4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
52 bh
->b_end_io
= handler
;
53 bh
->b_private
= private;
56 static int sync_buffer(void *word
)
58 struct block_device
*bd
;
59 struct buffer_head
*bh
60 = container_of(word
, struct buffer_head
, b_state
);
65 blk_run_address_space(bd
->bd_inode
->i_mapping
);
70 void __lock_buffer(struct buffer_head
*bh
)
72 wait_on_bit_lock(&bh
->b_state
, BH_Lock
, sync_buffer
,
73 TASK_UNINTERRUPTIBLE
);
75 EXPORT_SYMBOL(__lock_buffer
);
77 void unlock_buffer(struct buffer_head
*bh
)
79 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh
->b_state
, BH_Lock
);
85 * Block until a buffer comes unlocked. This doesn't stop it
86 * from becoming locked again - you have to lock it yourself
87 * if you want to preserve its state.
89 void __wait_on_buffer(struct buffer_head
* bh
)
91 wait_on_bit(&bh
->b_state
, BH_Lock
, sync_buffer
, TASK_UNINTERRUPTIBLE
);
95 __clear_page_buffers(struct page
*page
)
97 ClearPagePrivate(page
);
98 set_page_private(page
, 0);
99 page_cache_release(page
);
103 static int quiet_error(struct buffer_head
*bh
)
105 if (!test_bit(BH_Quiet
, &bh
->b_state
) && printk_ratelimit())
111 static void buffer_io_error(struct buffer_head
*bh
)
113 char b
[BDEVNAME_SIZE
];
114 printk(KERN_ERR
"Buffer I/O error on device %s, logical block %Lu\n",
115 bdevname(bh
->b_bdev
, b
),
116 (unsigned long long)bh
->b_blocknr
);
120 * End-of-IO handler helper function which does not touch the bh after
122 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123 * a race there is benign: unlock_buffer() only use the bh's address for
124 * hashing after unlocking the buffer, so it doesn't actually touch the bh
127 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
130 set_buffer_uptodate(bh
);
132 /* This happens, due to failed READA attempts. */
133 clear_buffer_uptodate(bh
);
139 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
140 * unlock the buffer. This is what ll_rw_block uses too.
142 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
144 __end_buffer_read_notouch(bh
, uptodate
);
148 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
150 char b
[BDEVNAME_SIZE
];
153 set_buffer_uptodate(bh
);
155 if (!buffer_eopnotsupp(bh
) && !quiet_error(bh
)) {
157 printk(KERN_WARNING
"lost page write due to "
159 bdevname(bh
->b_bdev
, b
));
161 set_buffer_write_io_error(bh
);
162 clear_buffer_uptodate(bh
);
169 * Various filesystems appear to want __find_get_block to be non-blocking.
170 * But it's the page lock which protects the buffers. To get around this,
171 * we get exclusion from try_to_free_buffers with the blockdev mapping's
174 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
175 * may be quite high. This code could TryLock the page, and if that
176 * succeeds, there is no need to take private_lock. (But if
177 * private_lock is contended then so is mapping->tree_lock).
179 static struct buffer_head
*
180 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
182 struct inode
*bd_inode
= bdev
->bd_inode
;
183 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
184 struct buffer_head
*ret
= NULL
;
186 struct buffer_head
*bh
;
187 struct buffer_head
*head
;
191 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
192 page
= find_get_page(bd_mapping
, index
);
196 spin_lock(&bd_mapping
->private_lock
);
197 if (!page_has_buffers(page
))
199 head
= page_buffers(page
);
202 if (!buffer_mapped(bh
))
204 else if (bh
->b_blocknr
== block
) {
209 bh
= bh
->b_this_page
;
210 } while (bh
!= head
);
212 /* we might be here because some of the buffers on this page are
213 * not mapped. This is due to various races between
214 * file io on the block device and getblk. It gets dealt with
215 * elsewhere, don't buffer_error if we had some unmapped buffers
218 printk("__find_get_block_slow() failed. "
219 "block=%llu, b_blocknr=%llu\n",
220 (unsigned long long)block
,
221 (unsigned long long)bh
->b_blocknr
);
222 printk("b_state=0x%08lx, b_size=%zu\n",
223 bh
->b_state
, bh
->b_size
);
224 printk("device blocksize: %d\n", 1 << bd_inode
->i_blkbits
);
227 spin_unlock(&bd_mapping
->private_lock
);
228 page_cache_release(page
);
233 /* If invalidate_buffers() will trash dirty buffers, it means some kind
234 of fs corruption is going on. Trashing dirty data always imply losing
235 information that was supposed to be just stored on the physical layer
238 Thus invalidate_buffers in general usage is not allwowed to trash
239 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
240 be preserved. These buffers are simply skipped.
242 We also skip buffers which are still in use. For example this can
243 happen if a userspace program is reading the block device.
245 NOTE: In the case where the user removed a removable-media-disk even if
246 there's still dirty data not synced on disk (due a bug in the device driver
247 or due an error of the user), by not destroying the dirty buffers we could
248 generate corruption also on the next media inserted, thus a parameter is
249 necessary to handle this case in the most safe way possible (trying
250 to not corrupt also the new disk inserted with the data belonging to
251 the old now corrupted disk). Also for the ramdisk the natural thing
252 to do in order to release the ramdisk memory is to destroy dirty buffers.
254 These are two special cases. Normal usage imply the device driver
255 to issue a sync on the device (without waiting I/O completion) and
256 then an invalidate_buffers call that doesn't trash dirty buffers.
258 For handling cache coherency with the blkdev pagecache the 'update' case
259 is been introduced. It is needed to re-read from disk any pinned
260 buffer. NOTE: re-reading from disk is destructive so we can do it only
261 when we assume nobody is changing the buffercache under our I/O and when
262 we think the disk contains more recent information than the buffercache.
263 The update == 1 pass marks the buffers we need to update, the update == 2
264 pass does the actual I/O. */
265 void invalidate_bdev(struct block_device
*bdev
)
267 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
269 if (mapping
->nrpages
== 0)
272 invalidate_bh_lrus();
273 invalidate_mapping_pages(mapping
, 0, -1);
277 * Kick pdflush then try to free up some ZONE_NORMAL memory.
279 static void free_more_memory(void)
284 wakeup_pdflush(1024);
287 for_each_online_node(nid
) {
288 (void)first_zones_zonelist(node_zonelist(nid
, GFP_NOFS
),
289 gfp_zone(GFP_NOFS
), NULL
,
292 try_to_free_pages(node_zonelist(nid
, GFP_NOFS
), 0,
298 * I/O completion handler for block_read_full_page() - pages
299 * which come unlocked at the end of I/O.
301 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
304 struct buffer_head
*first
;
305 struct buffer_head
*tmp
;
307 int page_uptodate
= 1;
309 BUG_ON(!buffer_async_read(bh
));
313 set_buffer_uptodate(bh
);
315 clear_buffer_uptodate(bh
);
316 if (!quiet_error(bh
))
322 * Be _very_ careful from here on. Bad things can happen if
323 * two buffer heads end IO at almost the same time and both
324 * decide that the page is now completely done.
326 first
= page_buffers(page
);
327 local_irq_save(flags
);
328 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
329 clear_buffer_async_read(bh
);
333 if (!buffer_uptodate(tmp
))
335 if (buffer_async_read(tmp
)) {
336 BUG_ON(!buffer_locked(tmp
));
339 tmp
= tmp
->b_this_page
;
341 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
342 local_irq_restore(flags
);
345 * If none of the buffers had errors and they are all
346 * uptodate then we can set the page uptodate.
348 if (page_uptodate
&& !PageError(page
))
349 SetPageUptodate(page
);
354 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
355 local_irq_restore(flags
);
360 * Completion handler for block_write_full_page() - pages which are unlocked
361 * during I/O, and which have PageWriteback cleared upon I/O completion.
363 static void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
365 char b
[BDEVNAME_SIZE
];
367 struct buffer_head
*first
;
368 struct buffer_head
*tmp
;
371 BUG_ON(!buffer_async_write(bh
));
375 set_buffer_uptodate(bh
);
377 if (!quiet_error(bh
)) {
379 printk(KERN_WARNING
"lost page write due to "
381 bdevname(bh
->b_bdev
, b
));
383 set_bit(AS_EIO
, &page
->mapping
->flags
);
384 set_buffer_write_io_error(bh
);
385 clear_buffer_uptodate(bh
);
389 first
= page_buffers(page
);
390 local_irq_save(flags
);
391 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
393 clear_buffer_async_write(bh
);
395 tmp
= bh
->b_this_page
;
397 if (buffer_async_write(tmp
)) {
398 BUG_ON(!buffer_locked(tmp
));
401 tmp
= tmp
->b_this_page
;
403 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
404 local_irq_restore(flags
);
405 end_page_writeback(page
);
409 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
410 local_irq_restore(flags
);
415 * If a page's buffers are under async readin (end_buffer_async_read
416 * completion) then there is a possibility that another thread of
417 * control could lock one of the buffers after it has completed
418 * but while some of the other buffers have not completed. This
419 * locked buffer would confuse end_buffer_async_read() into not unlocking
420 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
421 * that this buffer is not under async I/O.
423 * The page comes unlocked when it has no locked buffer_async buffers
426 * PageLocked prevents anyone starting new async I/O reads any of
429 * PageWriteback is used to prevent simultaneous writeout of the same
432 * PageLocked prevents anyone from starting writeback of a page which is
433 * under read I/O (PageWriteback is only ever set against a locked page).
435 static void mark_buffer_async_read(struct buffer_head
*bh
)
437 bh
->b_end_io
= end_buffer_async_read
;
438 set_buffer_async_read(bh
);
441 void mark_buffer_async_write(struct buffer_head
*bh
)
443 bh
->b_end_io
= end_buffer_async_write
;
444 set_buffer_async_write(bh
);
446 EXPORT_SYMBOL(mark_buffer_async_write
);
450 * fs/buffer.c contains helper functions for buffer-backed address space's
451 * fsync functions. A common requirement for buffer-based filesystems is
452 * that certain data from the backing blockdev needs to be written out for
453 * a successful fsync(). For example, ext2 indirect blocks need to be
454 * written back and waited upon before fsync() returns.
