2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
42 #include "ext4_extents.h"
44 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
47 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode
)->jinode
,
51 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
54 * Test whether an inode is a fast symlink.
56 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
58 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
59 (inode
->i_sb
->s_blocksize
>> 9) : 0;
61 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
65 * The ext4 forget function must perform a revoke if we are freeing data
66 * which has been journaled. Metadata (eg. indirect blocks) must be
67 * revoked in all cases.
69 * "bh" may be NULL: a metadata block may have been freed from memory
70 * but there may still be a record of it in the journal, and that record
71 * still needs to be revoked.
73 int ext4_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
74 struct buffer_head
*bh
, ext4_fsblk_t blocknr
)
80 BUFFER_TRACE(bh
, "enter");
82 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
84 bh
, is_metadata
, inode
->i_mode
,
85 test_opt(inode
->i_sb
, DATA_FLAGS
));
87 /* Never use the revoke function if we are doing full data
88 * journaling: there is no need to, and a V1 superblock won't
89 * support it. Otherwise, only skip the revoke on un-journaled
92 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
||
93 (!is_metadata
&& !ext4_should_journal_data(inode
))) {
95 BUFFER_TRACE(bh
, "call jbd2_journal_forget");
96 return ext4_journal_forget(handle
, bh
);
102 * data!=journal && (is_metadata || should_journal_data(inode))
104 BUFFER_TRACE(bh
, "call ext4_journal_revoke");
105 err
= ext4_journal_revoke(handle
, blocknr
, bh
);
107 ext4_abort(inode
->i_sb
, __func__
,
108 "error %d when attempting revoke", err
);
109 BUFFER_TRACE(bh
, "exit");
114 * Work out how many blocks we need to proceed with the next chunk of a
115 * truncate transaction.
117 static unsigned long blocks_for_truncate(struct inode
*inode
)
121 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
123 /* Give ourselves just enough room to cope with inodes in which
124 * i_blocks is corrupt: we've seen disk corruptions in the past
125 * which resulted in random data in an inode which looked enough
126 * like a regular file for ext4 to try to delete it. Things
127 * will go a bit crazy if that happens, but at least we should
128 * try not to panic the whole kernel. */
132 /* But we need to bound the transaction so we don't overflow the
134 if (needed
> EXT4_MAX_TRANS_DATA
)
135 needed
= EXT4_MAX_TRANS_DATA
;
137 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
141 * Truncate transactions can be complex and absolutely huge. So we need to
142 * be able to restart the transaction at a conventient checkpoint to make
143 * sure we don't overflow the journal.
145 * start_transaction gets us a new handle for a truncate transaction,
146 * and extend_transaction tries to extend the existing one a bit. If
147 * extend fails, we need to propagate the failure up and restart the
148 * transaction in the top-level truncate loop. --sct
150 static handle_t
*start_transaction(struct inode
*inode
)
154 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
158 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
163 * Try to extend this transaction for the purposes of truncation.
165 * Returns 0 if we managed to create more room. If we can't create more
166 * room, and the transaction must be restarted we return 1.
168 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
170 if (handle
->h_buffer_credits
> EXT4_RESERVE_TRANS_BLOCKS
)
172 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
178 * Restart the transaction associated with *handle. This does a commit,
179 * so before we call here everything must be consistently dirtied against
182 static int ext4_journal_test_restart(handle_t
*handle
, struct inode
*inode
)
184 jbd_debug(2, "restarting handle %p\n", handle
);
185 return ext4_journal_restart(handle
, blocks_for_truncate(inode
));
189 * Called at the last iput() if i_nlink is zero.
191 void ext4_delete_inode (struct inode
* inode
)
195 if (ext4_should_order_data(inode
))
196 ext4_begin_ordered_truncate(inode
, 0);
197 truncate_inode_pages(&inode
->i_data
, 0);
199 if (is_bad_inode(inode
))
202 handle
= start_transaction(inode
);
203 if (IS_ERR(handle
)) {
205 * If we're going to skip the normal cleanup, we still need to
206 * make sure that the in-core orphan linked list is properly
209 ext4_orphan_del(NULL
, inode
);
217 ext4_truncate(inode
);
219 * Kill off the orphan record which ext4_truncate created.
220 * AKPM: I think this can be inside the above `if'.
221 * Note that ext4_orphan_del() has to be able to cope with the
222 * deletion of a non-existent orphan - this is because we don't
223 * know if ext4_truncate() actually created an orphan record.
224 * (Well, we could do this if we need to, but heck - it works)
226 ext4_orphan_del(handle
, inode
);
227 EXT4_I(inode
)->i_dtime
= get_seconds();
230 * One subtle ordering requirement: if anything has gone wrong
231 * (transaction abort, IO errors, whatever), then we can still
232 * do these next steps (the fs will already have been marked as
233 * having errors), but we can't free the inode if the mark_dirty
236 if (ext4_mark_inode_dirty(handle
, inode
))
237 /* If that failed, just do the required in-core inode clear. */
240 ext4_free_inode(handle
, inode
);
241 ext4_journal_stop(handle
);
244 clear_inode(inode
); /* We must guarantee clearing of inode... */
250 struct buffer_head
*bh
;
253 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
255 p
->key
= *(p
->p
= v
);
260 * ext4_block_to_path - parse the block number into array of offsets
261 * @inode: inode in question (we are only interested in its superblock)
262 * @i_block: block number to be parsed
263 * @offsets: array to store the offsets in
264 * @boundary: set this non-zero if the referred-to block is likely to be
265 * followed (on disk) by an indirect block.
267 * To store the locations of file's data ext4 uses a data structure common
268 * for UNIX filesystems - tree of pointers anchored in the inode, with
269 * data blocks at leaves and indirect blocks in intermediate nodes.
270 * This function translates the block number into path in that tree -
271 * return value is the path length and @offsets[n] is the offset of
272 * pointer to (n+1)th node in the nth one. If @block is out of range
273 * (negative or too large) warning is printed and zero returned.
275 * Note: function doesn't find node addresses, so no IO is needed. All
276 * we need to know is the capacity of indirect blocks (taken from the
281 * Portability note: the last comparison (check that we fit into triple
282 * indirect block) is spelled differently, because otherwise on an
283 * architecture with 32-bit longs and 8Kb pages we might get into trouble
284 * if our filesystem had 8Kb blocks. We might use long long, but that would
285 * kill us on x86. Oh, well, at least the sign propagation does not matter -
286 * i_block would have to be negative in the very beginning, so we would not
290 static int ext4_block_to_path(struct inode
*inode
,
292 ext4_lblk_t offsets
[4], int *boundary
)
294 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
295 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
296 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
297 indirect_blocks
= ptrs
,
298 double_blocks
= (1 << (ptrs_bits
* 2));
303 ext4_warning (inode
->i_sb
, "ext4_block_to_path", "block < 0");
304 } else if (i_block
< direct_blocks
) {
305 offsets
[n
++] = i_block
;
306 final
= direct_blocks
;
307 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
308 offsets
[n
++] = EXT4_IND_BLOCK
;
309 offsets
[n
++] = i_block
;
311 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
312 offsets
[n
++] = EXT4_DIND_BLOCK
;
313 offsets
[n
++] = i_block
>> ptrs_bits
;
314 offsets
[n
++] = i_block
& (ptrs
- 1);
316 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
317 offsets
[n
++] = EXT4_TIND_BLOCK
;
318 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
319 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
320 offsets
[n
++] = i_block
& (ptrs
- 1);
323 ext4_warning(inode
->i_sb
, "ext4_block_to_path",
325 i_block
+ direct_blocks
+
326 indirect_blocks
+ double_blocks
);
329 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
334 * ext4_get_branch - read the chain of indirect blocks leading to data
335 * @inode: inode in question
336 * @depth: depth of the chain (1 - direct pointer, etc.)
337 * @offsets: offsets of pointers in inode/indirect blocks
338 * @chain: place to store the result
339 * @err: here we store the error value
341 * Function fills the array of triples <key, p, bh> and returns %NULL
342 * if everything went OK or the pointer to the last filled triple
343 * (incomplete one) otherwise. Upon the return chain[i].key contains
344 * the number of (i+1)-th block in the chain (as it is stored in memory,
345 * i.e. little-endian 32-bit), chain[i].p contains the address of that
346 * number (it points into struct inode for i==0 and into the bh->b_data
347 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
348 * block for i>0 and NULL for i==0. In other words, it holds the block
349 * numbers of the chain, addresses they were taken from (and where we can
350 * verify that chain did not change) and buffer_heads hosting these
353 * Function stops when it stumbles upon zero pointer (absent block)
354 * (pointer to last triple returned, *@err == 0)
355 * or when it gets an IO error reading an indirect block
356 * (ditto, *@err == -EIO)
357 * or when it reads all @depth-1 indirect blocks successfully and finds
358 * the whole chain, all way to the data (returns %NULL, *err == 0).
360 * Need to be called with
361 * down_read(&EXT4_I(inode)->i_data_sem)
363 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
364 ext4_lblk_t
*offsets
,
365 Indirect chain
[4], int *err
)
367 struct super_block
*sb
= inode
->i_sb
;
369 struct buffer_head
*bh
;
372 /* i_data is not going away, no lock needed */
373 add_chain (chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
377 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
380 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
394 * ext4_find_near - find a place for allocation with sufficient locality
396 * @ind: descriptor of indirect block.
398 * This function returns the preferred place for block allocation.
399 * It is used when heuristic for sequential allocation fails.
401 * + if there is a block to the left of our position - allocate near it.
402 * + if pointer will live in indirect block - allocate near that block.
403 * + if pointer will live in inode - allocate in the same
406 * In the latter case we colour the starting block by the callers PID to
407 * prevent it from clashing with concurrent allocations for a different inode
408 * in the same block group. The PID is used here so that functionally related
409 * files will be close-by on-disk.
411 * Caller must make sure that @ind is valid and will stay that way.
413 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
415 struct ext4_inode_info
*ei
= EXT4_I(inode
);
416 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
418 ext4_fsblk_t bg_start
;
419 ext4_fsblk_t last_block
;
420 ext4_grpblk_t colour
;
422 /* Try to find previous block */
423 for (p
= ind
->p
- 1; p
>= start
; p
--) {
425 return le32_to_cpu(*p
);
428 /* No such thing, so let's try location of indirect block */
430 return ind
->bh
->b_blocknr
;
433 * It is going to be referred to from the inode itself? OK, just put it
434 * into the same cylinder group then.
436 bg_start
= ext4_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
437 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
439 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
440 colour
= (current
->pid
% 16) *
441 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
443 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
444 return bg_start
+ colour
;
448 * ext4_find_goal - find a preferred place for allocation.
450 * @block: block we want
451 * @partial: pointer to the last triple within a chain
453 * Normally this function find the preferred place for block allocation,
456 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
459 struct ext4_block_alloc_info
*block_i
;
461 block_i
= EXT4_I(inode
)->i_block_alloc_info
;
464 * try the heuristic for sequential allocation,
465 * failing that at least try to get decent locality.
467 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
468 && (block_i
->last_alloc_physical_block
!= 0)) {
469 return block_i
->last_alloc_physical_block
+ 1;
472 return ext4_find_near(inode
, partial
);
476 * ext4_blks_to_allocate: Look up the block map and count the number
477 * of direct blocks need to be allocated for the given branch.
479 * @branch: chain of indirect blocks
480 * @k: number of blocks need for indirect blocks
481 * @blks: number of data blocks to be mapped.
482 * @blocks_to_boundary: the offset in the indirect block
484 * return the total number of blocks to be allocate, including the
485 * direct and indirect blocks.
487 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned long blks
,
488 int blocks_to_boundary
)
490 unsigned long count
= 0;
493 * Simple case, [t,d]Indirect block(s) has not allocated yet
494 * then it's clear blocks on that path have not allocated
497 /* right now we don't handle cross boundary allocation */
498 if (blks
< blocks_to_boundary
+ 1)
501 count
+= blocks_to_boundary
+ 1;
506 while (count
< blks
&& count
<= blocks_to_boundary
&&
507 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
514 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
515 * @indirect_blks: the number of blocks need to allocate for indirect
518 * @new_blocks: on return it will store the new block numbers for
519 * the indirect blocks(if needed) and the first direct block,
520 * @blks: on return it will store the total number of allocated
523 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
524 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
525 int indirect_blks
, int blks
,
526 ext4_fsblk_t new_blocks
[4], int *err
)
529 unsigned long count
= 0, blk_allocated
= 0;
531 ext4_fsblk_t current_block
= 0;
535 * Here we try to allocate the requested multiple blocks at once,
536 * on a best-effort basis.
537 * To build a branch, we should allocate blocks for
538 * the indirect blocks(if not allocated yet), and at least
539 * the first direct block of this branch. That's the
540 * minimum number of blocks need to allocate(required)
542 /* first we try to allocate the indirect blocks */
543 target
= indirect_blks
;
546 /* allocating blocks for indirect blocks and direct blocks */
547 current_block
= ext4_new_meta_blocks(handle
, inode
,
553 /* allocate blocks for indirect blocks */
554 while (index
< indirect_blks
&& count
) {
555 new_blocks
[index
++] = current_block
++;
560 * save the new block number
561 * for the first direct block
563 new_blocks
[index
] = current_block
;
564 printk(KERN_INFO
"%s returned more blocks than "
565 "requested\n", __func__
);
571 target
= blks
- count
;
572 blk_allocated
= count
;
575 /* Now allocate data blocks */
577 /* allocating blocks for data blocks */
578 current_block
= ext4_new_blocks(handle
, inode
, iblock
,
580 if (*err
&& (target
== blks
)) {
582 * if the allocation failed and we didn't allocate
588 if (target
== blks
) {
590 * save the new block number
591 * for the first direct block
593 new_blocks
[index
] = current_block
;
595 blk_allocated
+= count
;
598 /* total number of blocks allocated for direct blocks */
603 for (i
= 0; i
<index
; i
++)
604 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
609 * ext4_alloc_branch - allocate and set up a chain of blocks.
611 * @indirect_blks: number of allocated indirect blocks
612 * @blks: number of allocated direct blocks
613 * @offsets: offsets (in the blocks) to store the pointers to next.
614 * @branch: place to store the chain in.
616 * This function allocates blocks, zeroes out all but the last one,
617 * links them into chain and (if we are synchronous) writes them to disk.
