 0) {
1986 bh_result->b_size = (ret << inode->i_blkbits);
1987 ret = 0;
1990 return ret;
1992 #define EXT4_DELALLOC_RSVED 1
1993 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1994 struct buffer_head *bh_result, int create)
1996 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1997 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1998 loff_t disksize = EXT4_I(inode)->i_disksize;
1999 handle_t *handle = NULL;
2001 if (create) {
2002 handle = ext4_journal_start(inode, needed_blocks);
2003 if (IS_ERR(handle)) {
2004 ret = PTR_ERR(handle);
2005 goto out;
2009 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2010 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2011 if (ret > 0) {
2012 bh_result->b_size = (ret << inode->i_blkbits);
2015 * Update on-disk size along with block allocation
2016 * we don't use 'extend_disksize' as size may change
2017 * within already allocated block -bzzz
2019 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2020 if (disksize > i_size_read(inode))
2021 disksize = i_size_read(inode);
2022 if (disksize > EXT4_I(inode)->i_disksize) {
2024 * XXX: replace with spinlock if seen contended -bzzz
2026 down_write(&EXT4_I(inode)->i_data_sem);
2027 if (disksize > EXT4_I(inode)->i_disksize)
2028 EXT4_I(inode)->i_disksize = disksize;
2029 up_write(&EXT4_I(inode)->i_data_sem);
2031 if (EXT4_I(inode)->i_disksize == disksize) {
2032 if (handle == NULL)
2033 handle = ext4_journal_start(inode, 1);
2034 if (!IS_ERR(handle))
2035 ext4_mark_inode_dirty(handle, inode);
2039 ret = 0;
2042 out:
2043 if (handle && !IS_ERR(handle))
2044 ext4_journal_stop(handle);
2046 return ret;
2048 /* FIXME!! only support data=writeback mode */
2049 static int ext4_da_writepage(struct page *page,
2050 struct writeback_control *wbc)
2052 struct inode *inode = page->mapping->host;
2053 handle_t *handle = NULL;
2054 int ret = 0;
2055 int err;
2057 if (ext4_journal_current_handle())
2058 goto out_fail;
2060 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2061 if (IS_ERR(handle)) {
2062 ret = PTR_ERR(handle);
2063 goto out_fail;
2066 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2067 ret = nobh_writepage(page, ext4_get_block, wbc);
2068 else
2069 ret = block_write_full_page(page, ext4_get_block, wbc);
2071 if (!ret && inode->i_size > EXT4_I(inode)->i_disksize) {
2072 EXT4_I(inode)->i_disksize = inode->i_size;
2073 ext4_mark_inode_dirty(handle, inode);
2076 err = ext4_journal_stop(handle);
2077 if (!ret)
2078 ret = err;
2079 return ret;
2081 out_fail:
2082 redirty_page_for_writepage(wbc, page);
2083 unlock_page(page);
2084 return ret;
2087 static int ext4_da_writepages(struct address_space *mapping,
2088 struct writeback_control *wbc)
2090 return mpage_da_writepages(mapping, wbc, ext4_da_get_block_write);
2093 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2094 loff_t pos, unsigned len, unsigned flags,
2095 struct page **pagep, void **fsdata)
2097 int ret, retries = 0;
2098 struct page *page;
2099 pgoff_t index;
2100 unsigned from, to;
2101 struct inode *inode = mapping->host;
2102 handle_t *handle;
2104 index = pos >> PAGE_CACHE_SHIFT;
2105 from = pos & (PAGE_CACHE_SIZE - 1);
2106 to = from + len;
2108 retry:
2110 * With delayed allocation, we don't log the i_disksize update
2111 * if there is delayed block allocation. But we still need
2112 * to journalling the i_disksize update if writes to the end
2113 * of file which has an already mapped buffer.
2115 handle = ext4_journal_start(inode, 1);
2116 if (IS_ERR(handle)) {
2117 ret = PTR_ERR(handle);
2118 goto out;
2121 page = __grab_cache_page(mapping, index);
2122 if (!page)
2123 return -ENOMEM;
2124 *pagep = page;
2126 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2127 ext4_da_get_block_prep);
2128 if (ret < 0) {
2129 unlock_page(page);
2130 ext4_journal_stop(handle);
2131 page_cache_release(page);
2134 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2135 goto retry;
2136 out:
2137 return ret;
2140 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2142 return !buffer_mapped(bh) || buffer_delay(bh);
2145 static int ext4_da_write_end(struct file *file,
2146 struct address_space *mapping,
2147 loff_t pos, unsigned len, unsigned copied,
2148 struct page *page, void *fsdata)
2150 struct inode *inode = mapping->host;
2151 int ret = 0, ret2;
2152 handle_t *handle = ext4_journal_current_handle();
2153 loff_t new_i_size;
2156 * generic_write_end() will run mark_inode_dirty() if i_size
2157 * changes. So let's piggyback the i_disksize mark_inode_dirty
2158 * into that.
2161 new_i_size = pos + copied;
2162 if (new_i_size > EXT4_I(inode)->i_disksize)
2163 if (!walk_page_buffers(NULL, page_buffers(page),
2164 0, len, NULL, ext4_bh_unmapped_or_delay)){
2166 * Updating i_disksize when extending file without
2167 * needing block allocation
2169 if (ext4_should_order_data(inode))
2170 ret = ext4_jbd2_file_inode(handle, inode);
2172 EXT4_I(inode)->i_disksize = new_i_size;
2174 ret2 = generic_write_end(file, mapping, pos, len, copied,
2175 page, fsdata);
2176 copied = ret2;
2177 if (ret2 < 0)
2178 ret = ret2;
2179 ret2 = ext4_journal_stop(handle);
2180 if (!ret)
2181 ret = ret2;
2183 return ret ? ret : copied;
2186 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2189 * Drop reserved blocks
2191 BUG_ON(!PageLocked(page));
2192 if (!page_has_buffers(page))
2193 goto out;
2195 ext4_da_page_release_reservation(page, offset);
2197 out:
2198 ext4_invalidatepage(page, offset);
2200 return;
2205 * bmap() is special. It gets used by applications such as lilo and by
2206 * the swapper to find the on-disk block of a specific piece of data.
2208 * Naturally, this is dangerous if the block concerned is still in the
2209 * journal. If somebody makes a swapfile on an ext4 data-journaling
2210 * filesystem and enables swap, then they may get a nasty shock when the
2211 * data getting swapped to that swapfile suddenly gets overwritten by
2212 * the original zero's written out previously to the journal and
2213 * awaiting writeback in the kernel's buffer cache.
2215 * So, if we see any bmap calls here on a modified, data-journaled file,
2216 * take extra steps to flush any blocks which might be in the cache.
2218 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2220 struct inode *inode = mapping->host;
2221 journal_t *journal;
2222 int err;
2224 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2225 test_opt(inode->i_sb, DELALLOC)) {
2227 * With delalloc we want to sync the file
2228 * so that we can make sure we allocate
2229 * blocks for file
2231 filemap_write_and_wait(mapping);
2234 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2236 * This is a REALLY heavyweight approach, but the use of
2237 * bmap on dirty files is expected to be extremely rare:
2238 * only if we run lilo or swapon on a freshly made file
2239 * do we expect this to happen.
2241 * (bmap requires CAP_SYS_RAWIO so this does not
2242 * represent an unprivileged user DOS attack --- we'd be
2243 * in trouble if mortal users could trigger this path at
2244 * will.)
2246 * NB. EXT4_STATE_JDATA is not set on files other than
2247 * regular files. If somebody wants to bmap a directory
2248 * or symlink and gets confused because the buffer
2249 * hasn't yet been flushed to disk, they deserve
2250 * everything they get.
2253 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2254 journal = EXT4_JOURNAL(inode);
2255 jbd2_journal_lock_updates(journal);
2256 err = jbd2_journal_flush(journal);
2257 jbd2_journal_unlock_updates(journal);
2259 if (err)
2260 return 0;
2263 return generic_block_bmap(mapping,block,ext4_get_block);
2266 static int bget_one(handle_t *handle, struct buffer_head *bh)
2268 get_bh(bh);
2269 return 0;
2272 static int bput_one(handle_t *handle, struct buffer_head *bh)
2274 put_bh(bh);
2275 return 0;
2279 * Note that we don't need to start a transaction unless we're journaling data
2280 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2281 * need to file the inode to the transaction's list in ordered mode because if
2282 * we are writing back data added by write(), the inode is already there and if
2283 * we are writing back data modified via mmap(), noone guarantees in which
2284 * transaction the data will hit the disk. In case we are journaling data, we
2285 * cannot start transaction directly because transaction start ranks above page
2286 * lock so we have to do some magic.
2288 * In all journaling modes block_write_full_page() will start the I/O.
2290 * Problem:
2292 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2293 * ext4_writepage()
2295 * Similar for:
2297 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2299 * Same applies to ext4_get_block(). We will deadlock on various things like
2300 * lock_journal and i_data_sem
2302 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2303 * allocations fail.
2305 * 16May01: If we're reentered then journal_current_handle() will be
2306 * non-zero. We simply *return*.
