e1000: integrate ich8 support into driver
[linux-2.6/verdex.git] / drivers / net / e1000 / e1000_ethtool.c
blob3a0b847fac316e82beb19763a57f3eb85b1edd57
1 /*******************************************************************************
4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *******************************************************************************/
30 /* ethtool support for e1000 */
32 #include "e1000.h"
34 #include <asm/uaccess.h>
36 struct e1000_stats {
37 char stat_string[ETH_GSTRING_LEN];
38 int sizeof_stat;
39 int stat_offset;
42 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
43 offsetof(struct e1000_adapter, m)
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45 { "rx_packets", E1000_STAT(net_stats.rx_packets) },
46 { "tx_packets", E1000_STAT(net_stats.tx_packets) },
47 { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
48 { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
49 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
50 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
51 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
52 { "multicast", E1000_STAT(net_stats.multicast) },
53 { "collisions", E1000_STAT(net_stats.collisions) },
54 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
55 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
56 { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
57 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
58 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
59 { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
60 { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
61 { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
62 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
63 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
64 { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
65 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
66 { "tx_deferred_ok", E1000_STAT(stats.dc) },
67 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
68 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
69 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
70 { "rx_long_length_errors", E1000_STAT(stats.roc) },
71 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
72 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
73 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
74 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
75 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
76 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
77 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
78 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
79 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
80 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
81 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
82 { "rx_header_split", E1000_STAT(rx_hdr_split) },
83 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
86 #define E1000_QUEUE_STATS_LEN 0
87 #define E1000_GLOBAL_STATS_LEN \
88 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
89 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
90 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
91 "Register test (offline)", "Eeprom test (offline)",
92 "Interrupt test (offline)", "Loopback test (offline)",
93 "Link test (on/offline)"
95 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
97 static int
98 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
100 struct e1000_adapter *adapter = netdev_priv(netdev);
101 struct e1000_hw *hw = &adapter->hw;
103 if (hw->media_type == e1000_media_type_copper) {
105 ecmd->supported = (SUPPORTED_10baseT_Half |
106 SUPPORTED_10baseT_Full |
107 SUPPORTED_100baseT_Half |
108 SUPPORTED_100baseT_Full |
109 SUPPORTED_1000baseT_Full|
110 SUPPORTED_Autoneg |
111 SUPPORTED_TP);
112 if (hw->phy_type == e1000_phy_ife)
113 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
114 ecmd->advertising = ADVERTISED_TP;
116 if (hw->autoneg == 1) {
117 ecmd->advertising |= ADVERTISED_Autoneg;
119 /* the e1000 autoneg seems to match ethtool nicely */
121 ecmd->advertising |= hw->autoneg_advertised;
124 ecmd->port = PORT_TP;
125 ecmd->phy_address = hw->phy_addr;
127 if (hw->mac_type == e1000_82543)
128 ecmd->transceiver = XCVR_EXTERNAL;
129 else
130 ecmd->transceiver = XCVR_INTERNAL;
132 } else {
133 ecmd->supported = (SUPPORTED_1000baseT_Full |
134 SUPPORTED_FIBRE |
135 SUPPORTED_Autoneg);
137 ecmd->advertising = (ADVERTISED_1000baseT_Full |
138 ADVERTISED_FIBRE |
139 ADVERTISED_Autoneg);
141 ecmd->port = PORT_FIBRE;
143 if (hw->mac_type >= e1000_82545)
144 ecmd->transceiver = XCVR_INTERNAL;
145 else
146 ecmd->transceiver = XCVR_EXTERNAL;
149 if (netif_carrier_ok(adapter->netdev)) {
151 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
152 &adapter->link_duplex);
153 ecmd->speed = adapter->link_speed;
155 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
156 * and HALF_DUPLEX != DUPLEX_HALF */
158 if (adapter->link_duplex == FULL_DUPLEX)
159 ecmd->duplex = DUPLEX_FULL;
160 else
161 ecmd->duplex = DUPLEX_HALF;
162 } else {
163 ecmd->speed = -1;
164 ecmd->duplex = -1;
167 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
168 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
169 return 0;
172 static int
173 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
175 struct e1000_adapter *adapter = netdev_priv(netdev);
176 struct e1000_hw *hw = &adapter->hw;
178 /* When SoL/IDER sessions are active, autoneg/speed/duplex
179 * cannot be changed */
180 if (e1000_check_phy_reset_block(hw)) {
181 DPRINTK(DRV, ERR, "Cannot change link characteristics "
182 "when SoL/IDER is active.\n");
183 return -EINVAL;
186 if (ecmd->autoneg == AUTONEG_ENABLE) {
187 hw->autoneg = 1;
188 if (hw->media_type == e1000_media_type_fiber)
189 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
190 ADVERTISED_FIBRE |
191 ADVERTISED_Autoneg;
192 else
193 hw->autoneg_advertised = ADVERTISED_10baseT_Half |
194 ADVERTISED_10baseT_Full |
195 ADVERTISED_100baseT_Half |
196 ADVERTISED_100baseT_Full |
197 ADVERTISED_1000baseT_Full|
198 ADVERTISED_Autoneg |
199 ADVERTISED_TP;
200 ecmd->advertising = hw->autoneg_advertised;
201 } else
202 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
203 return -EINVAL;
205 /* reset the link */
207 if (netif_running(adapter->netdev))
208 e1000_reinit_locked(adapter);
209 else
210 e1000_reset(adapter);
212 return 0;
215 static void
216 e1000_get_pauseparam(struct net_device *netdev,
217 struct ethtool_pauseparam *pause)
219 struct e1000_adapter *adapter = netdev_priv(netdev);
220 struct e1000_hw *hw = &adapter->hw;
222 pause->autoneg =
223 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
225 if (hw->fc == e1000_fc_rx_pause)
226 pause->rx_pause = 1;
227 else if (hw->fc == e1000_fc_tx_pause)
228 pause->tx_pause = 1;
229 else if (hw->fc == e1000_fc_full) {
230 pause->rx_pause = 1;
231 pause->tx_pause = 1;
235 static int
236 e1000_set_pauseparam(struct net_device *netdev,
237 struct ethtool_pauseparam *pause)
239 struct e1000_adapter *adapter = netdev_priv(netdev);
240 struct e1000_hw *hw = &adapter->hw;
242 adapter->fc_autoneg = pause->autoneg;
244 if (pause->rx_pause && pause->tx_pause)
245 hw->fc = e1000_fc_full;
246 else if (pause->rx_pause && !pause->tx_pause)
247 hw->fc = e1000_fc_rx_pause;
248 else if (!pause->rx_pause && pause->tx_pause)
249 hw->fc = e1000_fc_tx_pause;
250 else if (!pause->rx_pause && !pause->tx_pause)
251 hw->fc = e1000_fc_none;
253 hw->original_fc = hw->fc;
255 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
256 if (netif_running(adapter->netdev))
257 e1000_reinit_locked(adapter);
258 else
259 e1000_reset(adapter);
260 } else
261 return ((hw->media_type == e1000_media_type_fiber) ?