618 * In other words, it prepares a branch that can be spliced onto the
619 * inode. It stores the information about that chain in the branch[], in
620 * the same format as ext4_get_branch() would do. We are calling it after
621 * we had read the existing part of chain and partial points to the last
622 * triple of that (one with zero ->key). Upon the exit we have the same
623 * picture as after the successful ext4_get_block(), except that in one
624 * place chain is disconnected - *branch->p is still zero (we did not
625 * set the last link), but branch->key contains the number that should
626 * be placed into *branch->p to fill that gap.
628 * If allocation fails we free all blocks we've allocated (and forget
629 * their buffer_heads) and return the error value the from failed
630 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
631 * as described above and return 0.
633 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
634 ext4_lblk_t iblock
, int indirect_blks
,
635 int *blks
, ext4_fsblk_t goal
,
636 ext4_lblk_t
*offsets
, Indirect
*branch
)
638 int blocksize
= inode
->i_sb
->s_blocksize
;
641 struct buffer_head
*bh
;
643 ext4_fsblk_t new_blocks
[4];
644 ext4_fsblk_t current_block
;
646 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
647 *blks
, new_blocks
, &err
);
651 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
653 * metadata blocks and data blocks are allocated.
655 for (n
= 1; n
<= indirect_blks
; n
++) {
657 * Get buffer_head for parent block, zero it out
658 * and set the pointer to new one, then send
661 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
664 BUFFER_TRACE(bh
, "call get_create_access");
665 err
= ext4_journal_get_create_access(handle
, bh
);
672 memset(bh
->b_data
, 0, blocksize
);
673 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
674 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
675 *branch
[n
].p
= branch
[n
].key
;
676 if ( n
== indirect_blks
) {
677 current_block
= new_blocks
[n
];
679 * End of chain, update the last new metablock of
680 * the chain to point to the new allocated
681 * data blocks numbers
683 for (i
=1; i
< num
; i
++)
684 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
686 BUFFER_TRACE(bh
, "marking uptodate");
687 set_buffer_uptodate(bh
);
690 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
691 err
= ext4_journal_dirty_metadata(handle
, bh
);
698 /* Allocation failed, free what we already allocated */
699 for (i
= 1; i
<= n
; i
++) {
700 BUFFER_TRACE(branch
[i
].bh
, "call jbd2_journal_forget");
701 ext4_journal_forget(handle
, branch
[i
].bh
);
703 for (i
= 0; i
<indirect_blks
; i
++)
704 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
706 ext4_free_blocks(handle
, inode
, new_blocks
[i
], num
, 0);
712 * ext4_splice_branch - splice the allocated branch onto inode.
714 * @block: (logical) number of block we are adding
715 * @chain: chain of indirect blocks (with a missing link - see
717 * @where: location of missing link
718 * @num: number of indirect blocks we are adding
719 * @blks: number of direct blocks we are adding
721 * This function fills the missing link and does all housekeeping needed in
722 * inode (->i_blocks, etc.). In case of success we end up with the full
723 * chain to new block and return 0.
725 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
726 ext4_lblk_t block
, Indirect
*where
, int num
, int blks
)
730 struct ext4_block_alloc_info
*block_i
;
731 ext4_fsblk_t current_block
;
733 block_i
= EXT4_I(inode
)->i_block_alloc_info
;
735 * If we're splicing into a [td]indirect block (as opposed to the
736 * inode) then we need to get write access to the [td]indirect block
740 BUFFER_TRACE(where
->bh
, "get_write_access");
741 err
= ext4_journal_get_write_access(handle
, where
->bh
);
747 *where
->p
= where
->key
;
750 * Update the host buffer_head or inode to point to more just allocated
751 * direct blocks blocks
753 if (num
== 0 && blks
> 1) {
754 current_block
= le32_to_cpu(where
->key
) + 1;
755 for (i
= 1; i
< blks
; i
++)
756 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
760 * update the most recently allocated logical & physical block
761 * in i_block_alloc_info, to assist find the proper goal block for next
765 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
766 block_i
->last_alloc_physical_block
=
767 le32_to_cpu(where
[num
].key
) + blks
- 1;
770 /* We are done with atomic stuff, now do the rest of housekeeping */
772 inode
->i_ctime
= ext4_current_time(inode
);
773 ext4_mark_inode_dirty(handle
, inode
);
775 /* had we spliced it onto indirect block? */
778 * If we spliced it onto an indirect block, we haven't
779 * altered the inode. Note however that if it is being spliced
780 * onto an indirect block at the very end of the file (the
781 * file is growing) then we *will* alter the inode to reflect
782 * the new i_size. But that is not done here - it is done in
783 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
785 jbd_debug(5, "splicing indirect only\n");
786 BUFFER_TRACE(where
->bh
, "call ext4_journal_dirty_metadata");
787 err
= ext4_journal_dirty_metadata(handle
, where
->bh
);
792 * OK, we spliced it into the inode itself on a direct block.
793 * Inode was dirtied above.
795 jbd_debug(5, "splicing direct\n");
800 for (i
= 1; i
<= num
; i
++) {
801 BUFFER_TRACE(where
[i
].bh
, "call jbd2_journal_forget");
802 ext4_journal_forget(handle
, where
[i
].bh
);
803 ext4_free_blocks(handle
, inode
,
804 le32_to_cpu(where
[i
-1].key
), 1, 0);
806 ext4_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
, 0);
812 * Allocation strategy is simple: if we have to allocate something, we will
813 * have to go the whole way to leaf. So let's do it before attaching anything
814 * to tree, set linkage between the newborn blocks, write them if sync is
815 * required, recheck the path, free and repeat if check fails, otherwise
816 * set the last missing link (that will protect us from any truncate-generated
817 * removals - all blocks on the path are immune now) and possibly force the
818 * write on the parent block.
819 * That has a nice additional property: no special recovery from the failed
820 * allocations is needed - we simply release blocks and do not touch anything
821 * reachable from inode.
823 * `handle' can be NULL if create == 0.
825 * return > 0, # of blocks mapped or allocated.
826 * return = 0, if plain lookup failed.
827 * return < 0, error case.
830 * Need to be called with
831 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
832 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
834 int ext4_get_blocks_handle(handle_t
*handle
, struct inode
*inode
,
835 ext4_lblk_t iblock
, unsigned long maxblocks
,
836 struct buffer_head
*bh_result
,
837 int create
, int extend_disksize
)
840 ext4_lblk_t offsets
[4];
845 int blocks_to_boundary
= 0;
847 struct ext4_inode_info
*ei
= EXT4_I(inode
);
849 ext4_fsblk_t first_block
= 0;
852 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
853 J_ASSERT(handle
!= NULL
|| create
== 0);
854 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
855 &blocks_to_boundary
);
860 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
862 /* Simplest case - block found, no allocation needed */
864 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
865 clear_buffer_new(bh_result
);
868 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
871 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
873 if (blk
== first_block
+ count
)
881 /* Next simple case - plain lookup or failed read of indirect block */
882 if (!create
|| err
== -EIO
)
886 * Okay, we need to do block allocation. Lazily initialize the block
887 * allocation info here if necessary
889 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
890 ext4_init_block_alloc_info(inode
);
892 goal
= ext4_find_goal(inode
, iblock
, partial
);
894 /* the number of blocks need to allocate for [d,t]indirect blocks */
895 indirect_blks
= (chain
+ depth
) - partial
- 1;
898 * Next look up the indirect map to count the totoal number of
899 * direct blocks to allocate for this branch.
901 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
902 maxblocks
, blocks_to_boundary
);
904 * Block out ext4_truncate while we alter the tree
906 err
= ext4_alloc_branch(handle
, inode
, iblock
, indirect_blks
,
908 offsets
+ (partial
- chain
), partial
);
911 * The ext4_splice_branch call will free and forget any buffers
912 * on the new chain if there is a failure, but that risks using
913 * up transaction credits, especially for bitmaps where the
914 * credits cannot be returned. Can we handle this somehow? We
915 * may need to return -EAGAIN upwards in the worst case. --sct
918 err
= ext4_splice_branch(handle
, inode
, iblock
,
919 partial
, indirect_blks
, count
);
921 * i_disksize growing is protected by i_data_sem. Don't forget to
922 * protect it if you're about to implement concurrent
923 * ext4_get_block() -bzzz
925 if (!err
&& extend_disksize
&& inode
->i_size
> ei
->i_disksize
)
926 ei
->i_disksize
= inode
->i_size
;
930 set_buffer_new(bh_result
);
932 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
933 if (count
> blocks_to_boundary
)
934 set_buffer_boundary(bh_result
);
936 /* Clean up and exit */
937 partial
= chain
+ depth
- 1; /* the whole chain */
939 while (partial
> chain
) {
940 BUFFER_TRACE(partial
->bh
, "call brelse");
944 BUFFER_TRACE(bh_result
, "returned");
949 /* Maximum number of blocks we map for direct IO at once. */
950 #define DIO_MAX_BLOCKS 4096
952 * Number of credits we need for writing DIO_MAX_BLOCKS:
953 * We need sb + group descriptor + bitmap + inode -> 4
954 * For B blocks with A block pointers per block we need:
955 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
956 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
958 #define DIO_CREDITS 25
964 * ext4_ext4 get_block() wrapper function
965 * It will do a look up first, and returns if the blocks already mapped.
966 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
967 * and store the allocated blocks in the result buffer head and mark it
970 * If file type is extents based, it will call ext4_ext_get_blocks(),
971 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
974 * On success, it returns the number of blocks being mapped or allocate.
975 * if create==0 and the blocks are pre-allocated and uninitialized block,
976 * the result buffer head is unmapped. If the create ==1, it will make sure
977 * the buffer head is mapped.
979 * It returns 0 if plain look up failed (blocks have not been allocated), in
980 * that casem, buffer head is unmapped
982 * It returns the error in case of allocation failure.
984 int ext4_get_blocks_wrap(handle_t
*handle
, struct inode
*inode
, sector_t block
,
985 unsigned long max_blocks
, struct buffer_head
*bh
,
986 int create
, int extend_disksize
, int flag
)
990 clear_buffer_mapped(bh
);
993 * Try to see if we can get the block without requesting
994 * for new file system block.
996 down_read((&EXT4_I(inode
)->i_data_sem
));
997 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
998 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1001 retval
= ext4_get_blocks_handle(handle
,
1002 inode
, block
, max_blocks
, bh
, 0, 0);
1004 up_read((&EXT4_I(inode
)->i_data_sem
));
1006 /* If it is only a block(s) look up */
1011 * Returns if the blocks have already allocated
1013 * Note that if blocks have been preallocated
1014 * ext4_ext_get_block() returns th create = 0
1015 * with buffer head unmapped.
1017 if (retval
> 0 && buffer_mapped(bh
))
1021 * New blocks allocate and/or writing to uninitialized extent
1022 * will possibly result in updating i_data, so we take
1023 * the write lock of i_data_sem, and call get_blocks()
1024 * with create == 1 flag.
1026 down_write((&EXT4_I(inode
)->i_data_sem
));
1029 * if the caller is from delayed allocation writeout path
1030 * we have already reserved fs blocks for allocation
1031 * let the underlying get_block() function know to
1032 * avoid double accounting
1035 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1037 * We need to check for EXT4 here because migrate
1038 * could have changed the inode type in between
1040 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1041 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1042 bh
, create
, extend_disksize
);
1044 retval
= ext4_get_blocks_handle(handle
, inode
, block
,
1045 max_blocks
, bh
, create
, extend_disksize
);
1047 if (retval
> 0 && buffer_new(bh
)) {
1049 * We allocated new blocks which will result in
1050 * i_data's format changing. Force the migrate
1051 * to fail by clearing migrate flags
1053 EXT4_I(inode
)->i_flags
= EXT4_I(inode
)->i_flags
&
1059 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1061 * Update reserved blocks/metadata blocks
1062 * after successful block allocation
1063 * which were deferred till now
1065 if ((retval
> 0) && buffer_delay(bh
))
1066 ext4_da_release_space(inode
, retval
, 0);
1069 up_write((&EXT4_I(inode
)->i_data_sem
));
1073 static int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1074 struct buffer_head
*bh_result
, int create
)
1076 handle_t
*handle
= ext4_journal_current_handle();
1077 int ret
= 0, started
= 0;
1078 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1080 if (create
&& !handle
) {
1081 /* Direct IO write... */
1082 if (max_blocks
> DIO_MAX_BLOCKS
)
1083 max_blocks
= DIO_MAX_BLOCKS
;
1084 handle
= ext4_journal_start(inode
, DIO_CREDITS
+
1085 2 * EXT4_QUOTA_TRANS_BLOCKS(inode
->i_sb
));
1086 if (IS_ERR(handle
)) {
1087 ret
= PTR_ERR(handle
);
1093 ret
= ext4_get_blocks_wrap(handle
, inode
, iblock
,
1094 max_blocks
, bh_result
, create
, 0, 0);
1096 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1100 ext4_journal_stop(handle
);
1106 * `handle' can be NULL if create is zero
1108 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1109 ext4_lblk_t block
, int create
, int *errp
)
1111 struct buffer_head dummy
;
1114 J_ASSERT(handle
!= NULL
|| create
== 0);
1117 dummy
.b_blocknr
= -1000;
1118 buffer_trace_init(&dummy
.b_history
);
1119 err
= ext4_get_blocks_wrap(handle
, inode
, block
, 1,
1120 &dummy
, create
, 1, 0);
1122 * ext4_get_blocks_handle() returns number of blocks
1123 * mapped. 0 in case of a HOLE.