2308 * 1 July 2001: @@@ FIXME:
2309 * In journalled data mode, a data buffer may be metadata against the
2310 * current transaction. But the same file is part of a shared mapping
2311 * and someone does a writepage() on it.
2313 * We will move the buffer onto the async_data list, but *after* it has
2314 * been dirtied. So there's a small window where we have dirty data on
2315 * BJ_Metadata.
2317 * Note that this only applies to the last partial page in the file. The
2318 * bit which block_write_full_page() uses prepare/commit for. (That's
2319 * broken code anyway: it's wrong for msync()).
2321 * It's a rare case: affects the final partial page, for journalled data
2322 * where the file is subject to bith write() and writepage() in the same
2323 * transction. To fix it we'll need a custom block_write_full_page().
2324 * We'll probably need that anyway for journalling writepage() output.
2326 * We don't honour synchronous mounts for writepage(). That would be
2327 * disastrous. Any write() or metadata operation will sync the fs for
2328 * us.
2331 static int __ext4_normal_writepage(struct page *page,
2332 struct writeback_control *wbc)
2334 struct inode *inode = page->mapping->host;
2336 if (test_opt(inode->i_sb, NOBH))
2337 return nobh_writepage(page, ext4_get_block, wbc);
2338 else
2339 return block_write_full_page(page, ext4_get_block, wbc);
2343 static int ext4_normal_writepage(struct page *page,
2344 struct writeback_control *wbc)
2346 struct inode *inode = page->mapping->host;
2347 loff_t size = i_size_read(inode);
2348 loff_t len;
2350 J_ASSERT(PageLocked(page));
2351 J_ASSERT(page_has_buffers(page));
2352 if (page->index == size >> PAGE_CACHE_SHIFT)
2353 len = size & ~PAGE_CACHE_MASK;
2354 else
2355 len = PAGE_CACHE_SIZE;
2356 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2357 ext4_bh_unmapped_or_delay));
2359 if (!ext4_journal_current_handle())
2360 return __ext4_normal_writepage(page, wbc);
2362 redirty_page_for_writepage(wbc, page);
2363 unlock_page(page);
2364 return 0;
2367 static int __ext4_journalled_writepage(struct page *page,
2368 struct writeback_control *wbc)
2370 struct address_space *mapping = page->mapping;
2371 struct inode *inode = mapping->host;
2372 struct buffer_head *page_bufs;
2373 handle_t *handle = NULL;
2374 int ret = 0;
2375 int err;
2377 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, ext4_get_block);
2378 if (ret != 0)
2379 goto out_unlock;
2381 page_bufs = page_buffers(page);
2382 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2383 bget_one);
2384 /* As soon as we unlock the page, it can go away, but we have
2385 * references to buffers so we are safe */
2386 unlock_page(page);
2388 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2389 if (IS_ERR(handle)) {
2390 ret = PTR_ERR(handle);
2391 goto out;
2394 ret = walk_page_buffers(handle, page_bufs, 0,
2395 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2397 err = walk_page_buffers(handle, page_bufs, 0,
2398 PAGE_CACHE_SIZE, NULL, write_end_fn);
2399 if (ret == 0)
2400 ret = err;
2401 err = ext4_journal_stop(handle);
2402 if (!ret)
2403 ret = err;
2405 walk_page_buffers(handle, page_bufs, 0,
2406 PAGE_CACHE_SIZE, NULL, bput_one);
2407 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2408 goto out;
2410 out_unlock:
2411 unlock_page(page);
2412 out:
2413 return ret;
2416 static int ext4_journalled_writepage(struct page *page,
2417 struct writeback_control *wbc)
2419 struct inode *inode = page->mapping->host;
2420 loff_t size = i_size_read(inode);
2421 loff_t len;
2423 J_ASSERT(PageLocked(page));
2424 J_ASSERT(page_has_buffers(page));
2425 if (page->index == size >> PAGE_CACHE_SHIFT)
2426 len = size & ~PAGE_CACHE_MASK;
2427 else
2428 len = PAGE_CACHE_SIZE;
2429 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2430 ext4_bh_unmapped_or_delay));
2432 if (ext4_journal_current_handle())
2433 goto no_write;
2435 if (PageChecked(page)) {
2437 * It's mmapped pagecache. Add buffers and journal it. There
2438 * doesn't seem much point in redirtying the page here.
2440 ClearPageChecked(page);
2441 return __ext4_journalled_writepage(page, wbc);
2442 } else {
2444 * It may be a page full of checkpoint-mode buffers. We don't
2445 * really know unless we go poke around in the buffer_heads.
2446 * But block_write_full_page will do the right thing.
2448 return block_write_full_page(page, ext4_get_block, wbc);
2450 no_write:
2451 redirty_page_for_writepage(wbc, page);
2452 unlock_page(page);
2453 return 0;
2456 static int ext4_readpage(struct file *file, struct page *page)
2458 return mpage_readpage(page, ext4_get_block);
2461 static int
2462 ext4_readpages(struct file *file, struct address_space *mapping,
2463 struct list_head *pages, unsigned nr_pages)
2465 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2468 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2470 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2473 * If it's a full truncate we just forget about the pending dirtying
2475 if (offset == 0)
2476 ClearPageChecked(page);
2478 jbd2_journal_invalidatepage(journal, page, offset);
2481 static int ext4_releasepage(struct page *page, gfp_t wait)
2483 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2485 WARN_ON(PageChecked(page));
2486 if (!page_has_buffers(page))
2487 return 0;
2488 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2492 * If the O_DIRECT write will extend the file then add this inode to the
2493 * orphan list. So recovery will truncate it back to the original size
2494 * if the machine crashes during the write.
2496 * If the O_DIRECT write is intantiating holes inside i_size and the machine
2497 * crashes then stale disk data _may_ be exposed inside the file. But current
2498 * VFS code falls back into buffered path in that case so we are safe.
2500 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2501 const struct iovec *iov, loff_t offset,
2502 unsigned long nr_segs)
2504 struct file *file = iocb->ki_filp;
2505 struct inode *inode = file->f_mapping->host;
2506 struct ext4_inode_info *ei = EXT4_I(inode);
2507 handle_t *handle;
2508 ssize_t ret;
2509 int orphan = 0;
2510 size_t count = iov_length(iov, nr_segs);
2512 if (rw == WRITE) {
2513 loff_t final_size = offset + count;
2515 if (final_size > inode->i_size) {
2516 /* Credits for sb + inode write */
2517 handle = ext4_journal_start(inode, 2);
2518 if (IS_ERR(handle)) {
2519 ret = PTR_ERR(handle);
2520 goto out;
2522 ret = ext4_orphan_add(handle, inode);
2523 if (ret) {
2524 ext4_journal_stop(handle);
2525 goto out;
2527 orphan = 1;
2528 ei->i_disksize = inode->i_size;
2529 ext4_journal_stop(handle);
2533 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2534 offset, nr_segs,
2535 ext4_get_block, NULL);
2537 if (orphan) {
2538 int err;
2540 /* Credits for sb + inode write */
2541 handle = ext4_journal_start(inode, 2);
2542 if (IS_ERR(handle)) {
2543 /* This is really bad luck. We've written the data
2544 * but cannot extend i_size. Bail out and pretend
2545 * the write failed... */
2546 ret = PTR_ERR(handle);
2547 goto out;
2549 if (inode->i_nlink)
2550 ext4_orphan_del(handle, inode);
2551 if (ret > 0) {
2552 loff_t end = offset + ret;
2553 if (end > inode->i_size) {
2554 ei->i_disksize = end;
2555 i_size_write(inode, end);
2557 * We're going to return a positive `ret'
2558 * here due to non-zero-length I/O, so there's
2559 * no way of reporting error returns from
2560 * ext4_mark_inode_dirty() to userspace. So
2561 * ignore it.
2563 ext4_mark_inode_dirty(handle, inode);
2566 err = ext4_journal_stop(handle);
2567 if (ret == 0)
2568 ret = err;
2570 out:
2571 return ret;
2575 * Pages can be marked dirty completely asynchronously from ext4's journalling
2576 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2577 * much here because ->set_page_dirty is called under VFS locks. The page is
2578 * not necessarily locked.
2580 * We cannot just dirty the page and leave attached buffers clean, because the
2581 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2582 * or jbddirty because all the journalling code will explode.
2584 * So what we do is to mark the page "pending dirty" and next time writepage
2585 * is called, propagate that into the buffers appropriately.
