2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
45 #include <linux/interrupt.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
61 #include <net/protocol.h>
64 #include <net/checksum.h>
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
72 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
73 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
75 static void sock_pipe_buf_release(struct pipe_inode_info
*pipe
,
76 struct pipe_buffer
*buf
)
78 struct sk_buff
*skb
= (struct sk_buff
*) buf
->private;
83 static void sock_pipe_buf_get(struct pipe_inode_info
*pipe
,
84 struct pipe_buffer
*buf
)
86 struct sk_buff
*skb
= (struct sk_buff
*) buf
->private;
91 static int sock_pipe_buf_steal(struct pipe_inode_info
*pipe
,
92 struct pipe_buffer
*buf
)
98 /* Pipe buffer operations for a socket. */
99 static struct pipe_buf_operations sock_pipe_buf_ops
= {
101 .map
= generic_pipe_buf_map
,
102 .unmap
= generic_pipe_buf_unmap
,
103 .confirm
= generic_pipe_buf_confirm
,
104 .release
= sock_pipe_buf_release
,
105 .steal
= sock_pipe_buf_steal
,
106 .get
= sock_pipe_buf_get
,
110 * Keep out-of-line to prevent kernel bloat.
111 * __builtin_return_address is not used because it is not always
116 * skb_over_panic - private function
121 * Out of line support code for skb_put(). Not user callable.
123 void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
125 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
126 "data:%p tail:%#lx end:%#lx dev:%s\n",
127 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
128 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
129 skb
->dev
? skb
->dev
->name
: "<NULL>");
134 * skb_under_panic - private function
139 * Out of line support code for skb_push(). Not user callable.
142 void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
144 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
145 "data:%p tail:%#lx end:%#lx dev:%s\n",
146 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
147 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
148 skb
->dev
? skb
->dev
->name
: "<NULL>");
152 void skb_truesize_bug(struct sk_buff
*skb
)
154 printk(KERN_ERR
"SKB BUG: Invalid truesize (%u) "
155 "len=%u, sizeof(sk_buff)=%Zd\n",
156 skb
->truesize
, skb
->len
, sizeof(struct sk_buff
));
158 EXPORT_SYMBOL(skb_truesize_bug
);
160 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
161 * 'private' fields and also do memory statistics to find all the
167 * __alloc_skb - allocate a network buffer
168 * @size: size to allocate
169 * @gfp_mask: allocation mask
170 * @fclone: allocate from fclone cache instead of head cache
171 * and allocate a cloned (child) skb
172 * @node: numa node to allocate memory on
174 * Allocate a new &sk_buff. The returned buffer has no headroom and a
175 * tail room of size bytes. The object has a reference count of one.
176 * The return is the buffer. On a failure the return is %NULL.
178 * Buffers may only be allocated from interrupts using a @gfp_mask of
181 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
182 int fclone
, int node
)
184 struct kmem_cache
*cache
;
185 struct skb_shared_info
*shinfo
;
189 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
192 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
196 size
= SKB_DATA_ALIGN(size
);
197 data
= kmalloc_node_track_caller(size
+ sizeof(struct skb_shared_info
),
203 * See comment in sk_buff definition, just before the 'tail' member
205 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
206 skb
->truesize
= size
+ sizeof(struct sk_buff
);
207 atomic_set(&skb
->users
, 1);
210 skb_reset_tail_pointer(skb
);
211 skb
->end
= skb
->tail
+ size
;
212 /* make sure we initialize shinfo sequentially */
213 shinfo
= skb_shinfo(skb
);
214 atomic_set(&shinfo
->dataref
, 1);
215 shinfo
->nr_frags
= 0;
216 shinfo
->gso_size
= 0;
217 shinfo
->gso_segs
= 0;
218 shinfo
->gso_type
= 0;
219 shinfo
->ip6_frag_id
= 0;
220 shinfo
->frag_list
= NULL
;
223 struct sk_buff
*child
= skb
+ 1;
224 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
226 skb
->fclone
= SKB_FCLONE_ORIG
;
227 atomic_set(fclone_ref
, 1);
229 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
234 kmem_cache_free(cache
, skb
);
240 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
241 * @dev: network device to receive on
242 * @length: length to allocate
243 * @gfp_mask: get_free_pages mask, passed to alloc_skb
245 * Allocate a new &sk_buff and assign it a usage count of one. The
246 * buffer has unspecified headroom built in. Users should allocate
247 * the headroom they think they need without accounting for the
248 * built in space. The built in space is used for optimisations.
250 * %NULL is returned if there is no free memory.
252 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
253 unsigned int length
, gfp_t gfp_mask
)
255 int node
= dev
->dev
.parent
? dev_to_node(dev
->dev
.parent
) : -1;
258 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, node
);
260 skb_reserve(skb
, NET_SKB_PAD
);
267 * dev_alloc_skb - allocate an skbuff for receiving
268 * @length: length to allocate
270 * Allocate a new &sk_buff and assign it a usage count of one. The
271 * buffer has unspecified headroom built in. Users should allocate
272 * the headroom they think they need without accounting for the
273 * built in space. The built in space is used for optimisations.
275 * %NULL is returned if there is no free memory. Although this function
276 * allocates memory it can be called from an interrupt.
278 struct sk_buff
*dev_alloc_skb(unsigned int length
)
281 * There is more code here than it seems:
282 * __dev_alloc_skb is an inline
284 return __dev_alloc_skb(length
, GFP_ATOMIC
);
286 EXPORT_SYMBOL(dev_alloc_skb
);
288 static void skb_drop_list(struct sk_buff
**listp
)
290 struct sk_buff
*list
= *listp
;
295 struct sk_buff
*this = list
;
301 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
303 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
306 static void skb_clone_fraglist(struct sk_buff
*skb
)
308 struct sk_buff
*list
;
310 for (list
= skb_shinfo(skb
)->frag_list
; list
; list
= list
->next
)
314 static void skb_release_data(struct sk_buff
*skb
)
317 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
318 &skb_shinfo(skb
)->dataref
)) {
319 if (skb_shinfo(skb
)->nr_frags
) {
321 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
322 put_page(skb_shinfo(skb
)->frags
[i
].page
);
325 if (skb_shinfo(skb
)->frag_list
)
326 skb_drop_fraglist(skb
);
333 * Free an skbuff by memory without cleaning the state.
335 static void kfree_skbmem(struct sk_buff
*skb
)
337 struct sk_buff
*other
;
338 atomic_t
*fclone_ref
;
340 switch (skb
->fclone
) {
341 case SKB_FCLONE_UNAVAILABLE
:
342 kmem_cache_free(skbuff_head_cache
, skb
);
345 case SKB_FCLONE_ORIG
:
346 fclone_ref
= (atomic_t
*) (skb
+ 2);
347 if (atomic_dec_and_test(fclone_ref
))
348 kmem_cache_free(skbuff_fclone_cache
, skb
);
351 case SKB_FCLONE_CLONE
:
352 fclone_ref
= (atomic_t
*) (skb
+ 1);
355 /* The clone portion is available for
356 * fast-cloning again.