1131 if (!err
&& buffer_mapped(&dummy
)) {
1132 struct buffer_head
*bh
;
1133 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1138 if (buffer_new(&dummy
)) {
1139 J_ASSERT(create
!= 0);
1140 J_ASSERT(handle
!= NULL
);
1143 * Now that we do not always journal data, we should
1144 * keep in mind whether this should always journal the
1145 * new buffer as metadata. For now, regular file
1146 * writes use ext4_get_block instead, so it's not a
1150 BUFFER_TRACE(bh
, "call get_create_access");
1151 fatal
= ext4_journal_get_create_access(handle
, bh
);
1152 if (!fatal
&& !buffer_uptodate(bh
)) {
1153 memset(bh
->b_data
,0,inode
->i_sb
->s_blocksize
);
1154 set_buffer_uptodate(bh
);
1157 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
1158 err
= ext4_journal_dirty_metadata(handle
, bh
);
1162 BUFFER_TRACE(bh
, "not a new buffer");
1175 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1176 ext4_lblk_t block
, int create
, int *err
)
1178 struct buffer_head
* bh
;
1180 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1183 if (buffer_uptodate(bh
))
1185 ll_rw_block(READ_META
, 1, &bh
);
1187 if (buffer_uptodate(bh
))
1194 static int walk_page_buffers( handle_t
*handle
,
1195 struct buffer_head
*head
,
1199 int (*fn
)( handle_t
*handle
,
1200 struct buffer_head
*bh
))
1202 struct buffer_head
*bh
;
1203 unsigned block_start
, block_end
;
1204 unsigned blocksize
= head
->b_size
;
1206 struct buffer_head
*next
;
1208 for ( bh
= head
, block_start
= 0;
1209 ret
== 0 && (bh
!= head
|| !block_start
);
1210 block_start
= block_end
, bh
= next
)
1212 next
= bh
->b_this_page
;
1213 block_end
= block_start
+ blocksize
;
1214 if (block_end
<= from
|| block_start
>= to
) {
1215 if (partial
&& !buffer_uptodate(bh
))
1219 err
= (*fn
)(handle
, bh
);
1227 * To preserve ordering, it is essential that the hole instantiation and
1228 * the data write be encapsulated in a single transaction. We cannot
1229 * close off a transaction and start a new one between the ext4_get_block()
1230 * and the commit_write(). So doing the jbd2_journal_start at the start of
1231 * prepare_write() is the right place.
1233 * Also, this function can nest inside ext4_writepage() ->
1234 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1235 * has generated enough buffer credits to do the whole page. So we won't
1236 * block on the journal in that case, which is good, because the caller may
1239 * By accident, ext4 can be reentered when a transaction is open via
1240 * quota file writes. If we were to commit the transaction while thus
1241 * reentered, there can be a deadlock - we would be holding a quota
1242 * lock, and the commit would never complete if another thread had a
1243 * transaction open and was blocking on the quota lock - a ranking
1246 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1247 * will _not_ run commit under these circumstances because handle->h_ref
1248 * is elevated. We'll still have enough credits for the tiny quotafile
1251 static int do_journal_get_write_access(handle_t
*handle
,
1252 struct buffer_head
*bh
)
1254 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1256 return ext4_journal_get_write_access(handle
, bh
);
1259 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1260 loff_t pos
, unsigned len
, unsigned flags
,
1261 struct page
**pagep
, void **fsdata
)
1263 struct inode
*inode
= mapping
->host
;
1264 int ret
, needed_blocks
= ext4_writepage_trans_blocks(inode
);
1271 index
= pos
>> PAGE_CACHE_SHIFT
;
1272 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1276 handle
= ext4_journal_start(inode
, needed_blocks
);
1277 if (IS_ERR(handle
)) {
1278 ret
= PTR_ERR(handle
);
1282 page
= __grab_cache_page(mapping
, index
);
1284 ext4_journal_stop(handle
);
1290 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1293 if (!ret
&& ext4_should_journal_data(inode
)) {
1294 ret
= walk_page_buffers(handle
, page_buffers(page
),
1295 from
, to
, NULL
, do_journal_get_write_access
);
1300 ext4_journal_stop(handle
);
1301 page_cache_release(page
);
1304 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1310 /* For write_end() in data=journal mode */
1311 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1313 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1315 set_buffer_uptodate(bh
);
1316 return ext4_journal_dirty_metadata(handle
, bh
);
1320 * We need to pick up the new inode size which generic_commit_write gave us
1321 * `file' can be NULL - eg, when called from page_symlink().
1323 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1324 * buffers are managed internally.
1326 static int ext4_ordered_write_end(struct file
*file
,
1327 struct address_space
*mapping
,
1328 loff_t pos
, unsigned len
, unsigned copied
,
1329 struct page
*page
, void *fsdata
)
1331 handle_t
*handle
= ext4_journal_current_handle();
1332 struct inode
*inode
= mapping
->host
;
1336 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1339 ret
= ext4_jbd2_file_inode(handle
, inode
);
1343 * generic_write_end() will run mark_inode_dirty() if i_size
1344 * changes. So let's piggyback the i_disksize mark_inode_dirty
1349 new_i_size
= pos
+ copied
;
1350 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
1351 EXT4_I(inode
)->i_disksize
= new_i_size
;
1352 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
1358 ret2
= ext4_journal_stop(handle
);
1362 return ret
? ret
: copied
;
1365 static int ext4_writeback_write_end(struct file
*file
,
1366 struct address_space
*mapping
,
1367 loff_t pos
, unsigned len
, unsigned copied
,
1368 struct page
*page
, void *fsdata
)
1370 handle_t
*handle
= ext4_journal_current_handle();
1371 struct inode
*inode
= mapping
->host
;
1375 new_i_size
= pos
+ copied
;
1376 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
1377 EXT4_I(inode
)->i_disksize
= new_i_size
;
1379 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
1385 ret2
= ext4_journal_stop(handle
);
1389 return ret
? ret
: copied
;
1392 static int ext4_journalled_write_end(struct file
*file
,
1393 struct address_space
*mapping
,
1394 loff_t pos
, unsigned len
, unsigned copied
,
1395 struct page
*page
, void *fsdata
)
1397 handle_t
*handle
= ext4_journal_current_handle();
1398 struct inode
*inode
= mapping
->host
;
1403 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1407 if (!PageUptodate(page
))
1409 page_zero_new_buffers(page
, from
+copied
, to
);
1412 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1413 to
, &partial
, write_end_fn
);
1415 SetPageUptodate(page
);
1416 if (pos
+copied
> inode
->i_size
)
1417 i_size_write(inode
, pos
+copied
);
1418 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1419 if (inode
->i_size
> EXT4_I(inode
)->i_disksize
) {
1420 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
1421 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1427 ret2
= ext4_journal_stop(handle
);
1430 page_cache_release(page
);
1432 return ret
? ret
: copied
;
1435 * Calculate the number of metadata blocks need to reserve
1436 * to allocate @blocks for non extent file based file
1438 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
, int blocks
)
1440 int icap
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
1441 int ind_blks
, dind_blks
, tind_blks
;
1443 /* number of new indirect blocks needed */
1444 ind_blks
= (blocks
+ icap
- 1) / icap
;
1446 dind_blks
= (ind_blks
+ icap
- 1) / icap
;
1450 return ind_blks
+ dind_blks
+ tind_blks
;
1454 * Calculate the number of metadata blocks need to reserve
1455 * to allocate given number of blocks
1457 static int ext4_calc_metadata_amount(struct inode
*inode
, int blocks
)
1459 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
1460 return ext4_ext_calc_metadata_amount(inode
, blocks
);
1462 return ext4_indirect_calc_metadata_amount(inode
, blocks
);
1465 static int ext4_da_reserve_space(struct inode
*inode
, int nrblocks
)
1467 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1468 unsigned long md_needed
, mdblocks
, total
= 0;
1471 * recalculate the amount of metadata blocks to reserve
1472 * in order to allocate nrblocks
1473 * worse case is one extent per block
1475 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1476 total
= EXT4_I(inode
)->i_reserved_data_blocks
+ nrblocks
;
1477 mdblocks
= ext4_calc_metadata_amount(inode
, total
);
1478 BUG_ON(mdblocks
< EXT4_I(inode
)->i_reserved_meta_blocks
);
1480 md_needed
= mdblocks
- EXT4_I(inode
)->i_reserved_meta_blocks
;
1481 total
= md_needed
+ nrblocks
;
1483 if (ext4_has_free_blocks(sbi
, total
) < total
) {
1484 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1488 /* reduce fs free blocks counter */
1489 percpu_counter_sub(&sbi
->s_freeblocks_counter
, total
);
1491 EXT4_I(inode
)->i_reserved_data_blocks
+= nrblocks
;
1492 EXT4_I(inode
)->i_reserved_meta_blocks
= mdblocks
;
1494 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1495 return 0; /* success */
1498 void ext4_da_release_space(struct inode
*inode
, int used
, int to_free
)
1500 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1501 int total
, mdb
, mdb_free
, release
;
1503 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1504 /* recalculate the number of metablocks still need to be reserved */
1505 total
= EXT4_I(inode
)->i_reserved_data_blocks
- used
- to_free
;
1506 mdb
= ext4_calc_metadata_amount(inode
, total
);
1508 /* figure out how many metablocks to release */
1509 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1510 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1512 /* Account for allocated meta_blocks */
1513 mdb_free
-= EXT4_I(inode
)->i_allocated_meta_blocks
;
1515 release
= to_free
+ mdb_free
;
1517 /* update fs free blocks counter for truncate case */
1518 percpu_counter_add(&sbi
->s_freeblocks_counter
, release
);
1520 /* update per-inode reservations */
1521 BUG_ON(used
+ to_free
> EXT4_I(inode
)->i_reserved_data_blocks
);
1522 EXT4_I(inode
)->i_reserved_data_blocks
-= (used
+ to_free
);
1524 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1525 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1526 EXT4_I(inode
)->i_allocated_meta_blocks
= 0;
1527 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1530 static void ext4_da_page_release_reservation(struct page
*page
,
1531 unsigned long offset
)
1534 struct buffer_head
*head
, *bh
;
1535 unsigned int curr_off
= 0;
1537 head
= page_buffers(page
);
1540 unsigned int next_off
= curr_off
+ bh
->b_size
;
1542 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1544 clear_buffer_delay(bh
);
1546 curr_off
= next_off
;
1547 } while ((bh
= bh
->b_this_page
) != head
);
1548 ext4_da_release_space(page
->mapping
->host
, 0, to_release
);
1552 * Delayed allocation stuff
1555 struct mpage_da_data
{
1556 struct inode
*inode
;
1557 struct buffer_head lbh
; /* extent of blocks */
1558 unsigned long first_page
, next_page
; /* extent of pages */
1559 get_block_t
*get_block
;
1560 struct writeback_control
*wbc
;
1564 * mpage_da_submit_io - walks through extent of pages and try to write
1565 * them with __mpage_writepage()
1567 * @mpd->inode: inode
1568 * @mpd->first_page: first page of the extent
1569 * @mpd->next_page: page after the last page of the extent
1570 * @mpd->get_block: the filesystem's block mapper function
1572 * By the time mpage_da_submit_io() is called we expect all blocks
1573 * to be allocated. this may be wrong if allocation failed.
1575 * As pages are already locked by write_cache_pages(), we can't use it
1577 static int mpage_da_submit_io(struct mpage_da_data
*mpd
)
1579 struct address_space
*mapping
= mpd
->inode
->i_mapping
;
1580 struct mpage_data mpd_pp
= {
1582 .last_block_in_bio
= 0,
1583 .get_block
= mpd
->get_block
,
1586 int ret
= 0, err
, nr_pages
, i
;
1587 unsigned long index
, end
;
1588 struct pagevec pvec
;
1590 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1592 pagevec_init(&pvec
, 0);
1593 index
= mpd
->first_page
;
1594 end
= mpd
->next_page
- 1;
1596 while (index
<= end
) {
1597 /* XXX: optimize tail */
1598 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1601 for (i
= 0; i
< nr_pages
; i
++) {
1602 struct page
*page
= pvec
.pages
[i
];
1604 index
= page
->index
;
1609 err
= __mpage_writepage(page
, mpd
->wbc
, &mpd_pp
);
1612 * In error case, we have to continue because
1613 * remaining pages are still locked
1614 * XXX: unlock and re-dirty them?
1619 pagevec_release(&pvec
);
1622 mpage_bio_submit(WRITE
, mpd_pp
.bio
);
1628 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1630 * @mpd->inode - inode to walk through
1631 * @exbh->b_blocknr - first block on a disk
1632 * @exbh->b_size - amount of space in bytes
1633 * @logical - first logical block to start assignment with
1635 * the function goes through all passed space and put actual disk
1636 * block numbers into buffer heads, dropping BH_Delay
1638 static void mpage_put_bnr_to_bhs(struct mpage_da_data
*mpd
, sector_t logical
,
1639 struct buffer_head
*exbh
)
1641 struct inode
*inode
= mpd
->inode
;
1642 struct address_space
*mapping
= inode
->i_mapping
;
1643 int blocks
= exbh
->b_size
>> inode
->i_blkbits
;
1644 sector_t pblock
= exbh
->b_blocknr
, cur_logical
;
1645 struct buffer_head
*head
, *bh
;
1646 unsigned long index
, end
;
1647 struct pagevec pvec
;
1650 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1651 end
= (logical
+ blocks
- 1) >> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1652 cur_logical
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1654 pagevec_init(&pvec
, 0);
1656 while (index
<= end
) {
1657 /* XXX: optimize tail */
1658 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1661 for (i
= 0; i
< nr_pages
; i
++) {
1662 struct page
*page
= pvec
.pages
[i
];
1664 index
= page
->index
;
1669 BUG_ON(!PageLocked(page
));
1670 BUG_ON(PageWriteback(page
));
1671 BUG_ON(!page_has_buffers(page
));
1673 bh
= page_buffers(page
);
1676 /* skip blocks out of the range */
1678 if (cur_logical
>= logical
)
1681 } while ((bh
= bh
->b_this_page
) != head
);
1684 if (cur_logical
>= logical
+ blocks
)
1687 if (buffer_delay(bh
)) {
1688 bh
->b_blocknr
= pblock
;
1689 clear_buffer_delay(bh
);
1690 } else if (buffer_mapped(bh
)) {
1691 BUG_ON(bh
->b_blocknr
!= pblock
);
1696 } while ((bh
= bh
->b_this_page
) != head
);
1698 pagevec_release(&pvec
);
1704 * __unmap_underlying_blocks - just a helper function to unmap
1705 * set of blocks described by @bh
1707 static inline void __unmap_underlying_blocks(struct inode
*inode
,
1708 struct buffer_head
*bh
)
1710 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
1713 blocks
= bh
->b_size
>> inode
->i_blkbits
;
1714 for (i
= 0; i
< blocks
; i
++)
1715 unmap_underlying_metadata(bdev
, bh
->b_blocknr
+ i
);
1719 * mpage_da_map_blocks - go through given space
1721 * @mpd->lbh - bh describing space
1722 * @mpd->get_block - the filesystem's block mapper function
1724 * The function skips space we know is already mapped to disk blocks.