2587 static int ext4_journalled_set_page_dirty(struct page *page)
2589 SetPageChecked(page);
2590 return __set_page_dirty_nobuffers(page);
2593 static const struct address_space_operations ext4_ordered_aops = {
2594 .readpage = ext4_readpage,
2595 .readpages = ext4_readpages,
2596 .writepage = ext4_normal_writepage,
2597 .sync_page = block_sync_page,
2598 .write_begin = ext4_write_begin,
2599 .write_end = ext4_ordered_write_end,
2600 .bmap = ext4_bmap,
2601 .invalidatepage = ext4_invalidatepage,
2602 .releasepage = ext4_releasepage,
2603 .direct_IO = ext4_direct_IO,
2604 .migratepage = buffer_migrate_page,
2607 static const struct address_space_operations ext4_writeback_aops = {
2608 .readpage = ext4_readpage,
2609 .readpages = ext4_readpages,
2610 .writepage = ext4_normal_writepage,
2611 .sync_page = block_sync_page,
2612 .write_begin = ext4_write_begin,
2613 .write_end = ext4_writeback_write_end,
2614 .bmap = ext4_bmap,
2615 .invalidatepage = ext4_invalidatepage,
2616 .releasepage = ext4_releasepage,
2617 .direct_IO = ext4_direct_IO,
2618 .migratepage = buffer_migrate_page,
2621 static const struct address_space_operations ext4_journalled_aops = {
2622 .readpage = ext4_readpage,
2623 .readpages = ext4_readpages,
2624 .writepage = ext4_journalled_writepage,
2625 .sync_page = block_sync_page,
2626 .write_begin = ext4_write_begin,
2627 .write_end = ext4_journalled_write_end,
2628 .set_page_dirty = ext4_journalled_set_page_dirty,
2629 .bmap = ext4_bmap,
2630 .invalidatepage = ext4_invalidatepage,
2631 .releasepage = ext4_releasepage,
2634 static const struct address_space_operations ext4_da_aops = {
2635 .readpage = ext4_readpage,
2636 .readpages = ext4_readpages,
2637 .writepage = ext4_da_writepage,
2638 .writepages = ext4_da_writepages,
2639 .sync_page = block_sync_page,
2640 .write_begin = ext4_da_write_begin,
2641 .write_end = ext4_da_write_end,
2642 .bmap = ext4_bmap,
2643 .invalidatepage = ext4_da_invalidatepage,
2644 .releasepage = ext4_releasepage,
2645 .direct_IO = ext4_direct_IO,
2646 .migratepage = buffer_migrate_page,
2649 void ext4_set_aops(struct inode *inode)
2651 if (ext4_should_order_data(inode))
2652 inode->i_mapping->a_ops = &ext4_ordered_aops;
2653 else if (ext4_should_writeback_data(inode) &&
2654 test_opt(inode->i_sb, DELALLOC))
2655 inode->i_mapping->a_ops = &ext4_da_aops;
2656 else if (ext4_should_writeback_data(inode))
2657 inode->i_mapping->a_ops = &ext4_writeback_aops;
2658 else
2659 inode->i_mapping->a_ops = &ext4_journalled_aops;
2663 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2664 * up to the end of the block which corresponds to `from'.
2665 * This required during truncate. We need to physically zero the tail end
2666 * of that block so it doesn't yield old data if the file is later grown.
2668 int ext4_block_truncate_page(handle_t *handle,
2669 struct address_space *mapping, loff_t from)
2671 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2672 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2673 unsigned blocksize, length, pos;
2674 ext4_lblk_t iblock;
2675 struct inode *inode = mapping->host;
2676 struct buffer_head *bh;
2677 struct page *page;
2678 int err = 0;
2680 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2681 if (!page)
2682 return -EINVAL;
2684 blocksize = inode->i_sb->s_blocksize;
2685 length = blocksize - (offset & (blocksize - 1));
2686 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2689 * For "nobh" option, we can only work if we don't need to
2690 * read-in the page - otherwise we create buffers to do the IO.
2692 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
2693 ext4_should_writeback_data(inode) && PageUptodate(page)) {
2694 zero_user(page, offset, length);
2695 set_page_dirty(page);
2696 goto unlock;
2699 if (!page_has_buffers(page))
2700 create_empty_buffers(page, blocksize, 0);
2702 /* Find the buffer that contains "offset" */
2703 bh = page_buffers(page);
2704 pos = blocksize;
2705 while (offset >= pos) {
2706 bh = bh->b_this_page;
2707 iblock++;
2708 pos += blocksize;
2711 err = 0;
2712 if (buffer_freed(bh)) {
2713 BUFFER_TRACE(bh, "freed: skip");
2714 goto unlock;
2717 if (!buffer_mapped(bh)) {
2718 BUFFER_TRACE(bh, "unmapped");
2719 ext4_get_block(inode, iblock, bh, 0);
2720 /* unmapped? It's a hole - nothing to do */
2721 if (!buffer_mapped(bh)) {
2722 BUFFER_TRACE(bh, "still unmapped");
2723 goto unlock;
2727 /* Ok, it's mapped. Make sure it's up-to-date */
2728 if (PageUptodate(page))
2729 set_buffer_uptodate(bh);
2731 if (!buffer_uptodate(bh)) {
2732 err = -EIO;
2733 ll_rw_block(READ, 1, &bh);
2734 wait_on_buffer(bh);
2735 /* Uhhuh. Read error. Complain and punt. */
2736 if (!buffer_uptodate(bh))
2737 goto unlock;
2740 if (ext4_should_journal_data(inode)) {
2741 BUFFER_TRACE(bh, "get write access");
2742 err = ext4_journal_get_write_access(handle, bh);
2743 if (err)
2744 goto unlock;
2747 zero_user(page, offset, length);
2749 BUFFER_TRACE(bh, "zeroed end of block");
2751 err = 0;
2752 if (ext4_should_journal_data(inode)) {
2753 err = ext4_journal_dirty_metadata(handle, bh);
2754 } else {
2755 if (ext4_should_order_data(inode))
2756 err = ext4_jbd2_file_inode(handle, inode);
2757 mark_buffer_dirty(bh);
2760 unlock:
2761 unlock_page(page);
2762 page_cache_release(page);
2763 return err;
2767 * Probably it should be a library function... search for first non-zero word
2768 * or memcmp with zero_page, whatever is better for particular architecture.
2769 * Linus?
2771 static inline int all_zeroes(__le32 *p, __le32 *q)
2773 while (p < q)
2774 if (*p++)
2775 return 0;
2776 return 1;
2780 * ext4_find_shared - find the indirect blocks for partial truncation.
2781 * @inode: inode in question
2782 * @depth: depth of the affected branch
2783 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
2784 * @chain: place to store the pointers to partial indirect blocks
2785 * @top: place to the (detached) top of branch
2787 * This is a helper function used by ext4_truncate().
2789 * When we do truncate() we may have to clean the ends of several
2790 * indirect blocks but leave the blocks themselves alive. Block is
2791 * partially truncated if some data below the new i_size is refered
2792 * from it (and it is on the path to the first completely truncated
2793 * data block, indeed). We have to free the top of that path along
2794 * with everything to the right of the path. Since no allocation
2795 * past the truncation point is possible until ext4_truncate()
2796 * finishes, we may safely do the latter, but top of branch may
2797 * require special attention - pageout below the truncation point
2798 * might try to populate it.
2800 * We atomically detach the top of branch from the tree, store the
2801 * block number of its root in *@top, pointers to buffer_heads of
2802 * partially truncated blocks - in @chain[].bh and pointers to
2803 * their last elements that should not be removed - in
2804 * @chain[].p. Return value is the pointer to last filled element
2805 * of @chain.
2807 * The work left to caller to do the actual freeing of subtrees:
2808 * a) free the subtree starting from *@top
2809 * b) free the subtrees whose roots are stored in
2810 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2811 * c) free the subtrees growing from the inode past the @chain[0].
2812 * (no partially truncated stuff there). */
2814 static Indirect *ext4_find_shared(struct inode *inode, int depth,
2815 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
2817 Indirect *partial, *p;
2818 int k, err;
2820 *top = 0;
2821 /* Make k index the deepest non-null offest + 1 */
2822 for (k = depth; k > 1 && !offsets[k-1]; k--)
2824 partial = ext4_get_branch(inode, k, offsets, chain, &err);
2825 /* Writer: pointers */
2826 if (!partial)
2827 partial = chain + k-1;
2829 * If the branch acquired continuation since we've looked at it -
2830 * fine, it should all survive and (new) top doesn't belong to us.
2832 if (!partial->key && *partial->p)
2833 /* Writer: end */
2834 goto no_top;
2835 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2838 * OK, we've found the last block that must survive. The rest of our
2839 * branch should be detached before unlocking. However, if that rest
2840 * of branch is all ours and does not grow immediately from the inode
2841 * it's easier to cheat and just decrement partial->p.
2843 if (p == chain + k - 1 && p > chain) {
2844 p->p--;
2845 } else {
2846 *top = *p->p;
2847 /* Nope, don't do this in ext4. Must leave the tree intact */
2848 #if 0
2849 *p->p = 0;
2850 #endif
2852 /* Writer: end */
2854 while(partial > p) {
2855 brelse(partial->bh);
2856 partial--;
2858 no_top:
2859 return partial;
2863 * Zero a number of block pointers in either an inode or an indirect block.
2864 * If we restart the transaction we must again get write access to the
2865 * indirect block for further modification.
2867 * We release `count' blocks on disk, but (last - first) may be greater
2868 * than `count' because there can be holes in there.