358 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
360 if (atomic_dec_and_test(fclone_ref
))
361 kmem_cache_free(skbuff_fclone_cache
, other
);
366 /* Free everything but the sk_buff shell. */
367 static void skb_release_all(struct sk_buff
*skb
)
369 dst_release(skb
->dst
);
371 secpath_put(skb
->sp
);
373 if (skb
->destructor
) {
375 skb
->destructor(skb
);
377 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
378 nf_conntrack_put(skb
->nfct
);
379 nf_conntrack_put_reasm(skb
->nfct_reasm
);
381 #ifdef CONFIG_BRIDGE_NETFILTER
382 nf_bridge_put(skb
->nf_bridge
);
384 /* XXX: IS this still necessary? - JHS */
385 #ifdef CONFIG_NET_SCHED
387 #ifdef CONFIG_NET_CLS_ACT
391 skb_release_data(skb
);
395 * __kfree_skb - private function
398 * Free an sk_buff. Release anything attached to the buffer.
399 * Clean the state. This is an internal helper function. Users should
400 * always call kfree_skb
403 void __kfree_skb(struct sk_buff
*skb
)
405 skb_release_all(skb
);
410 * kfree_skb - free an sk_buff
411 * @skb: buffer to free
413 * Drop a reference to the buffer and free it if the usage count has
416 void kfree_skb(struct sk_buff
*skb
)
420 if (likely(atomic_read(&skb
->users
) == 1))
422 else if (likely(!atomic_dec_and_test(&skb
->users
)))
427 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
429 new->tstamp
= old
->tstamp
;
431 new->transport_header
= old
->transport_header
;
432 new->network_header
= old
->network_header
;
433 new->mac_header
= old
->mac_header
;
434 new->dst
= dst_clone(old
->dst
);
436 new->sp
= secpath_get(old
->sp
);
438 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
439 new->csum_start
= old
->csum_start
;
440 new->csum_offset
= old
->csum_offset
;
441 new->local_df
= old
->local_df
;
442 new->pkt_type
= old
->pkt_type
;
443 new->ip_summed
= old
->ip_summed
;
444 skb_copy_queue_mapping(new, old
);
445 new->priority
= old
->priority
;
446 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
447 new->ipvs_property
= old
->ipvs_property
;
449 new->protocol
= old
->protocol
;
450 new->mark
= old
->mark
;
452 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
453 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
454 new->nf_trace
= old
->nf_trace
;
456 #ifdef CONFIG_NET_SCHED
457 new->tc_index
= old
->tc_index
;
458 #ifdef CONFIG_NET_CLS_ACT
459 new->tc_verd
= old
->tc_verd
;
462 skb_copy_secmark(new, old
);
465 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
467 #define C(x) n->x = skb->x
469 n
->next
= n
->prev
= NULL
;
471 __copy_skb_header(n
, skb
);
476 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
479 n
->destructor
= NULL
;
486 atomic_set(&n
->users
, 1);
488 atomic_inc(&(skb_shinfo(skb
)->dataref
));
496 * skb_morph - morph one skb into another
497 * @dst: the skb to receive the contents
498 * @src: the skb to supply the contents
500 * This is identical to skb_clone except that the target skb is
501 * supplied by the user.
503 * The target skb is returned upon exit.
505 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
507 skb_release_all(dst
);
508 return __skb_clone(dst
, src
);
510 EXPORT_SYMBOL_GPL(skb_morph
);
513 * skb_clone - duplicate an sk_buff
514 * @skb: buffer to clone
515 * @gfp_mask: allocation priority
517 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
518 * copies share the same packet data but not structure. The new
519 * buffer has a reference count of 1. If the allocation fails the
520 * function returns %NULL otherwise the new buffer is returned.
522 * If this function is called from an interrupt gfp_mask() must be
526 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
531 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
532 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
533 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
534 n
->fclone
= SKB_FCLONE_CLONE
;
535 atomic_inc(fclone_ref
);
537 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
540 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
543 return __skb_clone(n
, skb
);
546 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
548 #ifndef NET_SKBUFF_DATA_USES_OFFSET
550 * Shift between the two data areas in bytes
552 unsigned long offset
= new->data
- old
->data
;
555 __copy_skb_header(new, old
);
557 #ifndef NET_SKBUFF_DATA_USES_OFFSET
558 /* {transport,network,mac}_header are relative to skb->head */
559 new->transport_header
+= offset
;
560 new->network_header
+= offset
;
561 new->mac_header
+= offset
;
563 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
564 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
565 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
569 * skb_copy - create private copy of an sk_buff
570 * @skb: buffer to copy
571 * @gfp_mask: allocation priority
573 * Make a copy of both an &sk_buff and its data. This is used when the
574 * caller wishes to modify the data and needs a private copy of the
575 * data to alter. Returns %NULL on failure or the pointer to the buffer
576 * on success. The returned buffer has a reference count of 1.
578 * As by-product this function converts non-linear &sk_buff to linear
579 * one, so that &sk_buff becomes completely private and caller is allowed
580 * to modify all the data of returned buffer. This means that this
581 * function is not recommended for use in circumstances when only
582 * header is going to be modified. Use pskb_copy() instead.
585 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
587 int headerlen
= skb
->data
- skb
->head
;
589 * Allocate the copy buffer
592 #ifdef NET_SKBUFF_DATA_USES_OFFSET
593 n
= alloc_skb(skb
->end
+ skb
->data_len
, gfp_mask
);
595 n
= alloc_skb(skb
->end
- skb
->head
+ skb
->data_len
, gfp_mask
);
600 /* Set the data pointer */
601 skb_reserve(n
, headerlen
);
602 /* Set the tail pointer and length */
603 skb_put(n
, skb
->len
);
605 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
608 copy_skb_header(n
, skb
);
614 * pskb_copy - create copy of an sk_buff with private head.
615 * @skb: buffer to copy
616 * @gfp_mask: allocation priority
618 * Make a copy of both an &sk_buff and part of its data, located
619 * in header. Fragmented data remain shared. This is used when
620 * the caller wishes to modify only header of &sk_buff and needs
621 * private copy of the header to alter. Returns %NULL on failure
622 * or the pointer to the buffer on success.
623 * The returned buffer has a reference count of 1.
626 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
629 * Allocate the copy buffer
632 #ifdef NET_SKBUFF_DATA_USES_OFFSET
633 n
= alloc_skb(skb
->end
, gfp_mask
);
635 n
= alloc_skb(skb
->end
- skb
->head
, gfp_mask
);
640 /* Set the data pointer */
641 skb_reserve(n
, skb
->data
- skb
->head
);
642 /* Set the tail pointer and length */
643 skb_put(n
, skb_headlen(skb
));
645 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
647 n
->truesize
+= skb
->data_len
;
648 n
->data_len
= skb
->data_len
;
651 if (skb_shinfo(skb
)->nr_frags
) {
654 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
655 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
656 get_page(skb_shinfo(n
)->frags
[i
].page
);
658 skb_shinfo(n
)->nr_frags
= i
;
661 if (skb_shinfo(skb
)->frag_list
) {
662 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
663 skb_clone_fraglist(n
);
666 copy_skb_header(n
, skb
);
672 * pskb_expand_head - reallocate header of &sk_buff
673 * @skb: buffer to reallocate
674 * @nhead: room to add at head
675 * @ntail: room to add at tail
676 * @gfp_mask: allocation priority
678 * Expands (or creates identical copy, if &nhead and &ntail are zero)
679 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
680 * reference count of 1. Returns zero in the case of success or error,
681 * if expansion failed. In the last case, &sk_buff is not changed.