1726 * The function ignores errors ->get_block() returns, thus real
1727 * error handling is postponed to __mpage_writepage()
1729 static void mpage_da_map_blocks(struct mpage_da_data
*mpd
)
1731 struct buffer_head
*lbh
= &mpd
->lbh
;
1732 int err
= 0, remain
= lbh
->b_size
;
1733 sector_t next
= lbh
->b_blocknr
;
1734 struct buffer_head
new;
1737 * We consider only non-mapped and non-allocated blocks
1739 if (buffer_mapped(lbh
) && !buffer_delay(lbh
))
1743 new.b_state
= lbh
->b_state
;
1745 new.b_size
= remain
;
1746 err
= mpd
->get_block(mpd
->inode
, next
, &new, 1);
1749 * Rather than implement own error handling
1750 * here, we just leave remaining blocks
1751 * unallocated and try again with ->writepage()
1755 BUG_ON(new.b_size
== 0);
1757 if (buffer_new(&new))
1758 __unmap_underlying_blocks(mpd
->inode
, &new);
1761 * If blocks are delayed marked, we need to
1762 * put actual blocknr and drop delayed bit
1764 if (buffer_delay(lbh
))
1765 mpage_put_bnr_to_bhs(mpd
, next
, &new);
1767 /* go for the remaining blocks */
1768 next
+= new.b_size
>> mpd
->inode
->i_blkbits
;
1769 remain
-= new.b_size
;
1773 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay))
1776 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1778 * @mpd->lbh - extent of blocks
1779 * @logical - logical number of the block in the file
1780 * @bh - bh of the block (used to access block's state)
1782 * the function is used to collect contig. blocks in same state
1784 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
1785 sector_t logical
, struct buffer_head
*bh
)
1787 struct buffer_head
*lbh
= &mpd
->lbh
;
1790 next
= lbh
->b_blocknr
+ (lbh
->b_size
>> mpd
->inode
->i_blkbits
);
1793 * First block in the extent
1795 if (lbh
->b_size
== 0) {
1796 lbh
->b_blocknr
= logical
;
1797 lbh
->b_size
= bh
->b_size
;
1798 lbh
->b_state
= bh
->b_state
& BH_FLAGS
;
1803 * Can we merge the block to our big extent?
1805 if (logical
== next
&& (bh
->b_state
& BH_FLAGS
) == lbh
->b_state
) {
1806 lbh
->b_size
+= bh
->b_size
;
1811 * We couldn't merge the block to our extent, so we
1812 * need to flush current extent and start new one
1814 mpage_da_map_blocks(mpd
);
1817 * Now start a new extent
1819 lbh
->b_size
= bh
->b_size
;
1820 lbh
->b_state
= bh
->b_state
& BH_FLAGS
;
1821 lbh
->b_blocknr
= logical
;
1825 * __mpage_da_writepage - finds extent of pages and blocks
1827 * @page: page to consider
1828 * @wbc: not used, we just follow rules
1831 * The function finds extents of pages and scan them for all blocks.
1833 static int __mpage_da_writepage(struct page
*page
,
1834 struct writeback_control
*wbc
, void *data
)
1836 struct mpage_da_data
*mpd
= data
;
1837 struct inode
*inode
= mpd
->inode
;
1838 struct buffer_head
*bh
, *head
, fake
;
1842 * Can we merge this page to current extent?
1844 if (mpd
->next_page
!= page
->index
) {
1846 * Nope, we can't. So, we map non-allocated blocks
1847 * and start IO on them using __mpage_writepage()
1849 if (mpd
->next_page
!= mpd
->first_page
) {
1850 mpage_da_map_blocks(mpd
);
1851 mpage_da_submit_io(mpd
);
1855 * Start next extent of pages ...
1857 mpd
->first_page
= page
->index
;
1862 mpd
->lbh
.b_size
= 0;
1863 mpd
->lbh
.b_state
= 0;
1864 mpd
->lbh
.b_blocknr
= 0;
1867 mpd
->next_page
= page
->index
+ 1;
1868 logical
= (sector_t
) page
->index
<<
1869 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1871 if (!page_has_buffers(page
)) {
1873 * There is no attached buffer heads yet (mmap?)
1874 * we treat the page asfull of dirty blocks
1877 bh
->b_size
= PAGE_CACHE_SIZE
;
1879 set_buffer_dirty(bh
);
1880 set_buffer_uptodate(bh
);
1881 mpage_add_bh_to_extent(mpd
, logical
, bh
);
1884 * Page with regular buffer heads, just add all dirty ones
1886 head
= page_buffers(page
);
1889 BUG_ON(buffer_locked(bh
));
1890 if (buffer_dirty(bh
))
1891 mpage_add_bh_to_extent(mpd
, logical
, bh
);
1893 } while ((bh
= bh
->b_this_page
) != head
);
1900 * mpage_da_writepages - walk the list of dirty pages of the given
1901 * address space, allocates non-allocated blocks, maps newly-allocated
1902 * blocks to existing bhs and issue IO them
1904 * @mapping: address space structure to write
1905 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1906 * @get_block: the filesystem's block mapper function.
1908 * This is a library function, which implements the writepages()
1909 * address_space_operation.
1911 * In order to avoid duplication of logic that deals with partial pages,
1912 * multiple bio per page, etc, we find non-allocated blocks, allocate
1913 * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1915 * It's important that we call __mpage_writepage() only once for each
1916 * involved page, otherwise we'd have to implement more complicated logic
1917 * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1919 * See comments to mpage_writepages()
1921 static int mpage_da_writepages(struct address_space
*mapping
,
1922 struct writeback_control
*wbc
,
1923 get_block_t get_block
)
1925 struct mpage_da_data mpd
;
1929 return generic_writepages(mapping
, wbc
);
1932 mpd
.inode
= mapping
->host
;
1934 mpd
.lbh
.b_state
= 0;
1935 mpd
.lbh
.b_blocknr
= 0;
1938 mpd
.get_block
= get_block
;
1940 ret
= write_cache_pages(mapping
, wbc
, __mpage_da_writepage
, &mpd
);
1943 * Handle last extent of pages
1945 if (mpd
.next_page
!= mpd
.first_page
) {
1946 mpage_da_map_blocks(&mpd
);
1947 mpage_da_submit_io(&mpd
);
1954 * this is a special callback for ->write_begin() only
1955 * it's intention is to return mapped block or reserve space
1957 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1958 struct buffer_head
*bh_result
, int create
)
1962 BUG_ON(create
== 0);
1963 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
1966 * first, we need to know whether the block is allocated already
1967 * preallocated blocks are unmapped but should treated
1968 * the same as allocated blocks.
1970 ret
= ext4_get_blocks_wrap(NULL
, inode
, iblock
, 1, bh_result
, 0, 0, 0);
1971 if ((ret
== 0) && !buffer_delay(bh_result
)) {
1972 /* the block isn't (pre)allocated yet, let's reserve space */
1974 * XXX: __block_prepare_write() unmaps passed block,
1977 ret
= ext4_da_reserve_space(inode
, 1);
1979 /* not enough space to reserve */
1982 map_bh(bh_result
, inode
->i_sb
, 0);
1983 set_buffer_new(bh_result
);
1984 set_buffer_delay(bh_result
);
1985 } else if (ret
> 0) {
1986 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1992 #define EXT4_DELALLOC_RSVED 1
1993 static int ext4_da_get_block_write(struct inode
*inode
, sector_t iblock
,
1994 struct buffer_head
*bh_result
, int create
)
1996 int ret
, needed_blocks
= ext4_writepage_trans_blocks(inode
);
1997 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1998 loff_t disksize
= EXT4_I(inode
)->i_disksize
;
1999 handle_t
*handle
= NULL
;
2002 handle
= ext4_journal_start(inode
, needed_blocks
);
2003 if (IS_ERR(handle
)) {
2004 ret
= PTR_ERR(handle
);
2009 ret
= ext4_get_blocks_wrap(handle
, inode
, iblock
, max_blocks
,
2010 bh_result
, create
, 0, EXT4_DELALLOC_RSVED
);
2012 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2015 * Update on-disk size along with block allocation
2016 * we don't use 'extend_disksize' as size may change
2017 * within already allocated block -bzzz
2019 disksize
= ((loff_t
) iblock
+ ret
) << inode
->i_blkbits
;
2020 if (disksize
> i_size_read(inode
))
2021 disksize
= i_size_read(inode
);
2022 if (disksize
> EXT4_I(inode
)->i_disksize
) {
2024 * XXX: replace with spinlock if seen contended -bzzz
2026 down_write(&EXT4_I(inode
)->i_data_sem
);
2027 if (disksize
> EXT4_I(inode
)->i_disksize
)
2028 EXT4_I(inode
)->i_disksize
= disksize
;
2029 up_write(&EXT4_I(inode
)->i_data_sem
);
2031 if (EXT4_I(inode
)->i_disksize
== disksize
) {
2033 handle
= ext4_journal_start(inode
, 1);
2034 if (!IS_ERR(handle
))
2035 ext4_mark_inode_dirty(handle
, inode
);
2043 if (handle
&& !IS_ERR(handle
))
2044 ext4_journal_stop(handle
);
2048 /* FIXME!! only support data=writeback mode */
2049 static int ext4_da_writepage(struct page
*page
,
2050 struct writeback_control
*wbc
)
2052 struct inode
*inode
= page
->mapping
->host
;
2053 handle_t
*handle
= NULL
;
2057 if (ext4_journal_current_handle())
2060 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2061 if (IS_ERR(handle
)) {
2062 ret
= PTR_ERR(handle
);
2066 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
2067 ret
= nobh_writepage(page
, ext4_get_block
, wbc
);
2069 ret
= block_write_full_page(page
, ext4_get_block
, wbc
);
2071 if (!ret
&& inode
->i_size
> EXT4_I(inode
)->i_disksize
) {
2072 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
2073 ext4_mark_inode_dirty(handle
, inode
);
2076 err
= ext4_journal_stop(handle
);
2082 redirty_page_for_writepage(wbc
, page
);
2087 static int ext4_da_writepages(struct address_space
*mapping
,
2088 struct writeback_control
*wbc
)
2090 return mpage_da_writepages(mapping
, wbc
, ext4_da_get_block_write
);
2093 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2094 loff_t pos
, unsigned len
, unsigned flags
,
2095 struct page
**pagep
, void **fsdata
)
2097 int ret
, retries
= 0;
2101 struct inode
*inode
= mapping
->host
;
2104 index
= pos
>> PAGE_CACHE_SHIFT
;
2105 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2110 * With delayed allocation, we don't log the i_disksize update
2111 * if there is delayed block allocation. But we still need
2112 * to journalling the i_disksize update if writes to the end
2113 * of file which has an already mapped buffer.
2115 handle
= ext4_journal_start(inode
, 1);
2116 if (IS_ERR(handle
)) {
2117 ret
= PTR_ERR(handle
);
2121 page
= __grab_cache_page(mapping
, index
);
2126 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
2127 ext4_da_get_block_prep
);
2130 ext4_journal_stop(handle
);
2131 page_cache_release(page
);
2134 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2140 static int ext4_bh_unmapped_or_delay(handle_t
*handle
, struct buffer_head
*bh
)
2142 return !buffer_mapped(bh
) || buffer_delay(bh
);
2145 static int ext4_da_write_end(struct file
*file
,
2146 struct address_space
*mapping
,
2147 loff_t pos
, unsigned len
, unsigned copied
,
2148 struct page
*page
, void *fsdata
)
2150 struct inode
*inode
= mapping
->host
;
2152 handle_t
*handle
= ext4_journal_current_handle();
2156 * generic_write_end() will run mark_inode_dirty() if i_size
2157 * changes. So let's piggyback the i_disksize mark_inode_dirty
2161 new_i_size
= pos
+ copied
;
2162 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
2163 if (!walk_page_buffers(NULL
, page_buffers(page
),
2164 0, len
, NULL
, ext4_bh_unmapped_or_delay
)){
2166 * Updating i_disksize when extending file without
2167 * needing block allocation
2169 if (ext4_should_order_data(inode
))
2170 ret
= ext4_jbd2_file_inode(handle
, inode
);
2172 EXT4_I(inode
)->i_disksize
= new_i_size
;
2174 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2179 ret2
= ext4_journal_stop(handle
);
2183 return ret
? ret
: copied
;
2186 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
2189 * Drop reserved blocks
2191 BUG_ON(!PageLocked(page
));
2192 if (!page_has_buffers(page
))
2195 ext4_da_page_release_reservation(page
, offset
);
2198 ext4_invalidatepage(page
, offset
);
2205 * bmap() is special. It gets used by applications such as lilo and by
2206 * the swapper to find the on-disk block of a specific piece of data.
2208 * Naturally, this is dangerous if the block concerned is still in the
2209 * journal. If somebody makes a swapfile on an ext4 data-journaling
2210 * filesystem and enables swap, then they may get a nasty shock when the
2211 * data getting swapped to that swapfile suddenly gets overwritten by
2212 * the original zero's written out previously to the journal and
2213 * awaiting writeback in the kernel's buffer cache.
2215 * So, if we see any bmap calls here on a modified, data-journaled file,
2216 * take extra steps to flush any blocks which might be in the cache.
2218 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2220 struct inode
*inode
= mapping
->host
;
2224 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2225 test_opt(inode
->i_sb
, DELALLOC
)) {
2227 * With delalloc we want to sync the file
2228 * so that we can make sure we allocate
2231 filemap_write_and_wait(mapping
);
2234 if (EXT4_I(inode
)->i_state
& EXT4_STATE_JDATA
) {
2236 * This is a REALLY heavyweight approach, but the use of
2237 * bmap on dirty files is expected to be extremely rare:
2238 * only if we run lilo or swapon on a freshly made file
2239 * do we expect this to happen.
2241 * (bmap requires CAP_SYS_RAWIO so this does not
2242 * represent an unprivileged user DOS attack --- we'd be
2243 * in trouble if mortal users could trigger this path at
2246 * NB. EXT4_STATE_JDATA is not set on files other than
2247 * regular files. If somebody wants to bmap a directory
2248 * or symlink and gets confused because the buffer
2249 * hasn't yet been flushed to disk, they deserve
2250 * everything they get.