2870 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2871 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2872 unsigned long count, __le32 *first, __le32 *last)
2874 __le32 *p;
2875 if (try_to_extend_transaction(handle, inode)) {
2876 if (bh) {
2877 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2878 ext4_journal_dirty_metadata(handle, bh);
2880 ext4_mark_inode_dirty(handle, inode);
2881 ext4_journal_test_restart(handle, inode);
2882 if (bh) {
2883 BUFFER_TRACE(bh, "retaking write access");
2884 ext4_journal_get_write_access(handle, bh);
2889 * Any buffers which are on the journal will be in memory. We find
2890 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2891 * on them. We've already detached each block from the file, so
2892 * bforget() in jbd2_journal_forget() should be safe.
2894 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2896 for (p = first; p < last; p++) {
2897 u32 nr = le32_to_cpu(*p);
2898 if (nr) {
2899 struct buffer_head *tbh;
2901 *p = 0;
2902 tbh = sb_find_get_block(inode->i_sb, nr);
2903 ext4_forget(handle, 0, inode, tbh, nr);
2907 ext4_free_blocks(handle, inode, block_to_free, count, 0);
2911 * ext4_free_data - free a list of data blocks
2912 * @handle: handle for this transaction
2913 * @inode: inode we are dealing with
2914 * @this_bh: indirect buffer_head which contains *@first and *@last
2915 * @first: array of block numbers
2916 * @last: points immediately past the end of array
2918 * We are freeing all blocks refered from that array (numbers are stored as
2919 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2921 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2922 * blocks are contiguous then releasing them at one time will only affect one
2923 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2924 * actually use a lot of journal space.
2926 * @this_bh will be %NULL if @first and @last point into the inode's direct
2927 * block pointers.
2929 static void ext4_free_data(handle_t *handle, struct inode *inode,
2930 struct buffer_head *this_bh,
2931 __le32 *first, __le32 *last)
2933 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
2934 unsigned long count = 0; /* Number of blocks in the run */
2935 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2936 corresponding to
2937 block_to_free */
2938 ext4_fsblk_t nr; /* Current block # */
2939 __le32 *p; /* Pointer into inode/ind
2940 for current block */
2941 int err;
2943 if (this_bh) { /* For indirect block */
2944 BUFFER_TRACE(this_bh, "get_write_access");
2945 err = ext4_journal_get_write_access(handle, this_bh);
2946 /* Important: if we can't update the indirect pointers
2947 * to the blocks, we can't free them. */
2948 if (err)
2949 return;
2952 for (p = first; p < last; p++) {
2953 nr = le32_to_cpu(*p);
2954 if (nr) {
2955 /* accumulate blocks to free if they're contiguous */
2956 if (count == 0) {
2957 block_to_free = nr;
2958 block_to_free_p = p;
2959 count = 1;
2960 } else if (nr == block_to_free + count) {
2961 count++;
2962 } else {
2963 ext4_clear_blocks(handle, inode, this_bh,
2964 block_to_free,
2965 count, block_to_free_p, p);
2966 block_to_free = nr;
2967 block_to_free_p = p;
2968 count = 1;
2973 if (count > 0)
2974 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2975 count, block_to_free_p, p);
2977 if (this_bh) {
2978 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2981 * The buffer head should have an attached journal head at this
2982 * point. However, if the data is corrupted and an indirect
2983 * block pointed to itself, it would have been detached when
2984 * the block was cleared. Check for this instead of OOPSing.
2986 if (bh2jh(this_bh))
2987 ext4_journal_dirty_metadata(handle, this_bh);
2988 else
2989 ext4_error(inode->i_sb, __func__,
2990 "circular indirect block detected, "
2991 "inode=%lu, block=%llu",
2992 inode->i_ino,
2993 (unsigned long long) this_bh->b_blocknr);
2998 * ext4_free_branches - free an array of branches
2999 * @handle: JBD handle for this transaction
3000 * @inode: inode we are dealing with
3001 * @parent_bh: the buffer_head which contains *@first and *@last
3002 * @first: array of block numbers
3003 * @last: pointer immediately past the end of array
3004 * @depth: depth of the branches to free
3006 * We are freeing all blocks refered from these branches (numbers are
3007 * stored as little-endian 32-bit) and updating @inode->i_blocks
3008 * appropriately.
3010 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3011 struct buffer_head *parent_bh,
3012 __le32 *first, __le32 *last, int depth)
3014 ext4_fsblk_t nr;
3015 __le32 *p;
3017 if (is_handle_aborted(handle))
3018 return;
3020 if (depth--) {
3021 struct buffer_head *bh;
3022 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3023 p = last;
3024 while (--p >= first) {
3025 nr = le32_to_cpu(*p);
3026 if (!nr)
3027 continue; /* A hole */
3029 /* Go read the buffer for the next level down */
3030 bh = sb_bread(inode->i_sb, nr);
3033 * A read failure? Report error and clear slot
3034 * (should be rare).
3036 if (!bh) {
3037 ext4_error(inode->i_sb, "ext4_free_branches",
3038 "Read failure, inode=%lu, block=%llu",
3039 inode->i_ino, nr);
3040 continue;
3043 /* This zaps the entire block. Bottom up. */
3044 BUFFER_TRACE(bh, "free child branches");
3045 ext4_free_branches(handle, inode, bh,
3046 (__le32*)bh->b_data,
3047 (__le32*)bh->b_data + addr_per_block,
3048 depth);
3051 * We've probably journalled the indirect block several
3052 * times during the truncate. But it's no longer
3053 * needed and we now drop it from the transaction via
3054 * jbd2_journal_revoke().
3056 * That's easy if it's exclusively part of this
3057 * transaction. But if it's part of the committing
3058 * transaction then jbd2_journal_forget() will simply
3059 * brelse() it. That means that if the underlying
3060 * block is reallocated in ext4_get_block(),
3061 * unmap_underlying_metadata() will find this block
3062 * and will try to get rid of it. damn, damn.
3064 * If this block has already been committed to the
3065 * journal, a revoke record will be written. And
3066 * revoke records must be emitted *before* clearing
3067 * this block's bit in the bitmaps.
3069 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3072 * Everything below this this pointer has been
3073 * released. Now let this top-of-subtree go.
3075 * We want the freeing of this indirect block to be
3076 * atomic in the journal with the updating of the
3077 * bitmap block which owns it. So make some room in
3078 * the journal.
3080 * We zero the parent pointer *after* freeing its
3081 * pointee in the bitmaps, so if extend_transaction()
3082 * for some reason fails to put the bitmap changes and
3083 * the release into the same transaction, recovery
3084 * will merely complain about releasing a free block,
3085 * rather than leaking blocks.
3087 if (is_handle_aborted(handle))
3088 return;
3089 if (try_to_extend_transaction(handle, inode)) {
3090 ext4_mark_inode_dirty(handle, inode);
3091 ext4_journal_test_restart(handle, inode);
3094 ext4_free_blocks(handle, inode, nr, 1, 1);
3096 if (parent_bh) {
3098 * The block which we have just freed is
3099 * pointed to by an indirect block: journal it
3101 BUFFER_TRACE(parent_bh, "get_write_access");
3102 if (!ext4_journal_get_write_access(handle,
3103 parent_bh)){
3104 *p = 0;
3105 BUFFER_TRACE(parent_bh,
3106 "call ext4_journal_dirty_metadata");
3107 ext4_journal_dirty_metadata(handle,
3108 parent_bh);
3112 } else {
3113 /* We have reached the bottom of the tree. */
3114 BUFFER_TRACE(parent_bh, "free data blocks");
3115 ext4_free_data(handle, inode, parent_bh, first, last);
3119 int ext4_can_truncate(struct inode *inode)
3121 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3122 return 0;
3123 if (S_ISREG(inode->i_mode))
3124 return 1;
3125 if (S_ISDIR(inode->i_mode))
3126 return 1;
3127 if (S_ISLNK(inode->i_mode))
3128 return !ext4_inode_is_fast_symlink(inode);
3129 return 0;
3133 * ext4_truncate()
3135 * We block out ext4_get_block() block instantiations across the entire
3136 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3137 * simultaneously on behalf of the same inode.
3139 * As we work through the truncate and commmit bits of it to the journal there
3140 * is one core, guiding principle: the file's tree must always be consistent on
3141 * disk. We must be able to restart the truncate after a crash.
3143 * The file's tree may be transiently inconsistent in memory (although it
3144 * probably isn't), but whenever we close off and commit a journal transaction,
3145 * the contents of (the filesystem + the journal) must be consistent and
3146 * restartable. It's pretty simple, really: bottom up, right to left (although
3147 * left-to-right works OK too).
3149 * Note that at recovery time, journal replay occurs *before* the restart of
3150 * truncate against the orphan inode list.
3152 * The committed inode has the new, desired i_size (which is the same as
3153 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3154 * that this inode's truncate did not complete and it will again call
3155 * ext4_truncate() to have another go. So there will be instantiated blocks
3156 * to the right of the truncation point in a crashed ext4 filesystem. But
3157 * that's fine - as long as they are linked from the inode, the post-crash
3158 * ext4_truncate() run will find them and release them.