262 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
264 return 0;
267 static uint32_t
268 e1000_get_rx_csum(struct net_device *netdev)
270 struct e1000_adapter *adapter = netdev_priv(netdev);
271 return adapter->rx_csum;
274 static int
275 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
277 struct e1000_adapter *adapter = netdev_priv(netdev);
278 adapter->rx_csum = data;
280 if (netif_running(netdev))
281 e1000_reinit_locked(adapter);
282 else
283 e1000_reset(adapter);
284 return 0;
287 static uint32_t
288 e1000_get_tx_csum(struct net_device *netdev)
290 return (netdev->features & NETIF_F_HW_CSUM) != 0;
293 static int
294 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
296 struct e1000_adapter *adapter = netdev_priv(netdev);
298 if (adapter->hw.mac_type < e1000_82543) {
299 if (!data)
300 return -EINVAL;
301 return 0;
304 if (data)
305 netdev->features |= NETIF_F_HW_CSUM;
306 else
307 netdev->features &= ~NETIF_F_HW_CSUM;
309 return 0;
312 #ifdef NETIF_F_TSO
313 static int
314 e1000_set_tso(struct net_device *netdev, uint32_t data)
316 struct e1000_adapter *adapter = netdev_priv(netdev);
317 if ((adapter->hw.mac_type < e1000_82544) ||
318 (adapter->hw.mac_type == e1000_82547))
319 return data ? -EINVAL : 0;
321 if (data)
322 netdev->features |= NETIF_F_TSO;
323 else
324 netdev->features &= ~NETIF_F_TSO;
326 DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
327 adapter->tso_force = TRUE;
328 return 0;
330 #endif /* NETIF_F_TSO */
332 static uint32_t
333 e1000_get_msglevel(struct net_device *netdev)
335 struct e1000_adapter *adapter = netdev_priv(netdev);
336 return adapter->msg_enable;
339 static void
340 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
342 struct e1000_adapter *adapter = netdev_priv(netdev);
343 adapter->msg_enable = data;
346 static int
347 e1000_get_regs_len(struct net_device *netdev)
349 #define E1000_REGS_LEN 32
350 return E1000_REGS_LEN * sizeof(uint32_t);
353 static void
354 e1000_get_regs(struct net_device *netdev,
355 struct ethtool_regs *regs, void *p)
357 struct e1000_adapter *adapter = netdev_priv(netdev);
358 struct e1000_hw *hw = &adapter->hw;
359 uint32_t *regs_buff = p;
360 uint16_t phy_data;
362 memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
364 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
366 regs_buff[0] = E1000_READ_REG(hw, CTRL);
367 regs_buff[1] = E1000_READ_REG(hw, STATUS);
369 regs_buff[2] = E1000_READ_REG(hw, RCTL);
370 regs_buff[3] = E1000_READ_REG(hw, RDLEN);
371 regs_buff[4] = E1000_READ_REG(hw, RDH);
372 regs_buff[5] = E1000_READ_REG(hw, RDT);
373 regs_buff[6] = E1000_READ_REG(hw, RDTR);
375 regs_buff[7] = E1000_READ_REG(hw, TCTL);
376 regs_buff[8] = E1000_READ_REG(hw, TDLEN);
377 regs_buff[9] = E1000_READ_REG(hw, TDH);
378 regs_buff[10] = E1000_READ_REG(hw, TDT);
379 regs_buff[11] = E1000_READ_REG(hw, TIDV);
381 regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
382 if (hw->phy_type == e1000_phy_igp) {
383 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
384 IGP01E1000_PHY_AGC_A);
385 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
386 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
387 regs_buff[13] = (uint32_t)phy_data; /* cable length */
388 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
389 IGP01E1000_PHY_AGC_B);
390 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
391 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
392 regs_buff[14] = (uint32_t)phy_data; /* cable length */
393 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
394 IGP01E1000_PHY_AGC_C);
395 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
396 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
397 regs_buff[15] = (uint32_t)phy_data; /* cable length */
398 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
399 IGP01E1000_PHY_AGC_D);
400 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
401 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
402 regs_buff[16] = (uint32_t)phy_data; /* cable length */
403 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
404 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
405 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
406 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
407 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
408 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
409 IGP01E1000_PHY_PCS_INIT_REG);
410 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
411 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
412 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
413 regs_buff[20] = 0; /* polarity correction enabled (always) */
414 regs_buff[22] = 0; /* phy receive errors (unavailable) */
415 regs_buff[23] = regs_buff[18]; /* mdix mode */
416 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
417 } else {
418 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
419 regs_buff[13] = (uint32_t)phy_data; /* cable length */
420 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
421 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
422 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
423 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
424 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
425 regs_buff[18] = regs_buff[13]; /* cable polarity */
426 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
427 regs_buff[20] = regs_buff[17]; /* polarity correction */
428 /* phy receive errors */
429 regs_buff[22] = adapter->phy_stats.receive_errors;
430 regs_buff[23] = regs_buff[13]; /* mdix mode */
432 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
433 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
434 regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
435 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
436 if (hw->mac_type >= e1000_82540 &&
437 hw->media_type == e1000_media_type_copper) {
438 regs_buff[26] = E1000_READ_REG(hw, MANC);
442 static int
443 e1000_get_eeprom_len(struct net_device *netdev)
445 struct e1000_adapter *adapter = netdev_priv(netdev);
446 return adapter->hw.eeprom.word_size * 2;
449 static int
450 e1000_get_eeprom(struct net_device *netdev,
451 struct ethtool_eeprom *eeprom, uint8_t *bytes)
453 struct e1000_adapter *adapter = netdev_priv(netdev);
454 struct e1000_hw *hw = &adapter->hw;
455 uint16_t *eeprom_buff;
456 int first_word, last_word;
457 int ret_val = 0;
458 uint16_t i;
460 if (eeprom->len == 0)
461 return -EINVAL;
463 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
465 first_word = eeprom->offset >> 1;
466 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
468 eeprom_buff = kmalloc(sizeof(uint16_t) *
469 (last_word - first_word + 1), GFP_KERNEL);
470 if (!eeprom_buff)
471 return -ENOMEM;
473 if (hw->eeprom.type == e1000_eeprom_spi)
474 ret_val = e1000_read_eeprom(hw, first_word,
475 last_word - first_word + 1,
476 eeprom_buff);
477 else {
478 for (i = 0; i < last_word - first_word + 1; i++)
479 if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
480 &eeprom_buff[i])))
481 break;
484 /* Device's eeprom is always little-endian, word addressable */
485 for (i = 0; i < last_word - first_word + 1; i++)
486 le16_to_cpus(&eeprom_buff[i]);
488 memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
489 eeprom->len);
490 kfree(eeprom_buff);
492 return ret_val;
495 static int
496 e1000_set_eeprom(struct net_device *netdev,
497 struct ethtool_eeprom *eeprom, uint8_t *bytes)
499 struct e1000_adapter *adapter = netdev_priv(netdev);
500 struct e1000_hw *hw = &adapter->hw;
501 uint16_t *eeprom_buff;
502 void *ptr;