456 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
457 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
458 * management of a list of dependent buffers at ->i_mapping->private_list.
460 * Locking is a little subtle: try_to_free_buffers() will remove buffers
461 * from their controlling inode's queue when they are being freed. But
462 * try_to_free_buffers() will be operating against the *blockdev* mapping
463 * at the time, not against the S_ISREG file which depends on those buffers.
464 * So the locking for private_list is via the private_lock in the address_space
465 * which backs the buffers. Which is different from the address_space
466 * against which the buffers are listed. So for a particular address_space,
467 * mapping->private_lock does *not* protect mapping->private_list! In fact,
468 * mapping->private_list will always be protected by the backing blockdev's
471 * Which introduces a requirement: all buffers on an address_space's
472 * ->private_list must be from the same address_space: the blockdev's.
474 * address_spaces which do not place buffers at ->private_list via these
475 * utility functions are free to use private_lock and private_list for
476 * whatever they want. The only requirement is that list_empty(private_list)
477 * be true at clear_inode() time.
479 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
480 * filesystems should do that. invalidate_inode_buffers() should just go
481 * BUG_ON(!list_empty).
483 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
484 * take an address_space, not an inode. And it should be called
485 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
488 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
489 * list if it is already on a list. Because if the buffer is on a list,
490 * it *must* already be on the right one. If not, the filesystem is being
491 * silly. This will save a ton of locking. But first we have to ensure
492 * that buffers are taken *off* the old inode's list when they are freed
493 * (presumably in truncate). That requires careful auditing of all
494 * filesystems (do it inside bforget()). It could also be done by bringing
499 * The buffer's backing address_space's private_lock must be held
501 static void __remove_assoc_queue(struct buffer_head
*bh
)
503 list_del_init(&bh
->b_assoc_buffers
);
504 WARN_ON(!bh
->b_assoc_map
);
505 if (buffer_write_io_error(bh
))
506 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
507 bh
->b_assoc_map
= NULL
;
510 int inode_has_buffers(struct inode
*inode
)
512 return !list_empty(&inode
->i_data
.private_list
);
516 * osync is designed to support O_SYNC io. It waits synchronously for
517 * all already-submitted IO to complete, but does not queue any new
518 * writes to the disk.
520 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
521 * you dirty the buffers, and then use osync_inode_buffers to wait for
522 * completion. Any other dirty buffers which are not yet queued for
523 * write will not be flushed to disk by the osync.
525 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
527 struct buffer_head
*bh
;
533 list_for_each_prev(p
, list
) {
535 if (buffer_locked(bh
)) {
539 if (!buffer_uptodate(bh
))
550 void do_thaw_all(unsigned long unused
)
552 struct super_block
*sb
;
553 char b
[BDEVNAME_SIZE
];
557 list_for_each_entry(sb
, &super_blocks
, s_list
) {
559 spin_unlock(&sb_lock
);
560 down_read(&sb
->s_umount
);
561 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
562 printk(KERN_WARNING
"Emergency Thaw on %s\n",
563 bdevname(sb
->s_bdev
, b
));
564 up_read(&sb
->s_umount
);
566 if (__put_super_and_need_restart(sb
))
569 spin_unlock(&sb_lock
);
570 printk(KERN_WARNING
"Emergency Thaw complete\n");
574 * emergency_thaw_all -- forcibly thaw every frozen filesystem
576 * Used for emergency unfreeze of all filesystems via SysRq
578 void emergency_thaw_all(void)
580 pdflush_operation(do_thaw_all
, 0);
584 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
585 * @mapping: the mapping which wants those buffers written
587 * Starts I/O against the buffers at mapping->private_list, and waits upon
590 * Basically, this is a convenience function for fsync().
591 * @mapping is a file or directory which needs those buffers to be written for
592 * a successful fsync().
594 int sync_mapping_buffers(struct address_space
*mapping
)
596 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
598 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
601 return fsync_buffers_list(&buffer_mapping
->private_lock
,
602 &mapping
->private_list
);
604 EXPORT_SYMBOL(sync_mapping_buffers
);
607 * Called when we've recently written block `bblock', and it is known that
608 * `bblock' was for a buffer_boundary() buffer. This means that the block at
609 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
610 * dirty, schedule it for IO. So that indirects merge nicely with their data.
612 void write_boundary_block(struct block_device
*bdev
,
613 sector_t bblock
, unsigned blocksize
)
615 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
617 if (buffer_dirty(bh
))
618 ll_rw_block(WRITE
, 1, &bh
);
623 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
625 struct address_space
*mapping
= inode
->i_mapping
;
626 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
628 mark_buffer_dirty(bh
);
629 if (!mapping
->assoc_mapping
) {
630 mapping
->assoc_mapping
= buffer_mapping
;
632 BUG_ON(mapping
->assoc_mapping
!= buffer_mapping
);
634 if (!bh
->b_assoc_map
) {
635 spin_lock(&buffer_mapping
->private_lock
);
636 list_move_tail(&bh
->b_assoc_buffers
,
637 &mapping
->private_list
);
638 bh
->b_assoc_map
= mapping
;
639 spin_unlock(&buffer_mapping
->private_lock
);
642 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
645 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
648 * If warn is true, then emit a warning if the page is not uptodate and has
649 * not been truncated.
651 static void __set_page_dirty(struct page
*page
,
652 struct address_space
*mapping
, int warn
)
654 spin_lock_irq(&mapping
->tree_lock
);
655 if (page
->mapping
) { /* Race with truncate? */
656 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
657 account_page_dirtied(page
, mapping
);
658 radix_tree_tag_set(&mapping
->page_tree
,
659 page_index(page
), PAGECACHE_TAG_DIRTY
);
661 spin_unlock_irq(&mapping
->tree_lock
);
662 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
666 * Add a page to the dirty page list.
668 * It is a sad fact of life that this function is called from several places
669 * deeply under spinlocking. It may not sleep.
671 * If the page has buffers, the uptodate buffers are set dirty, to preserve
672 * dirty-state coherency between the page and the buffers. It the page does
673 * not have buffers then when they are later attached they will all be set
676 * The buffers are dirtied before the page is dirtied. There's a small race
677 * window in which a writepage caller may see the page cleanness but not the
678 * buffer dirtiness. That's fine. If this code were to set the page dirty
679 * before the buffers, a concurrent writepage caller could clear the page dirty
680 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
681 * page on the dirty page list.
683 * We use private_lock to lock against try_to_free_buffers while using the
684 * page's buffer list. Also use this to protect against clean buffers being
685 * added to the page after it was set dirty.
687 * FIXME: may need to call ->reservepage here as well. That's rather up to the
688 * address_space though.
690 int __set_page_dirty_buffers(struct page
*page
)
693 struct address_space
*mapping
= page_mapping(page
);
695 if (unlikely(!mapping
))
696 return !TestSetPageDirty(page
);
698 spin_lock(&mapping
->private_lock
);
699 if (page_has_buffers(page
)) {
700 struct buffer_head
*head
= page_buffers(page
);
701 struct buffer_head
*bh
= head
;
704 set_buffer_dirty(bh
);
705 bh
= bh
->b_this_page
;
706 } while (bh
!= head
);
708 newly_dirty
= !TestSetPageDirty(page
);
709 spin_unlock(&mapping
->private_lock
);
712 __set_page_dirty(page
, mapping
, 1);
715 EXPORT_SYMBOL(__set_page_dirty_buffers
);
718 * Write out and wait upon a list of buffers.
720 * We have conflicting pressures: we want to make sure that all
721 * initially dirty buffers get waited on, but that any subsequently
722 * dirtied buffers don't. After all, we don't want fsync to last
723 * forever if somebody is actively writing to the file.
725 * Do this in two main stages: first we copy dirty buffers to a
726 * temporary inode list, queueing the writes as we go. Then we clean
727 * up, waiting for those writes to complete.
729 * During this second stage, any subsequent updates to the file may end
730 * up refiling the buffer on the original inode's dirty list again, so
731 * there is a chance we will end up with a buffer queued for write but
732 * not yet completed on that list. So, as a final cleanup we go through
733 * the osync code to catch these locked, dirty buffers without requeuing
734 * any newly dirty buffers for write.
736 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
738 struct buffer_head
*bh
;
739 struct list_head tmp
;
740 struct address_space
*mapping
;
743 INIT_LIST_HEAD(&tmp
);
746 while (!list_empty(list
)) {
747 bh
= BH_ENTRY(list
->next
);
748 mapping
= bh
->b_assoc_map
;
749 __remove_assoc_queue(bh
);
750 /* Avoid race with mark_buffer_dirty_inode() which does
751 * a lockless check and we rely on seeing the dirty bit */
753 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
754 list_add(&bh
->b_assoc_buffers
, &tmp
);
755 bh
->b_assoc_map
= mapping
;
756 if (buffer_dirty(bh
)) {
760 * Ensure any pending I/O completes so that
761 * ll_rw_block() actually writes the current
762 * contents - it is a noop if I/O is still in
763 * flight on potentially older contents.
765 ll_rw_block(SWRITE_SYNC
, 1, &bh
);
772 while (!list_empty(&tmp
)) {
773 bh
= BH_ENTRY(tmp
.prev
);
775 mapping
= bh
->b_assoc_map
;
776 __remove_assoc_queue(bh
);
777 /* Avoid race with mark_buffer_dirty_inode() which does
778 * a lockless check and we rely on seeing the dirty bit */
780 if (buffer_dirty(bh
)) {
781 list_add(&bh
->b_assoc_buffers
,
782 &mapping
->private_list
);
783 bh
->b_assoc_map
= mapping
;
787 if (!buffer_uptodate(bh
))
794 err2
= osync_buffers_list(lock
, list
);
802 * Invalidate any and all dirty buffers on a given inode. We are
803 * probably unmounting the fs, but that doesn't mean we have already
804 * done a sync(). Just drop the buffers from the inode list.