683 * All the pointers pointing into skb header may change and must be
684 * reloaded after call to this function.
687 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
692 #ifdef NET_SKBUFF_DATA_USES_OFFSET
693 int size
= nhead
+ skb
->end
+ ntail
;
695 int size
= nhead
+ (skb
->end
- skb
->head
) + ntail
;
702 size
= SKB_DATA_ALIGN(size
);
704 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
708 /* Copy only real data... and, alas, header. This should be
709 * optimized for the cases when header is void. */
710 #ifdef NET_SKBUFF_DATA_USES_OFFSET
711 memcpy(data
+ nhead
, skb
->head
, skb
->tail
);
713 memcpy(data
+ nhead
, skb
->head
, skb
->tail
- skb
->head
);
715 memcpy(data
+ size
, skb_end_pointer(skb
),
716 sizeof(struct skb_shared_info
));
718 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
719 get_page(skb_shinfo(skb
)->frags
[i
].page
);
721 if (skb_shinfo(skb
)->frag_list
)
722 skb_clone_fraglist(skb
);
724 skb_release_data(skb
);
726 off
= (data
+ nhead
) - skb
->head
;
730 #ifdef NET_SKBUFF_DATA_USES_OFFSET
734 skb
->end
= skb
->head
+ size
;
736 /* {transport,network,mac}_header and tail are relative to skb->head */
738 skb
->transport_header
+= off
;
739 skb
->network_header
+= off
;
740 skb
->mac_header
+= off
;
741 skb
->csum_start
+= nhead
;
745 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
752 /* Make private copy of skb with writable head and some headroom */
754 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
756 struct sk_buff
*skb2
;
757 int delta
= headroom
- skb_headroom(skb
);
760 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
762 skb2
= skb_clone(skb
, GFP_ATOMIC
);
763 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
774 * skb_copy_expand - copy and expand sk_buff
775 * @skb: buffer to copy
776 * @newheadroom: new free bytes at head
777 * @newtailroom: new free bytes at tail
778 * @gfp_mask: allocation priority
780 * Make a copy of both an &sk_buff and its data and while doing so
781 * allocate additional space.
783 * This is used when the caller wishes to modify the data and needs a
784 * private copy of the data to alter as well as more space for new fields.
785 * Returns %NULL on failure or the pointer to the buffer
786 * on success. The returned buffer has a reference count of 1.
788 * You must pass %GFP_ATOMIC as the allocation priority if this function
789 * is called from an interrupt.
791 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
792 int newheadroom
, int newtailroom
,
796 * Allocate the copy buffer
798 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
800 int oldheadroom
= skb_headroom(skb
);
801 int head_copy_len
, head_copy_off
;
807 skb_reserve(n
, newheadroom
);
809 /* Set the tail pointer and length */
810 skb_put(n
, skb
->len
);
812 head_copy_len
= oldheadroom
;
814 if (newheadroom
<= head_copy_len
)
815 head_copy_len
= newheadroom
;
817 head_copy_off
= newheadroom
- head_copy_len
;
819 /* Copy the linear header and data. */
820 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
821 skb
->len
+ head_copy_len
))
824 copy_skb_header(n
, skb
);
826 off
= newheadroom
- oldheadroom
;
827 n
->csum_start
+= off
;
828 #ifdef NET_SKBUFF_DATA_USES_OFFSET
829 n
->transport_header
+= off
;
830 n
->network_header
+= off
;
831 n
->mac_header
+= off
;
838 * skb_pad - zero pad the tail of an skb
839 * @skb: buffer to pad
842 * Ensure that a buffer is followed by a padding area that is zero
843 * filled. Used by network drivers which may DMA or transfer data
844 * beyond the buffer end onto the wire.
846 * May return error in out of memory cases. The skb is freed on error.
849 int skb_pad(struct sk_buff
*skb
, int pad
)
854 /* If the skbuff is non linear tailroom is always zero.. */
855 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
856 memset(skb
->data
+skb
->len
, 0, pad
);
860 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
861 if (likely(skb_cloned(skb
) || ntail
> 0)) {
862 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
867 /* FIXME: The use of this function with non-linear skb's really needs
870 err
= skb_linearize(skb
);
874 memset(skb
->data
+ skb
->len
, 0, pad
);
883 * skb_put - add data to a buffer
884 * @skb: buffer to use
885 * @len: amount of data to add
887 * This function extends the used data area of the buffer. If this would
888 * exceed the total buffer size the kernel will panic. A pointer to the
889 * first byte of the extra data is returned.
891 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
893 unsigned char *tmp
= skb_tail_pointer(skb
);
894 SKB_LINEAR_ASSERT(skb
);
897 if (unlikely(skb
->tail
> skb
->end
))
898 skb_over_panic(skb
, len
, __builtin_return_address(0));
901 EXPORT_SYMBOL(skb_put
);
904 * skb_push - add data to the start of a buffer
905 * @skb: buffer to use
906 * @len: amount of data to add
908 * This function extends the used data area of the buffer at the buffer
909 * start. If this would exceed the total buffer headroom the kernel will
910 * panic. A pointer to the first byte of the extra data is returned.
912 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
916 if (unlikely(skb
->data
<skb
->head
))
917 skb_under_panic(skb
, len
, __builtin_return_address(0));
920 EXPORT_SYMBOL(skb_push
);
923 * skb_pull - remove data from the start of a buffer
924 * @skb: buffer to use
925 * @len: amount of data to remove
927 * This function removes data from the start of a buffer, returning
928 * the memory to the headroom. A pointer to the next data in the buffer
929 * is returned. Once the data has been pulled future pushes will overwrite
932 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
934 return unlikely(len
> skb
->len
) ? NULL
: __skb_pull(skb
, len
);
936 EXPORT_SYMBOL(skb_pull
);
939 * skb_trim - remove end from a buffer
940 * @skb: buffer to alter
943 * Cut the length of a buffer down by removing data from the tail. If
944 * the buffer is already under the length specified it is not modified.
945 * The skb must be linear.
947 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
950 __skb_trim(skb
, len
);
952 EXPORT_SYMBOL(skb_trim
);
954 /* Trims skb to length len. It can change skb pointers.