503 int max_len, first_word, last_word, ret_val = 0;
504 uint16_t i;
506 if (eeprom->len == 0)
507 return -EOPNOTSUPP;
509 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
510 return -EFAULT;
512 max_len = hw->eeprom.word_size * 2;
514 first_word = eeprom->offset >> 1;
515 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
516 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
517 if (!eeprom_buff)
518 return -ENOMEM;
520 ptr = (void *)eeprom_buff;
522 if (eeprom->offset & 1) {
523 /* need read/modify/write of first changed EEPROM word */
524 /* only the second byte of the word is being modified */
525 ret_val = e1000_read_eeprom(hw, first_word, 1,
526 &eeprom_buff[0]);
527 ptr++;
529 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
530 /* need read/modify/write of last changed EEPROM word */
531 /* only the first byte of the word is being modified */
532 ret_val = e1000_read_eeprom(hw, last_word, 1,
533 &eeprom_buff[last_word - first_word]);
536 /* Device's eeprom is always little-endian, word addressable */
537 for (i = 0; i < last_word - first_word + 1; i++)
538 le16_to_cpus(&eeprom_buff[i]);
540 memcpy(ptr, bytes, eeprom->len);
542 for (i = 0; i < last_word - first_word + 1; i++)
543 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
545 ret_val = e1000_write_eeprom(hw, first_word,
546 last_word - first_word + 1, eeprom_buff);
548 /* Update the checksum over the first part of the EEPROM if needed
549 * and flush shadow RAM for 82573 conrollers */
550 if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
551 (hw->mac_type == e1000_82573)))
552 e1000_update_eeprom_checksum(hw);
554 kfree(eeprom_buff);
555 return ret_val;
558 static void
559 e1000_get_drvinfo(struct net_device *netdev,
560 struct ethtool_drvinfo *drvinfo)
562 struct e1000_adapter *adapter = netdev_priv(netdev);
563 char firmware_version[32];
564 uint16_t eeprom_data;
566 strncpy(drvinfo->driver, e1000_driver_name, 32);
567 strncpy(drvinfo->version, e1000_driver_version, 32);
569 /* EEPROM image version # is reported as firmware version # for
570 * 8257{1|2|3} controllers */
571 e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
572 switch (adapter->hw.mac_type) {
573 case e1000_82571:
574 case e1000_82572:
575 case e1000_82573:
576 case e1000_80003es2lan:
577 case e1000_ich8lan:
578 sprintf(firmware_version, "%d.%d-%d",
579 (eeprom_data & 0xF000) >> 12,
580 (eeprom_data & 0x0FF0) >> 4,
581 eeprom_data & 0x000F);
582 break;
583 default:
584 sprintf(firmware_version, "N/A");
587 strncpy(drvinfo->fw_version, firmware_version, 32);
588 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
589 drvinfo->n_stats = E1000_STATS_LEN;
590 drvinfo->testinfo_len = E1000_TEST_LEN;
591 drvinfo->regdump_len = e1000_get_regs_len(netdev);
592 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
595 static void
596 e1000_get_ringparam(struct net_device *netdev,
597 struct ethtool_ringparam *ring)
599 struct e1000_adapter *adapter = netdev_priv(netdev);
600 e1000_mac_type mac_type = adapter->hw.mac_type;
601 struct e1000_tx_ring *txdr = adapter->tx_ring;
602 struct e1000_rx_ring *rxdr = adapter->rx_ring;
604 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
605 E1000_MAX_82544_RXD;
606 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
607 E1000_MAX_82544_TXD;
608 ring->rx_mini_max_pending = 0;
609 ring->rx_jumbo_max_pending = 0;
610 ring->rx_pending = rxdr->count;
611 ring->tx_pending = txdr->count;
612 ring->rx_mini_pending = 0;
613 ring->rx_jumbo_pending = 0;
616 static int
617 e1000_set_ringparam(struct net_device *netdev,
618 struct ethtool_ringparam *ring)
620 struct e1000_adapter *adapter = netdev_priv(netdev);
621 e1000_mac_type mac_type = adapter->hw.mac_type;
622 struct e1000_tx_ring *txdr, *tx_old, *tx_new;
623 struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
624 int i, err, tx_ring_size, rx_ring_size;
626 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
627 return -EINVAL;
629 tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
630 rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
632 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
633 msleep(1);
635 if (netif_running(adapter->netdev))
636 e1000_down(adapter);
638 tx_old = adapter->tx_ring;
639 rx_old = adapter->rx_ring;
641 adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
642 if (!adapter->tx_ring) {
643 err = -ENOMEM;
644 goto err_setup_rx;
646 memset(adapter->tx_ring, 0, tx_ring_size);
648 adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
649 if (!adapter->rx_ring) {
650 kfree(adapter->tx_ring);
651 err = -ENOMEM;
652 goto err_setup_rx;
654 memset(adapter->rx_ring, 0, rx_ring_size);
656 txdr = adapter->tx_ring;
657 rxdr = adapter->rx_ring;
659 rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
660 rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
661 E1000_MAX_RXD : E1000_MAX_82544_RXD));
662 E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
664 txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
665 txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
666 E1000_MAX_TXD : E1000_MAX_82544_TXD));
667 E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
669 for (i = 0; i < adapter->num_tx_queues; i++)
670 txdr[i].count = txdr->count;
671 for (i = 0; i < adapter->num_rx_queues; i++)
672 rxdr[i].count = rxdr->count;
674 if (netif_running(adapter->netdev)) {
675 /* Try to get new resources before deleting old */
676 if ((err = e1000_setup_all_rx_resources(adapter)))
677 goto err_setup_rx;
678 if ((err = e1000_setup_all_tx_resources(adapter)))
679 goto err_setup_tx;
681 /* save the new, restore the old in order to free it,
682 * then restore the new back again */
684 rx_new = adapter->rx_ring;
685 tx_new = adapter->tx_ring;
686 adapter->rx_ring = rx_old;
687 adapter->tx_ring = tx_old;
688 e1000_free_all_rx_resources(adapter);
689 e1000_free_all_tx_resources(adapter);
690 kfree(tx_old);
691 kfree(rx_old);
692 adapter->rx_ring = rx_new;
693 adapter->tx_ring = tx_new;
694 if ((err = e1000_up(adapter)))
695 goto err_setup;
698 clear_bit(__E1000_RESETTING, &adapter->flags);
700 return 0;
701 err_setup_tx:
702 e1000_free_all_rx_resources(adapter);
703 err_setup_rx:
704 adapter->rx_ring = rx_old;
705 adapter->tx_ring = tx_old;
706 e1000_up(adapter);
707 err_setup:
708 clear_bit(__E1000_RESETTING, &adapter->flags);
709 return err;
712 #define REG_PATTERN_TEST(R, M, W) \
714 uint32_t pat, value; \
715 uint32_t test[] = \
716 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
717 for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
718 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
719 value = E1000_READ_REG(&adapter->hw, R); \
720 if (value != (test[pat] & W & M)) { \
721 DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
722 "0x%08X expected 0x%08X\n", \
723 E1000_##R, value, (test[pat] & W & M)); \
724 *data = (adapter->hw.mac_type < e1000_82543) ? \
725 E1000_82542_##R : E1000_##R; \
726 return 1; \
731 #define REG_SET_AND_CHECK(R, M, W) \
733 uint32_t value; \
734 E1000_WRITE_REG(&adapter->hw, R, W & M); \
735 value = E1000_READ_REG(&adapter->hw, R); \
736 if ((W & M) != (value & M)) { \
737 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
738 "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
739 *data = (adapter->hw.mac_type < e1000_82543) ? \
740 E1000_82542_##R : E1000_##R; \
741 return 1; \
745 static int
746 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
748 uint32_t value, before, after;
749 uint32_t i, toggle;
751 /* The status register is Read Only, so a write should fail.