2253 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_JDATA
;
2254 journal
= EXT4_JOURNAL(inode
);
2255 jbd2_journal_lock_updates(journal
);
2256 err
= jbd2_journal_flush(journal
);
2257 jbd2_journal_unlock_updates(journal
);
2263 return generic_block_bmap(mapping
,block
,ext4_get_block
);
2266 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2272 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2279 * Note that we don't need to start a transaction unless we're journaling data
2280 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2281 * need to file the inode to the transaction's list in ordered mode because if
2282 * we are writing back data added by write(), the inode is already there and if
2283 * we are writing back data modified via mmap(), noone guarantees in which
2284 * transaction the data will hit the disk. In case we are journaling data, we
2285 * cannot start transaction directly because transaction start ranks above page
2286 * lock so we have to do some magic.
2288 * In all journaling modes block_write_full_page() will start the I/O.
2292 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2297 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2299 * Same applies to ext4_get_block(). We will deadlock on various things like
2300 * lock_journal and i_data_sem
2302 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2305 * 16May01: If we're reentered then journal_current_handle() will be
2306 * non-zero. We simply *return*.
2308 * 1 July 2001: @@@ FIXME:
2309 * In journalled data mode, a data buffer may be metadata against the
2310 * current transaction. But the same file is part of a shared mapping
2311 * and someone does a writepage() on it.
2313 * We will move the buffer onto the async_data list, but *after* it has
2314 * been dirtied. So there's a small window where we have dirty data on
2317 * Note that this only applies to the last partial page in the file. The
2318 * bit which block_write_full_page() uses prepare/commit for. (That's
2319 * broken code anyway: it's wrong for msync()).
2321 * It's a rare case: affects the final partial page, for journalled data
2322 * where the file is subject to bith write() and writepage() in the same
2323 * transction. To fix it we'll need a custom block_write_full_page().
2324 * We'll probably need that anyway for journalling writepage() output.
2326 * We don't honour synchronous mounts for writepage(). That would be
2327 * disastrous. Any write() or metadata operation will sync the fs for
2331 static int __ext4_normal_writepage(struct page
*page
,
2332 struct writeback_control
*wbc
)
2334 struct inode
*inode
= page
->mapping
->host
;
2336 if (test_opt(inode
->i_sb
, NOBH
))
2337 return nobh_writepage(page
, ext4_get_block
, wbc
);
2339 return block_write_full_page(page
, ext4_get_block
, wbc
);
2343 static int ext4_normal_writepage(struct page
*page
,
2344 struct writeback_control
*wbc
)
2346 struct inode
*inode
= page
->mapping
->host
;
2347 loff_t size
= i_size_read(inode
);
2350 J_ASSERT(PageLocked(page
));
2351 J_ASSERT(page_has_buffers(page
));
2352 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2353 len
= size
& ~PAGE_CACHE_MASK
;
2355 len
= PAGE_CACHE_SIZE
;
2356 BUG_ON(walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
2357 ext4_bh_unmapped_or_delay
));
2359 if (!ext4_journal_current_handle())
2360 return __ext4_normal_writepage(page
, wbc
);
2362 redirty_page_for_writepage(wbc
, page
);
2367 static int __ext4_journalled_writepage(struct page
*page
,
2368 struct writeback_control
*wbc
)
2370 struct address_space
*mapping
= page
->mapping
;
2371 struct inode
*inode
= mapping
->host
;
2372 struct buffer_head
*page_bufs
;
2373 handle_t
*handle
= NULL
;
2377 ret
= block_prepare_write(page
, 0, PAGE_CACHE_SIZE
, ext4_get_block
);
2381 page_bufs
= page_buffers(page
);
2382 walk_page_buffers(handle
, page_bufs
, 0, PAGE_CACHE_SIZE
, NULL
,
2384 /* As soon as we unlock the page, it can go away, but we have
2385 * references to buffers so we are safe */
2388 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2389 if (IS_ERR(handle
)) {
2390 ret
= PTR_ERR(handle
);
2394 ret
= walk_page_buffers(handle
, page_bufs
, 0,
2395 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
);
2397 err
= walk_page_buffers(handle
, page_bufs
, 0,
2398 PAGE_CACHE_SIZE
, NULL
, write_end_fn
);
2401 err
= ext4_journal_stop(handle
);
2405 walk_page_buffers(handle
, page_bufs
, 0,
2406 PAGE_CACHE_SIZE
, NULL
, bput_one
);
2407 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
2416 static int ext4_journalled_writepage(struct page
*page
,
2417 struct writeback_control
*wbc
)
2419 struct inode
*inode
= page
->mapping
->host
;
2420 loff_t size
= i_size_read(inode
);
2423 J_ASSERT(PageLocked(page
));
2424 J_ASSERT(page_has_buffers(page
));
2425 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2426 len
= size
& ~PAGE_CACHE_MASK
;
2428 len
= PAGE_CACHE_SIZE
;
2429 BUG_ON(walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
2430 ext4_bh_unmapped_or_delay
));
2432 if (ext4_journal_current_handle())
2435 if (PageChecked(page
)) {
2437 * It's mmapped pagecache. Add buffers and journal it. There
2438 * doesn't seem much point in redirtying the page here.
2440 ClearPageChecked(page
);
2441 return __ext4_journalled_writepage(page
, wbc
);
2444 * It may be a page full of checkpoint-mode buffers. We don't
2445 * really know unless we go poke around in the buffer_heads.
2446 * But block_write_full_page will do the right thing.
2448 return block_write_full_page(page
, ext4_get_block
, wbc
);
2451 redirty_page_for_writepage(wbc
, page
);
2456 static int ext4_readpage(struct file
*file
, struct page
*page
)
2458 return mpage_readpage(page
, ext4_get_block
);
2462 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
2463 struct list_head
*pages
, unsigned nr_pages
)
2465 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
2468 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
2470 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2473 * If it's a full truncate we just forget about the pending dirtying
2476 ClearPageChecked(page
);
2478 jbd2_journal_invalidatepage(journal
, page
, offset
);
2481 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
2483 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2485 WARN_ON(PageChecked(page
));
2486 if (!page_has_buffers(page
))
2488 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
2492 * If the O_DIRECT write will extend the file then add this inode to the
2493 * orphan list. So recovery will truncate it back to the original size
2494 * if the machine crashes during the write.
2496 * If the O_DIRECT write is intantiating holes inside i_size and the machine
2497 * crashes then stale disk data _may_ be exposed inside the file. But current
2498 * VFS code falls back into buffered path in that case so we are safe.
2500 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
2501 const struct iovec
*iov
, loff_t offset
,
2502 unsigned long nr_segs
)
2504 struct file
*file
= iocb
->ki_filp
;
2505 struct inode
*inode
= file
->f_mapping
->host
;
2506 struct ext4_inode_info
*ei
= EXT4_I(inode
);
2510 size_t count
= iov_length(iov
, nr_segs
);
2513 loff_t final_size
= offset
+ count
;
2515 if (final_size
> inode
->i_size
) {
2516 /* Credits for sb + inode write */
2517 handle
= ext4_journal_start(inode
, 2);
2518 if (IS_ERR(handle
)) {
2519 ret
= PTR_ERR(handle
);
2522 ret
= ext4_orphan_add(handle
, inode
);
2524 ext4_journal_stop(handle
);
2528 ei
->i_disksize
= inode
->i_size
;
2529 ext4_journal_stop(handle
);
2533 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
2535 ext4_get_block
, NULL
);
2540 /* Credits for sb + inode write */
2541 handle
= ext4_journal_start(inode
, 2);
2542 if (IS_ERR(handle
)) {
2543 /* This is really bad luck. We've written the data
2544 * but cannot extend i_size. Bail out and pretend
2545 * the write failed... */
2546 ret
= PTR_ERR(handle
);
2550 ext4_orphan_del(handle
, inode
);
2552 loff_t end
= offset
+ ret
;
2553 if (end
> inode
->i_size
) {
2554 ei
->i_disksize
= end
;
2555 i_size_write(inode
, end
);
2557 * We're going to return a positive `ret'
2558 * here due to non-zero-length I/O, so there's
2559 * no way of reporting error returns from
2560 * ext4_mark_inode_dirty() to userspace. So
2563 ext4_mark_inode_dirty(handle
, inode
);
2566 err
= ext4_journal_stop(handle
);
2575 * Pages can be marked dirty completely asynchronously from ext4's journalling
2576 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2577 * much here because ->set_page_dirty is called under VFS locks. The page is
2578 * not necessarily locked.
2580 * We cannot just dirty the page and leave attached buffers clean, because the
2581 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2582 * or jbddirty because all the journalling code will explode.
2584 * So what we do is to mark the page "pending dirty" and next time writepage
2585 * is called, propagate that into the buffers appropriately.
2587 static int ext4_journalled_set_page_dirty(struct page
*page
)
2589 SetPageChecked(page
);
2590 return __set_page_dirty_nobuffers(page
);
2593 static const struct address_space_operations ext4_ordered_aops
= {
2594 .readpage
= ext4_readpage
,
2595 .readpages
= ext4_readpages
,
2596 .writepage
= ext4_normal_writepage
,
2597 .sync_page
= block_sync_page
,
2598 .write_begin
= ext4_write_begin
,
2599 .write_end
= ext4_ordered_write_end
,
2601 .invalidatepage
= ext4_invalidatepage
,
2602 .releasepage
= ext4_releasepage
,
2603 .direct_IO
= ext4_direct_IO
,
2604 .migratepage
= buffer_migrate_page
,
2607 static const struct address_space_operations ext4_writeback_aops
= {
2608 .readpage
= ext4_readpage
,
2609 .readpages
= ext4_readpages
,
2610 .writepage
= ext4_normal_writepage
,
2611 .sync_page
= block_sync_page
,
2612 .write_begin
= ext4_write_begin
,
2613 .write_end
= ext4_writeback_write_end
,
2615 .invalidatepage
= ext4_invalidatepage
,
2616 .releasepage
= ext4_releasepage
,
2617 .direct_IO
= ext4_direct_IO
,
2618 .migratepage
= buffer_migrate_page
,
2621 static const struct address_space_operations ext4_journalled_aops
= {
2622 .readpage
= ext4_readpage
,
2623 .readpages
= ext4_readpages
,
2624 .writepage
= ext4_journalled_writepage
,
2625 .sync_page
= block_sync_page
,
2626 .write_begin
= ext4_write_begin
,
2627 .write_end
= ext4_journalled_write_end
,
2628 .set_page_dirty
= ext4_journalled_set_page_dirty
,
2630 .invalidatepage
= ext4_invalidatepage
,
2631 .releasepage
= ext4_releasepage
,
2634 static const struct address_space_operations ext4_da_aops
= {
2635 .readpage
= ext4_readpage
,
2636 .readpages
= ext4_readpages
,
2637 .writepage
= ext4_da_writepage
,
2638 .writepages
= ext4_da_writepages
,
2639 .sync_page
= block_sync_page
,
2640 .write_begin
= ext4_da_write_begin
,
2641 .write_end
= ext4_da_write_end
,
2643 .invalidatepage
= ext4_da_invalidatepage
,
2644 .releasepage
= ext4_releasepage
,
2645 .direct_IO
= ext4_direct_IO
,
2646 .migratepage
= buffer_migrate_page
,
2649 void ext4_set_aops(struct inode
*inode
)
2651 if (ext4_should_order_data(inode
))
2652 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
2653 else if (ext4_should_writeback_data(inode
) &&
2654 test_opt(inode
->i_sb
, DELALLOC
))
2655 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
2656 else if (ext4_should_writeback_data(inode
))
2657 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
2659 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
2663 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2664 * up to the end of the block which corresponds to `from'.
2665 * This required during truncate. We need to physically zero the tail end
2666 * of that block so it doesn't yield old data if the file is later grown.
2668 int ext4_block_truncate_page(handle_t
*handle
,
2669 struct address_space
*mapping
, loff_t from
)
2671 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
2672 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2673 unsigned blocksize
, length
, pos
;
2675 struct inode
*inode
= mapping
->host
;
2676 struct buffer_head
*bh
;
2680 page
= grab_cache_page(mapping
, from
>> PAGE_CACHE_SHIFT
);
2684 blocksize
= inode
->i_sb
->s_blocksize
;
2685 length
= blocksize
- (offset
& (blocksize
- 1));
2686 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2689 * For "nobh" option, we can only work if we don't need to
2690 * read-in the page - otherwise we create buffers to do the IO.
2692 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
2693 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
2694 zero_user(page
, offset
, length
);
2695 set_page_dirty(page
);
2699 if (!page_has_buffers(page
))
2700 create_empty_buffers(page
, blocksize
, 0);
2702 /* Find the buffer that contains "offset" */
2703 bh
= page_buffers(page
);
2705 while (offset
>= pos
) {
2706 bh
= bh
->b_this_page
;
2712 if (buffer_freed(bh
)) {
2713 BUFFER_TRACE(bh
, "freed: skip");
2717 if (!buffer_mapped(bh
)) {
2718 BUFFER_TRACE(bh
, "unmapped");
2719 ext4_get_block(inode
, iblock
, bh
, 0);
2720 /* unmapped? It's a hole - nothing to do */
2721 if (!buffer_mapped(bh
)) {
2722 BUFFER_TRACE(bh
, "still unmapped");
2727 /* Ok, it's mapped. Make sure it's up-to-date */
2728 if (PageUptodate(page
))
2729 set_buffer_uptodate(bh
);
2731 if (!buffer_uptodate(bh
)) {
2733 ll_rw_block(READ
, 1, &bh
);
2735 /* Uhhuh. Read error. Complain and punt. */
2736 if (!buffer_uptodate(bh
))
2740 if (ext4_should_journal_data(inode
)) {
2741 BUFFER_TRACE(bh
, "get write access");
2742 err
= ext4_journal_get_write_access(handle
, bh
);
2747 zero_user(page
, offset
, length
);
2749 BUFFER_TRACE(bh
, "zeroed end of block");
2752 if (ext4_should_journal_data(inode
)) {
2753 err
= ext4_journal_dirty_metadata(handle
, bh
);
2755 if (ext4_should_order_data(inode
))
2756 err
= ext4_jbd2_file_inode(handle
, inode
);
2757 mark_buffer_dirty(bh
);
2762 page_cache_release(page
);
2767 * Probably it should be a library function... search for first non-zero word
2768 * or memcmp with zero_page, whatever is better for particular architecture.
2771 static inline int all_zeroes(__le32
*p
, __le32
*q
)
2780 * ext4_find_shared - find the indirect blocks for partial truncation.
2781 * @inode: inode in question
2782 * @depth: depth of the affected branch
2783 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
2784 * @chain: place to store the pointers to partial indirect blocks
2785 * @top: place to the (detached) top of branch
2787 * This is a helper function used by ext4_truncate().