806 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
807 * assumes that all the buffers are against the blockdev. Not true
810 void invalidate_inode_buffers(struct inode
*inode
)
812 if (inode_has_buffers(inode
)) {
813 struct address_space
*mapping
= &inode
->i_data
;
814 struct list_head
*list
= &mapping
->private_list
;
815 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
817 spin_lock(&buffer_mapping
->private_lock
);
818 while (!list_empty(list
))
819 __remove_assoc_queue(BH_ENTRY(list
->next
));
820 spin_unlock(&buffer_mapping
->private_lock
);
823 EXPORT_SYMBOL(invalidate_inode_buffers
);
826 * Remove any clean buffers from the inode's buffer list. This is called
827 * when we're trying to free the inode itself. Those buffers can pin it.
829 * Returns true if all buffers were removed.
831 int remove_inode_buffers(struct inode
*inode
)
835 if (inode_has_buffers(inode
)) {
836 struct address_space
*mapping
= &inode
->i_data
;
837 struct list_head
*list
= &mapping
->private_list
;
838 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
840 spin_lock(&buffer_mapping
->private_lock
);
841 while (!list_empty(list
)) {
842 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
843 if (buffer_dirty(bh
)) {
847 __remove_assoc_queue(bh
);
849 spin_unlock(&buffer_mapping
->private_lock
);
855 * Create the appropriate buffers when given a page for data area and
856 * the size of each buffer.. Use the bh->b_this_page linked list to
857 * follow the buffers created. Return NULL if unable to create more
860 * The retry flag is used to differentiate async IO (paging, swapping)
861 * which may not fail from ordinary buffer allocations.
863 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
866 struct buffer_head
*bh
, *head
;
872 while ((offset
-= size
) >= 0) {
873 bh
= alloc_buffer_head(GFP_NOFS
);
878 bh
->b_this_page
= head
;
883 atomic_set(&bh
->b_count
, 0);
884 bh
->b_private
= NULL
;
887 /* Link the buffer to its page */
888 set_bh_page(bh
, page
, offset
);
890 init_buffer(bh
, NULL
, NULL
);
894 * In case anything failed, we just free everything we got.
900 head
= head
->b_this_page
;
901 free_buffer_head(bh
);
906 * Return failure for non-async IO requests. Async IO requests
907 * are not allowed to fail, so we have to wait until buffer heads
908 * become available. But we don't want tasks sleeping with
909 * partially complete buffers, so all were released above.
914 /* We're _really_ low on memory. Now we just
915 * wait for old buffer heads to become free due to
916 * finishing IO. Since this is an async request and
917 * the reserve list is empty, we're sure there are
918 * async buffer heads in use.
923 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
926 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
928 struct buffer_head
*bh
, *tail
;
933 bh
= bh
->b_this_page
;
935 tail
->b_this_page
= head
;
936 attach_page_buffers(page
, head
);
940 * Initialise the state of a blockdev page's buffers.
943 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
944 sector_t block
, int size
)
946 struct buffer_head
*head
= page_buffers(page
);
947 struct buffer_head
*bh
= head
;
948 int uptodate
= PageUptodate(page
);
951 if (!buffer_mapped(bh
)) {
952 init_buffer(bh
, NULL
, NULL
);
954 bh
->b_blocknr
= block
;
956 set_buffer_uptodate(bh
);
957 set_buffer_mapped(bh
);
960 bh
= bh
->b_this_page
;
961 } while (bh
!= head
);
965 * Create the page-cache page that contains the requested block.
967 * This is user purely for blockdev mappings.
970 grow_dev_page(struct block_device
*bdev
, sector_t block
,
971 pgoff_t index
, int size
)
973 struct inode
*inode
= bdev
->bd_inode
;
975 struct buffer_head
*bh
;
977 page
= find_or_create_page(inode
->i_mapping
, index
,
978 (mapping_gfp_mask(inode
->i_mapping
) & ~__GFP_FS
)|__GFP_MOVABLE
);
982 BUG_ON(!PageLocked(page
));
984 if (page_has_buffers(page
)) {
985 bh
= page_buffers(page
);
986 if (bh
->b_size
== size
) {
987 init_page_buffers(page
, bdev
, block
, size
);
990 if (!try_to_free_buffers(page
))
995 * Allocate some buffers for this page
997 bh
= alloc_page_buffers(page
, size
, 0);
1002 * Link the page to the buffers and initialise them. Take the
1003 * lock to be atomic wrt __find_get_block(), which does not
1004 * run under the page lock.
1006 spin_lock(&inode
->i_mapping
->private_lock
);
1007 link_dev_buffers(page
, bh
);
1008 init_page_buffers(page
, bdev
, block
, size
);
1009 spin_unlock(&inode
->i_mapping
->private_lock
);
1015 page_cache_release(page
);
1020 * Create buffers for the specified block device block's page. If
1021 * that page was dirty, the buffers are set dirty also.
1024 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
)
1033 } while ((size
<< sizebits
) < PAGE_SIZE
);
1035 index
= block
>> sizebits
;
1038 * Check for a block which wants to lie outside our maximum possible
1039 * pagecache index. (this comparison is done using sector_t types).
1041 if (unlikely(index
!= block
>> sizebits
)) {
1042 char b
[BDEVNAME_SIZE
];
1044 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1046 __func__
, (unsigned long long)block
,
1050 block
= index
<< sizebits
;
1051 /* Create a page with the proper size buffers.. */
1052 page
= grow_dev_page(bdev
, block
, index
, size
);
1056 page_cache_release(page
);
1060 static struct buffer_head
*
1061 __getblk_slow(struct block_device
*bdev
, sector_t block
, int size
)
1063 /* Size must be multiple of hard sectorsize */
1064 if (unlikely(size
& (bdev_hardsect_size(bdev
)-1) ||
1065 (size
< 512 || size
> PAGE_SIZE
))) {
1066 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1068 printk(KERN_ERR
"hardsect size: %d\n",
1069 bdev_hardsect_size(bdev
));
1076 struct buffer_head
* bh
;
1079 bh
= __find_get_block(bdev
, block
, size
);
1083 ret
= grow_buffers(bdev
, block
, size
);
1092 * The relationship between dirty buffers and dirty pages:
1094 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1095 * the page is tagged dirty in its radix tree.
1097 * At all times, the dirtiness of the buffers represents the dirtiness of
1098 * subsections of the page. If the page has buffers, the page dirty bit is
1099 * merely a hint about the true dirty state.
1101 * When a page is set dirty in its entirety, all its buffers are marked dirty
1102 * (if the page has buffers).
1104 * When a buffer is marked dirty, its page is dirtied, but the page's other
1107 * Also. When blockdev buffers are explicitly read with bread(), they
1108 * individually become uptodate. But their backing page remains not
1109 * uptodate - even if all of its buffers are uptodate. A subsequent
1110 * block_read_full_page() against that page will discover all the uptodate
1111 * buffers, will set the page uptodate and will perform no I/O.
1115 * mark_buffer_dirty - mark a buffer_head as needing writeout
1116 * @bh: the buffer_head to mark dirty
1118 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1119 * backing page dirty, then tag the page as dirty in its address_space's radix
1120 * tree and then attach the address_space's inode to its superblock's dirty
1123 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1124 * mapping->tree_lock and the global inode_lock.
1126 void mark_buffer_dirty(struct buffer_head
*bh
)
1128 WARN_ON_ONCE(!buffer_uptodate(bh
));
1131 * Very *carefully* optimize the it-is-already-dirty case.
1133 * Don't let the final "is it dirty" escape to before we
1134 * perhaps modified the buffer.
1136 if (buffer_dirty(bh
)) {
1138 if (buffer_dirty(bh
))
1142 if (!test_set_buffer_dirty(bh
)) {
1143 struct page
*page
= bh
->b_page
;
1144 if (!TestSetPageDirty(page
))
1145 __set_page_dirty(page
, page_mapping(page
), 0);
1150 * Decrement a buffer_head's reference count. If all buffers against a page
1151 * have zero reference count, are clean and unlocked, and if the page is clean
1152 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1153 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1154 * a page but it ends up not being freed, and buffers may later be reattached).
1156 void __brelse(struct buffer_head
* buf
)
1158 if (atomic_read(&buf
->b_count
)) {
1162 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1166 * bforget() is like brelse(), except it discards any
1167 * potentially dirty data.
1169 void __bforget(struct buffer_head
*bh
)
1171 clear_buffer_dirty(bh
);
1172 if (bh
->b_assoc_map
) {
1173 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1175 spin_lock(&buffer_mapping
->private_lock
);
1176 list_del_init(&bh
->b_assoc_buffers
);
1177 bh
->b_assoc_map
= NULL
;
1178 spin_unlock(&buffer_mapping
->private_lock
);
1183 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1186 if (buffer_uptodate(bh
)) {
1191 bh
->b_end_io
= end_buffer_read_sync
;
1192 submit_bh(READ
, bh
);
1194 if (buffer_uptodate(bh
))
1202 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1203 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1204 * refcount elevated by one when they're in an LRU. A buffer can only appear
1205 * once in a particular CPU's LRU. A single buffer can be present in multiple
1206 * CPU's LRUs at the same time.
1208 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1209 * sb_find_get_block().
1211 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1212 * a local interrupt disable for that.
1215 #define BH_LRU_SIZE 8
1218 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1221 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1224 #define bh_lru_lock() local_irq_disable()
1225 #define bh_lru_unlock() local_irq_enable()
1227 #define bh_lru_lock() preempt_disable()
1228 #define bh_lru_unlock() preempt_enable()
1231 static inline void check_irqs_on(void)
1233 #ifdef irqs_disabled
1234 BUG_ON(irqs_disabled());
1239 * The LRU management algorithm is dopey-but-simple. Sorry.