752 * Some bits that get toggled are ignored.
754 switch (adapter->hw.mac_type) {
755 /* there are several bits on newer hardware that are r/w */
756 case e1000_82571:
757 case e1000_82572:
758 case e1000_80003es2lan:
759 toggle = 0x7FFFF3FF;
760 break;
761 case e1000_82573:
762 case e1000_ich8lan:
763 toggle = 0x7FFFF033;
764 break;
765 default:
766 toggle = 0xFFFFF833;
767 break;
770 before = E1000_READ_REG(&adapter->hw, STATUS);
771 value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
772 E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
773 after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
774 if (value != after) {
775 DPRINTK(DRV, ERR, "failed STATUS register test got: "
776 "0x%08X expected: 0x%08X\n", after, value);
777 *data = 1;
778 return 1;
780 /* restore previous status */
781 E1000_WRITE_REG(&adapter->hw, STATUS, before);
782 if (adapter->hw.mac_type != e1000_ich8lan) {
783 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
784 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
785 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
786 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
788 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
789 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
790 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
791 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
792 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
793 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
794 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
795 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
796 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
797 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
799 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
800 before = (adapter->hw.mac_type == e1000_ich8lan ?
801 0x06C3B33E : 0x06DFB3FE);
802 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
803 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
805 if (adapter->hw.mac_type >= e1000_82543) {
807 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
808 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
809 if (adapter->hw.mac_type != e1000_ich8lan)
810 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
811 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
812 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
813 value = (adapter->hw.mac_type == e1000_ich8lan ?
814 E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
815 for (i = 0; i < value; i++) {
816 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
817 0xFFFFFFFF);
820 } else {
822 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
823 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
824 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
825 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
829 value = (adapter->hw.mac_type == e1000_ich8lan ?
830 E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
831 for (i = 0; i < value; i++)
832 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
834 *data = 0;
835 return 0;
838 static int
839 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
841 uint16_t temp;
842 uint16_t checksum = 0;
843 uint16_t i;
845 *data = 0;
846 /* Read and add up the contents of the EEPROM */
847 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
848 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
849 *data = 1;
850 break;
852 checksum += temp;
855 /* If Checksum is not Correct return error else test passed */
856 if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
857 *data = 2;
859 return *data;
862 static irqreturn_t
863 e1000_test_intr(int irq,
864 void *data,
865 struct pt_regs *regs)
867 struct net_device *netdev = (struct net_device *) data;
868 struct e1000_adapter *adapter = netdev_priv(netdev);
870 adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
872 return IRQ_HANDLED;
875 static int
876 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
878 struct net_device *netdev = adapter->netdev;
879 uint32_t mask, i=0, shared_int = TRUE;
880 uint32_t irq = adapter->pdev->irq;
882 *data = 0;
884 /* Hook up test interrupt handler just for this test */
885 if (!request_irq(irq, &e1000_test_intr, SA_PROBEIRQ, netdev->name,
886 netdev)) {
887 shared_int = FALSE;
888 } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
889 netdev->name, netdev)){
890 *data = 1;
891 return -1;
893 DPRINTK(PROBE,INFO, "testing %s interrupt\n",
894 (shared_int ? "shared" : "unshared"));
896 /* Disable all the interrupts */
897 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
898 msec_delay(10);
900 /* Test each interrupt */
901 for (; i < 10; i++) {
903 if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
904 continue;
905 /* Interrupt to test */
906 mask = 1 << i;
908 if (!shared_int) {
909 /* Disable the interrupt to be reported in
910 * the cause register and then force the same
911 * interrupt and see if one gets posted. If
912 * an interrupt was posted to the bus, the
913 * test failed.
915 adapter->test_icr = 0;
916 E1000_WRITE_REG(&adapter->hw, IMC, mask);
917 E1000_WRITE_REG(&adapter->hw, ICS, mask);
918 msec_delay(10);
920 if (adapter->test_icr & mask) {
921 *data = 3;
922 break;
926 /* Enable the interrupt to be reported in
927 * the cause register and then force the same
928 * interrupt and see if one gets posted. If
929 * an interrupt was not posted to the bus, the
930 * test failed.
932 adapter->test_icr = 0;
933 E1000_WRITE_REG(&adapter->hw, IMS, mask);
934 E1000_WRITE_REG(&adapter->hw, ICS, mask);
935 msec_delay(10);
937 if (!(adapter->test_icr & mask)) {
938 *data = 4;
939 break;
942 if (!shared_int) {
943 /* Disable the other interrupts to be reported in
944 * the cause register and then force the other
945 * interrupts and see if any get posted. If
946 * an interrupt was posted to the bus, the
947 * test failed.