3160 void ext4_truncate(struct inode *inode)
3162 handle_t *handle;
3163 struct ext4_inode_info *ei = EXT4_I(inode);
3164 __le32 *i_data = ei->i_data;
3165 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3166 struct address_space *mapping = inode->i_mapping;
3167 ext4_lblk_t offsets[4];
3168 Indirect chain[4];
3169 Indirect *partial;
3170 __le32 nr = 0;
3171 int n;
3172 ext4_lblk_t last_block;
3173 unsigned blocksize = inode->i_sb->s_blocksize;
3175 if (!ext4_can_truncate(inode))
3176 return;
3178 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3179 ext4_ext_truncate(inode);
3180 return;
3183 handle = start_transaction(inode);
3184 if (IS_ERR(handle))
3185 return; /* AKPM: return what? */
3187 last_block = (inode->i_size + blocksize-1)
3188 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3190 if (inode->i_size & (blocksize - 1))
3191 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3192 goto out_stop;
3194 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3195 if (n == 0)
3196 goto out_stop; /* error */
3199 * OK. This truncate is going to happen. We add the inode to the
3200 * orphan list, so that if this truncate spans multiple transactions,
3201 * and we crash, we will resume the truncate when the filesystem
3202 * recovers. It also marks the inode dirty, to catch the new size.
3204 * Implication: the file must always be in a sane, consistent
3205 * truncatable state while each transaction commits.
3207 if (ext4_orphan_add(handle, inode))
3208 goto out_stop;
3211 * The orphan list entry will now protect us from any crash which
3212 * occurs before the truncate completes, so it is now safe to propagate
3213 * the new, shorter inode size (held for now in i_size) into the
3214 * on-disk inode. We do this via i_disksize, which is the value which
3215 * ext4 *really* writes onto the disk inode.
3217 ei->i_disksize = inode->i_size;
3220 * From here we block out all ext4_get_block() callers who want to
3221 * modify the block allocation tree.
3223 down_write(&ei->i_data_sem);
3225 if (n == 1) { /* direct blocks */
3226 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3227 i_data + EXT4_NDIR_BLOCKS);
3228 goto do_indirects;
3231 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3232 /* Kill the top of shared branch (not detached) */
3233 if (nr) {
3234 if (partial == chain) {
3235 /* Shared branch grows from the inode */
3236 ext4_free_branches(handle, inode, NULL,
3237 &nr, &nr+1, (chain+n-1) - partial);
3238 *partial->p = 0;
3240 * We mark the inode dirty prior to restart,
3241 * and prior to stop. No need for it here.
3243 } else {
3244 /* Shared branch grows from an indirect block */
3245 BUFFER_TRACE(partial->bh, "get_write_access");
3246 ext4_free_branches(handle, inode, partial->bh,
3247 partial->p,
3248 partial->p+1, (chain+n-1) - partial);
3251 /* Clear the ends of indirect blocks on the shared branch */
3252 while (partial > chain) {
3253 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3254 (__le32*)partial->bh->b_data+addr_per_block,
3255 (chain+n-1) - partial);
3256 BUFFER_TRACE(partial->bh, "call brelse");
3257 brelse (partial->bh);
3258 partial--;
3260 do_indirects:
3261 /* Kill the remaining (whole) subtrees */
3262 switch (offsets[0]) {
3263 default:
3264 nr = i_data[EXT4_IND_BLOCK];
3265 if (nr) {
3266 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3267 i_data[EXT4_IND_BLOCK] = 0;
3269 case EXT4_IND_BLOCK:
3270 nr = i_data[EXT4_DIND_BLOCK];
3271 if (nr) {
3272 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3273 i_data[EXT4_DIND_BLOCK] = 0;
3275 case EXT4_DIND_BLOCK:
3276 nr = i_data[EXT4_TIND_BLOCK];
3277 if (nr) {
3278 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3279 i_data[EXT4_TIND_BLOCK] = 0;
3281 case EXT4_TIND_BLOCK:
3285 ext4_discard_reservation(inode);
3287 up_write(&ei->i_data_sem);
3288 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3289 ext4_mark_inode_dirty(handle, inode);
3292 * In a multi-transaction truncate, we only make the final transaction
3293 * synchronous
3295 if (IS_SYNC(inode))
3296 handle->h_sync = 1;
3297 out_stop:
3299 * If this was a simple ftruncate(), and the file will remain alive
3300 * then we need to clear up the orphan record which we created above.
3301 * However, if this was a real unlink then we were called by
3302 * ext4_delete_inode(), and we allow that function to clean up the
3303 * orphan info for us.
3305 if (inode->i_nlink)
3306 ext4_orphan_del(handle, inode);
3308 ext4_journal_stop(handle);
3311 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3312 unsigned long ino, struct ext4_iloc *iloc)
3314 ext4_group_t block_group;
3315 unsigned long offset;
3316 ext4_fsblk_t block;
3317 struct ext4_group_desc *gdp;
3319 if (!ext4_valid_inum(sb, ino)) {
3321 * This error is already checked for in namei.c unless we are
3322 * looking at an NFS filehandle, in which case no error
3323 * report is needed
3325 return 0;
3328 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3329 gdp = ext4_get_group_desc(sb, block_group, NULL);
3330 if (!gdp)
3331 return 0;
3334 * Figure out the offset within the block group inode table
3336 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3337 EXT4_INODE_SIZE(sb);
3338 block = ext4_inode_table(sb, gdp) +
3339 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3341 iloc->block_group = block_group;
3342 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3343 return block;
3347 * ext4_get_inode_loc returns with an extra refcount against the inode's
3348 * underlying buffer_head on success. If 'in_mem' is true, we have all
3349 * data in memory that is needed to recreate the on-disk version of this
3350 * inode.
3352 static int __ext4_get_inode_loc(struct inode *inode,
3353 struct ext4_iloc *iloc, int in_mem)
3355 ext4_fsblk_t block;
3356 struct buffer_head *bh;
3358 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3359 if (!block)
3360 return -EIO;
3362 bh = sb_getblk(inode->i_sb, block);
3363 if (!bh) {
3364 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3365 "unable to read inode block - "
3366 "inode=%lu, block=%llu",
3367 inode->i_ino, block);
3368 return -EIO;
3370 if (!buffer_uptodate(bh)) {
3371 lock_buffer(bh);
3372 if (buffer_uptodate(bh)) {
3373 /* someone brought it uptodate while we waited */
3374 unlock_buffer(bh);
3375 goto has_buffer;
3379 * If we have all information of the inode in memory and this
3380 * is the only valid inode in the block, we need not read the
3381 * block.
3383 if (in_mem) {
3384 struct buffer_head *bitmap_bh;
3385 struct ext4_group_desc *desc;
3386 int inodes_per_buffer;
3387 int inode_offset, i;
3388 ext4_group_t block_group;
3389 int start;
3391 block_group = (inode->i_ino - 1) /
3392 EXT4_INODES_PER_GROUP(inode->i_sb);
3393 inodes_per_buffer = bh->b_size /
3394 EXT4_INODE_SIZE(inode->i_sb);
3395 inode_offset = ((inode->i_ino - 1) %
3396 EXT4_INODES_PER_GROUP(inode->i_sb));
3397 start = inode_offset & ~(inodes_per_buffer - 1);
3399 /* Is the inode bitmap in cache? */
3400 desc = ext4_get_group_desc(inode->i_sb,
3401 block_group, NULL);
3402 if (!desc)
3403 goto make_io;
3405 bitmap_bh = sb_getblk(inode->i_sb,
3406 ext4_inode_bitmap(inode->i_sb, desc));
3407 if (!bitmap_bh)
3408 goto make_io;
3411 * If the inode bitmap isn't in cache then the
3412 * optimisation may end up performing two reads instead
3413 * of one, so skip it.
3415 if (!buffer_uptodate(bitmap_bh)) {
3416 brelse(bitmap_bh);
3417 goto make_io;
3419 for (i = start; i < start + inodes_per_buffer; i++) {
3420 if (i == inode_offset)
3421 continue;
3422 if (ext4_test_bit(i, bitmap_bh->b_data))
3423 break;
3425 brelse(bitmap_bh);
3426 if (i == start + inodes_per_buffer) {
3427 /* all other inodes are free, so skip I/O */
3428 memset(bh->b_data, 0, bh->b_size);
3429 set_buffer_uptodate(bh);
3430 unlock_buffer(bh);
3431 goto has_buffer;
3435 make_io:
3437 * There are other valid inodes in the buffer, this inode
3438 * has in-inode xattrs, or we don't have this inode in memory.
3439 * Read the block from disk.