1241 static void bh_lru_install(struct buffer_head
*bh
)
1243 struct buffer_head
*evictee
= NULL
;
1248 lru
= &__get_cpu_var(bh_lrus
);
1249 if (lru
->bhs
[0] != bh
) {
1250 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1256 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1257 struct buffer_head
*bh2
= lru
->bhs
[in
];
1262 if (out
>= BH_LRU_SIZE
) {
1263 BUG_ON(evictee
!= NULL
);
1270 while (out
< BH_LRU_SIZE
)
1272 memcpy(lru
->bhs
, bhs
, sizeof(bhs
));
1281 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1283 static struct buffer_head
*
1284 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1286 struct buffer_head
*ret
= NULL
;
1292 lru
= &__get_cpu_var(bh_lrus
);
1293 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1294 struct buffer_head
*bh
= lru
->bhs
[i
];
1296 if (bh
&& bh
->b_bdev
== bdev
&&
1297 bh
->b_blocknr
== block
&& bh
->b_size
== size
) {
1300 lru
->bhs
[i
] = lru
->bhs
[i
- 1];
1315 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1316 * it in the LRU and mark it as accessed. If it is not present then return
1319 struct buffer_head
*
1320 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1322 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1325 bh
= __find_get_block_slow(bdev
, block
);
1333 EXPORT_SYMBOL(__find_get_block
);
1336 * __getblk will locate (and, if necessary, create) the buffer_head
1337 * which corresponds to the passed block_device, block and size. The
1338 * returned buffer has its reference count incremented.
1340 * __getblk() cannot fail - it just keeps trying. If you pass it an
1341 * illegal block number, __getblk() will happily return a buffer_head
1342 * which represents the non-existent block. Very weird.
1344 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1345 * attempt is failing. FIXME, perhaps?
1347 struct buffer_head
*
1348 __getblk(struct block_device
*bdev
, sector_t block
, unsigned size
)
1350 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1354 bh
= __getblk_slow(bdev
, block
, size
);
1357 EXPORT_SYMBOL(__getblk
);
1360 * Do async read-ahead on a buffer..
1362 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1364 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1366 ll_rw_block(READA
, 1, &bh
);
1370 EXPORT_SYMBOL(__breadahead
);
1373 * __bread() - reads a specified block and returns the bh
1374 * @bdev: the block_device to read from
1375 * @block: number of block
1376 * @size: size (in bytes) to read
1378 * Reads a specified block, and returns buffer head that contains it.
1379 * It returns NULL if the block was unreadable.
1381 struct buffer_head
*
1382 __bread(struct block_device
*bdev
, sector_t block
, unsigned size
)
1384 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1386 if (likely(bh
) && !buffer_uptodate(bh
))
1387 bh
= __bread_slow(bh
);
1390 EXPORT_SYMBOL(__bread
);
1393 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1394 * This doesn't race because it runs in each cpu either in irq
1395 * or with preempt disabled.
1397 static void invalidate_bh_lru(void *arg
)
1399 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1402 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1406 put_cpu_var(bh_lrus
);
1409 void invalidate_bh_lrus(void)
1411 on_each_cpu(invalidate_bh_lru
, NULL
, 1);
1413 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1415 void set_bh_page(struct buffer_head
*bh
,
1416 struct page
*page
, unsigned long offset
)
1419 BUG_ON(offset
>= PAGE_SIZE
);
1420 if (PageHighMem(page
))
1422 * This catches illegal uses and preserves the offset:
1424 bh
->b_data
= (char *)(0 + offset
);
1426 bh
->b_data
= page_address(page
) + offset
;
1428 EXPORT_SYMBOL(set_bh_page
);
1431 * Called when truncating a buffer on a page completely.
1433 static void discard_buffer(struct buffer_head
* bh
)
1436 clear_buffer_dirty(bh
);
1438 clear_buffer_mapped(bh
);
1439 clear_buffer_req(bh
);
1440 clear_buffer_new(bh
);
1441 clear_buffer_delay(bh
);
1442 clear_buffer_unwritten(bh
);
1447 * block_invalidatepage - invalidate part of all of a buffer-backed page
1449 * @page: the page which is affected
1450 * @offset: the index of the truncation point
1452 * block_invalidatepage() is called when all or part of the page has become
1453 * invalidatedby a truncate operation.
1455 * block_invalidatepage() does not have to release all buffers, but it must
1456 * ensure that no dirty buffer is left outside @offset and that no I/O
1457 * is underway against any of the blocks which are outside the truncation
1458 * point. Because the caller is about to free (and possibly reuse) those
1461 void block_invalidatepage(struct page
*page
, unsigned long offset
)
1463 struct buffer_head
*head
, *bh
, *next
;
1464 unsigned int curr_off
= 0;
1466 BUG_ON(!PageLocked(page
));
1467 if (!page_has_buffers(page
))
1470 head
= page_buffers(page
);
1473 unsigned int next_off
= curr_off
+ bh
->b_size
;
1474 next
= bh
->b_this_page
;
1477 * is this block fully invalidated?
1479 if (offset
<= curr_off
)
1481 curr_off
= next_off
;
1483 } while (bh
!= head
);
1486 * We release buffers only if the entire page is being invalidated.
1487 * The get_block cached value has been unconditionally invalidated,
1488 * so real IO is not possible anymore.
1491 try_to_release_page(page
, 0);
1495 EXPORT_SYMBOL(block_invalidatepage
);
1498 * We attach and possibly dirty the buffers atomically wrt
1499 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1500 * is already excluded via the page lock.
1502 void create_empty_buffers(struct page
*page
,
1503 unsigned long blocksize
, unsigned long b_state
)
1505 struct buffer_head
*bh
, *head
, *tail
;
1507 head
= alloc_page_buffers(page
, blocksize
, 1);
1510 bh
->b_state
|= b_state
;
1512 bh
= bh
->b_this_page
;
1514 tail
->b_this_page
= head
;
1516 spin_lock(&page
->mapping
->private_lock
);
1517 if (PageUptodate(page
) || PageDirty(page
)) {
1520 if (PageDirty(page
))
1521 set_buffer_dirty(bh
);
1522 if (PageUptodate(page
))
1523 set_buffer_uptodate(bh
);
1524 bh
= bh
->b_this_page
;
1525 } while (bh
!= head
);
1527 attach_page_buffers(page
, head
);
1528 spin_unlock(&page
->mapping
->private_lock
);
1530 EXPORT_SYMBOL(create_empty_buffers
);
1533 * We are taking a block for data and we don't want any output from any
1534 * buffer-cache aliases starting from return from that function and
1535 * until the moment when something will explicitly mark the buffer
1536 * dirty (hopefully that will not happen until we will free that block ;-)
1537 * We don't even need to mark it not-uptodate - nobody can expect
1538 * anything from a newly allocated buffer anyway. We used to used
1539 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1540 * don't want to mark the alias unmapped, for example - it would confuse
1541 * anyone who might pick it with bread() afterwards...
1543 * Also.. Note that bforget() doesn't lock the buffer. So there can
1544 * be writeout I/O going on against recently-freed buffers. We don't
1545 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1546 * only if we really need to. That happens here.
1548 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1550 struct buffer_head
*old_bh
;
1554 old_bh
= __find_get_block_slow(bdev
, block
);
1556 clear_buffer_dirty(old_bh
);
1557 wait_on_buffer(old_bh
);
1558 clear_buffer_req(old_bh
);
1562 EXPORT_SYMBOL(unmap_underlying_metadata
);
1565 * NOTE! All mapped/uptodate combinations are valid:
1567 * Mapped Uptodate Meaning
1569 * No No "unknown" - must do get_block()
1570 * No Yes "hole" - zero-filled
1571 * Yes No "allocated" - allocated on disk, not read in
1572 * Yes Yes "valid" - allocated and up-to-date in memory.
1574 * "Dirty" is valid only with the last case (mapped+uptodate).
1578 * While block_write_full_page is writing back the dirty buffers under
1579 * the page lock, whoever dirtied the buffers may decide to clean them
1580 * again at any time. We handle that by only looking at the buffer
1581 * state inside lock_buffer().
1583 * If block_write_full_page() is called for regular writeback
1584 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1585 * locked buffer. This only can happen if someone has written the buffer
1586 * directly, with submit_bh(). At the address_space level PageWriteback
1587 * prevents this contention from occurring.
1589 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1590 get_block_t
*get_block
, struct writeback_control
*wbc
)
1594 sector_t last_block
;
1595 struct buffer_head
*bh
, *head
;
1596 const unsigned blocksize
= 1 << inode
->i_blkbits
;
1597 int nr_underway
= 0;
1598 int write_op
= (wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: WRITE
);
1600 BUG_ON(!PageLocked(page
));
1602 last_block
= (i_size_read(inode
) - 1) >> inode
->i_blkbits
;
1604 if (!page_has_buffers(page
)) {
1605 create_empty_buffers(page
, blocksize
,
1606 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1610 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1611 * here, and the (potentially unmapped) buffers may become dirty at
1612 * any time. If a buffer becomes dirty here after we've inspected it
1613 * then we just miss that fact, and the page stays dirty.
1615 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1616 * handle that here by just cleaning them.
1619 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1620 head
= page_buffers(page
);
1624 * Get all the dirty buffers mapped to disk addresses and
1625 * handle any aliases from the underlying blockdev's mapping.
1628 if (block
> last_block
) {
1630 * mapped buffers outside i_size will occur, because
1631 * this page can be outside i_size when there is a
1632 * truncate in progress.
1635 * The buffer was zeroed by block_write_full_page()
1637 clear_buffer_dirty(bh
);
1638 set_buffer_uptodate(bh
);
1639 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1641 WARN_ON(bh
->b_size
!= blocksize
);
1642 err
= get_block(inode
, block
, bh
, 1);
1645 clear_buffer_delay(bh
);
1646 if (buffer_new(bh
)) {
1647 /* blockdev mappings never come here */
1648 clear_buffer_new(bh
);
1649 unmap_underlying_metadata(bh
->b_bdev
,
1653 bh
= bh
->b_this_page
;
1655 } while (bh
!= head
);
1658 if (!buffer_mapped(bh
))
1661 * If it's a fully non-blocking write attempt and we cannot
1662 * lock the buffer then redirty the page. Note that this can
1663 * potentially cause a busy-wait loop from pdflush and kswapd
1664 * activity, but those code paths have their own higher-level
1667 if (wbc
->sync_mode
!= WB_SYNC_NONE
|| !wbc
->nonblocking
) {
1669 } else if (!trylock_buffer(bh
)) {
1670 redirty_page_for_writepage(wbc
, page
);
1673 if (test_clear_buffer_dirty(bh
)) {
1674 mark_buffer_async_write(bh
);
1678 } while ((bh
= bh
->b_this_page
) != head
);
1681 * The page and its buffers are protected by PageWriteback(), so we can
1682 * drop the bh refcounts early.