949 adapter->test_icr = 0;
950 E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
951 E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
952 msec_delay(10);
954 if (adapter->test_icr) {
955 *data = 5;
956 break;
961 /* Disable all the interrupts */
962 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
963 msec_delay(10);
965 /* Unhook test interrupt handler */
966 free_irq(irq, netdev);
968 return *data;
971 static void
972 e1000_free_desc_rings(struct e1000_adapter *adapter)
974 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
975 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
976 struct pci_dev *pdev = adapter->pdev;
977 int i;
979 if (txdr->desc && txdr->buffer_info) {
980 for (i = 0; i < txdr->count; i++) {
981 if (txdr->buffer_info[i].dma)
982 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
983 txdr->buffer_info[i].length,
984 PCI_DMA_TODEVICE);
985 if (txdr->buffer_info[i].skb)
986 dev_kfree_skb(txdr->buffer_info[i].skb);
990 if (rxdr->desc && rxdr->buffer_info) {
991 for (i = 0; i < rxdr->count; i++) {
992 if (rxdr->buffer_info[i].dma)
993 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
994 rxdr->buffer_info[i].length,
995 PCI_DMA_FROMDEVICE);
996 if (rxdr->buffer_info[i].skb)
997 dev_kfree_skb(rxdr->buffer_info[i].skb);
1001 if (txdr->desc) {
1002 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1003 txdr->desc = NULL;
1005 if (rxdr->desc) {
1006 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1007 rxdr->desc = NULL;
1010 kfree(txdr->buffer_info);
1011 txdr->buffer_info = NULL;
1012 kfree(rxdr->buffer_info);
1013 rxdr->buffer_info = NULL;
1015 return;
1018 static int
1019 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1021 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1022 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1023 struct pci_dev *pdev = adapter->pdev;
1024 uint32_t rctl;
1025 int size, i, ret_val;
1027 /* Setup Tx descriptor ring and Tx buffers */
1029 if (!txdr->count)
1030 txdr->count = E1000_DEFAULT_TXD;
1032 size = txdr->count * sizeof(struct e1000_buffer);
1033 if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1034 ret_val = 1;
1035 goto err_nomem;
1037 memset(txdr->buffer_info, 0, size);
1039 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1040 E1000_ROUNDUP(txdr->size, 4096);
1041 if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1042 ret_val = 2;
1043 goto err_nomem;
1045 memset(txdr->desc, 0, txdr->size);
1046 txdr->next_to_use = txdr->next_to_clean = 0;
1048 E1000_WRITE_REG(&adapter->hw, TDBAL,
1049 ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1050 E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1051 E1000_WRITE_REG(&adapter->hw, TDLEN,
1052 txdr->count * sizeof(struct e1000_tx_desc));
1053 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1054 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1055 E1000_WRITE_REG(&adapter->hw, TCTL,
1056 E1000_TCTL_PSP | E1000_TCTL_EN |
1057 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1058 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1060 for (i = 0; i < txdr->count; i++) {
1061 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1062 struct sk_buff *skb;
1063 unsigned int size = 1024;
1065 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1066 ret_val = 3;
1067 goto err_nomem;
1069 skb_put(skb, size);
1070 txdr->buffer_info[i].skb = skb;
1071 txdr->buffer_info[i].length = skb->len;
1072 txdr->buffer_info[i].dma =
1073 pci_map_single(pdev, skb->data, skb->len,
1074 PCI_DMA_TODEVICE);
1075 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1076 tx_desc->lower.data = cpu_to_le32(skb->len);
1077 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1078 E1000_TXD_CMD_IFCS |
1079 E1000_TXD_CMD_RPS);
1080 tx_desc->upper.data = 0;
1083 /* Setup Rx descriptor ring and Rx buffers */
1085 if (!rxdr->count)
1086 rxdr->count = E1000_DEFAULT_RXD;
1088 size = rxdr->count * sizeof(struct e1000_buffer);
1089 if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1090 ret_val = 4;
1091 goto err_nomem;
1093 memset(rxdr->buffer_info, 0, size);
1095 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1096 if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1097 ret_val = 5;
1098 goto err_nomem;
1100 memset(rxdr->desc, 0, rxdr->size);
1101 rxdr->next_to_use = rxdr->next_to_clean = 0;
1103 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1104 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1105 E1000_WRITE_REG(&adapter->hw, RDBAL,
1106 ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1107 E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1108 E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1109 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1110 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1111 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1112 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1113 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1114 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1116 for (i = 0; i < rxdr->count; i++) {
1117 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1118 struct sk_buff *skb;
1120 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1121 GFP_KERNEL))) {
1122 ret_val = 6;
1123 goto err_nomem;
1125 skb_reserve(skb, NET_IP_ALIGN);
1126 rxdr->buffer_info[i].skb = skb;
1127 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1128 rxdr->buffer_info[i].dma =
1129 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1130 PCI_DMA_FROMDEVICE);
1131 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1132 memset(skb->data, 0x00, skb->len);
1135 return 0;
1137 err_nomem:
1138 e1000_free_desc_rings(adapter);
1139 return ret_val;
1142 static void
1143 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1145 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1146 e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1147 e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1148 e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1149 e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1152 static void
1153 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1155 uint16_t phy_reg;
1157 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1158 * Extended PHY Specific Control Register to 25MHz clock. This
1159 * value defaults back to a 2.5MHz clock when the PHY is reset.
1161 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1162 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1163 e1000_write_phy_reg(&adapter->hw,
1164 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1166 /* In addition, because of the s/w reset above, we need to enable
1167 * CRS on TX. This must be set for both full and half duplex
1168 * operation.
1170 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1171 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1172 e1000_write_phy_reg(&adapter->hw,
1173 M88E1000_PHY_SPEC_CTRL, phy_reg);
1176 static int
1177 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1179 uint32_t ctrl_reg;
1180 uint16_t phy_reg;
1182 /* Setup the Device Control Register for PHY loopback test. */
1184 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1185 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1186 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1187 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1188 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1189 E1000_CTRL_FD); /* Force Duplex to FULL */
1191 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1193 /* Read the PHY Specific Control Register (0x10) */
1194 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1196 /* Clear Auto-Crossover bits in PHY Specific Control Register
1197 * (bits 6:5).
1199 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1200 e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1202 /* Perform software reset on the PHY */
1203 e1000_phy_reset(&adapter->hw);
1205 /* Have to setup TX_CLK and TX_CRS after software reset */
1206 e1000_phy_reset_clk_and_crs(adapter);
1208 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1210 /* Wait for reset to complete. */
1211 udelay(500);
1213 /* Have to setup TX_CLK and TX_CRS after software reset */
1214 e1000_phy_reset_clk_and_crs(adapter);
1216 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1217 e1000_phy_disable_receiver(adapter);
1219 /* Set the loopback bit in the PHY control register. */
1220 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1221 phy_reg |= MII_CR_LOOPBACK;
1222 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1224 /* Setup TX_CLK and TX_CRS one more time. */
1225 e1000_phy_reset_clk_and_crs(adapter);
1227 /* Check Phy Configuration */
1228 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1229 if (phy_reg != 0x4100)
1230 return 9;
1232 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1233 if (phy_reg != 0x0070)
1234 return 10;
1236 e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1237 if (phy_reg != 0x001A)
1238 return 11;
1240 return 0;
1243 static int
1244 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1246 uint32_t ctrl_reg = 0;
1247 uint32_t stat_reg = 0;
1249 adapter->hw.autoneg = FALSE;
1251 if (adapter->hw.phy_type == e1000_phy_m88) {
1252 /* Auto-MDI/MDIX Off */
1253 e1000_write_phy_reg(&adapter->hw,
1254 M88E1000_PHY_SPEC_CTRL, 0x0808);
1255 /* reset to update Auto-MDI/MDIX */
1256 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1257 /* autoneg off */
1258 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1259 } else if (adapter->hw.phy_type == e1000_phy_gg82563) {
1260 e1000_write_phy_reg(&adapter->hw,
1261 GG82563_PHY_KMRN_MODE_CTRL,
1262 0x1CC);
1265 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1267 if (adapter->hw.phy_type == e1000_phy_ife) {
1268 /* force 100, set loopback */
1269 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
1271 /* Now set up the MAC to the same speed/duplex as the PHY. */
1272 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1273 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1274 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1275 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1276 E1000_CTRL_FD); /* Force Duplex to FULL */
1277 } else {
1278 /* force 1000, set loopback */
1279 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1281 /* Now set up the MAC to the same speed/duplex as the PHY. */
1282 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1283 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1284 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1285 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1286 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1287 E1000_CTRL_FD); /* Force Duplex to FULL */
1290 if (adapter->hw.media_type == e1000_media_type_copper &&
1291 adapter->hw.phy_type == e1000_phy_m88) {
1292 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1293 } else {
1294 /* Set the ILOS bit on the fiber Nic is half
1295 * duplex link is detected. */
1296 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1297 if ((stat_reg & E1000_STATUS_FD) == 0)
1298 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1301 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1303 /* Disable the receiver on the PHY so when a cable is plugged in, the
1304 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1306 if (adapter->hw.phy_type == e1000_phy_m88)
1307 e1000_phy_disable_receiver(adapter);
1309 udelay(500);
1311 return 0;
1314 static int
1315 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1317 uint16_t phy_reg = 0;
1318 uint16_t count = 0;
1320 switch (adapter->hw.mac_type) {
1321 case e1000_82543:
1322 if (adapter->hw.media_type == e1000_media_type_copper) {
1323 /* Attempt to setup Loopback mode on Non-integrated PHY.