3441 get_bh(bh);
3442 bh->b_end_io = end_buffer_read_sync;
3443 submit_bh(READ_META, bh);
3444 wait_on_buffer(bh);
3445 if (!buffer_uptodate(bh)) {
3446 ext4_error(inode->i_sb, "ext4_get_inode_loc",
3447 "unable to read inode block - "
3448 "inode=%lu, block=%llu",
3449 inode->i_ino, block);
3450 brelse(bh);
3451 return -EIO;
3454 has_buffer:
3455 iloc->bh = bh;
3456 return 0;
3459 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3461 /* We have all inode data except xattrs in memory here. */
3462 return __ext4_get_inode_loc(inode, iloc,
3463 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3466 void ext4_set_inode_flags(struct inode *inode)
3468 unsigned int flags = EXT4_I(inode)->i_flags;
3470 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3471 if (flags & EXT4_SYNC_FL)
3472 inode->i_flags |= S_SYNC;
3473 if (flags & EXT4_APPEND_FL)
3474 inode->i_flags |= S_APPEND;
3475 if (flags & EXT4_IMMUTABLE_FL)
3476 inode->i_flags |= S_IMMUTABLE;
3477 if (flags & EXT4_NOATIME_FL)
3478 inode->i_flags |= S_NOATIME;
3479 if (flags & EXT4_DIRSYNC_FL)
3480 inode->i_flags |= S_DIRSYNC;
3483 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3484 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3486 unsigned int flags = ei->vfs_inode.i_flags;
3488 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3489 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3490 if (flags & S_SYNC)
3491 ei->i_flags |= EXT4_SYNC_FL;
3492 if (flags & S_APPEND)
3493 ei->i_flags |= EXT4_APPEND_FL;
3494 if (flags & S_IMMUTABLE)
3495 ei->i_flags |= EXT4_IMMUTABLE_FL;
3496 if (flags & S_NOATIME)
3497 ei->i_flags |= EXT4_NOATIME_FL;
3498 if (flags & S_DIRSYNC)
3499 ei->i_flags |= EXT4_DIRSYNC_FL;
3501 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3502 struct ext4_inode_info *ei)
3504 blkcnt_t i_blocks ;
3505 struct inode *inode = &(ei->vfs_inode);
3506 struct super_block *sb = inode->i_sb;
3508 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3509 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3510 /* we are using combined 48 bit field */
3511 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3512 le32_to_cpu(raw_inode->i_blocks_lo);
3513 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3514 /* i_blocks represent file system block size */
3515 return i_blocks << (inode->i_blkbits - 9);
3516 } else {
3517 return i_blocks;
3519 } else {
3520 return le32_to_cpu(raw_inode->i_blocks_lo);
3524 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3526 struct ext4_iloc iloc;
3527 struct ext4_inode *raw_inode;
3528 struct ext4_inode_info *ei;
3529 struct buffer_head *bh;
3530 struct inode *inode;
3531 long ret;
3532 int block;
3534 inode = iget_locked(sb, ino);
3535 if (!inode)
3536 return ERR_PTR(-ENOMEM);
3537 if (!(inode->i_state & I_NEW))
3538 return inode;
3540 ei = EXT4_I(inode);
3541 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3542 ei->i_acl = EXT4_ACL_NOT_CACHED;
3543 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3544 #endif
3545 ei->i_block_alloc_info = NULL;
3547 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3548 if (ret < 0)
3549 goto bad_inode;
3550 bh = iloc.bh;
3551 raw_inode = ext4_raw_inode(&iloc);
3552 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3553 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3554 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3555 if(!(test_opt (inode->i_sb, NO_UID32))) {
3556 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3557 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3559 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3561 ei->i_state = 0;
3562 ei->i_dir_start_lookup = 0;
3563 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3564 /* We now have enough fields to check if the inode was active or not.
3565 * This is needed because nfsd might try to access dead inodes
3566 * the test is that same one that e2fsck uses
3567 * NeilBrown 1999oct15
3569 if (inode->i_nlink == 0) {
3570 if (inode->i_mode == 0 ||
3571 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3572 /* this inode is deleted */
3573 brelse (bh);
3574 ret = -ESTALE;
3575 goto bad_inode;
3577 /* The only unlinked inodes we let through here have
3578 * valid i_mode and are being read by the orphan
3579 * recovery code: that's fine, we're about to complete
3580 * the process of deleting those. */
3582 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3583 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3584 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3585 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3586 cpu_to_le32(EXT4_OS_HURD)) {
3587 ei->i_file_acl |=
3588 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3590 inode->i_size = ext4_isize(raw_inode);
3591 ei->i_disksize = inode->i_size;
3592 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3593 ei->i_block_group = iloc.block_group;
3595 * NOTE! The in-memory inode i_data array is in little-endian order
3596 * even on big-endian machines: we do NOT byteswap the block numbers!
3598 for (block = 0; block < EXT4_N_BLOCKS; block++)
3599 ei->i_data[block] = raw_inode->i_block[block];
3600 INIT_LIST_HEAD(&ei->i_orphan);
3602 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3603 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3604 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3605 EXT4_INODE_SIZE(inode->i_sb)) {
3606 brelse (bh);
3607 ret = -EIO;
3608 goto bad_inode;
3610 if (ei->i_extra_isize == 0) {
3611 /* The extra space is currently unused. Use it. */
3612 ei->i_extra_isize = sizeof(struct ext4_inode) -
3613 EXT4_GOOD_OLD_INODE_SIZE;
3614 } else {
3615 __le32 *magic = (void *)raw_inode +
3616 EXT4_GOOD_OLD_INODE_SIZE +
3617 ei->i_extra_isize;
3618 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3619 ei->i_state |= EXT4_STATE_XATTR;
3621 } else
3622 ei->i_extra_isize = 0;
3624 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3625 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3626 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3627 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3629 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3630 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3631 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3632 inode->i_version |=
3633 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3636 if (S_ISREG(inode->i_mode)) {
3637 inode->i_op = &ext4_file_inode_operations;
3638 inode->i_fop = &ext4_file_operations;
3639 ext4_set_aops(inode);
3640 } else if (S_ISDIR(inode->i_mode)) {
3641 inode->i_op = &ext4_dir_inode_operations;
3642 inode->i_fop = &ext4_dir_operations;
3643 } else if (S_ISLNK(inode->i_mode)) {
3644 if (ext4_inode_is_fast_symlink(inode))
3645 inode->i_op = &ext4_fast_symlink_inode_operations;
3646 else {
3647 inode->i_op = &ext4_symlink_inode_operations;
3648 ext4_set_aops(inode);
3650 } else {
3651 inode->i_op = &ext4_special_inode_operations;
3652 if (raw_inode->i_block[0])
3653 init_special_inode(inode, inode->i_mode,
3654 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3655 else
3656 init_special_inode(inode, inode->i_mode,
3657 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3659 brelse (iloc.bh);
3660 ext4_set_inode_flags(inode);
3661 unlock_new_inode(inode);
3662 return inode;
3664 bad_inode:
3665 iget_failed(inode);
3666 return ERR_PTR(ret);
3669 static int ext4_inode_blocks_set(handle_t *handle,
3670 struct ext4_inode *raw_inode,
3671 struct ext4_inode_info *ei)
3673 struct inode *inode = &(ei->vfs_inode);
3674 u64 i_blocks = inode->i_blocks;
3675 struct super_block *sb = inode->i_sb;
3676 int err = 0;
3678 if (i_blocks <= ~0U) {
3680 * i_blocks can be represnted in a 32 bit variable
3681 * as multiple of 512 bytes
3683 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3684 raw_inode->i_blocks_high = 0;
3685 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3686 } else if (i_blocks <= 0xffffffffffffULL) {
3688 * i_blocks can be represented in a 48 bit variable
3689 * as multiple of 512 bytes
3691 err = ext4_update_rocompat_feature(handle, sb,
3692 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3693 if (err)
3694 goto err_out;
3695 /* i_block is stored in the split 48 bit fields */
3696 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3697 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3698 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3699 } else {
3701 * i_blocks should be represented in a 48 bit variable
3702 * as multiple of file system block size
3704 err = ext4_update_rocompat_feature(handle, sb,
3705 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3706 if (err)
3707 goto err_out;
3708 ei->i_flags |= EXT4_HUGE_FILE_FL;
3709 /* i_block is stored in file system block size */
3710 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3711 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3712 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3714 err_out:
3715 return err;
3719 * Post the struct inode info into an on-disk inode location in the
3720 * buffer-cache. This gobbles the caller's reference to the
3721 * buffer_head in the inode location struct.
3723 * The caller must have write access to iloc->bh.
3725 static int ext4_do_update_inode(handle_t *handle,
3726 struct inode *inode,
3727 struct ext4_iloc *iloc)
3729 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3730 struct ext4_inode_info *ei = EXT4_I(inode);
3731 struct buffer_head *bh = iloc->bh;
3732 int err = 0, rc, block;
3734 /* For fields not not tracking in the in-memory inode,
3735 * initialise them to zero for new inodes. */
3736 if (ei->i_state & EXT4_STATE_NEW)
3737 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3739 ext4_get_inode_flags(ei);
3740 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3741 if(!(test_opt(inode->i_sb, NO_UID32))) {
3742 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3743 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3745 * Fix up interoperability with old kernels. Otherwise, old inodes get
3746 * re-used with the upper 16 bits of the uid/gid intact
3748 if(!ei->i_dtime) {
3749 raw_inode->i_uid_high =
3750 cpu_to_le16(high_16_bits(inode->i_uid));
3751 raw_inode->i_gid_high =
3752 cpu_to_le16(high_16_bits(inode->i_gid));
3753 } else {
3754 raw_inode->i_uid_high = 0;
3755 raw_inode->i_gid_high = 0;
3757 } else {
3758 raw_inode->i_uid_low =
3759 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3760 raw_inode->i_gid_low =
3761 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3762 raw_inode->i_uid_high = 0;
3763 raw_inode->i_gid_high = 0;
3765 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3767 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3768 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3769 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3770 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3772 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3773 goto out_brelse;
3774 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3775 /* clear the migrate flag in the raw_inode */
3776 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
3777 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3778 cpu_to_le32(EXT4_OS_HURD))
3779 raw_inode->i_file_acl_high =
3780 cpu_to_le16(ei->i_file_acl >> 32);
3781 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3782 ext4_isize_set(raw_inode, ei->i_disksize);
3783 if (ei->i_disksize > 0x7fffffffULL) {
3784 struct super_block *sb = inode->i_sb;
3785 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3786 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3787 EXT4_SB(sb)->s_es->s_rev_level ==
3788 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3789 /* If this is the first large file
3790 * created, add a flag to the superblock.