1684 BUG_ON(PageWriteback(page
));
1685 set_page_writeback(page
);
1688 struct buffer_head
*next
= bh
->b_this_page
;
1689 if (buffer_async_write(bh
)) {
1690 submit_bh(write_op
, bh
);
1694 } while (bh
!= head
);
1699 if (nr_underway
== 0) {
1701 * The page was marked dirty, but the buffers were
1702 * clean. Someone wrote them back by hand with
1703 * ll_rw_block/submit_bh. A rare case.
1705 end_page_writeback(page
);
1708 * The page and buffer_heads can be released at any time from
1716 * ENOSPC, or some other error. We may already have added some
1717 * blocks to the file, so we need to write these out to avoid
1718 * exposing stale data.
1719 * The page is currently locked and not marked for writeback
1722 /* Recovery: lock and submit the mapped buffers */
1724 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1725 !buffer_delay(bh
)) {
1727 mark_buffer_async_write(bh
);
1730 * The buffer may have been set dirty during
1731 * attachment to a dirty page.
1733 clear_buffer_dirty(bh
);
1735 } while ((bh
= bh
->b_this_page
) != head
);
1737 BUG_ON(PageWriteback(page
));
1738 mapping_set_error(page
->mapping
, err
);
1739 set_page_writeback(page
);
1741 struct buffer_head
*next
= bh
->b_this_page
;
1742 if (buffer_async_write(bh
)) {
1743 clear_buffer_dirty(bh
);
1744 submit_bh(write_op
, bh
);
1748 } while (bh
!= head
);
1754 * If a page has any new buffers, zero them out here, and mark them uptodate
1755 * and dirty so they'll be written out (in order to prevent uninitialised
1756 * block data from leaking). And clear the new bit.
1758 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1760 unsigned int block_start
, block_end
;
1761 struct buffer_head
*head
, *bh
;
1763 BUG_ON(!PageLocked(page
));
1764 if (!page_has_buffers(page
))
1767 bh
= head
= page_buffers(page
);
1770 block_end
= block_start
+ bh
->b_size
;
1772 if (buffer_new(bh
)) {
1773 if (block_end
> from
&& block_start
< to
) {
1774 if (!PageUptodate(page
)) {
1775 unsigned start
, size
;
1777 start
= max(from
, block_start
);
1778 size
= min(to
, block_end
) - start
;
1780 zero_user(page
, start
, size
);
1781 set_buffer_uptodate(bh
);
1784 clear_buffer_new(bh
);
1785 mark_buffer_dirty(bh
);
1789 block_start
= block_end
;
1790 bh
= bh
->b_this_page
;
1791 } while (bh
!= head
);
1793 EXPORT_SYMBOL(page_zero_new_buffers
);
1795 static int __block_prepare_write(struct inode
*inode
, struct page
*page
,
1796 unsigned from
, unsigned to
, get_block_t
*get_block
)
1798 unsigned block_start
, block_end
;
1801 unsigned blocksize
, bbits
;
1802 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1804 BUG_ON(!PageLocked(page
));
1805 BUG_ON(from
> PAGE_CACHE_SIZE
);
1806 BUG_ON(to
> PAGE_CACHE_SIZE
);
1809 blocksize
= 1 << inode
->i_blkbits
;
1810 if (!page_has_buffers(page
))
1811 create_empty_buffers(page
, blocksize
, 0);
1812 head
= page_buffers(page
);
1814 bbits
= inode
->i_blkbits
;
1815 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1817 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1818 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1819 block_end
= block_start
+ blocksize
;
1820 if (block_end
<= from
|| block_start
>= to
) {
1821 if (PageUptodate(page
)) {
1822 if (!buffer_uptodate(bh
))
1823 set_buffer_uptodate(bh
);
1828 clear_buffer_new(bh
);
1829 if (!buffer_mapped(bh
)) {
1830 WARN_ON(bh
->b_size
!= blocksize
);
1831 err
= get_block(inode
, block
, bh
, 1);
1834 if (buffer_new(bh
)) {
1835 unmap_underlying_metadata(bh
->b_bdev
,
1837 if (PageUptodate(page
)) {
1838 clear_buffer_new(bh
);
1839 set_buffer_uptodate(bh
);
1840 mark_buffer_dirty(bh
);
1843 if (block_end
> to
|| block_start
< from
)
1844 zero_user_segments(page
,
1850 if (PageUptodate(page
)) {
1851 if (!buffer_uptodate(bh
))
1852 set_buffer_uptodate(bh
);
1855 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1856 !buffer_unwritten(bh
) &&
1857 (block_start
< from
|| block_end
> to
)) {
1858 ll_rw_block(READ
, 1, &bh
);
1863 * If we issued read requests - let them complete.
1865 while(wait_bh
> wait
) {
1866 wait_on_buffer(*--wait_bh
);
1867 if (!buffer_uptodate(*wait_bh
))
1871 page_zero_new_buffers(page
, from
, to
);
1875 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
1876 unsigned from
, unsigned to
)
1878 unsigned block_start
, block_end
;
1881 struct buffer_head
*bh
, *head
;
1883 blocksize
= 1 << inode
->i_blkbits
;
1885 for(bh
= head
= page_buffers(page
), block_start
= 0;
1886 bh
!= head
|| !block_start
;
1887 block_start
=block_end
, bh
= bh
->b_this_page
) {
1888 block_end
= block_start
+ blocksize
;
1889 if (block_end
<= from
|| block_start
>= to
) {
1890 if (!buffer_uptodate(bh
))
1893 set_buffer_uptodate(bh
);
1894 mark_buffer_dirty(bh
);
1896 clear_buffer_new(bh
);
1900 * If this is a partial write which happened to make all buffers
1901 * uptodate then we can optimize away a bogus readpage() for
1902 * the next read(). Here we 'discover' whether the page went
1903 * uptodate as a result of this (potentially partial) write.
1906 SetPageUptodate(page
);
1911 * block_write_begin takes care of the basic task of block allocation and
1912 * bringing partial write blocks uptodate first.
1914 * If *pagep is not NULL, then block_write_begin uses the locked page
1915 * at *pagep rather than allocating its own. In this case, the page will
1916 * not be unlocked or deallocated on failure.
1918 int block_write_begin(struct file
*file
, struct address_space
*mapping
,
1919 loff_t pos
, unsigned len
, unsigned flags
,
1920 struct page
**pagep
, void **fsdata
,
1921 get_block_t
*get_block
)
1923 struct inode
*inode
= mapping
->host
;
1927 unsigned start
, end
;
1930 index
= pos
>> PAGE_CACHE_SHIFT
;
1931 start
= pos
& (PAGE_CACHE_SIZE
- 1);
1937 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1944 BUG_ON(!PageLocked(page
));
1946 status
= __block_prepare_write(inode
, page
, start
, end
, get_block
);
1947 if (unlikely(status
)) {
1948 ClearPageUptodate(page
);
1952 page_cache_release(page
);
1956 * prepare_write() may have instantiated a few blocks
1957 * outside i_size. Trim these off again. Don't need
1958 * i_size_read because we hold i_mutex.
1960 if (pos
+ len
> inode
->i_size
)
1961 vmtruncate(inode
, inode
->i_size
);
1968 EXPORT_SYMBOL(block_write_begin
);
1970 int block_write_end(struct file
*file
, struct address_space
*mapping
,
1971 loff_t pos
, unsigned len
, unsigned copied
,
1972 struct page
*page
, void *fsdata
)
1974 struct inode
*inode
= mapping
->host
;
1977 start
= pos
& (PAGE_CACHE_SIZE
- 1);
1979 if (unlikely(copied
< len
)) {
1981 * The buffers that were written will now be uptodate, so we
1982 * don't have to worry about a readpage reading them and
1983 * overwriting a partial write. However if we have encountered
1984 * a short write and only partially written into a buffer, it
1985 * will not be marked uptodate, so a readpage might come in and
1986 * destroy our partial write.
1988 * Do the simplest thing, and just treat any short write to a
1989 * non uptodate page as a zero-length write, and force the
1990 * caller to redo the whole thing.
1992 if (!PageUptodate(page
))
1995 page_zero_new_buffers(page
, start
+copied
, start
+len
);
1997 flush_dcache_page(page
);
1999 /* This could be a short (even 0-length) commit */
2000 __block_commit_write(inode
, page
, start
, start
+copied
);
2004 EXPORT_SYMBOL(block_write_end
);
2006 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2007 loff_t pos
, unsigned len
, unsigned copied
,
2008 struct page
*page
, void *fsdata
)
2010 struct inode
*inode
= mapping
->host
;
2011 int i_size_changed
= 0;
2013 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2016 * No need to use i_size_read() here, the i_size
2017 * cannot change under us because we hold i_mutex.
2019 * But it's important to update i_size while still holding page lock:
2020 * page writeout could otherwise come in and zero beyond i_size.
2022 if (pos
+copied
> inode
->i_size
) {
2023 i_size_write(inode
, pos
+copied
);
2028 page_cache_release(page
);
2031 * Don't mark the inode dirty under page lock. First, it unnecessarily
2032 * makes the holding time of page lock longer. Second, it forces lock
2033 * ordering of page lock and transaction start for journaling
2037 mark_inode_dirty(inode
);
2041 EXPORT_SYMBOL(generic_write_end
);
2044 * block_is_partially_uptodate checks whether buffers within a page are
2047 * Returns true if all buffers which correspond to a file portion
2048 * we want to read are uptodate.