1324 * Some PHY registers get corrupted at random, so
1325 * attempt this 10 times.
1327 while (e1000_nonintegrated_phy_loopback(adapter) &&
1328 count++ < 10);
1329 if (count < 11)
1330 return 0;
1332 break;
1334 case e1000_82544:
1335 case e1000_82540:
1336 case e1000_82545:
1337 case e1000_82545_rev_3:
1338 case e1000_82546:
1339 case e1000_82546_rev_3:
1340 case e1000_82541:
1341 case e1000_82541_rev_2:
1342 case e1000_82547:
1343 case e1000_82547_rev_2:
1344 case e1000_82571:
1345 case e1000_82572:
1346 case e1000_82573:
1347 case e1000_80003es2lan:
1348 case e1000_ich8lan:
1349 return e1000_integrated_phy_loopback(adapter);
1350 break;
1352 default:
1353 /* Default PHY loopback work is to read the MII
1354 * control register and assert bit 14 (loopback mode).
1356 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1357 phy_reg |= MII_CR_LOOPBACK;
1358 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1359 return 0;
1360 break;
1363 return 8;
1366 static int
1367 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1369 struct e1000_hw *hw = &adapter->hw;
1370 uint32_t rctl;
1372 if (hw->media_type == e1000_media_type_fiber ||
1373 hw->media_type == e1000_media_type_internal_serdes) {
1374 switch (hw->mac_type) {
1375 case e1000_82545:
1376 case e1000_82546:
1377 case e1000_82545_rev_3:
1378 case e1000_82546_rev_3:
1379 return e1000_set_phy_loopback(adapter);
1380 break;
1381 case e1000_82571:
1382 case e1000_82572:
1383 #define E1000_SERDES_LB_ON 0x410
1384 e1000_set_phy_loopback(adapter);
1385 E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1386 msec_delay(10);
1387 return 0;
1388 break;
1389 default:
1390 rctl = E1000_READ_REG(hw, RCTL);
1391 rctl |= E1000_RCTL_LBM_TCVR;
1392 E1000_WRITE_REG(hw, RCTL, rctl);
1393 return 0;
1395 } else if (hw->media_type == e1000_media_type_copper)
1396 return e1000_set_phy_loopback(adapter);
1398 return 7;
1401 static void
1402 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1404 struct e1000_hw *hw = &adapter->hw;
1405 uint32_t rctl;
1406 uint16_t phy_reg;
1408 rctl = E1000_READ_REG(hw, RCTL);
1409 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1410 E1000_WRITE_REG(hw, RCTL, rctl);
1412 switch (hw->mac_type) {
1413 case e1000_82571:
1414 case e1000_82572:
1415 if (hw->media_type == e1000_media_type_fiber ||
1416 hw->media_type == e1000_media_type_internal_serdes) {
1417 #define E1000_SERDES_LB_OFF 0x400
1418 E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1419 msec_delay(10);
1420 break;
1422 /* Fall Through */
1423 case e1000_82545:
1424 case e1000_82546:
1425 case e1000_82545_rev_3:
1426 case e1000_82546_rev_3:
1427 default:
1428 hw->autoneg = TRUE;
1429 if (hw->phy_type == e1000_phy_gg82563) {
1430 e1000_write_phy_reg(hw,
1431 GG82563_PHY_KMRN_MODE_CTRL,
1432 0x180);
1434 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1435 if (phy_reg & MII_CR_LOOPBACK) {
1436 phy_reg &= ~MII_CR_LOOPBACK;
1437 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1438 e1000_phy_reset(hw);
1440 break;
1444 static void
1445 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1447 memset(skb->data, 0xFF, frame_size);
1448 frame_size &= ~1;
1449 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1450 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1451 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1454 static int
1455 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1457 frame_size &= ~1;
1458 if (*(skb->data + 3) == 0xFF) {
1459 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1460 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1461 return 0;
1464 return 13;
1467 static int
1468 e1000_run_loopback_test(struct e1000_adapter *adapter)
1470 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1471 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1472 struct pci_dev *pdev = adapter->pdev;
1473 int i, j, k, l, lc, good_cnt, ret_val=0;
1474 unsigned long time;
1476 E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1478 /* Calculate the loop count based on the largest descriptor ring
1479 * The idea is to wrap the largest ring a number of times using 64
1480 * send/receive pairs during each loop
1483 if (rxdr->count <= txdr->count)
1484 lc = ((txdr->count / 64) * 2) + 1;
1485 else
1486 lc = ((rxdr->count / 64) * 2) + 1;
1488 k = l = 0;
1489 for (j = 0; j <= lc; j++) { /* loop count loop */
1490 for (i = 0; i < 64; i++) { /* send the packets */
1491 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1492 1024);
1493 pci_dma_sync_single_for_device(pdev,
1494 txdr->buffer_info[k].dma,
1495 txdr->buffer_info[k].length,
1496 PCI_DMA_TODEVICE);
1497 if (unlikely(++k == txdr->count)) k = 0;
1499 E1000_WRITE_REG(&adapter->hw, TDT, k);
1500 msec_delay(200);
1501 time = jiffies; /* set the start time for the receive */
1502 good_cnt = 0;
1503 do { /* receive the sent packets */
1504 pci_dma_sync_single_for_cpu(pdev,
1505 rxdr->buffer_info[l].dma,
1506 rxdr->buffer_info[l].length,
1507 PCI_DMA_FROMDEVICE);
1509 ret_val = e1000_check_lbtest_frame(
1510 rxdr->buffer_info[l].skb,
1511 1024);
1512 if (!ret_val)
1513 good_cnt++;
1514 if (unlikely(++l == rxdr->count)) l = 0;
1515 /* time + 20 msecs (200 msecs on 2.4) is more than
1516 * enough time to complete the receives, if it's
1517 * exceeded, break and error off
1519 } while (good_cnt < 64 && jiffies < (time + 20));
1520 if (good_cnt != 64) {
1521 ret_val = 13; /* ret_val is the same as mis-compare */
1522 break;
1524 if (jiffies >= (time + 2)) {
1525 ret_val = 14; /* error code for time out error */
1526 break;
1528 } /* end loop count loop */
1529 return ret_val;
1532 static int
1533 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1535 /* PHY loopback cannot be performed if SoL/IDER
1536 * sessions are active */