2789 * When we do truncate() we may have to clean the ends of several
2790 * indirect blocks but leave the blocks themselves alive. Block is
2791 * partially truncated if some data below the new i_size is refered
2792 * from it (and it is on the path to the first completely truncated
2793 * data block, indeed). We have to free the top of that path along
2794 * with everything to the right of the path. Since no allocation
2795 * past the truncation point is possible until ext4_truncate()
2796 * finishes, we may safely do the latter, but top of branch may
2797 * require special attention - pageout below the truncation point
2798 * might try to populate it.
2800 * We atomically detach the top of branch from the tree, store the
2801 * block number of its root in *@top, pointers to buffer_heads of
2802 * partially truncated blocks - in @chain[].bh and pointers to
2803 * their last elements that should not be removed - in
2804 * @chain[].p. Return value is the pointer to last filled element
2807 * The work left to caller to do the actual freeing of subtrees:
2808 * a) free the subtree starting from *@top
2809 * b) free the subtrees whose roots are stored in
2810 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2811 * c) free the subtrees growing from the inode past the @chain[0].
2812 * (no partially truncated stuff there). */
2814 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
2815 ext4_lblk_t offsets
[4], Indirect chain
[4], __le32
*top
)
2817 Indirect
*partial
, *p
;
2821 /* Make k index the deepest non-null offest + 1 */
2822 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
2824 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
2825 /* Writer: pointers */
2827 partial
= chain
+ k
-1;
2829 * If the branch acquired continuation since we've looked at it -
2830 * fine, it should all survive and (new) top doesn't belong to us.
2832 if (!partial
->key
&& *partial
->p
)
2835 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
2838 * OK, we've found the last block that must survive. The rest of our
2839 * branch should be detached before unlocking. However, if that rest
2840 * of branch is all ours and does not grow immediately from the inode
2841 * it's easier to cheat and just decrement partial->p.
2843 if (p
== chain
+ k
- 1 && p
> chain
) {
2847 /* Nope, don't do this in ext4. Must leave the tree intact */
2854 while(partial
> p
) {
2855 brelse(partial
->bh
);
2863 * Zero a number of block pointers in either an inode or an indirect block.
2864 * If we restart the transaction we must again get write access to the
2865 * indirect block for further modification.
2867 * We release `count' blocks on disk, but (last - first) may be greater
2868 * than `count' because there can be holes in there.
2870 static void ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
2871 struct buffer_head
*bh
, ext4_fsblk_t block_to_free
,
2872 unsigned long count
, __le32
*first
, __le32
*last
)
2875 if (try_to_extend_transaction(handle
, inode
)) {
2877 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
2878 ext4_journal_dirty_metadata(handle
, bh
);
2880 ext4_mark_inode_dirty(handle
, inode
);
2881 ext4_journal_test_restart(handle
, inode
);
2883 BUFFER_TRACE(bh
, "retaking write access");
2884 ext4_journal_get_write_access(handle
, bh
);
2889 * Any buffers which are on the journal will be in memory. We find
2890 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2891 * on them. We've already detached each block from the file, so
2892 * bforget() in jbd2_journal_forget() should be safe.
2894 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2896 for (p
= first
; p
< last
; p
++) {
2897 u32 nr
= le32_to_cpu(*p
);
2899 struct buffer_head
*tbh
;
2902 tbh
= sb_find_get_block(inode
->i_sb
, nr
);
2903 ext4_forget(handle
, 0, inode
, tbh
, nr
);
2907 ext4_free_blocks(handle
, inode
, block_to_free
, count
, 0);
2911 * ext4_free_data - free a list of data blocks
2912 * @handle: handle for this transaction
2913 * @inode: inode we are dealing with
2914 * @this_bh: indirect buffer_head which contains *@first and *@last
2915 * @first: array of block numbers
2916 * @last: points immediately past the end of array
2918 * We are freeing all blocks refered from that array (numbers are stored as
2919 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2921 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2922 * blocks are contiguous then releasing them at one time will only affect one
2923 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2924 * actually use a lot of journal space.
2926 * @this_bh will be %NULL if @first and @last point into the inode's direct
2929 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
2930 struct buffer_head
*this_bh
,
2931 __le32
*first
, __le32
*last
)
2933 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
2934 unsigned long count
= 0; /* Number of blocks in the run */
2935 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
2938 ext4_fsblk_t nr
; /* Current block # */
2939 __le32
*p
; /* Pointer into inode/ind
2940 for current block */
2943 if (this_bh
) { /* For indirect block */
2944 BUFFER_TRACE(this_bh
, "get_write_access");
2945 err
= ext4_journal_get_write_access(handle
, this_bh
);
2946 /* Important: if we can't update the indirect pointers
2947 * to the blocks, we can't free them. */
2952 for (p
= first
; p
< last
; p
++) {
2953 nr
= le32_to_cpu(*p
);
2955 /* accumulate blocks to free if they're contiguous */
2958 block_to_free_p
= p
;
2960 } else if (nr
== block_to_free
+ count
) {
2963 ext4_clear_blocks(handle
, inode
, this_bh
,
2965 count
, block_to_free_p
, p
);
2967 block_to_free_p
= p
;
2974 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
2975 count
, block_to_free_p
, p
);
2978 BUFFER_TRACE(this_bh
, "call ext4_journal_dirty_metadata");
2981 * The buffer head should have an attached journal head at this
2982 * point. However, if the data is corrupted and an indirect
2983 * block pointed to itself, it would have been detached when
2984 * the block was cleared. Check for this instead of OOPSing.
2987 ext4_journal_dirty_metadata(handle
, this_bh
);
2989 ext4_error(inode
->i_sb
, __func__
,
2990 "circular indirect block detected, "
2991 "inode=%lu, block=%llu",
2993 (unsigned long long) this_bh
->b_blocknr
);
2998 * ext4_free_branches - free an array of branches
2999 * @handle: JBD handle for this transaction
3000 * @inode: inode we are dealing with
3001 * @parent_bh: the buffer_head which contains *@first and *@last
3002 * @first: array of block numbers
3003 * @last: pointer immediately past the end of array
3004 * @depth: depth of the branches to free
3006 * We are freeing all blocks refered from these branches (numbers are
3007 * stored as little-endian 32-bit) and updating @inode->i_blocks
3010 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
3011 struct buffer_head
*parent_bh
,
3012 __le32
*first
, __le32
*last
, int depth
)
3017 if (is_handle_aborted(handle
))
3021 struct buffer_head
*bh
;
3022 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
3024 while (--p
>= first
) {
3025 nr
= le32_to_cpu(*p
);
3027 continue; /* A hole */
3029 /* Go read the buffer for the next level down */
3030 bh
= sb_bread(inode
->i_sb
, nr
);
3033 * A read failure? Report error and clear slot
3037 ext4_error(inode
->i_sb
, "ext4_free_branches",
3038 "Read failure, inode=%lu, block=%llu",
3043 /* This zaps the entire block. Bottom up. */
3044 BUFFER_TRACE(bh
, "free child branches");
3045 ext4_free_branches(handle
, inode
, bh
,
3046 (__le32
*)bh
->b_data
,
3047 (__le32
*)bh
->b_data
+ addr_per_block
,
3051 * We've probably journalled the indirect block several
3052 * times during the truncate. But it's no longer
3053 * needed and we now drop it from the transaction via
3054 * jbd2_journal_revoke().
3056 * That's easy if it's exclusively part of this
3057 * transaction. But if it's part of the committing
3058 * transaction then jbd2_journal_forget() will simply
3059 * brelse() it. That means that if the underlying
3060 * block is reallocated in ext4_get_block(),
3061 * unmap_underlying_metadata() will find this block
3062 * and will try to get rid of it. damn, damn.
3064 * If this block has already been committed to the
3065 * journal, a revoke record will be written. And
3066 * revoke records must be emitted *before* clearing
3067 * this block's bit in the bitmaps.
3069 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
3072 * Everything below this this pointer has been
3073 * released. Now let this top-of-subtree go.
3075 * We want the freeing of this indirect block to be
3076 * atomic in the journal with the updating of the
3077 * bitmap block which owns it. So make some room in
3080 * We zero the parent pointer *after* freeing its
3081 * pointee in the bitmaps, so if extend_transaction()
3082 * for some reason fails to put the bitmap changes and
3083 * the release into the same transaction, recovery
3084 * will merely complain about releasing a free block,
3085 * rather than leaking blocks.
3087 if (is_handle_aborted(handle
))
3089 if (try_to_extend_transaction(handle
, inode
)) {
3090 ext4_mark_inode_dirty(handle
, inode
);
3091 ext4_journal_test_restart(handle
, inode
);
3094 ext4_free_blocks(handle
, inode
, nr
, 1, 1);
3098 * The block which we have just freed is
3099 * pointed to by an indirect block: journal it
3101 BUFFER_TRACE(parent_bh
, "get_write_access");
3102 if (!ext4_journal_get_write_access(handle
,
3105 BUFFER_TRACE(parent_bh
,
3106 "call ext4_journal_dirty_metadata");
3107 ext4_journal_dirty_metadata(handle
,
3113 /* We have reached the bottom of the tree. */
3114 BUFFER_TRACE(parent_bh
, "free data blocks");
3115 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
3119 int ext4_can_truncate(struct inode
*inode
)
3121 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
3123 if (S_ISREG(inode
->i_mode
))
3125 if (S_ISDIR(inode
->i_mode
))
3127 if (S_ISLNK(inode
->i_mode
))
3128 return !ext4_inode_is_fast_symlink(inode
);
3135 * We block out ext4_get_block() block instantiations across the entire
3136 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3137 * simultaneously on behalf of the same inode.
3139 * As we work through the truncate and commmit bits of it to the journal there
3140 * is one core, guiding principle: the file's tree must always be consistent on
3141 * disk. We must be able to restart the truncate after a crash.
3143 * The file's tree may be transiently inconsistent in memory (although it
3144 * probably isn't), but whenever we close off and commit a journal transaction,
3145 * the contents of (the filesystem + the journal) must be consistent and
3146 * restartable. It's pretty simple, really: bottom up, right to left (although
3147 * left-to-right works OK too).
3149 * Note that at recovery time, journal replay occurs *before* the restart of
3150 * truncate against the orphan inode list.
3152 * The committed inode has the new, desired i_size (which is the same as
3153 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3154 * that this inode's truncate did not complete and it will again call
3155 * ext4_truncate() to have another go. So there will be instantiated blocks
3156 * to the right of the truncation point in a crashed ext4 filesystem. But
3157 * that's fine - as long as they are linked from the inode, the post-crash
3158 * ext4_truncate() run will find them and release them.
3160 void ext4_truncate(struct inode
*inode
)
3163 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3164 __le32
*i_data
= ei
->i_data
;
3165 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
3166 struct address_space
*mapping
= inode
->i_mapping
;
3167 ext4_lblk_t offsets
[4];
3172 ext4_lblk_t last_block
;
3173 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
3175 if (!ext4_can_truncate(inode
))
3178 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
3179 ext4_ext_truncate(inode
);
3183 handle
= start_transaction(inode
);
3185 return; /* AKPM: return what? */
3187 last_block
= (inode
->i_size
+ blocksize
-1)
3188 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
3190 if (inode
->i_size
& (blocksize
- 1))
3191 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
3194 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
3196 goto out_stop
; /* error */
3199 * OK. This truncate is going to happen. We add the inode to the
3200 * orphan list, so that if this truncate spans multiple transactions,
3201 * and we crash, we will resume the truncate when the filesystem
3202 * recovers. It also marks the inode dirty, to catch the new size.
3204 * Implication: the file must always be in a sane, consistent
3205 * truncatable state while each transaction commits.
3207 if (ext4_orphan_add(handle
, inode
))
3211 * The orphan list entry will now protect us from any crash which
3212 * occurs before the truncate completes, so it is now safe to propagate
3213 * the new, shorter inode size (held for now in i_size) into the
3214 * on-disk inode. We do this via i_disksize, which is the value which
3215 * ext4 *really* writes onto the disk inode.
3217 ei
->i_disksize
= inode
->i_size
;
3220 * From here we block out all ext4_get_block() callers who want to
3221 * modify the block allocation tree.
3223 down_write(&ei
->i_data_sem
);
3225 if (n
== 1) { /* direct blocks */
3226 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
3227 i_data
+ EXT4_NDIR_BLOCKS
);
3231 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
3232 /* Kill the top of shared branch (not detached) */
3234 if (partial
== chain
) {
3235 /* Shared branch grows from the inode */
3236 ext4_free_branches(handle
, inode
, NULL
,
3237 &nr
, &nr
+1, (chain
+n
-1) - partial
);
3240 * We mark the inode dirty prior to restart,
3241 * and prior to stop. No need for it here.
3244 /* Shared branch grows from an indirect block */
3245 BUFFER_TRACE(partial
->bh
, "get_write_access");
3246 ext4_free_branches(handle
, inode
, partial
->bh
,
3248 partial
->p
+1, (chain
+n
-1) - partial
);
3251 /* Clear the ends of indirect blocks on the shared branch */
3252 while (partial
> chain
) {
3253 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
3254 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
3255 (chain
+n
-1) - partial
);
3256 BUFFER_TRACE(partial
->bh
, "call brelse");
3257 brelse (partial
->bh
);
3261 /* Kill the remaining (whole) subtrees */
3262 switch (offsets
[0]) {
3264 nr
= i_data
[EXT4_IND_BLOCK
];
3266 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
3267 i_data
[EXT4_IND_BLOCK
] = 0;
3269 case EXT4_IND_BLOCK
:
3270 nr
= i_data
[EXT4_DIND_BLOCK
];
3272 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
3273 i_data
[EXT4_DIND_BLOCK
] = 0;
3275 case EXT4_DIND_BLOCK
:
3276 nr
= i_data
[EXT4_TIND_BLOCK
];
3278 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
3279 i_data
[EXT4_TIND_BLOCK
] = 0;
3281 case EXT4_TIND_BLOCK
:
3285 ext4_discard_reservation(inode
);
3287 up_write(&ei
->i_data_sem
);
3288 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3289 ext4_mark_inode_dirty(handle
, inode
);
3292 * In a multi-transaction truncate, we only make the final transaction
3299 * If this was a simple ftruncate(), and the file will remain alive
3300 * then we need to clear up the orphan record which we created above.
3301 * However, if this was a real unlink then we were called by
3302 * ext4_delete_inode(), and we allow that function to clean up the
3303 * orphan info for us.