2050 int block_is_partially_uptodate(struct page
*page
, read_descriptor_t
*desc
,
2053 struct inode
*inode
= page
->mapping
->host
;
2054 unsigned block_start
, block_end
, blocksize
;
2056 struct buffer_head
*bh
, *head
;
2059 if (!page_has_buffers(page
))
2062 blocksize
= 1 << inode
->i_blkbits
;
2063 to
= min_t(unsigned, PAGE_CACHE_SIZE
- from
, desc
->count
);
2065 if (from
< blocksize
&& to
> PAGE_CACHE_SIZE
- blocksize
)
2068 head
= page_buffers(page
);
2072 block_end
= block_start
+ blocksize
;
2073 if (block_end
> from
&& block_start
< to
) {
2074 if (!buffer_uptodate(bh
)) {
2078 if (block_end
>= to
)
2081 block_start
= block_end
;
2082 bh
= bh
->b_this_page
;
2083 } while (bh
!= head
);
2087 EXPORT_SYMBOL(block_is_partially_uptodate
);
2090 * Generic "read page" function for block devices that have the normal
2091 * get_block functionality. This is most of the block device filesystems.
2092 * Reads the page asynchronously --- the unlock_buffer() and
2093 * set/clear_buffer_uptodate() functions propagate buffer state into the
2094 * page struct once IO has completed.
2096 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2098 struct inode
*inode
= page
->mapping
->host
;
2099 sector_t iblock
, lblock
;
2100 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2101 unsigned int blocksize
;
2103 int fully_mapped
= 1;
2105 BUG_ON(!PageLocked(page
));
2106 blocksize
= 1 << inode
->i_blkbits
;
2107 if (!page_has_buffers(page
))
2108 create_empty_buffers(page
, blocksize
, 0);
2109 head
= page_buffers(page
);
2111 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2112 lblock
= (i_size_read(inode
)+blocksize
-1) >> inode
->i_blkbits
;
2118 if (buffer_uptodate(bh
))
2121 if (!buffer_mapped(bh
)) {
2125 if (iblock
< lblock
) {
2126 WARN_ON(bh
->b_size
!= blocksize
);
2127 err
= get_block(inode
, iblock
, bh
, 0);
2131 if (!buffer_mapped(bh
)) {
2132 zero_user(page
, i
* blocksize
, blocksize
);
2134 set_buffer_uptodate(bh
);
2138 * get_block() might have updated the buffer
2141 if (buffer_uptodate(bh
))
2145 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2148 SetPageMappedToDisk(page
);
2152 * All buffers are uptodate - we can set the page uptodate
2153 * as well. But not if get_block() returned an error.
2155 if (!PageError(page
))
2156 SetPageUptodate(page
);
2161 /* Stage two: lock the buffers */
2162 for (i
= 0; i
< nr
; i
++) {
2165 mark_buffer_async_read(bh
);
2169 * Stage 3: start the IO. Check for uptodateness
2170 * inside the buffer lock in case another process reading
2171 * the underlying blockdev brought it uptodate (the sct fix).
2173 for (i
= 0; i
< nr
; i
++) {
2175 if (buffer_uptodate(bh
))
2176 end_buffer_async_read(bh
, 1);
2178 submit_bh(READ
, bh
);
2183 /* utility function for filesystems that need to do work on expanding
2184 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2185 * deal with the hole.
2187 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2189 struct address_space
*mapping
= inode
->i_mapping
;
2192 unsigned long limit
;
2196 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2197 if (limit
!= RLIM_INFINITY
&& size
> (loff_t
)limit
) {
2198 send_sig(SIGXFSZ
, current
, 0);
2201 if (size
> inode
->i_sb
->s_maxbytes
)
2204 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2205 AOP_FLAG_UNINTERRUPTIBLE
|AOP_FLAG_CONT_EXPAND
,
2210 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2217 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2218 loff_t pos
, loff_t
*bytes
)
2220 struct inode
*inode
= mapping
->host
;
2221 unsigned blocksize
= 1 << inode
->i_blkbits
;
2224 pgoff_t index
, curidx
;
2226 unsigned zerofrom
, offset
, len
;
2229 index
= pos
>> PAGE_CACHE_SHIFT
;
2230 offset
= pos
& ~PAGE_CACHE_MASK
;
2232 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_CACHE_SHIFT
)) {
2233 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2234 if (zerofrom
& (blocksize
-1)) {
2235 *bytes
|= (blocksize
-1);
2238 len
= PAGE_CACHE_SIZE
- zerofrom
;
2240 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2241 AOP_FLAG_UNINTERRUPTIBLE
,
2245 zero_user(page
, zerofrom
, len
);
2246 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2253 balance_dirty_pages_ratelimited(mapping
);
2256 /* page covers the boundary, find the boundary offset */
2257 if (index
== curidx
) {
2258 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2259 /* if we will expand the thing last block will be filled */
2260 if (offset
<= zerofrom
) {
2263 if (zerofrom
& (blocksize
-1)) {
2264 *bytes
|= (blocksize
-1);
2267 len
= offset
- zerofrom
;
2269 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2270 AOP_FLAG_UNINTERRUPTIBLE
,
2274 zero_user(page
, zerofrom
, len
);
2275 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2287 * For moronic filesystems that do not allow holes in file.
2288 * We may have to extend the file.
2290 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2291 loff_t pos
, unsigned len
, unsigned flags
,
2292 struct page
**pagep
, void **fsdata
,
2293 get_block_t
*get_block
, loff_t
*bytes
)
2295 struct inode
*inode
= mapping
->host
;
2296 unsigned blocksize
= 1 << inode
->i_blkbits
;
2300 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2304 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2305 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2306 *bytes
|= (blocksize
-1);
2311 err
= block_write_begin(file
, mapping
, pos
, len
,
2312 flags
, pagep
, fsdata
, get_block
);
2317 int block_prepare_write(struct page
*page
, unsigned from
, unsigned to
,
2318 get_block_t
*get_block
)
2320 struct inode
*inode
= page
->mapping
->host
;
2321 int err
= __block_prepare_write(inode
, page
, from
, to
, get_block
);
2323 ClearPageUptodate(page
);
2327 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2329 struct inode
*inode
= page
->mapping
->host
;
2330 __block_commit_write(inode
,page
,from
,to
);
2335 * block_page_mkwrite() is not allowed to change the file size as it gets
2336 * called from a page fault handler when a page is first dirtied. Hence we must
2337 * be careful to check for EOF conditions here. We set the page up correctly
2338 * for a written page which means we get ENOSPC checking when writing into
2339 * holes and correct delalloc and unwritten extent mapping on filesystems that
2340 * support these features.
2342 * We are not allowed to take the i_mutex here so we have to play games to
2343 * protect against truncate races as the page could now be beyond EOF. Because
2344 * vmtruncate() writes the inode size before removing pages, once we have the
2345 * page lock we can determine safely if the page is beyond EOF. If it is not
2346 * beyond EOF, then the page is guaranteed safe against truncation until we
2350 block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2351 get_block_t get_block
)
2353 struct page
*page
= vmf
->page
;
2354 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
2357 int ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
2360 size
= i_size_read(inode
);
2361 if ((page
->mapping
!= inode
->i_mapping
) ||
2362 (page_offset(page
) > size
)) {
2363 /* page got truncated out from underneath us */
2367 /* page is wholly or partially inside EOF */
2368 if (((page
->index
+ 1) << PAGE_CACHE_SHIFT
) > size
)
2369 end
= size
& ~PAGE_CACHE_MASK
;
2371 end
= PAGE_CACHE_SIZE
;
2373 ret
= block_prepare_write(page
, 0, end
, get_block
);
2375 ret
= block_commit_write(page
, 0, end
);
2377 if (unlikely(ret
)) {
2380 else /* -ENOSPC, -EIO, etc */
2381 ret
= VM_FAULT_SIGBUS
;
2390 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2391 * immediately, while under the page lock. So it needs a special end_io
2392 * handler which does not touch the bh after unlocking it.
2394 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2396 __end_buffer_read_notouch(bh
, uptodate
);
2400 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2401 * the page (converting it to circular linked list and taking care of page
2404 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2406 struct buffer_head
*bh
;
2408 BUG_ON(!PageLocked(page
));
2410 spin_lock(&page
->mapping
->private_lock
);
2413 if (PageDirty(page
))
2414 set_buffer_dirty(bh
);
2415 if (!bh
->b_this_page
)
2416 bh
->b_this_page
= head
;
2417 bh
= bh
->b_this_page
;
2418 } while (bh
!= head
);
2419 attach_page_buffers(page
, head
);
2420 spin_unlock(&page
->mapping
->private_lock
);
2424 * On entry, the page is fully not uptodate.
2425 * On exit the page is fully uptodate in the areas outside (from,to)
2427 int nobh_write_begin(struct file
*file
, struct address_space
*mapping
,
2428 loff_t pos
, unsigned len
, unsigned flags
,
2429 struct page
**pagep
, void **fsdata
,
2430 get_block_t
*get_block
)
2432 struct inode
*inode
= mapping
->host
;
2433 const unsigned blkbits
= inode
->i_blkbits
;
2434 const unsigned blocksize
= 1 << blkbits
;
2435 struct buffer_head
*head
, *bh
;
2439 unsigned block_in_page
;
2440 unsigned block_start
, block_end
;
2441 sector_t block_in_file
;
2444 int is_mapped_to_disk
= 1;
2446 index
= pos
>> PAGE_CACHE_SHIFT
;
2447 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2450 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2456 if (page_has_buffers(page
)) {
2458 page_cache_release(page
);
2460 return block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
,
2464 if (PageMappedToDisk(page
))
2468 * Allocate buffers so that we can keep track of state, and potentially
2469 * attach them to the page if an error occurs. In the common case of
2470 * no error, they will just be freed again without ever being attached
2471 * to the page (which is all OK, because we're under the page lock).
2473 * Be careful: the buffer linked list is a NULL terminated one, rather
2474 * than the circular one we're used to.
2476 head
= alloc_page_buffers(page
, blocksize
, 0);
2482 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2485 * We loop across all blocks in the page, whether or not they are
2486 * part of the affected region. This is so we can discover if the
2487 * page is fully mapped-to-disk.
2489 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2490 block_start
< PAGE_CACHE_SIZE
;
2491 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2494 block_end
= block_start
+ blocksize
;
2497 if (block_start
>= to
)
2499 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2503 if (!buffer_mapped(bh
))
2504 is_mapped_to_disk
= 0;
2506 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
2507 if (PageUptodate(page
)) {
2508 set_buffer_uptodate(bh
);
2511 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2512 zero_user_segments(page
, block_start
, from
,
2516 if (buffer_uptodate(bh
))
2517 continue; /* reiserfs does this */
2518 if (block_start
< from
|| block_end
> to
) {
2520 bh
->b_end_io
= end_buffer_read_nobh
;
2521 submit_bh(READ
, bh
);
2528 * The page is locked, so these buffers are protected from
2529 * any VM or truncate activity. Hence we don't need to care
2530 * for the buffer_head refcounts.