957 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
959 struct sk_buff
**fragp
;
960 struct sk_buff
*frag
;
961 int offset
= skb_headlen(skb
);
962 int nfrags
= skb_shinfo(skb
)->nr_frags
;
966 if (skb_cloned(skb
) &&
967 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
974 for (; i
< nfrags
; i
++) {
975 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
982 skb_shinfo(skb
)->frags
[i
++].size
= len
- offset
;
985 skb_shinfo(skb
)->nr_frags
= i
;
987 for (; i
< nfrags
; i
++)
988 put_page(skb_shinfo(skb
)->frags
[i
].page
);
990 if (skb_shinfo(skb
)->frag_list
)
991 skb_drop_fraglist(skb
);
995 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
996 fragp
= &frag
->next
) {
997 int end
= offset
+ frag
->len
;
999 if (skb_shared(frag
)) {
1000 struct sk_buff
*nfrag
;
1002 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1003 if (unlikely(!nfrag
))
1006 nfrag
->next
= frag
->next
;
1018 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1022 skb_drop_list(&frag
->next
);
1027 if (len
> skb_headlen(skb
)) {
1028 skb
->data_len
-= skb
->len
- len
;
1033 skb_set_tail_pointer(skb
, len
);
1040 * __pskb_pull_tail - advance tail of skb header
1041 * @skb: buffer to reallocate
1042 * @delta: number of bytes to advance tail
1044 * The function makes a sense only on a fragmented &sk_buff,
1045 * it expands header moving its tail forward and copying necessary
1046 * data from fragmented part.
1048 * &sk_buff MUST have reference count of 1.
1050 * Returns %NULL (and &sk_buff does not change) if pull failed
1051 * or value of new tail of skb in the case of success.
1053 * All the pointers pointing into skb header may change and must be
1054 * reloaded after call to this function.
1057 /* Moves tail of skb head forward, copying data from fragmented part,
1058 * when it is necessary.
1059 * 1. It may fail due to malloc failure.
1060 * 2. It may change skb pointers.
1062 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1064 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1066 /* If skb has not enough free space at tail, get new one
1067 * plus 128 bytes for future expansions. If we have enough
1068 * room at tail, reallocate without expansion only if skb is cloned.
1070 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1072 if (eat
> 0 || skb_cloned(skb
)) {
1073 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1078 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1081 /* Optimization: no fragments, no reasons to preestimate
1082 * size of pulled pages. Superb.
1084 if (!skb_shinfo(skb
)->frag_list
)
1087 /* Estimate size of pulled pages. */
1089 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1090 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
1092 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1095 /* If we need update frag list, we are in troubles.
1096 * Certainly, it possible to add an offset to skb data,
1097 * but taking into account that pulling is expected to
1098 * be very rare operation, it is worth to fight against
1099 * further bloating skb head and crucify ourselves here instead.
1100 * Pure masohism, indeed. 8)8)
1103 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1104 struct sk_buff
*clone
= NULL
;
1105 struct sk_buff
*insp
= NULL
;
1110 if (list
->len
<= eat
) {
1111 /* Eaten as whole. */
1116 /* Eaten partially. */
1118 if (skb_shared(list
)) {
1119 /* Sucks! We need to fork list. :-( */
1120 clone
= skb_clone(list
, GFP_ATOMIC
);
1126 /* This may be pulled without
1130 if (!pskb_pull(list
, eat
)) {
1139 /* Free pulled out fragments. */
1140 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1141 skb_shinfo(skb
)->frag_list
= list
->next
;
1144 /* And insert new clone at head. */
1147 skb_shinfo(skb
)->frag_list
= clone
;
1150 /* Success! Now we may commit changes to skb data. */
1155 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1156 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
1157 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1158 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1160 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1162 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1163 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
1169 skb_shinfo(skb
)->nr_frags
= k
;
1172 skb
->data_len
-= delta
;
1174 return skb_tail_pointer(skb
);
1177 /* Copy some data bits from skb to kernel buffer. */
1179 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1182 int start
= skb_headlen(skb
);
1184 if (offset
> (int)skb
->len
- len
)
1188 if ((copy
= start
- offset
) > 0) {
1191 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1192 if ((len
-= copy
) == 0)
1198 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1201 BUG_TRAP(start
<= offset
+ len
);
1203 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1204 if ((copy
= end
- offset
) > 0) {
1210 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1212 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1213 offset
- start
, copy
);
1214 kunmap_skb_frag(vaddr
);
1216 if ((len
-= copy
) == 0)
1224 if (skb_shinfo(skb
)->frag_list
) {
1225 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1227 for (; list
; list
= list
->next
) {
1230 BUG_TRAP(start
<= offset
+ len
);
1232 end
= start
+ list
->len
;
1233 if ((copy
= end
- offset
) > 0) {
1236 if (skb_copy_bits(list
, offset
- start
,
1239 if ((len
-= copy
) == 0)
1255 * Callback from splice_to_pipe(), if we need to release some pages
1256 * at the end of the spd in case we error'ed out in filling the pipe.
1258 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1260 struct sk_buff
*skb
= (struct sk_buff
*) spd
->partial
[i
].private;
1266 * Fill page/offset/length into spd, if it can hold more pages.
1268 static inline int spd_fill_page(struct splice_pipe_desc
*spd
, struct page
*page
,
1269 unsigned int len
, unsigned int offset
,
1270 struct sk_buff
*skb
)
1272 if (unlikely(spd
->nr_pages
== PIPE_BUFFERS
))
1275 spd
->pages
[spd
->nr_pages
] = page
;
1276 spd
->partial
[spd
->nr_pages
].len
= len
;
1277 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1278 spd
->partial
[spd
->nr_pages
].private = (unsigned long) skb_get(skb
);
1284 * Map linear and fragment data from the skb to spd. Returns number of
1287 static int __skb_splice_bits(struct sk_buff
*skb
, unsigned int *offset
,
1288 unsigned int *total_len
,
1289 struct splice_pipe_desc
*spd
)
1291 unsigned int nr_pages
= spd
->nr_pages
;
1292 unsigned int poff
, plen
, len
, toff
, tlen
;
1301 * if the offset is greater than the linear part, go directly to
1304 headlen
= skb_headlen(skb
);
1305 if (toff
>= headlen
) {
1311 * first map the linear region into the pages/partial map, skipping
1312 * any potential initial offset.
1315 while (len
< headlen
) {
1316 void *p
= skb
->data
+ len
;
1318 poff
= (unsigned long) p
& (PAGE_SIZE
- 1);
1319 plen
= min_t(unsigned int, headlen
- len
, PAGE_SIZE
- poff
);
1332 plen
= min(plen
, tlen
);
1337 * just jump directly to update and return, no point
1338 * in going over fragments when the output is full.
1340 if (spd_fill_page(spd
, virt_to_page(p
), plen
, poff
, skb
))
1347 * then map the fragments
1350 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1351 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1354 poff
= f
->page_offset
;
1366 plen
= min(plen
, tlen
);
1370 if (spd_fill_page(spd
, f
->page
, plen
, poff
, skb
))
1377 if (spd
->nr_pages
- nr_pages
) {
1387 * Map data from the skb to a pipe. Should handle both the linear part,
1388 * the fragments, and the frag list. It does NOT handle frag lists within
1389 * the frag list, if such a thing exists. We'd probably need to recurse to
1390 * handle that cleanly.
1392 int skb_splice_bits(struct sk_buff
*__skb
, unsigned int offset
,
1393 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1396 struct partial_page partial
[PIPE_BUFFERS
];
1397 struct page
*pages
[PIPE_BUFFERS
];
1398 struct splice_pipe_desc spd
= {
1402 .ops
= &sock_pipe_buf_ops
,
1403 .spd_release
= sock_spd_release
,
1405 struct sk_buff
*skb
;
1408 * I'd love to avoid the clone here, but tcp_read_sock()
1409 * ignores reference counts and unconditonally kills the sk_buff
1410 * on return from the actor.