3306 ext4_orphan_del(handle
, inode
);
3308 ext4_journal_stop(handle
);
3311 static ext4_fsblk_t
ext4_get_inode_block(struct super_block
*sb
,
3312 unsigned long ino
, struct ext4_iloc
*iloc
)
3314 ext4_group_t block_group
;
3315 unsigned long offset
;
3317 struct ext4_group_desc
*gdp
;
3319 if (!ext4_valid_inum(sb
, ino
)) {
3321 * This error is already checked for in namei.c unless we are
3322 * looking at an NFS filehandle, in which case no error
3328 block_group
= (ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3329 gdp
= ext4_get_group_desc(sb
, block_group
, NULL
);
3334 * Figure out the offset within the block group inode table
3336 offset
= ((ino
- 1) % EXT4_INODES_PER_GROUP(sb
)) *
3337 EXT4_INODE_SIZE(sb
);
3338 block
= ext4_inode_table(sb
, gdp
) +
3339 (offset
>> EXT4_BLOCK_SIZE_BITS(sb
));
3341 iloc
->block_group
= block_group
;
3342 iloc
->offset
= offset
& (EXT4_BLOCK_SIZE(sb
) - 1);
3347 * ext4_get_inode_loc returns with an extra refcount against the inode's
3348 * underlying buffer_head on success. If 'in_mem' is true, we have all
3349 * data in memory that is needed to recreate the on-disk version of this
3352 static int __ext4_get_inode_loc(struct inode
*inode
,
3353 struct ext4_iloc
*iloc
, int in_mem
)
3356 struct buffer_head
*bh
;
3358 block
= ext4_get_inode_block(inode
->i_sb
, inode
->i_ino
, iloc
);
3362 bh
= sb_getblk(inode
->i_sb
, block
);
3364 ext4_error (inode
->i_sb
, "ext4_get_inode_loc",
3365 "unable to read inode block - "
3366 "inode=%lu, block=%llu",
3367 inode
->i_ino
, block
);
3370 if (!buffer_uptodate(bh
)) {
3372 if (buffer_uptodate(bh
)) {
3373 /* someone brought it uptodate while we waited */
3379 * If we have all information of the inode in memory and this
3380 * is the only valid inode in the block, we need not read the
3384 struct buffer_head
*bitmap_bh
;
3385 struct ext4_group_desc
*desc
;
3386 int inodes_per_buffer
;
3387 int inode_offset
, i
;
3388 ext4_group_t block_group
;
3391 block_group
= (inode
->i_ino
- 1) /
3392 EXT4_INODES_PER_GROUP(inode
->i_sb
);
3393 inodes_per_buffer
= bh
->b_size
/
3394 EXT4_INODE_SIZE(inode
->i_sb
);
3395 inode_offset
= ((inode
->i_ino
- 1) %
3396 EXT4_INODES_PER_GROUP(inode
->i_sb
));
3397 start
= inode_offset
& ~(inodes_per_buffer
- 1);
3399 /* Is the inode bitmap in cache? */
3400 desc
= ext4_get_group_desc(inode
->i_sb
,
3405 bitmap_bh
= sb_getblk(inode
->i_sb
,
3406 ext4_inode_bitmap(inode
->i_sb
, desc
));
3411 * If the inode bitmap isn't in cache then the
3412 * optimisation may end up performing two reads instead
3413 * of one, so skip it.
3415 if (!buffer_uptodate(bitmap_bh
)) {
3419 for (i
= start
; i
< start
+ inodes_per_buffer
; i
++) {
3420 if (i
== inode_offset
)
3422 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3426 if (i
== start
+ inodes_per_buffer
) {
3427 /* all other inodes are free, so skip I/O */
3428 memset(bh
->b_data
, 0, bh
->b_size
);
3429 set_buffer_uptodate(bh
);
3437 * There are other valid inodes in the buffer, this inode
3438 * has in-inode xattrs, or we don't have this inode in memory.
3439 * Read the block from disk.
3442 bh
->b_end_io
= end_buffer_read_sync
;
3443 submit_bh(READ_META
, bh
);
3445 if (!buffer_uptodate(bh
)) {
3446 ext4_error(inode
->i_sb
, "ext4_get_inode_loc",
3447 "unable to read inode block - "
3448 "inode=%lu, block=%llu",
3449 inode
->i_ino
, block
);
3459 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
3461 /* We have all inode data except xattrs in memory here. */
3462 return __ext4_get_inode_loc(inode
, iloc
,
3463 !(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
));
3466 void ext4_set_inode_flags(struct inode
*inode
)
3468 unsigned int flags
= EXT4_I(inode
)->i_flags
;
3470 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
3471 if (flags
& EXT4_SYNC_FL
)
3472 inode
->i_flags
|= S_SYNC
;
3473 if (flags
& EXT4_APPEND_FL
)
3474 inode
->i_flags
|= S_APPEND
;
3475 if (flags
& EXT4_IMMUTABLE_FL
)
3476 inode
->i_flags
|= S_IMMUTABLE
;
3477 if (flags
& EXT4_NOATIME_FL
)
3478 inode
->i_flags
|= S_NOATIME
;
3479 if (flags
& EXT4_DIRSYNC_FL
)
3480 inode
->i_flags
|= S_DIRSYNC
;
3483 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3484 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
3486 unsigned int flags
= ei
->vfs_inode
.i_flags
;
3488 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
3489 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
3491 ei
->i_flags
|= EXT4_SYNC_FL
;
3492 if (flags
& S_APPEND
)
3493 ei
->i_flags
|= EXT4_APPEND_FL
;
3494 if (flags
& S_IMMUTABLE
)
3495 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
3496 if (flags
& S_NOATIME
)
3497 ei
->i_flags
|= EXT4_NOATIME_FL
;
3498 if (flags
& S_DIRSYNC
)
3499 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
3501 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
3502 struct ext4_inode_info
*ei
)
3505 struct inode
*inode
= &(ei
->vfs_inode
);
3506 struct super_block
*sb
= inode
->i_sb
;
3508 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3509 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
3510 /* we are using combined 48 bit field */
3511 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
3512 le32_to_cpu(raw_inode
->i_blocks_lo
);
3513 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
3514 /* i_blocks represent file system block size */
3515 return i_blocks
<< (inode
->i_blkbits
- 9);
3520 return le32_to_cpu(raw_inode
->i_blocks_lo
);
3524 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
3526 struct ext4_iloc iloc
;
3527 struct ext4_inode
*raw_inode
;
3528 struct ext4_inode_info
*ei
;
3529 struct buffer_head
*bh
;
3530 struct inode
*inode
;
3534 inode
= iget_locked(sb
, ino
);
3536 return ERR_PTR(-ENOMEM
);
3537 if (!(inode
->i_state
& I_NEW
))
3541 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3542 ei
->i_acl
= EXT4_ACL_NOT_CACHED
;
3543 ei
->i_default_acl
= EXT4_ACL_NOT_CACHED
;
3545 ei
->i_block_alloc_info
= NULL
;
3547 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
3551 raw_inode
= ext4_raw_inode(&iloc
);
3552 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
3553 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
3554 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
3555 if(!(test_opt (inode
->i_sb
, NO_UID32
))) {
3556 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
3557 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
3559 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
3562 ei
->i_dir_start_lookup
= 0;
3563 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
3564 /* We now have enough fields to check if the inode was active or not.
3565 * This is needed because nfsd might try to access dead inodes
3566 * the test is that same one that e2fsck uses
3567 * NeilBrown 1999oct15
3569 if (inode
->i_nlink
== 0) {
3570 if (inode
->i_mode
== 0 ||
3571 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
3572 /* this inode is deleted */
3577 /* The only unlinked inodes we let through here have
3578 * valid i_mode and are being read by the orphan
3579 * recovery code: that's fine, we're about to complete
3580 * the process of deleting those. */
3582 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
3583 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
3584 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
3585 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
3586 cpu_to_le32(EXT4_OS_HURD
)) {
3588 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
3590 inode
->i_size
= ext4_isize(raw_inode
);
3591 ei
->i_disksize
= inode
->i_size
;
3592 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
3593 ei
->i_block_group
= iloc
.block_group
;
3595 * NOTE! The in-memory inode i_data array is in little-endian order
3596 * even on big-endian machines: we do NOT byteswap the block numbers!
3598 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
3599 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
3600 INIT_LIST_HEAD(&ei
->i_orphan
);
3602 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3603 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
3604 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
3605 EXT4_INODE_SIZE(inode
->i_sb
)) {
3610 if (ei
->i_extra_isize
== 0) {
3611 /* The extra space is currently unused. Use it. */
3612 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
3613 EXT4_GOOD_OLD_INODE_SIZE
;
3615 __le32
*magic
= (void *)raw_inode
+
3616 EXT4_GOOD_OLD_INODE_SIZE
+
3618 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
3619 ei
->i_state
|= EXT4_STATE_XATTR
;
3622 ei
->i_extra_isize
= 0;
3624 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
3625 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
3626 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
3627 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
3629 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
3630 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3631 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
3633 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
3636 if (S_ISREG(inode
->i_mode
)) {
3637 inode
->i_op
= &ext4_file_inode_operations
;
3638 inode
->i_fop
= &ext4_file_operations
;
3639 ext4_set_aops(inode
);
3640 } else if (S_ISDIR(inode
->i_mode
)) {
3641 inode
->i_op
= &ext4_dir_inode_operations
;
3642 inode
->i_fop
= &ext4_dir_operations
;
3643 } else if (S_ISLNK(inode
->i_mode
)) {
3644 if (ext4_inode_is_fast_symlink(inode
))
3645 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
3647 inode
->i_op
= &ext4_symlink_inode_operations
;
3648 ext4_set_aops(inode
);
3651 inode
->i_op
= &ext4_special_inode_operations
;
3652 if (raw_inode
->i_block
[0])
3653 init_special_inode(inode
, inode
->i_mode
,
3654 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
3656 init_special_inode(inode
, inode
->i_mode
,
3657 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
3660 ext4_set_inode_flags(inode
);
3661 unlock_new_inode(inode
);
3666 return ERR_PTR(ret
);
3669 static int ext4_inode_blocks_set(handle_t
*handle
,
3670 struct ext4_inode
*raw_inode
,
3671 struct ext4_inode_info
*ei
)
3673 struct inode
*inode
= &(ei
->vfs_inode
);
3674 u64 i_blocks
= inode
->i_blocks
;
3675 struct super_block
*sb
= inode
->i_sb
;
3678 if (i_blocks
<= ~0U) {
3680 * i_blocks can be represnted in a 32 bit variable
3681 * as multiple of 512 bytes
3683 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3684 raw_inode
->i_blocks_high
= 0;
3685 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
3686 } else if (i_blocks
<= 0xffffffffffffULL
) {
3688 * i_blocks can be represented in a 48 bit variable
3689 * as multiple of 512 bytes
3691 err
= ext4_update_rocompat_feature(handle
, sb
,
3692 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
);
3695 /* i_block is stored in the split 48 bit fields */
3696 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3697 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3698 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
3701 * i_blocks should be represented in a 48 bit variable
3702 * as multiple of file system block size
3704 err
= ext4_update_rocompat_feature(handle
, sb
,
3705 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
);
3708 ei
->i_flags
|= EXT4_HUGE_FILE_FL
;
3709 /* i_block is stored in file system block size */
3710 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
3711 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3712 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3719 * Post the struct inode info into an on-disk inode location in the
3720 * buffer-cache. This gobbles the caller's reference to the
3721 * buffer_head in the inode location struct.
3723 * The caller must have write access to iloc->bh.
3725 static int ext4_do_update_inode(handle_t
*handle
,
3726 struct inode
*inode
,
3727 struct ext4_iloc
*iloc
)
3729 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
3730 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3731 struct buffer_head
*bh
= iloc
->bh
;
3732 int err
= 0, rc
, block
;
3734 /* For fields not not tracking in the in-memory inode,
3735 * initialise them to zero for new inodes. */
3736 if (ei
->i_state
& EXT4_STATE_NEW
)
3737 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
3739 ext4_get_inode_flags(ei
);
3740 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
3741 if(!(test_opt(inode
->i_sb
, NO_UID32
))) {
3742 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
3743 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
3745 * Fix up interoperability with old kernels. Otherwise, old inodes get
3746 * re-used with the upper 16 bits of the uid/gid intact
3749 raw_inode
->i_uid_high
=
3750 cpu_to_le16(high_16_bits(inode
->i_uid
));
3751 raw_inode
->i_gid_high
=
3752 cpu_to_le16(high_16_bits(inode
->i_gid
));
3754 raw_inode
->i_uid_high
= 0;
3755 raw_inode
->i_gid_high
= 0;
3758 raw_inode
->i_uid_low
=
3759 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
3760 raw_inode
->i_gid_low
=
3761 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
3762 raw_inode
->i_uid_high
= 0;
3763 raw_inode
->i_gid_high
= 0;
3765 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
3767 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
3768 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
3769 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
3770 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
3772 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
3774 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
3775 /* clear the migrate flag in the raw_inode */
3776 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& ~EXT4_EXT_MIGRATE
);
3777 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
3778 cpu_to_le32(EXT4_OS_HURD
))
3779 raw_inode
->i_file_acl_high
=
3780 cpu_to_le16(ei
->i_file_acl
>> 32);
3781 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
3782 ext4_isize_set(raw_inode
, ei
->i_disksize
);
3783 if (ei
->i_disksize
> 0x7fffffffULL
) {
3784 struct super_block
*sb
= inode
->i_sb
;
3785 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3786 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
3787 EXT4_SB(sb
)->s_es
->s_rev_level
==
3788 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
3789 /* If this is the first large file
3790 * created, add a flag to the superblock.
3792 err
= ext4_journal_get_write_access(handle
,
3793 EXT4_SB(sb
)->s_sbh
);
3796 ext4_update_dynamic_rev(sb
);
3797 EXT4_SET_RO_COMPAT_FEATURE(sb
,
3798 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
3801 err
= ext4_journal_dirty_metadata(handle
,
3802 EXT4_SB(sb
)->s_sbh
);
3805 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
3806 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
3807 if (old_valid_dev(inode
->i_rdev
)) {
3808 raw_inode
->i_block
[0] =
3809 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
3810 raw_inode
->i_block
[1] = 0;
3812 raw_inode
->i_block
[0] = 0;
3813 raw_inode
->i_block
[1] =
3814 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
3815 raw_inode
->i_block
[2] = 0;
3817 } else for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
3818 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
3820 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
3821 if (ei
->i_extra_isize
) {
3822 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
3823 raw_inode
->i_version_hi
=
3824 cpu_to_le32(inode
->i_version
>> 32);
3825 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
3829 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
3830 rc
= ext4_journal_dirty_metadata(handle
, bh
);
3833 ei
->i_state
&= ~EXT4_STATE_NEW
;
3837 ext4_std_error(inode
->i_sb
, err
);
3842 * ext4_write_inode()
3844 * We are called from a few places:
3846 * - Within generic_file_write() for O_SYNC files.