2532 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2534 if (!buffer_uptodate(bh
))
2541 if (is_mapped_to_disk
)
2542 SetPageMappedToDisk(page
);
2544 *fsdata
= head
; /* to be released by nobh_write_end */
2551 * Error recovery is a bit difficult. We need to zero out blocks that
2552 * were newly allocated, and dirty them to ensure they get written out.
2553 * Buffers need to be attached to the page at this point, otherwise
2554 * the handling of potential IO errors during writeout would be hard
2555 * (could try doing synchronous writeout, but what if that fails too?)
2557 attach_nobh_buffers(page
, head
);
2558 page_zero_new_buffers(page
, from
, to
);
2562 page_cache_release(page
);
2565 if (pos
+ len
> inode
->i_size
)
2566 vmtruncate(inode
, inode
->i_size
);
2570 EXPORT_SYMBOL(nobh_write_begin
);
2572 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2573 loff_t pos
, unsigned len
, unsigned copied
,
2574 struct page
*page
, void *fsdata
)
2576 struct inode
*inode
= page
->mapping
->host
;
2577 struct buffer_head
*head
= fsdata
;
2578 struct buffer_head
*bh
;
2579 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2581 if (unlikely(copied
< len
) && head
)
2582 attach_nobh_buffers(page
, head
);
2583 if (page_has_buffers(page
))
2584 return generic_write_end(file
, mapping
, pos
, len
,
2585 copied
, page
, fsdata
);
2587 SetPageUptodate(page
);
2588 set_page_dirty(page
);
2589 if (pos
+copied
> inode
->i_size
) {
2590 i_size_write(inode
, pos
+copied
);
2591 mark_inode_dirty(inode
);
2595 page_cache_release(page
);
2599 head
= head
->b_this_page
;
2600 free_buffer_head(bh
);
2605 EXPORT_SYMBOL(nobh_write_end
);
2608 * nobh_writepage() - based on block_full_write_page() except
2609 * that it tries to operate without attaching bufferheads to
2612 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2613 struct writeback_control
*wbc
)
2615 struct inode
* const inode
= page
->mapping
->host
;
2616 loff_t i_size
= i_size_read(inode
);
2617 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2621 /* Is the page fully inside i_size? */
2622 if (page
->index
< end_index
)
2625 /* Is the page fully outside i_size? (truncate in progress) */
2626 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2627 if (page
->index
>= end_index
+1 || !offset
) {
2629 * The page may have dirty, unmapped buffers. For example,
2630 * they may have been added in ext3_writepage(). Make them
2631 * freeable here, so the page does not leak.
2634 /* Not really sure about this - do we need this ? */
2635 if (page
->mapping
->a_ops
->invalidatepage
)
2636 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2639 return 0; /* don't care */
2643 * The page straddles i_size. It must be zeroed out on each and every
2644 * writepage invocation because it may be mmapped. "A file is mapped
2645 * in multiples of the page size. For a file that is not a multiple of
2646 * the page size, the remaining memory is zeroed when mapped, and
2647 * writes to that region are not written out to the file."
2649 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2651 ret
= mpage_writepage(page
, get_block
, wbc
);
2653 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
);
2656 EXPORT_SYMBOL(nobh_writepage
);
2658 int nobh_truncate_page(struct address_space
*mapping
,
2659 loff_t from
, get_block_t
*get_block
)
2661 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2662 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2665 unsigned length
, pos
;
2666 struct inode
*inode
= mapping
->host
;
2668 struct buffer_head map_bh
;
2671 blocksize
= 1 << inode
->i_blkbits
;
2672 length
= offset
& (blocksize
- 1);
2674 /* Block boundary? Nothing to do */
2678 length
= blocksize
- length
;
2679 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2681 page
= grab_cache_page(mapping
, index
);
2686 if (page_has_buffers(page
)) {
2689 page_cache_release(page
);
2690 return block_truncate_page(mapping
, from
, get_block
);
2693 /* Find the buffer that contains "offset" */
2695 while (offset
>= pos
) {
2700 err
= get_block(inode
, iblock
, &map_bh
, 0);
2703 /* unmapped? It's a hole - nothing to do */
2704 if (!buffer_mapped(&map_bh
))
2707 /* Ok, it's mapped. Make sure it's up-to-date */
2708 if (!PageUptodate(page
)) {
2709 err
= mapping
->a_ops
->readpage(NULL
, page
);
2711 page_cache_release(page
);
2715 if (!PageUptodate(page
)) {
2719 if (page_has_buffers(page
))
2722 zero_user(page
, offset
, length
);
2723 set_page_dirty(page
);
2728 page_cache_release(page
);
2732 EXPORT_SYMBOL(nobh_truncate_page
);
2734 int block_truncate_page(struct address_space
*mapping
,
2735 loff_t from
, get_block_t
*get_block
)
2737 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2738 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2741 unsigned length
, pos
;
2742 struct inode
*inode
= mapping
->host
;
2744 struct buffer_head
*bh
;
2747 blocksize
= 1 << inode
->i_blkbits
;
2748 length
= offset
& (blocksize
- 1);
2750 /* Block boundary? Nothing to do */
2754 length
= blocksize
- length
;
2755 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2757 page
= grab_cache_page(mapping
, index
);
2762 if (!page_has_buffers(page
))
2763 create_empty_buffers(page
, blocksize
, 0);
2765 /* Find the buffer that contains "offset" */
2766 bh
= page_buffers(page
);
2768 while (offset
>= pos
) {
2769 bh
= bh
->b_this_page
;
2775 if (!buffer_mapped(bh
)) {
2776 WARN_ON(bh
->b_size
!= blocksize
);
2777 err
= get_block(inode
, iblock
, bh
, 0);
2780 /* unmapped? It's a hole - nothing to do */
2781 if (!buffer_mapped(bh
))
2785 /* Ok, it's mapped. Make sure it's up-to-date */
2786 if (PageUptodate(page
))
2787 set_buffer_uptodate(bh
);
2789 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2791 ll_rw_block(READ
, 1, &bh
);
2793 /* Uhhuh. Read error. Complain and punt. */
2794 if (!buffer_uptodate(bh
))
2798 zero_user(page
, offset
, length
);
2799 mark_buffer_dirty(bh
);
2804 page_cache_release(page
);
2810 * The generic ->writepage function for buffer-backed address_spaces
2812 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2813 struct writeback_control
*wbc
)
2815 struct inode
* const inode
= page
->mapping
->host
;
2816 loff_t i_size
= i_size_read(inode
);
2817 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2820 /* Is the page fully inside i_size? */
2821 if (page
->index
< end_index
)
2822 return __block_write_full_page(inode
, page
, get_block
, wbc
);
2824 /* Is the page fully outside i_size? (truncate in progress) */
2825 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2826 if (page
->index
>= end_index
+1 || !offset
) {
2828 * The page may have dirty, unmapped buffers. For example,
2829 * they may have been added in ext3_writepage(). Make them
2830 * freeable here, so the page does not leak.
2832 do_invalidatepage(page
, 0);
2834 return 0; /* don't care */
2838 * The page straddles i_size. It must be zeroed out on each and every
2839 * writepage invokation because it may be mmapped. "A file is mapped
2840 * in multiples of the page size. For a file that is not a multiple of
2841 * the page size, the remaining memory is zeroed when mapped, and
2842 * writes to that region are not written out to the file."
2844 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2845 return __block_write_full_page(inode
, page
, get_block
, wbc
);
2848 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2849 get_block_t
*get_block
)
2851 struct buffer_head tmp
;
2852 struct inode
*inode
= mapping
->host
;
2855 tmp
.b_size
= 1 << inode
->i_blkbits
;
2856 get_block(inode
, block
, &tmp
, 0);
2857 return tmp
.b_blocknr
;
2860 static void end_bio_bh_io_sync(struct bio
*bio
, int err
)
2862 struct buffer_head
*bh
= bio
->bi_private
;
2864 if (err
== -EOPNOTSUPP
) {
2865 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2866 set_bit(BH_Eopnotsupp
, &bh
->b_state
);
2869 if (unlikely (test_bit(BIO_QUIET
,&bio
->bi_flags
)))
2870 set_bit(BH_Quiet
, &bh
->b_state
);
2872 bh
->b_end_io(bh
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2876 int submit_bh(int rw
, struct buffer_head
* bh
)
2881 BUG_ON(!buffer_locked(bh
));
2882 BUG_ON(!buffer_mapped(bh
));
2883 BUG_ON(!bh
->b_end_io
);
2886 * Mask in barrier bit for a write (could be either a WRITE or a
2889 if (buffer_ordered(bh
) && (rw
& WRITE
))
2890 rw
|= WRITE_BARRIER
;
2893 * Only clear out a write error when rewriting
2895 if (test_set_buffer_req(bh
) && (rw
& WRITE
))
2896 clear_buffer_write_io_error(bh
);
2899 * from here on down, it's all bio -- do the initial mapping,
2900 * submit_bio -> generic_make_request may further map this bio around
2902 bio
= bio_alloc(GFP_NOIO
, 1);
2904 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
2905 bio
->bi_bdev
= bh
->b_bdev
;
2906 bio
->bi_io_vec
[0].bv_page
= bh
->b_page
;
2907 bio
->bi_io_vec
[0].bv_len
= bh
->b_size
;
2908 bio
->bi_io_vec
[0].bv_offset
= bh_offset(bh
);
2912 bio
->bi_size
= bh
->b_size
;
2914 bio
->bi_end_io
= end_bio_bh_io_sync
;
2915 bio
->bi_private
= bh
;
2918 submit_bio(rw
, bio
);
2920 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2928 * ll_rw_block: low-level access to block devices (DEPRECATED)
2929 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2930 * @nr: number of &struct buffer_heads in the array
2931 * @bhs: array of pointers to &struct buffer_head
2933 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2934 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2935 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2936 * are sent to disk. The fourth %READA option is described in the documentation
2937 * for generic_make_request() which ll_rw_block() calls.