3792 err = ext4_journal_get_write_access(handle,
3793 EXT4_SB(sb)->s_sbh);
3794 if (err)
3795 goto out_brelse;
3796 ext4_update_dynamic_rev(sb);
3797 EXT4_SET_RO_COMPAT_FEATURE(sb,
3798 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3799 sb->s_dirt = 1;
3800 handle->h_sync = 1;
3801 err = ext4_journal_dirty_metadata(handle,
3802 EXT4_SB(sb)->s_sbh);
3805 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3806 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3807 if (old_valid_dev(inode->i_rdev)) {
3808 raw_inode->i_block[0] =
3809 cpu_to_le32(old_encode_dev(inode->i_rdev));
3810 raw_inode->i_block[1] = 0;
3811 } else {
3812 raw_inode->i_block[0] = 0;
3813 raw_inode->i_block[1] =
3814 cpu_to_le32(new_encode_dev(inode->i_rdev));
3815 raw_inode->i_block[2] = 0;
3817 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
3818 raw_inode->i_block[block] = ei->i_data[block];
3820 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3821 if (ei->i_extra_isize) {
3822 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3823 raw_inode->i_version_hi =
3824 cpu_to_le32(inode->i_version >> 32);
3825 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3829 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3830 rc = ext4_journal_dirty_metadata(handle, bh);
3831 if (!err)
3832 err = rc;
3833 ei->i_state &= ~EXT4_STATE_NEW;
3835 out_brelse:
3836 brelse (bh);
3837 ext4_std_error(inode->i_sb, err);
3838 return err;
3842 * ext4_write_inode()
3844 * We are called from a few places:
3846 * - Within generic_file_write() for O_SYNC files.
3847 * Here, there will be no transaction running. We wait for any running
3848 * trasnaction to commit.
3850 * - Within sys_sync(), kupdate and such.
3851 * We wait on commit, if tol to.
3853 * - Within prune_icache() (PF_MEMALLOC == true)
3854 * Here we simply return. We can't afford to block kswapd on the
3855 * journal commit.
3857 * In all cases it is actually safe for us to return without doing anything,
3858 * because the inode has been copied into a raw inode buffer in
3859 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3860 * knfsd.
3862 * Note that we are absolutely dependent upon all inode dirtiers doing the
3863 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3864 * which we are interested.
3866 * It would be a bug for them to not do this. The code:
3868 * mark_inode_dirty(inode)
3869 * stuff();
3870 * inode->i_size = expr;
3872 * is in error because a kswapd-driven write_inode() could occur while
3873 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3874 * will no longer be on the superblock's dirty inode list.
3876 int ext4_write_inode(struct inode *inode, int wait)
3878 if (current->flags & PF_MEMALLOC)
3879 return 0;
3881 if (ext4_journal_current_handle()) {
3882 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3883 dump_stack();
3884 return -EIO;
3887 if (!wait)
3888 return 0;
3890 return ext4_force_commit(inode->i_sb);
3894 * ext4_setattr()
3896 * Called from notify_change.
3898 * We want to trap VFS attempts to truncate the file as soon as
3899 * possible. In particular, we want to make sure that when the VFS
3900 * shrinks i_size, we put the inode on the orphan list and modify
3901 * i_disksize immediately, so that during the subsequent flushing of
3902 * dirty pages and freeing of disk blocks, we can guarantee that any
3903 * commit will leave the blocks being flushed in an unused state on
3904 * disk. (On recovery, the inode will get truncated and the blocks will
3905 * be freed, so we have a strong guarantee that no future commit will
3906 * leave these blocks visible to the user.)
3908 * Another thing we have to assure is that if we are in ordered mode
3909 * and inode is still attached to the committing transaction, we must
3910 * we start writeout of all the dirty pages which are being truncated.
3911 * This way we are sure that all the data written in the previous
3912 * transaction are already on disk (truncate waits for pages under
3913 * writeback).
3915 * Called with inode->i_mutex down.
3917 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3919 struct inode *inode = dentry->d_inode;
3920 int error, rc = 0;
3921 const unsigned int ia_valid = attr->ia_valid;
3923 error = inode_change_ok(inode, attr);
3924 if (error)
3925 return error;
3927 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3928 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3929 handle_t *handle;
3931 /* (user+group)*(old+new) structure, inode write (sb,
3932 * inode block, ? - but truncate inode update has it) */
3933 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3934 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3935 if (IS_ERR(handle)) {
3936 error = PTR_ERR(handle);
3937 goto err_out;
3939 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3940 if (error) {
3941 ext4_journal_stop(handle);
3942 return error;
3944 /* Update corresponding info in inode so that everything is in
3945 * one transaction */
3946 if (attr->ia_valid & ATTR_UID)
3947 inode->i_uid = attr->ia_uid;
3948 if (attr->ia_valid & ATTR_GID)
3949 inode->i_gid = attr->ia_gid;
3950 error = ext4_mark_inode_dirty(handle, inode);
3951 ext4_journal_stop(handle);
3954 if (attr->ia_valid & ATTR_SIZE) {
3955 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3956 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3958 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3959 error = -EFBIG;
3960 goto err_out;
3965 if (S_ISREG(inode->i_mode) &&
3966 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3967 handle_t *handle;
3969 handle = ext4_journal_start(inode, 3);
3970 if (IS_ERR(handle)) {
3971 error = PTR_ERR(handle);
3972 goto err_out;
3975 error = ext4_orphan_add(handle, inode);
3976 EXT4_I(inode)->i_disksize = attr->ia_size;
3977 rc = ext4_mark_inode_dirty(handle, inode);
3978 if (!error)
3979 error = rc;
3980 ext4_journal_stop(handle);
3982 if (ext4_should_order_data(inode)) {
3983 error = ext4_begin_ordered_truncate(inode,
3984 attr->ia_size);
3985 if (error) {
3986 /* Do as much error cleanup as possible */
3987 handle = ext4_journal_start(inode, 3);
3988 if (IS_ERR(handle)) {
3989 ext4_orphan_del(NULL, inode);
3990 goto err_out;
3992 ext4_orphan_del(handle, inode);
3993 ext4_journal_stop(handle);
3994 goto err_out;
3999 rc = inode_setattr(inode, attr);
4001 /* If inode_setattr's call to ext4_truncate failed to get a
4002 * transaction handle at all, we need to clean up the in-core
4003 * orphan list manually. */
4004 if (inode->i_nlink)
4005 ext4_orphan_del(NULL, inode);
4007 if (!rc && (ia_valid & ATTR_MODE))
4008 rc = ext4_acl_chmod(inode);
4010 err_out:
4011 ext4_std_error(inode->i_sb, error);
4012 if (!error)
4013 error = rc;
4014 return error;
4019 * How many blocks doth make a writepage()?
4021 * With N blocks per page, it may be:
4022 * N data blocks
4023 * 2 indirect block
4024 * 2 dindirect
4025 * 1 tindirect
4026 * N+5 bitmap blocks (from the above)
4027 * N+5 group descriptor summary blocks
4028 * 1 inode block
4029 * 1 superblock.
4030 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
4032 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
4034 * With ordered or writeback data it's the same, less the N data blocks.
4036 * If the inode's direct blocks can hold an integral number of pages then a
4037 * page cannot straddle two indirect blocks, and we can only touch one indirect
4038 * and dindirect block, and the "5" above becomes "3".
4040 * This still overestimates under most circumstances. If we were to pass the
4041 * start and end offsets in here as well we could do block_to_path() on each
4042 * block and work out the exact number of indirects which are touched. Pah.
4045 int ext4_writepage_trans_blocks(struct inode *inode)
4047 int bpp = ext4_journal_blocks_per_page(inode);
4048 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
4049 int ret;
4051 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4052 return ext4_ext_writepage_trans_blocks(inode, bpp);
4054 if (ext4_should_journal_data(inode))
4055 ret = 3 * (bpp + indirects) + 2;
4056 else
4057 ret = 2 * (bpp + indirects) + 2;
4059 #ifdef CONFIG_QUOTA
4060 /* We know that structure was already allocated during DQUOT_INIT so
4061 * we will be updating only the data blocks + inodes */
4062 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
4063 #endif
4065 return ret;
4069 * The caller must have previously called ext4_reserve_inode_write().
4070 * Give this, we know that the caller already has write access to iloc->bh.