3847 * Here, there will be no transaction running. We wait for any running
3848 * trasnaction to commit.
3850 * - Within sys_sync(), kupdate and such.
3851 * We wait on commit, if tol to.
3853 * - Within prune_icache() (PF_MEMALLOC == true)
3854 * Here we simply return. We can't afford to block kswapd on the
3857 * In all cases it is actually safe for us to return without doing anything,
3858 * because the inode has been copied into a raw inode buffer in
3859 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3862 * Note that we are absolutely dependent upon all inode dirtiers doing the
3863 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3864 * which we are interested.
3866 * It would be a bug for them to not do this. The code:
3868 * mark_inode_dirty(inode)
3870 * inode->i_size = expr;
3872 * is in error because a kswapd-driven write_inode() could occur while
3873 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3874 * will no longer be on the superblock's dirty inode list.
3876 int ext4_write_inode(struct inode
*inode
, int wait
)
3878 if (current
->flags
& PF_MEMALLOC
)
3881 if (ext4_journal_current_handle()) {
3882 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3890 return ext4_force_commit(inode
->i_sb
);
3896 * Called from notify_change.
3898 * We want to trap VFS attempts to truncate the file as soon as
3899 * possible. In particular, we want to make sure that when the VFS
3900 * shrinks i_size, we put the inode on the orphan list and modify
3901 * i_disksize immediately, so that during the subsequent flushing of
3902 * dirty pages and freeing of disk blocks, we can guarantee that any
3903 * commit will leave the blocks being flushed in an unused state on
3904 * disk. (On recovery, the inode will get truncated and the blocks will
3905 * be freed, so we have a strong guarantee that no future commit will
3906 * leave these blocks visible to the user.)
3908 * Another thing we have to assure is that if we are in ordered mode
3909 * and inode is still attached to the committing transaction, we must
3910 * we start writeout of all the dirty pages which are being truncated.
3911 * This way we are sure that all the data written in the previous
3912 * transaction are already on disk (truncate waits for pages under
3915 * Called with inode->i_mutex down.
3917 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3919 struct inode
*inode
= dentry
->d_inode
;
3921 const unsigned int ia_valid
= attr
->ia_valid
;
3923 error
= inode_change_ok(inode
, attr
);
3927 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
3928 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
3931 /* (user+group)*(old+new) structure, inode write (sb,
3932 * inode block, ? - but truncate inode update has it) */
3933 handle
= ext4_journal_start(inode
, 2*(EXT4_QUOTA_INIT_BLOCKS(inode
->i_sb
)+
3934 EXT4_QUOTA_DEL_BLOCKS(inode
->i_sb
))+3);
3935 if (IS_ERR(handle
)) {
3936 error
= PTR_ERR(handle
);
3939 error
= DQUOT_TRANSFER(inode
, attr
) ? -EDQUOT
: 0;
3941 ext4_journal_stop(handle
);
3944 /* Update corresponding info in inode so that everything is in
3945 * one transaction */
3946 if (attr
->ia_valid
& ATTR_UID
)
3947 inode
->i_uid
= attr
->ia_uid
;
3948 if (attr
->ia_valid
& ATTR_GID
)
3949 inode
->i_gid
= attr
->ia_gid
;
3950 error
= ext4_mark_inode_dirty(handle
, inode
);
3951 ext4_journal_stop(handle
);
3954 if (attr
->ia_valid
& ATTR_SIZE
) {
3955 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
3956 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3958 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
3965 if (S_ISREG(inode
->i_mode
) &&
3966 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
3969 handle
= ext4_journal_start(inode
, 3);
3970 if (IS_ERR(handle
)) {
3971 error
= PTR_ERR(handle
);
3975 error
= ext4_orphan_add(handle
, inode
);
3976 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
3977 rc
= ext4_mark_inode_dirty(handle
, inode
);
3980 ext4_journal_stop(handle
);
3982 if (ext4_should_order_data(inode
)) {
3983 error
= ext4_begin_ordered_truncate(inode
,
3986 /* Do as much error cleanup as possible */
3987 handle
= ext4_journal_start(inode
, 3);
3988 if (IS_ERR(handle
)) {
3989 ext4_orphan_del(NULL
, inode
);
3992 ext4_orphan_del(handle
, inode
);
3993 ext4_journal_stop(handle
);
3999 rc
= inode_setattr(inode
, attr
);
4001 /* If inode_setattr's call to ext4_truncate failed to get a
4002 * transaction handle at all, we need to clean up the in-core
4003 * orphan list manually. */
4005 ext4_orphan_del(NULL
, inode
);
4007 if (!rc
&& (ia_valid
& ATTR_MODE
))
4008 rc
= ext4_acl_chmod(inode
);
4011 ext4_std_error(inode
->i_sb
, error
);
4019 * How many blocks doth make a writepage()?
4021 * With N blocks per page, it may be:
4026 * N+5 bitmap blocks (from the above)
4027 * N+5 group descriptor summary blocks
4030 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
4032 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
4034 * With ordered or writeback data it's the same, less the N data blocks.
4036 * If the inode's direct blocks can hold an integral number of pages then a
4037 * page cannot straddle two indirect blocks, and we can only touch one indirect
4038 * and dindirect block, and the "5" above becomes "3".
4040 * This still overestimates under most circumstances. If we were to pass the
4041 * start and end offsets in here as well we could do block_to_path() on each
4042 * block and work out the exact number of indirects which are touched. Pah.
4045 int ext4_writepage_trans_blocks(struct inode
*inode
)
4047 int bpp
= ext4_journal_blocks_per_page(inode
);
4048 int indirects
= (EXT4_NDIR_BLOCKS
% bpp
) ? 5 : 3;
4051 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
4052 return ext4_ext_writepage_trans_blocks(inode
, bpp
);
4054 if (ext4_should_journal_data(inode
))
4055 ret
= 3 * (bpp
+ indirects
) + 2;
4057 ret
= 2 * (bpp
+ indirects
) + 2;
4060 /* We know that structure was already allocated during DQUOT_INIT so
4061 * we will be updating only the data blocks + inodes */
4062 ret
+= 2*EXT4_QUOTA_TRANS_BLOCKS(inode
->i_sb
);
4069 * The caller must have previously called ext4_reserve_inode_write().
4070 * Give this, we know that the caller already has write access to iloc->bh.
4072 int ext4_mark_iloc_dirty(handle_t
*handle
,
4073 struct inode
*inode
, struct ext4_iloc
*iloc
)
4077 if (test_opt(inode
->i_sb
, I_VERSION
))
4078 inode_inc_iversion(inode
);
4080 /* the do_update_inode consumes one bh->b_count */
4083 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4084 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4090 * On success, We end up with an outstanding reference count against
4091 * iloc->bh. This _must_ be cleaned up later.
4095 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4096 struct ext4_iloc
*iloc
)
4100 err
= ext4_get_inode_loc(inode
, iloc
);
4102 BUFFER_TRACE(iloc
->bh
, "get_write_access");
4103 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
4110 ext4_std_error(inode
->i_sb
, err
);
4115 * Expand an inode by new_extra_isize bytes.
4116 * Returns 0 on success or negative error number on failure.
4118 static int ext4_expand_extra_isize(struct inode
*inode
,
4119 unsigned int new_extra_isize
,
4120 struct ext4_iloc iloc
,
4123 struct ext4_inode
*raw_inode
;
4124 struct ext4_xattr_ibody_header
*header
;
4125 struct ext4_xattr_entry
*entry
;
4127 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
4130 raw_inode
= ext4_raw_inode(&iloc
);
4132 header
= IHDR(inode
, raw_inode
);
4133 entry
= IFIRST(header
);
4135 /* No extended attributes present */
4136 if (!(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
) ||
4137 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4138 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
4140 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
4144 /* try to expand with EAs present */
4145 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
4150 * What we do here is to mark the in-core inode as clean with respect to inode
4151 * dirtiness (it may still be data-dirty).
4152 * This means that the in-core inode may be reaped by prune_icache
4153 * without having to perform any I/O. This is a very good thing,
4154 * because *any* task may call prune_icache - even ones which
4155 * have a transaction open against a different journal.
4157 * Is this cheating? Not really. Sure, we haven't written the
4158 * inode out, but prune_icache isn't a user-visible syncing function.
4159 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4160 * we start and wait on commits.
4162 * Is this efficient/effective? Well, we're being nice to the system
4163 * by cleaning up our inodes proactively so they can be reaped
4164 * without I/O. But we are potentially leaving up to five seconds'
4165 * worth of inodes floating about which prune_icache wants us to
4166 * write out. One way to fix that would be to get prune_icache()
4167 * to do a write_super() to free up some memory. It has the desired
4170 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
4172 struct ext4_iloc iloc
;
4173 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4174 static unsigned int mnt_count
;
4178 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
4179 if (EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
4180 !(EXT4_I(inode
)->i_state
& EXT4_STATE_NO_EXPAND
)) {
4182 * We need extra buffer credits since we may write into EA block
4183 * with this same handle. If journal_extend fails, then it will
4184 * only result in a minor loss of functionality for that inode.
4185 * If this is felt to be critical, then e2fsck should be run to
4186 * force a large enough s_min_extra_isize.
4188 if ((jbd2_journal_extend(handle
,
4189 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
4190 ret
= ext4_expand_extra_isize(inode
,
4191 sbi
->s_want_extra_isize
,
4194 EXT4_I(inode
)->i_state
|= EXT4_STATE_NO_EXPAND
;
4196 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
4197 ext4_warning(inode
->i_sb
, __func__
,
4198 "Unable to expand inode %lu. Delete"
4199 " some EAs or run e2fsck.",
4202 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
4208 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
4213 * ext4_dirty_inode() is called from __mark_inode_dirty()
4215 * We're really interested in the case where a file is being extended.
4216 * i_size has been changed by generic_commit_write() and we thus need
4217 * to include the updated inode in the current transaction.
4219 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4220 * are allocated to the file.
4222 * If the inode is marked synchronous, we don't honour that here - doing
4223 * so would cause a commit on atime updates, which we don't bother doing.
4224 * We handle synchronous inodes at the highest possible level.
4226 void ext4_dirty_inode(struct inode
*inode
)
4228 handle_t
*current_handle
= ext4_journal_current_handle();
4231 handle
= ext4_journal_start(inode
, 2);
4234 if (current_handle
&&
4235 current_handle
->h_transaction
!= handle
->h_transaction
) {
4236 /* This task has a transaction open against a different fs */
4237 printk(KERN_EMERG
"%s: transactions do not match!\n",
4240 jbd_debug(5, "marking dirty. outer handle=%p\n",
4242 ext4_mark_inode_dirty(handle
, inode
);
4244 ext4_journal_stop(handle
);
4251 * Bind an inode's backing buffer_head into this transaction, to prevent
4252 * it from being flushed to disk early. Unlike
4253 * ext4_reserve_inode_write, this leaves behind no bh reference and
4254 * returns no iloc structure, so the caller needs to repeat the iloc
4255 * lookup to mark the inode dirty later.
4257 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
4259 struct ext4_iloc iloc
;
4263 err
= ext4_get_inode_loc(inode
, &iloc
);
4265 BUFFER_TRACE(iloc
.bh
, "get_write_access");
4266 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
4268 err
= ext4_journal_dirty_metadata(handle
,
4273 ext4_std_error(inode
->i_sb
, err
);
4278 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
4285 * We have to be very careful here: changing a data block's
4286 * journaling status dynamically is dangerous. If we write a
4287 * data block to the journal, change the status and then delete
4288 * that block, we risk forgetting to revoke the old log record
4289 * from the journal and so a subsequent replay can corrupt data.
4290 * So, first we make sure that the journal is empty and that
4291 * nobody is changing anything.
4294 journal
= EXT4_JOURNAL(inode
);
4295 if (is_journal_aborted(journal
))
4298 jbd2_journal_lock_updates(journal
);
4299 jbd2_journal_flush(journal
);
4302 * OK, there are no updates running now, and all cached data is
4303 * synced to disk. We are now in a completely consistent state
4304 * which doesn't have anything in the journal, and we know that
4305 * no filesystem updates are running, so it is safe to modify
4306 * the inode's in-core data-journaling state flag now.
4310 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
4312 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
4313 ext4_set_aops(inode
);
4315 jbd2_journal_unlock_updates(journal
);
4317 /* Finally we can mark the inode as dirty. */
4319 handle
= ext4_journal_start(inode
, 1);
4321 return PTR_ERR(handle
);
4323 err
= ext4_mark_inode_dirty(handle
, inode
);
4325 ext4_journal_stop(handle
);
4326 ext4_std_error(inode
->i_sb
, err
);
4331 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
4333 return !buffer_mapped(bh
);
4336 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
)
4341 struct file
*file
= vma
->vm_file
;
4342 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4343 struct address_space
*mapping
= inode
->i_mapping
;
4346 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4347 * get i_mutex because we are already holding mmap_sem.
4349 down_read(&inode
->i_alloc_sem
);
4350 size
= i_size_read(inode
);
4351 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
4352 || !PageUptodate(page
)) {
4353 /* page got truncated from under us? */
4357 if (PageMappedToDisk(page
))
4360 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
4361 len
= size
& ~PAGE_CACHE_MASK
;
4363 len
= PAGE_CACHE_SIZE
;
4365 if (page_has_buffers(page
)) {
4366 /* return if we have all the buffers mapped */
4367 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
4372 * OK, we need to fill the hole... Do write_begin write_end
4373 * to do block allocation/reservation.We are not holding
4374 * inode.i__mutex here. That allow * parallel write_begin,
4375 * write_end call. lock_page prevent this from happening
4376 * on the same page though
4378 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
4379 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, NULL
);
4382 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
4383 len
, len
, page
, NULL
);
4388 up_read(&inode
->i_alloc_sem
);