1537 if (e1000_check_phy_reset_block(&adapter->hw)) {
1538 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1539 "when SoL/IDER is active.\n");
1540 *data = 0;
1541 goto out;
1544 if ((*data = e1000_setup_desc_rings(adapter)))
1545 goto out;
1546 if ((*data = e1000_setup_loopback_test(adapter)))
1547 goto err_loopback;
1548 *data = e1000_run_loopback_test(adapter);
1549 e1000_loopback_cleanup(adapter);
1551 err_loopback:
1552 e1000_free_desc_rings(adapter);
1553 out:
1554 return *data;
1557 static int
1558 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1560 *data = 0;
1561 if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1562 int i = 0;
1563 adapter->hw.serdes_link_down = TRUE;
1565 /* On some blade server designs, link establishment
1566 * could take as long as 2-3 minutes */
1567 do {
1568 e1000_check_for_link(&adapter->hw);
1569 if (adapter->hw.serdes_link_down == FALSE)
1570 return *data;
1571 msec_delay(20);
1572 } while (i++ < 3750);
1574 *data = 1;
1575 } else {
1576 e1000_check_for_link(&adapter->hw);
1577 if (adapter->hw.autoneg) /* if auto_neg is set wait for it */
1578 msec_delay(4000);
1580 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1581 *data = 1;
1584 return *data;
1587 static int
1588 e1000_diag_test_count(struct net_device *netdev)
1590 return E1000_TEST_LEN;
1593 static void
1594 e1000_diag_test(struct net_device *netdev,
1595 struct ethtool_test *eth_test, uint64_t *data)
1597 struct e1000_adapter *adapter = netdev_priv(netdev);
1598 boolean_t if_running = netif_running(netdev);
1600 set_bit(__E1000_DRIVER_TESTING, &adapter->flags);
1601 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1602 /* Offline tests */
1604 /* save speed, duplex, autoneg settings */
1605 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1606 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1607 uint8_t autoneg = adapter->hw.autoneg;
1609 /* Link test performed before hardware reset so autoneg doesn't
1610 * interfere with test result */
1611 if (e1000_link_test(adapter, &data[4]))
1612 eth_test->flags |= ETH_TEST_FL_FAILED;
1614 if (if_running)
1615 /* indicate we're in test mode */
1616 dev_close(netdev);
1617 else
1618 e1000_reset(adapter);
1620 if (e1000_reg_test(adapter, &data[0]))
1621 eth_test->flags |= ETH_TEST_FL_FAILED;
1623 e1000_reset(adapter);
1624 if (e1000_eeprom_test(adapter, &data[1]))
1625 eth_test->flags |= ETH_TEST_FL_FAILED;
1627 e1000_reset(adapter);
1628 if (e1000_intr_test(adapter, &data[2]))
1629 eth_test->flags |= ETH_TEST_FL_FAILED;
1631 e1000_reset(adapter);
1632 if (e1000_loopback_test(adapter, &data[3]))
1633 eth_test->flags |= ETH_TEST_FL_FAILED;
1635 /* restore speed, duplex, autoneg settings */
1636 adapter->hw.autoneg_advertised = autoneg_advertised;
1637 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1638 adapter->hw.autoneg = autoneg;
1640 e1000_reset(adapter);
1641 clear_bit(__E1000_DRIVER_TESTING, &adapter->flags);
1642 if (if_running)
1643 dev_open(netdev);
1644 } else {
1645 /* Online tests */
1646 if (e1000_link_test(adapter, &data[4]))
1647 eth_test->flags |= ETH_TEST_FL_FAILED;
1649 /* Offline tests aren't run; pass by default */
1650 data[0] = 0;
1651 data[1] = 0;
1652 data[2] = 0;
1653 data[3] = 0;
1655 clear_bit(__E1000_DRIVER_TESTING, &adapter->flags);
1657 msleep_interruptible(4 * 1000);
1660 static void
1661 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1663 struct e1000_adapter *adapter = netdev_priv(netdev);
1664 struct e1000_hw *hw = &adapter->hw;
1666 switch (adapter->hw.device_id) {
1667 case E1000_DEV_ID_82542:
1668 case E1000_DEV_ID_82543GC_FIBER:
1669 case E1000_DEV_ID_82543GC_COPPER:
1670 case E1000_DEV_ID_82544EI_FIBER:
1671 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1672 case E1000_DEV_ID_82545EM_FIBER:
1673 case E1000_DEV_ID_82545EM_COPPER:
1674 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1675 wol->supported = 0;
1676 wol->wolopts = 0;
1677 return;
1679 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1680 /* device id 10B5 port-A supports wol */
1681 if (!adapter->ksp3_port_a) {
1682 wol->supported = 0;
1683 return;
1685 /* KSP3 does not suppport UCAST wake-ups for any interface */
1686 wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1688 if (adapter->wol & E1000_WUFC_EX)
1689 DPRINTK(DRV, ERR, "Interface does not support "
1690 "directed (unicast) frame wake-up packets\n");
1691 wol->wolopts = 0;
1692 goto do_defaults;
1694 case E1000_DEV_ID_82546EB_FIBER:
1695 case E1000_DEV_ID_82546GB_FIBER:
1696 case E1000_DEV_ID_82571EB_FIBER:
1697 /* Wake events only supported on port A for dual fiber */
1698 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1699 wol->supported = 0;
1700 wol->wolopts = 0;
1701 return;
1703 /* Fall Through */
1705 default:
1706 wol->supported = WAKE_UCAST | WAKE_MCAST |
1707 WAKE_BCAST | WAKE_MAGIC;
1708 wol->wolopts = 0;
1710 do_defaults:
1711 if (adapter->wol & E1000_WUFC_EX)
1712 wol->wolopts |= WAKE_UCAST;
1713 if (adapter->wol & E1000_WUFC_MC)
1714 wol->wolopts |= WAKE_MCAST;
1715 if (adapter->wol & E1000_WUFC_BC)
1716 wol->wolopts |= WAKE_BCAST;
1717 if (adapter->wol & E1000_WUFC_MAG)
1718 wol->wolopts |= WAKE_MAGIC;
1719 return;
1723 static int
1724 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1726 struct e1000_adapter *adapter = netdev_priv(netdev);
1727 struct e1000_hw *hw = &adapter->hw;
1729 switch (adapter->hw.device_id) {
1730 case E1000_DEV_ID_82542:
1731 case E1000_DEV_ID_82543GC_FIBER:
1732 case E1000_DEV_ID_82543GC_COPPER:
1733 case E1000_DEV_ID_82544EI_FIBER:
1734 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1735 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1736 case E1000_DEV_ID_82545EM_FIBER:
1737 case E1000_DEV_ID_82545EM_COPPER:
1738 return wol->wolopts ? -EOPNOTSUPP : 0;