4072 int ext4_mark_iloc_dirty(handle_t *handle,
4073 struct inode *inode, struct ext4_iloc *iloc)
4075 int err = 0;
4077 if (test_opt(inode->i_sb, I_VERSION))
4078 inode_inc_iversion(inode);
4080 /* the do_update_inode consumes one bh->b_count */
4081 get_bh(iloc->bh);
4083 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4084 err = ext4_do_update_inode(handle, inode, iloc);
4085 put_bh(iloc->bh);
4086 return err;
4090 * On success, We end up with an outstanding reference count against
4091 * iloc->bh. This _must_ be cleaned up later.
4095 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4096 struct ext4_iloc *iloc)
4098 int err = 0;
4099 if (handle) {
4100 err = ext4_get_inode_loc(inode, iloc);
4101 if (!err) {
4102 BUFFER_TRACE(iloc->bh, "get_write_access");
4103 err = ext4_journal_get_write_access(handle, iloc->bh);
4104 if (err) {
4105 brelse(iloc->bh);
4106 iloc->bh = NULL;
4110 ext4_std_error(inode->i_sb, err);
4111 return err;
4115 * Expand an inode by new_extra_isize bytes.
4116 * Returns 0 on success or negative error number on failure.
4118 static int ext4_expand_extra_isize(struct inode *inode,
4119 unsigned int new_extra_isize,
4120 struct ext4_iloc iloc,
4121 handle_t *handle)
4123 struct ext4_inode *raw_inode;
4124 struct ext4_xattr_ibody_header *header;
4125 struct ext4_xattr_entry *entry;
4127 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4128 return 0;
4130 raw_inode = ext4_raw_inode(&iloc);
4132 header = IHDR(inode, raw_inode);
4133 entry = IFIRST(header);
4135 /* No extended attributes present */
4136 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4137 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4138 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4139 new_extra_isize);
4140 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4141 return 0;
4144 /* try to expand with EAs present */
4145 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4146 raw_inode, handle);
4150 * What we do here is to mark the in-core inode as clean with respect to inode
4151 * dirtiness (it may still be data-dirty).
4152 * This means that the in-core inode may be reaped by prune_icache
4153 * without having to perform any I/O. This is a very good thing,
4154 * because *any* task may call prune_icache - even ones which
4155 * have a transaction open against a different journal.
4157 * Is this cheating? Not really. Sure, we haven't written the
4158 * inode out, but prune_icache isn't a user-visible syncing function.
4159 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4160 * we start and wait on commits.
4162 * Is this efficient/effective? Well, we're being nice to the system
4163 * by cleaning up our inodes proactively so they can be reaped
4164 * without I/O. But we are potentially leaving up to five seconds'
4165 * worth of inodes floating about which prune_icache wants us to
4166 * write out. One way to fix that would be to get prune_icache()
4167 * to do a write_super() to free up some memory. It has the desired
4168 * effect.
4170 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4172 struct ext4_iloc iloc;
4173 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4174 static unsigned int mnt_count;
4175 int err, ret;
4177 might_sleep();
4178 err = ext4_reserve_inode_write(handle, inode, &iloc);
4179 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4180 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4182 * We need extra buffer credits since we may write into EA block
4183 * with this same handle. If journal_extend fails, then it will
4184 * only result in a minor loss of functionality for that inode.
4185 * If this is felt to be critical, then e2fsck should be run to
4186 * force a large enough s_min_extra_isize.
4188 if ((jbd2_journal_extend(handle,
4189 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4190 ret = ext4_expand_extra_isize(inode,
4191 sbi->s_want_extra_isize,
4192 iloc, handle);
4193 if (ret) {
4194 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4195 if (mnt_count !=
4196 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4197 ext4_warning(inode->i_sb, __func__,
4198 "Unable to expand inode %lu. Delete"
4199 " some EAs or run e2fsck.",
4200 inode->i_ino);
4201 mnt_count =
4202 le16_to_cpu(sbi->s_es->s_mnt_count);
4207 if (!err)
4208 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4209 return err;
4213 * ext4_dirty_inode() is called from __mark_inode_dirty()
4215 * We're really interested in the case where a file is being extended.
4216 * i_size has been changed by generic_commit_write() and we thus need
4217 * to include the updated inode in the current transaction.
4219 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4220 * are allocated to the file.
4222 * If the inode is marked synchronous, we don't honour that here - doing
4223 * so would cause a commit on atime updates, which we don't bother doing.
4224 * We handle synchronous inodes at the highest possible level.
4226 void ext4_dirty_inode(struct inode *inode)
4228 handle_t *current_handle = ext4_journal_current_handle();
4229 handle_t *handle;
4231 handle = ext4_journal_start(inode, 2);
4232 if (IS_ERR(handle))
4233 goto out;
4234 if (current_handle &&
4235 current_handle->h_transaction != handle->h_transaction) {
4236 /* This task has a transaction open against a different fs */
4237 printk(KERN_EMERG "%s: transactions do not match!\n",
4238 __func__);
4239 } else {
4240 jbd_debug(5, "marking dirty. outer handle=%p\n",
4241 current_handle);
4242 ext4_mark_inode_dirty(handle, inode);
4244 ext4_journal_stop(handle);
4245 out:
4246 return;
4249 #if 0
4251 * Bind an inode's backing buffer_head into this transaction, to prevent
4252 * it from being flushed to disk early. Unlike
4253 * ext4_reserve_inode_write, this leaves behind no bh reference and
4254 * returns no iloc structure, so the caller needs to repeat the iloc
4255 * lookup to mark the inode dirty later.
4257 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4259 struct ext4_iloc iloc;
4261 int err = 0;
4262 if (handle) {
4263 err = ext4_get_inode_loc(inode, &iloc);
4264 if (!err) {
4265 BUFFER_TRACE(iloc.bh, "get_write_access");
4266 err = jbd2_journal_get_write_access(handle, iloc.bh);
4267 if (!err)
4268 err = ext4_journal_dirty_metadata(handle,
4269 iloc.bh);
4270 brelse(iloc.bh);
4273 ext4_std_error(inode->i_sb, err);
4274 return err;
4276 #endif
4278 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4280 journal_t *journal;
4281 handle_t *handle;
4282 int err;
4285 * We have to be very careful here: changing a data block's
4286 * journaling status dynamically is dangerous. If we write a
4287 * data block to the journal, change the status and then delete
4288 * that block, we risk forgetting to revoke the old log record
4289 * from the journal and so a subsequent replay can corrupt data.
4290 * So, first we make sure that the journal is empty and that
4291 * nobody is changing anything.
4294 journal = EXT4_JOURNAL(inode);
4295 if (is_journal_aborted(journal))
4296 return -EROFS;
4298 jbd2_journal_lock_updates(journal);
4299 jbd2_journal_flush(journal);
4302 * OK, there are no updates running now, and all cached data is
4303 * synced to disk. We are now in a completely consistent state
4304 * which doesn't have anything in the journal, and we know that
4305 * no filesystem updates are running, so it is safe to modify
4306 * the inode's in-core data-journaling state flag now.
4309 if (val)
4310 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4311 else
4312 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4313 ext4_set_aops(inode);
4315 jbd2_journal_unlock_updates(journal);
4317 /* Finally we can mark the inode as dirty. */
4319 handle = ext4_journal_start(inode, 1);
4320 if (IS_ERR(handle))
4321 return PTR_ERR(handle);
4323 err = ext4_mark_inode_dirty(handle, inode);
4324 handle->h_sync = 1;
4325 ext4_journal_stop(handle);
4326 ext4_std_error(inode->i_sb, err);
4328 return err;
4331 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4333 return !buffer_mapped(bh);
4336 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4338 loff_t size;
4339 unsigned long len;
4340 int ret = -EINVAL;
4341 struct file *file = vma->vm_file;
4342 struct inode *inode = file->f_path.dentry->d_inode;
4343 struct address_space *mapping = inode->i_mapping;
4346 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4347 * get i_mutex because we are already holding mmap_sem.
4349 down_read(&inode->i_alloc_sem);
4350 size = i_size_read(inode);
4351 if (page->mapping != mapping || size <= page_offset(page)
4352 || !PageUptodate(page)) {
4353 /* page got truncated from under us? */
4354 goto out_unlock;
4356 ret = 0;
4357 if (PageMappedToDisk(page))
4358 goto out_unlock;
4360 if (page->index == size >> PAGE_CACHE_SHIFT)
4361 len = size & ~PAGE_CACHE_MASK;
4362 else
4363 len = PAGE_CACHE_SIZE;
4365 if (page_has_buffers(page)) {
4366 /* return if we have all the buffers mapped */
4367 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4368 ext4_bh_unmapped))
4369 goto out_unlock;
4372 * OK, we need to fill the hole... Do write_begin write_end
4373 * to do block allocation/reservation.We are not holding
4374 * inode.i__mutex here. That allow * parallel write_begin,
4375 * write_end call. lock_page prevent this from happening
4376 * on the same page though
4378 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4379 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4380 if (ret < 0)
4381 goto out_unlock;
4382 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4383 len, len, page, NULL);
4384 if (ret < 0)
4385 goto out_unlock;
4386 ret = 0;
4387 out_unlock:
4388 up_read(&inode->i_alloc_sem);
4389 return ret;