1412 skb
= skb_clone(__skb
, GFP_KERNEL
);
1417 * __skb_splice_bits() only fails if the output has no room left,
1418 * so no point in going over the frag_list for the error case.
1420 if (__skb_splice_bits(skb
, &offset
, &tlen
, &spd
))
1426 * now see if we have a frag_list to map
1428 if (skb_shinfo(skb
)->frag_list
) {
1429 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1431 for (; list
&& tlen
; list
= list
->next
) {
1432 if (__skb_splice_bits(list
, &offset
, &tlen
, &spd
))
1439 * drop our reference to the clone, the pipe consumption will
1448 * Drop the socket lock, otherwise we have reverse
1449 * locking dependencies between sk_lock and i_mutex
1450 * here as compared to sendfile(). We enter here
1451 * with the socket lock held, and splice_to_pipe() will
1452 * grab the pipe inode lock. For sendfile() emulation,
1453 * we call into ->sendpage() with the i_mutex lock held
1454 * and networking will grab the socket lock.
1456 release_sock(__skb
->sk
);
1457 ret
= splice_to_pipe(pipe
, &spd
);
1458 lock_sock(__skb
->sk
);
1466 * skb_store_bits - store bits from kernel buffer to skb
1467 * @skb: destination buffer
1468 * @offset: offset in destination
1469 * @from: source buffer
1470 * @len: number of bytes to copy
1472 * Copy the specified number of bytes from the source buffer to the
1473 * destination skb. This function handles all the messy bits of
1474 * traversing fragment lists and such.
1477 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1480 int start
= skb_headlen(skb
);
1482 if (offset
> (int)skb
->len
- len
)
1485 if ((copy
= start
- offset
) > 0) {
1488 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1489 if ((len
-= copy
) == 0)
1495 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1496 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1499 BUG_TRAP(start
<= offset
+ len
);
1501 end
= start
+ frag
->size
;
1502 if ((copy
= end
- offset
) > 0) {
1508 vaddr
= kmap_skb_frag(frag
);
1509 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1511 kunmap_skb_frag(vaddr
);
1513 if ((len
-= copy
) == 0)
1521 if (skb_shinfo(skb
)->frag_list
) {
1522 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1524 for (; list
; list
= list
->next
) {
1527 BUG_TRAP(start
<= offset
+ len
);
1529 end
= start
+ list
->len
;
1530 if ((copy
= end
- offset
) > 0) {
1533 if (skb_store_bits(list
, offset
- start
,
1536 if ((len
-= copy
) == 0)
1551 EXPORT_SYMBOL(skb_store_bits
);
1553 /* Checksum skb data. */
1555 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1556 int len
, __wsum csum
)
1558 int start
= skb_headlen(skb
);
1559 int i
, copy
= start
- offset
;
1562 /* Checksum header. */
1566 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1567 if ((len
-= copy
) == 0)
1573 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1576 BUG_TRAP(start
<= offset
+ len
);
1578 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1579 if ((copy
= end
- offset
) > 0) {
1582 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1586 vaddr
= kmap_skb_frag(frag
);
1587 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1588 offset
- start
, copy
, 0);
1589 kunmap_skb_frag(vaddr
);
1590 csum
= csum_block_add(csum
, csum2
, pos
);
1599 if (skb_shinfo(skb
)->frag_list
) {
1600 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1602 for (; list
; list
= list
->next
) {
1605 BUG_TRAP(start
<= offset
+ len
);
1607 end
= start
+ list
->len
;
1608 if ((copy
= end
- offset
) > 0) {
1612 csum2
= skb_checksum(list
, offset
- start
,
1614 csum
= csum_block_add(csum
, csum2
, pos
);
1615 if ((len
-= copy
) == 0)
1628 /* Both of above in one bottle. */
1630 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1631 u8
*to
, int len
, __wsum csum
)
1633 int start
= skb_headlen(skb
);
1634 int i
, copy
= start
- offset
;
1641 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1643 if ((len
-= copy
) == 0)
1650 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1653 BUG_TRAP(start
<= offset
+ len
);
1655 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1656 if ((copy
= end
- offset
) > 0) {
1659 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1663 vaddr
= kmap_skb_frag(frag
);
1664 csum2
= csum_partial_copy_nocheck(vaddr
+
1668 kunmap_skb_frag(vaddr
);
1669 csum
= csum_block_add(csum
, csum2
, pos
);
1679 if (skb_shinfo(skb
)->frag_list
) {
1680 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1682 for (; list
; list
= list
->next
) {
1686 BUG_TRAP(start
<= offset
+ len
);
1688 end
= start
+ list
->len
;
1689 if ((copy
= end
- offset
) > 0) {
1692 csum2
= skb_copy_and_csum_bits(list
,
1695 csum
= csum_block_add(csum
, csum2
, pos
);
1696 if ((len
-= copy
) == 0)
1709 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1714 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1715 csstart
= skb
->csum_start
- skb_headroom(skb
);
1717 csstart
= skb_headlen(skb
);
1719 BUG_ON(csstart
> skb_headlen(skb
));
1721 skb_copy_from_linear_data(skb
, to
, csstart
);
1724 if (csstart
!= skb
->len
)
1725 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1726 skb
->len
- csstart
, 0);
1728 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1729 long csstuff
= csstart
+ skb
->csum_offset
;
1731 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1736 * skb_dequeue - remove from the head of the queue
1737 * @list: list to dequeue from
1739 * Remove the head of the list. The list lock is taken so the function
1740 * may be used safely with other locking list functions. The head item is
1741 * returned or %NULL if the list is empty.
1744 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1746 unsigned long flags
;
1747 struct sk_buff
*result
;
1749 spin_lock_irqsave(&list
->lock
, flags
);
1750 result
= __skb_dequeue(list
);
1751 spin_unlock_irqrestore(&list
->lock
, flags
);
1756 * skb_dequeue_tail - remove from the tail of the queue
1757 * @list: list to dequeue from
1759 * Remove the tail of the list. The list lock is taken so the function
1760 * may be used safely with other locking list functions. The tail item is
1761 * returned or %NULL if the list is empty.
1763 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1765 unsigned long flags
;
1766 struct sk_buff
*result
;
1768 spin_lock_irqsave(&list
->lock
, flags
);
1769 result
= __skb_dequeue_tail(list
);
1770 spin_unlock_irqrestore(&list
->lock
, flags
);
1775 * skb_queue_purge - empty a list
1776 * @list: list to empty
1778 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1779 * the list and one reference dropped. This function takes the list
1780 * lock and is atomic with respect to other list locking functions.
1782 void skb_queue_purge(struct sk_buff_head
*list
)
1784 struct sk_buff
*skb
;
1785 while ((skb
= skb_dequeue(list
)) != NULL
)
1790 * skb_queue_head - queue a buffer at the list head
1791 * @list: list to use
1792 * @newsk: buffer to queue
1794 * Queue a buffer at the start of the list. This function takes the
1795 * list lock and can be used safely with other locking &sk_buff functions
1798 * A buffer cannot be placed on two lists at the same time.