1740 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1741 /* device id 10B5 port-A supports wol */
1742 if (!adapter->ksp3_port_a)
1743 return wol->wolopts ? -EOPNOTSUPP : 0;
1745 if (wol->wolopts & WAKE_UCAST) {
1746 DPRINTK(DRV, ERR, "Interface does not support "
1747 "directed (unicast) frame wake-up packets\n");
1748 return -EOPNOTSUPP;
1751 case E1000_DEV_ID_82546EB_FIBER:
1752 case E1000_DEV_ID_82546GB_FIBER:
1753 case E1000_DEV_ID_82571EB_FIBER:
1754 /* Wake events only supported on port A for dual fiber */
1755 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1756 return wol->wolopts ? -EOPNOTSUPP : 0;
1757 /* Fall Through */
1759 default:
1760 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1761 return -EOPNOTSUPP;
1763 adapter->wol = 0;
1765 if (wol->wolopts & WAKE_UCAST)
1766 adapter->wol |= E1000_WUFC_EX;
1767 if (wol->wolopts & WAKE_MCAST)
1768 adapter->wol |= E1000_WUFC_MC;
1769 if (wol->wolopts & WAKE_BCAST)
1770 adapter->wol |= E1000_WUFC_BC;
1771 if (wol->wolopts & WAKE_MAGIC)
1772 adapter->wol |= E1000_WUFC_MAG;
1775 return 0;
1778 /* toggle LED 4 times per second = 2 "blinks" per second */
1779 #define E1000_ID_INTERVAL (HZ/4)
1781 /* bit defines for adapter->led_status */
1782 #define E1000_LED_ON 0
1784 static void
1785 e1000_led_blink_callback(unsigned long data)
1787 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1789 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1790 e1000_led_off(&adapter->hw);
1791 else
1792 e1000_led_on(&adapter->hw);
1794 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1797 static int
1798 e1000_phys_id(struct net_device *netdev, uint32_t data)
1800 struct e1000_adapter *adapter = netdev_priv(netdev);
1802 if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1803 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1805 if (adapter->hw.mac_type < e1000_82571) {
1806 if (!adapter->blink_timer.function) {
1807 init_timer(&adapter->blink_timer);
1808 adapter->blink_timer.function = e1000_led_blink_callback;
1809 adapter->blink_timer.data = (unsigned long) adapter;
1811 e1000_setup_led(&adapter->hw);
1812 mod_timer(&adapter->blink_timer, jiffies);
1813 msleep_interruptible(data * 1000);
1814 del_timer_sync(&adapter->blink_timer);
1815 } else if (adapter->hw.phy_type == e1000_phy_ife) {
1816 if (!adapter->blink_timer.function) {
1817 init_timer(&adapter->blink_timer);
1818 adapter->blink_timer.function = e1000_led_blink_callback;
1819 adapter->blink_timer.data = (unsigned long) adapter;
1821 mod_timer(&adapter->blink_timer, jiffies);
1822 msleep_interruptible(data * 1000);
1823 del_timer_sync(&adapter->blink_timer);
1824 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1825 } else {
1826 e1000_blink_led_start(&adapter->hw);
1827 msleep_interruptible(data * 1000);
1830 e1000_led_off(&adapter->hw);
1831 clear_bit(E1000_LED_ON, &adapter->led_status);
1832 e1000_cleanup_led(&adapter->hw);
1834 return 0;
1837 static int
1838 e1000_nway_reset(struct net_device *netdev)
1840 struct e1000_adapter *adapter = netdev_priv(netdev);
1841 if (netif_running(netdev))
1842 e1000_reinit_locked(adapter);
1843 return 0;
1846 static int
1847 e1000_get_stats_count(struct net_device *netdev)
1849 return E1000_STATS_LEN;
1852 static void
1853 e1000_get_ethtool_stats(struct net_device *netdev,
1854 struct ethtool_stats *stats, uint64_t *data)
1856 struct e1000_adapter *adapter = netdev_priv(netdev);
1857 int i;
1859 e1000_update_stats(adapter);
1860 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1861 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1862 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1863 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1865 /* BUG_ON(i != E1000_STATS_LEN); */
1868 static void
1869 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1871 uint8_t *p = data;
1872 int i;
1874 switch (stringset) {
1875 case ETH_SS_TEST:
1876 memcpy(data, *e1000_gstrings_test,
1877 E1000_TEST_LEN*ETH_GSTRING_LEN);
1878 break;
1879 case ETH_SS_STATS:
1880 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1881 memcpy(p, e1000_gstrings_stats[i].stat_string,
1882 ETH_GSTRING_LEN);
1883 p += ETH_GSTRING_LEN;
1885 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1886 break;
1890 static struct ethtool_ops e1000_ethtool_ops = {
1891 .get_settings = e1000_get_settings,
1892 .set_settings = e1000_set_settings,
1893 .get_drvinfo = e1000_get_drvinfo,
1894 .get_regs_len = e1000_get_regs_len,
1895 .get_regs = e1000_get_regs,
1896 .get_wol = e1000_get_wol,
1897 .set_wol = e1000_set_wol,
1898 .get_msglevel = e1000_get_msglevel,
1899 .set_msglevel = e1000_set_msglevel,
1900 .nway_reset = e1000_nway_reset,
1901 .get_link = ethtool_op_get_link,
1902 .get_eeprom_len = e1000_get_eeprom_len,
1903 .get_eeprom = e1000_get_eeprom,
1904 .set_eeprom = e1000_set_eeprom,
1905 .get_ringparam = e1000_get_ringparam,
1906 .set_ringparam = e1000_set_ringparam,
1907 .get_pauseparam = e1000_get_pauseparam,
1908 .set_pauseparam = e1000_set_pauseparam,
1909 .get_rx_csum = e1000_get_rx_csum,
1910 .set_rx_csum = e1000_set_rx_csum,
1911 .get_tx_csum = e1000_get_tx_csum,
1912 .set_tx_csum = e1000_set_tx_csum,
1913 .get_sg = ethtool_op_get_sg,
1914 .set_sg = ethtool_op_set_sg,
1915 #ifdef NETIF_F_TSO
1916 .get_tso = ethtool_op_get_tso,
1917 .set_tso = e1000_set_tso,
1918 #endif
1919 .self_test_count = e1000_diag_test_count,
1920 .self_test = e1000_diag_test,
1921 .get_strings = e1000_get_strings,
1922 .phys_id = e1000_phys_id,
1923 .get_stats_count = e1000_get_stats_count,
1924 .get_ethtool_stats = e1000_get_ethtool_stats,
1925 .get_perm_addr = ethtool_op_get_perm_addr,
1928 void e1000_set_ethtool_ops(struct net_device *netdev)
1930 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);