1800 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1802 unsigned long flags
;
1804 spin_lock_irqsave(&list
->lock
, flags
);
1805 __skb_queue_head(list
, newsk
);
1806 spin_unlock_irqrestore(&list
->lock
, flags
);
1810 * skb_queue_tail - queue a buffer at the list tail
1811 * @list: list to use
1812 * @newsk: buffer to queue
1814 * Queue a buffer at the tail of the list. This function takes the
1815 * list lock and can be used safely with other locking &sk_buff functions
1818 * A buffer cannot be placed on two lists at the same time.
1820 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1822 unsigned long flags
;
1824 spin_lock_irqsave(&list
->lock
, flags
);
1825 __skb_queue_tail(list
, newsk
);
1826 spin_unlock_irqrestore(&list
->lock
, flags
);
1830 * skb_unlink - remove a buffer from a list
1831 * @skb: buffer to remove
1832 * @list: list to use
1834 * Remove a packet from a list. The list locks are taken and this
1835 * function is atomic with respect to other list locked calls
1837 * You must know what list the SKB is on.
1839 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1841 unsigned long flags
;
1843 spin_lock_irqsave(&list
->lock
, flags
);
1844 __skb_unlink(skb
, list
);
1845 spin_unlock_irqrestore(&list
->lock
, flags
);
1849 * skb_append - append a buffer
1850 * @old: buffer to insert after
1851 * @newsk: buffer to insert
1852 * @list: list to use
1854 * Place a packet after a given packet in a list. The list locks are taken
1855 * and this function is atomic with respect to other list locked calls.
1856 * A buffer cannot be placed on two lists at the same time.
1858 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1860 unsigned long flags
;
1862 spin_lock_irqsave(&list
->lock
, flags
);
1863 __skb_queue_after(list
, old
, newsk
);
1864 spin_unlock_irqrestore(&list
->lock
, flags
);
1869 * skb_insert - insert a buffer
1870 * @old: buffer to insert before
1871 * @newsk: buffer to insert
1872 * @list: list to use
1874 * Place a packet before a given packet in a list. The list locks are
1875 * taken and this function is atomic with respect to other list locked
1878 * A buffer cannot be placed on two lists at the same time.
1880 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1882 unsigned long flags
;
1884 spin_lock_irqsave(&list
->lock
, flags
);
1885 __skb_insert(newsk
, old
->prev
, old
, list
);
1886 spin_unlock_irqrestore(&list
->lock
, flags
);
1889 static inline void skb_split_inside_header(struct sk_buff
*skb
,
1890 struct sk_buff
* skb1
,
1891 const u32 len
, const int pos
)
1895 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
1897 /* And move data appendix as is. */
1898 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1899 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1901 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
1902 skb_shinfo(skb
)->nr_frags
= 0;
1903 skb1
->data_len
= skb
->data_len
;
1904 skb1
->len
+= skb1
->data_len
;
1907 skb_set_tail_pointer(skb
, len
);
1910 static inline void skb_split_no_header(struct sk_buff
*skb
,
1911 struct sk_buff
* skb1
,
1912 const u32 len
, int pos
)
1915 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
1917 skb_shinfo(skb
)->nr_frags
= 0;
1918 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
1920 skb
->data_len
= len
- pos
;
1922 for (i
= 0; i
< nfrags
; i
++) {
1923 int size
= skb_shinfo(skb
)->frags
[i
].size
;
1925 if (pos
+ size
> len
) {
1926 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1930 * We have two variants in this case:
1931 * 1. Move all the frag to the second
1932 * part, if it is possible. F.e.
1933 * this approach is mandatory for TUX,
1934 * where splitting is expensive.
1935 * 2. Split is accurately. We make this.
1937 get_page(skb_shinfo(skb
)->frags
[i
].page
);
1938 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
1939 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
1940 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
1941 skb_shinfo(skb
)->nr_frags
++;
1945 skb_shinfo(skb
)->nr_frags
++;
1948 skb_shinfo(skb1
)->nr_frags
= k
;
1952 * skb_split - Split fragmented skb to two parts at length len.
1953 * @skb: the buffer to split
1954 * @skb1: the buffer to receive the second part
1955 * @len: new length for skb
1957 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
1959 int pos
= skb_headlen(skb
);
1961 if (len
< pos
) /* Split line is inside header. */
1962 skb_split_inside_header(skb
, skb1
, len
, pos
);
1963 else /* Second chunk has no header, nothing to copy. */
1964 skb_split_no_header(skb
, skb1
, len
, pos
);
1968 * skb_prepare_seq_read - Prepare a sequential read of skb data
1969 * @skb: the buffer to read
1970 * @from: lower offset of data to be read
1971 * @to: upper offset of data to be read
1972 * @st: state variable
1974 * Initializes the specified state variable. Must be called before
1975 * invoking skb_seq_read() for the first time.
1977 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
1978 unsigned int to
, struct skb_seq_state
*st
)
1980 st
->lower_offset
= from
;
1981 st
->upper_offset
= to
;
1982 st
->root_skb
= st
->cur_skb
= skb
;
1983 st
->frag_idx
= st
->stepped_offset
= 0;
1984 st
->frag_data
= NULL
;
1988 * skb_seq_read - Sequentially read skb data
1989 * @consumed: number of bytes consumed by the caller so far
1990 * @data: destination pointer for data to be returned
1991 * @st: state variable
1993 * Reads a block of skb data at &consumed relative to the
1994 * lower offset specified to skb_prepare_seq_read(). Assigns
1995 * the head of the data block to &data and returns the length
1996 * of the block or 0 if the end of the skb data or the upper
1997 * offset has been reached.
1999 * The caller is not required to consume all of the data
2000 * returned, i.e. &consumed is typically set to the number
2001 * of bytes already consumed and the next call to
2002 * skb_seq_read() will return the remaining part of the block.
2004 * Note 1: The size of each block of data returned can be arbitary,
2005 * this limitation is the cost for zerocopy seqeuental
2006 * reads of potentially non linear data.
2008 * Note 2: Fragment lists within fragments are not implemented
2009 * at the moment, state->root_skb could be replaced with
2010 * a stack for this purpose.
2012 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2013 struct skb_seq_state
*st
)
2015 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2018 if (unlikely(abs_offset
>= st
->upper_offset
))
2022 block_limit
= skb_headlen(st
->cur_skb
);
2024 if (abs_offset
< block_limit
) {
2025 *data
= st
->cur_skb
->data
+ abs_offset
;
2026 return block_limit
- abs_offset
;
2029 if (st
->frag_idx
== 0 && !st
->frag_data
)
2030 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2032 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2033 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2034 block_limit
= frag
->size
+ st
->stepped_offset
;
2036 if (abs_offset
< block_limit
) {
2038 st
->frag_data
= kmap_skb_frag(frag
);
2040 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2041 (abs_offset
- st
->stepped_offset
);
2043 return block_limit
- abs_offset
;
2046 if (st
->frag_data
) {
2047 kunmap_skb_frag(st
->frag_data
);
2048 st
->frag_data
= NULL
;
2052 st
->stepped_offset
+= frag
->size
;
2055 if (st
->frag_data
) {
2056 kunmap_skb_frag(st
->frag_data
);
2057 st
->frag_data
= NULL
;
2060 if (st
->cur_skb
->next
) {
2061 st
->cur_skb
= st
->cur_skb
->next
;
2064 } else if (st
->root_skb
== st
->cur_skb
&&
2065 skb_shinfo(st
->root_skb
)->frag_list
) {
2066 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2074 * skb_abort_seq_read - Abort a sequential read of skb data
2075 * @st: state variable
2077 * Must be called if skb_seq_read() was not called until it
2080 void skb_abort_seq_read(struct skb_seq_state
*st
)
2083 kunmap_skb_frag(st
->frag_data
);
2086 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2088 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2089 struct ts_config
*conf
,
2090 struct ts_state
*state
)
2092 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2095 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2097 skb_abort_seq_read(TS_SKB_CB(state
));
2101 * skb_find_text - Find a text pattern in skb data
2102 * @skb: the buffer to look in
2103 * @from: search offset
2105 * @config: textsearch configuration
2106 * @state: uninitialized textsearch state variable
2108 * Finds a pattern in the skb data according to the specified
2109 * textsearch configuration. Use textsearch_next() to retrieve
2110 * subsequent occurrences of the pattern. Returns the offset
2111 * to the first occurrence or UINT_MAX if no match was found.
2113 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2114 unsigned int to
, struct ts_config
*config
,
2115 struct ts_state
*state
)
2119 config
->get_next_block
= skb_ts_get_next_block
;
2120 config
->finish
= skb_ts_finish
;
2122 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2124 ret
= textsearch_find(config
, state
);
2125 return (ret
<= to
- from
? ret
: UINT_MAX
);
2129 * skb_append_datato_frags: - append the user data to a skb
2130 * @sk: sock structure
2131 * @skb: skb structure to be appened with user data.
2132 * @getfrag: call back function to be used for getting the user data
2133 * @from: pointer to user message iov
2134 * @length: length of the iov message
2136 * Description: This procedure append the user data in the fragment part
2137 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2139 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2140 int (*getfrag
)(void *from
, char *to
, int offset
,
2141 int len
, int odd
, struct sk_buff
*skb
),
2142 void *from
, int length
)
2145 skb_frag_t
*frag
= NULL
;
2146 struct page
*page
= NULL
;
2152 /* Return error if we don't have space for new frag */
2153 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2154 if (frg_cnt
>= MAX_SKB_FRAGS
)
2157 /* allocate a new page for next frag */
2158 page
= alloc_pages(sk
->sk_allocation
, 0);
2160 /* If alloc_page fails just return failure and caller will
2161 * free previous allocated pages by doing kfree_skb()
2166 /* initialize the next frag */
2167 sk
->sk_sndmsg_page
= page
;
2168 sk
->sk_sndmsg_off
= 0;
2169 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
2170 skb
->truesize
+= PAGE_SIZE
;
2171 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
2173 /* get the new initialized frag */
2174 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2175 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
2177 /* copy the user data to page */
2178 left
= PAGE_SIZE
- frag
->page_offset
;
2179 copy
= (length
> left
)? left
: length
;
2181 ret
= getfrag(from
, (page_address(frag
->page
) +
2182 frag
->page_offset
+ frag
->size
),
2183 offset
, copy
, 0, skb
);
2187 /* copy was successful so update the size parameters */
2188 sk
->sk_sndmsg_off
+= copy
;
2191 skb
->data_len
+= copy
;
2195 } while (length
> 0);
2201 * skb_pull_rcsum - pull skb and update receive checksum
2202 * @skb: buffer to update
2203 * @len: length of data pulled
2205 * This function performs an skb_pull on the packet and updates
2206 * the CHECKSUM_COMPLETE checksum. It should be used on
2207 * receive path processing instead of skb_pull unless you know
2208 * that the checksum difference is zero (e.g., a valid IP header)
2209 * or you are setting ip_summed to CHECKSUM_NONE.
2211 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2213 BUG_ON(len
> skb
->len
);
2215 BUG_ON(skb
->len
< skb
->data_len
);
2216 skb_postpull_rcsum(skb
, skb
->data
, len
);
2217 return skb
->data
+= len
;
2220 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2223 * skb_segment - Perform protocol segmentation on skb.
2224 * @skb: buffer to segment
2225 * @features: features for the output path (see dev->features)
2227 * This function performs segmentation on the given skb. It returns
2228 * a pointer to the first in a list of new skbs for the segments.
2229 * In case of error it returns ERR_PTR(err).
2231 struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
)
2233 struct sk_buff
*segs
= NULL
;
2234 struct sk_buff
*tail
= NULL
;
2235 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2236 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2237 unsigned int offset
= doffset
;
2238 unsigned int headroom
;
2240 int sg
= features
& NETIF_F_SG
;
2241 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2246 __skb_push(skb
, doffset
);
2247 headroom
= skb_headroom(skb
);
2248 pos
= skb_headlen(skb
);
2251 struct sk_buff
*nskb
;
2257 len
= skb
->len
- offset
;
2261 hsize
= skb_headlen(skb
) - offset
;
2264 if (hsize
> len
|| !sg
)
2267 nskb
= alloc_skb(hsize
+ doffset
+ headroom
, GFP_ATOMIC
);
2268 if (unlikely(!nskb
))
2277 nskb
->dev
= skb
->dev
;
2278 skb_copy_queue_mapping(nskb
, skb
);
2279 nskb
->priority
= skb
->priority
;
2280 nskb
->protocol
= skb
->protocol
;
2281 nskb
->dst
= dst_clone(skb
->dst
);
2282 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
2283 nskb
->pkt_type
= skb
->pkt_type
;
2284 nskb
->mac_len
= skb
->mac_len
;
2286 skb_reserve(nskb
, headroom
);
2287 skb_reset_mac_header(nskb
);
2288 skb_set_network_header(nskb
, skb
->mac_len
);
2289 nskb
->transport_header
= (nskb
->network_header
+
2290 skb_network_header_len(skb
));
2291 skb_copy_from_linear_data(skb
, skb_put(nskb
, doffset
),
2294 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2300 frag
= skb_shinfo(nskb
)->frags
;
2303 nskb
->ip_summed
= CHECKSUM_PARTIAL
;
2304 nskb
->csum
= skb
->csum
;
2305 skb_copy_from_linear_data_offset(skb
, offset
,
2306 skb_put(nskb
, hsize
), hsize
);
2308 while (pos
< offset
+ len
) {
2309 BUG_ON(i
>= nfrags
);
2311 *frag
= skb_shinfo(skb
)->frags
[i
];
2312 get_page(frag
->page
);
2316 frag
->page_offset
+= offset
- pos
;
2317 frag
->size
-= offset
- pos
;
2322 if (pos
+ size
<= offset
+ len
) {
2326 frag
->size
-= pos
+ size
- (offset
+ len
);
2333 skb_shinfo(nskb
)->nr_frags
= k
;
2334 nskb
->data_len
= len
- hsize
;
2335 nskb
->len
+= nskb
->data_len
;
2336 nskb
->truesize
+= nskb
->data_len
;
2337 } while ((offset
+= len
) < skb
->len
);
2342 while ((skb
= segs
)) {
2346 return ERR_PTR(err
);
2349 EXPORT_SYMBOL_GPL(skb_segment
);
2351 void __init
skb_init(void)
2353 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2354 sizeof(struct sk_buff
),
2356 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2358 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2359 (2*sizeof(struct sk_buff
)) +
2362 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2367 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2368 * @skb: Socket buffer containing the buffers to be mapped
2369 * @sg: The scatter-gather list to map into
2370 * @offset: The offset into the buffer's contents to start mapping
2371 * @len: Length of buffer space to be mapped
2373 * Fill the specified scatter-gather list with mappings/pointers into a
2374 * region of the buffer space attached to a socket buffer.
2377 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2379 int start
= skb_headlen(skb
);
2380 int i
, copy
= start
- offset
;
2386 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
2388 if ((len
-= copy
) == 0)
2393 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2396 BUG_TRAP(start
<= offset
+ len
);
2398 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
2399 if ((copy
= end
- offset
) > 0) {
2400 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2404 sg_set_page(&sg
[elt
], frag
->page
, copy
,
2405 frag
->page_offset
+offset
-start
);
2414 if (skb_shinfo(skb
)->frag_list
) {
2415 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
2417 for (; list
; list
= list
->next
) {
2420 BUG_TRAP(start
<= offset
+ len
);
2422 end
= start
+ list
->len
;
2423 if ((copy
= end
- offset
) > 0) {
2426 elt
+= __skb_to_sgvec(list
, sg
+elt
, offset
- start
,
2428 if ((len
-= copy
) == 0)
2439 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2441 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
2443 sg_mark_end(&sg
[nsg
- 1]);
2449 * skb_cow_data - Check that a socket buffer's data buffers are writable
2450 * @skb: The socket buffer to check.
2451 * @tailbits: Amount of trailing space to be added
2452 * @trailer: Returned pointer to the skb where the @tailbits space begins
2454 * Make sure that the data buffers attached to a socket buffer are
2455 * writable. If they are not, private copies are made of the data buffers
2456 * and the socket buffer is set to use these instead.
2458 * If @tailbits is given, make sure that there is space to write @tailbits
2459 * bytes of data beyond current end of socket buffer. @trailer will be
2460 * set to point to the skb in which this space begins.
2462 * The number of scatterlist elements required to completely map the
2463 * COW'd and extended socket buffer will be returned.
2465 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
2469 struct sk_buff
*skb1
, **skb_p
;
2471 /* If skb is cloned or its head is paged, reallocate
2472 * head pulling out all the pages (pages are considered not writable
2473 * at the moment even if they are anonymous).
2475 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
2476 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
2479 /* Easy case. Most of packets will go this way. */
2480 if (!skb_shinfo(skb
)->frag_list
) {
2481 /* A little of trouble, not enough of space for trailer.
2482 * This should not happen, when stack is tuned to generate
2483 * good frames. OK, on miss we reallocate and reserve even more
2484 * space, 128 bytes is fair. */
2486 if (skb_tailroom(skb
) < tailbits
&&
2487 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
2495 /* Misery. We are in troubles, going to mincer fragments... */
2498 skb_p
= &skb_shinfo(skb
)->frag_list
;
2501 while ((skb1
= *skb_p
) != NULL
) {
2504 /* The fragment is partially pulled by someone,
2505 * this can happen on input. Copy it and everything
2508 if (skb_shared(skb1
))
2511 /* If the skb is the last, worry about trailer. */
2513 if (skb1
->next
== NULL
&& tailbits
) {
2514 if (skb_shinfo(skb1
)->nr_frags
||
2515 skb_shinfo(skb1
)->frag_list
||
2516 skb_tailroom(skb1
) < tailbits
)
2517 ntail
= tailbits
+ 128;
2523 skb_shinfo(skb1
)->nr_frags
||
2524 skb_shinfo(skb1
)->frag_list
) {
2525 struct sk_buff
*skb2
;
2527 /* Fuck, we are miserable poor guys... */
2529 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
2531 skb2
= skb_copy_expand(skb1
,
2535 if (unlikely(skb2
== NULL
))
2539 skb_set_owner_w(skb2
, skb1
->sk
);
2541 /* Looking around. Are we still alive?
2542 * OK, link new skb, drop old one */
2544 skb2
->next
= skb1
->next
;
2551 skb_p
= &skb1
->next
;
2558 * skb_partial_csum_set - set up and verify partial csum values for packet
2559 * @skb: the skb to set
2560 * @start: the number of bytes after skb->data to start checksumming.
2561 * @off: the offset from start to place the checksum.
2563 * For untrusted partially-checksummed packets, we need to make sure the values
2564 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2566 * This function checks and sets those values and skb->ip_summed: if this
2567 * returns false you should drop the packet.
2569 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
2571 if (unlikely(start
> skb
->len
- 2) ||
2572 unlikely((int)start
+ off
> skb
->len
- 2)) {
2573 if (net_ratelimit())
2575 "bad partial csum: csum=%u/%u len=%u\n",
2576 start
, off
, skb
->len
);
2579 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2580 skb
->csum_start
= skb_headroom(skb
) + start
;
2581 skb
->csum_offset
= off
;
2585 EXPORT_SYMBOL(___pskb_trim
);
2586 EXPORT_SYMBOL(__kfree_skb
);
2587 EXPORT_SYMBOL(kfree_skb
);
2588 EXPORT_SYMBOL(__pskb_pull_tail
);
2589 EXPORT_SYMBOL(__alloc_skb
);
2590 EXPORT_SYMBOL(__netdev_alloc_skb
);
2591 EXPORT_SYMBOL(pskb_copy
);
2592 EXPORT_SYMBOL(pskb_expand_head
);
2593 EXPORT_SYMBOL(skb_checksum
);
2594 EXPORT_SYMBOL(skb_clone
);
2595 EXPORT_SYMBOL(skb_copy
);
2596 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2597 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2598 EXPORT_SYMBOL(skb_copy_bits
);
2599 EXPORT_SYMBOL(skb_copy_expand
);
2600 EXPORT_SYMBOL(skb_over_panic
);
2601 EXPORT_SYMBOL(skb_pad
);
2602 EXPORT_SYMBOL(skb_realloc_headroom
);
2603 EXPORT_SYMBOL(skb_under_panic
);
2604 EXPORT_SYMBOL(skb_dequeue
);
2605 EXPORT_SYMBOL(skb_dequeue_tail
);
2606 EXPORT_SYMBOL(skb_insert
);
2607 EXPORT_SYMBOL(skb_queue_purge
);
2608 EXPORT_SYMBOL(skb_queue_head
);
2609 EXPORT_SYMBOL(skb_queue_tail
);
2610 EXPORT_SYMBOL(skb_unlink
);
2611 EXPORT_SYMBOL(skb_append
);
2612 EXPORT_SYMBOL(skb_split
);
2613 EXPORT_SYMBOL(skb_prepare_seq_read
);
2614 EXPORT_SYMBOL(skb_seq_read
);
2615 EXPORT_SYMBOL(skb_abort_seq_read
);
2616 EXPORT_SYMBOL(skb_find_text
);
2617 EXPORT_SYMBOL(skb_append_datato_frags
);
2619 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
2620 EXPORT_SYMBOL_GPL(skb_cow_data
);
2621 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);