2939 * This function drops any buffer that it cannot get a lock on (with the
2940 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2941 * clean when doing a write request, and any buffer that appears to be
2942 * up-to-date when doing read request. Further it marks as clean buffers that
2943 * are processed for writing (the buffer cache won't assume that they are
2944 * actually clean until the buffer gets unlocked).
2946 * ll_rw_block sets b_end_io to simple completion handler that marks
2947 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2950 * All of the buffers must be for the same device, and must also be a
2951 * multiple of the current approved size for the device.
2953 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
2957 for (i
= 0; i
< nr
; i
++) {
2958 struct buffer_head
*bh
= bhs
[i
];
2960 if (rw
== SWRITE
|| rw
== SWRITE_SYNC
)
2962 else if (!trylock_buffer(bh
))
2965 if (rw
== WRITE
|| rw
== SWRITE
|| rw
== SWRITE_SYNC
) {
2966 if (test_clear_buffer_dirty(bh
)) {
2967 bh
->b_end_io
= end_buffer_write_sync
;
2969 if (rw
== SWRITE_SYNC
)
2970 submit_bh(WRITE_SYNC
, bh
);
2972 submit_bh(WRITE
, bh
);
2976 if (!buffer_uptodate(bh
)) {
2977 bh
->b_end_io
= end_buffer_read_sync
;
2988 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2989 * and then start new I/O and then wait upon it. The caller must have a ref on
2992 int sync_dirty_buffer(struct buffer_head
*bh
)
2996 WARN_ON(atomic_read(&bh
->b_count
) < 1);
2998 if (test_clear_buffer_dirty(bh
)) {
3000 bh
->b_end_io
= end_buffer_write_sync
;
3001 ret
= submit_bh(WRITE
, bh
);
3003 if (buffer_eopnotsupp(bh
)) {
3004 clear_buffer_eopnotsupp(bh
);
3007 if (!ret
&& !buffer_uptodate(bh
))
3016 * try_to_free_buffers() checks if all the buffers on this particular page
3017 * are unused, and releases them if so.
3019 * Exclusion against try_to_free_buffers may be obtained by either
3020 * locking the page or by holding its mapping's private_lock.
3022 * If the page is dirty but all the buffers are clean then we need to
3023 * be sure to mark the page clean as well. This is because the page
3024 * may be against a block device, and a later reattachment of buffers
3025 * to a dirty page will set *all* buffers dirty. Which would corrupt
3026 * filesystem data on the same device.
3028 * The same applies to regular filesystem pages: if all the buffers are
3029 * clean then we set the page clean and proceed. To do that, we require
3030 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3033 * try_to_free_buffers() is non-blocking.
3035 static inline int buffer_busy(struct buffer_head
*bh
)
3037 return atomic_read(&bh
->b_count
) |
3038 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3042 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3044 struct buffer_head
*head
= page_buffers(page
);
3045 struct buffer_head
*bh
;
3049 if (buffer_write_io_error(bh
) && page
->mapping
)
3050 set_bit(AS_EIO
, &page
->mapping
->flags
);
3051 if (buffer_busy(bh
))
3053 bh
= bh
->b_this_page
;
3054 } while (bh
!= head
);
3057 struct buffer_head
*next
= bh
->b_this_page
;
3059 if (bh
->b_assoc_map
)
3060 __remove_assoc_queue(bh
);
3062 } while (bh
!= head
);
3063 *buffers_to_free
= head
;
3064 __clear_page_buffers(page
);
3070 int try_to_free_buffers(struct page
*page
)
3072 struct address_space
* const mapping
= page
->mapping
;
3073 struct buffer_head
*buffers_to_free
= NULL
;
3076 BUG_ON(!PageLocked(page
));
3077 if (PageWriteback(page
))
3080 if (mapping
== NULL
) { /* can this still happen? */
3081 ret
= drop_buffers(page
, &buffers_to_free
);
3085 spin_lock(&mapping
->private_lock
);
3086 ret
= drop_buffers(page
, &buffers_to_free
);
3089 * If the filesystem writes its buffers by hand (eg ext3)
3090 * then we can have clean buffers against a dirty page. We
3091 * clean the page here; otherwise the VM will never notice
3092 * that the filesystem did any IO at all.
3094 * Also, during truncate, discard_buffer will have marked all
3095 * the page's buffers clean. We discover that here and clean
3098 * private_lock must be held over this entire operation in order
3099 * to synchronise against __set_page_dirty_buffers and prevent the
3100 * dirty bit from being lost.
3103 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
3104 spin_unlock(&mapping
->private_lock
);
3106 if (buffers_to_free
) {
3107 struct buffer_head
*bh
= buffers_to_free
;
3110 struct buffer_head
*next
= bh
->b_this_page
;
3111 free_buffer_head(bh
);
3113 } while (bh
!= buffers_to_free
);
3117 EXPORT_SYMBOL(try_to_free_buffers
);
3119 void block_sync_page(struct page
*page
)
3121 struct address_space
*mapping
;
3124 mapping
= page_mapping(page
);
3126 blk_run_backing_dev(mapping
->backing_dev_info
, page
);
3130 * There are no bdflush tunables left. But distributions are
3131 * still running obsolete flush daemons, so we terminate them here.
3133 * Use of bdflush() is deprecated and will be removed in a future kernel.
3134 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3136 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3138 static int msg_count
;
3140 if (!capable(CAP_SYS_ADMIN
))
3143 if (msg_count
< 5) {
3146 "warning: process `%s' used the obsolete bdflush"
3147 " system call\n", current
->comm
);
3148 printk(KERN_INFO
"Fix your initscripts?\n");
3157 * Buffer-head allocation
3159 static struct kmem_cache
*bh_cachep
;
3162 * Once the number of bh's in the machine exceeds this level, we start
3163 * stripping them in writeback.
3165 static int max_buffer_heads
;
3167 int buffer_heads_over_limit
;
3169 struct bh_accounting
{
3170 int nr
; /* Number of live bh's */
3171 int ratelimit
; /* Limit cacheline bouncing */
3174 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3176 static void recalc_bh_state(void)
3181 if (__get_cpu_var(bh_accounting
).ratelimit
++ < 4096)
3183 __get_cpu_var(bh_accounting
).ratelimit
= 0;
3184 for_each_online_cpu(i
)
3185 tot
+= per_cpu(bh_accounting
, i
).nr
;
3186 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3189 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3191 struct buffer_head
*ret
= kmem_cache_alloc(bh_cachep
, gfp_flags
);
3193 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3194 get_cpu_var(bh_accounting
).nr
++;
3196 put_cpu_var(bh_accounting
);
3200 EXPORT_SYMBOL(alloc_buffer_head
);
3202 void free_buffer_head(struct buffer_head
*bh
)
3204 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3205 kmem_cache_free(bh_cachep
, bh
);
3206 get_cpu_var(bh_accounting
).nr
--;
3208 put_cpu_var(bh_accounting
);
3210 EXPORT_SYMBOL(free_buffer_head
);
3212 static void buffer_exit_cpu(int cpu
)
3215 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3217 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3221 get_cpu_var(bh_accounting
).nr
+= per_cpu(bh_accounting
, cpu
).nr
;
3222 per_cpu(bh_accounting
, cpu
).nr
= 0;
3223 put_cpu_var(bh_accounting
);
3226 static int buffer_cpu_notify(struct notifier_block
*self
,
3227 unsigned long action
, void *hcpu
)
3229 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
3230 buffer_exit_cpu((unsigned long)hcpu
);
3235 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3236 * @bh: struct buffer_head
3238 * Return true if the buffer is up-to-date and false,
3239 * with the buffer locked, if not.
3241 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3243 if (!buffer_uptodate(bh
)) {
3245 if (!buffer_uptodate(bh
))
3251 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3254 * bh_submit_read - Submit a locked buffer for reading
3255 * @bh: struct buffer_head
3257 * Returns zero on success and -EIO on error.
3259 int bh_submit_read(struct buffer_head
*bh
)
3261 BUG_ON(!buffer_locked(bh
));
3263 if (buffer_uptodate(bh
)) {
3269 bh
->b_end_io
= end_buffer_read_sync
;
3270 submit_bh(READ
, bh
);
3272 if (buffer_uptodate(bh
))
3276 EXPORT_SYMBOL(bh_submit_read
);
3279 init_buffer_head(void *data
)
3281 struct buffer_head
*bh
= data
;
3283 memset(bh
, 0, sizeof(*bh
));
3284 INIT_LIST_HEAD(&bh
->b_assoc_buffers
);
3287 void __init
buffer_init(void)
3291 bh_cachep
= kmem_cache_create("buffer_head",
3292 sizeof(struct buffer_head
), 0,
3293 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3298 * Limit the bh occupancy to 10% of ZONE_NORMAL
3300 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3301 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3302 hotcpu_notifier(buffer_cpu_notify
, 0);
3305 EXPORT_SYMBOL(__bforget
);
3306 EXPORT_SYMBOL(__brelse
);
3307 EXPORT_SYMBOL(__wait_on_buffer
);
3308 EXPORT_SYMBOL(block_commit_write
);
3309 EXPORT_SYMBOL(block_prepare_write
);
3310 EXPORT_SYMBOL(block_page_mkwrite
);
3311 EXPORT_SYMBOL(block_read_full_page
);
3312 EXPORT_SYMBOL(block_sync_page
);
3313 EXPORT_SYMBOL(block_truncate_page
);
3314 EXPORT_SYMBOL(block_write_full_page
);
3315 EXPORT_SYMBOL(cont_write_begin
);
3316 EXPORT_SYMBOL(end_buffer_read_sync
);
3317 EXPORT_SYMBOL(end_buffer_write_sync
);
3318 EXPORT_SYMBOL(file_fsync
);
3319 EXPORT_SYMBOL(generic_block_bmap
);
3320 EXPORT_SYMBOL(generic_cont_expand_simple
);
3321 EXPORT_SYMBOL(init_buffer
);
3322 EXPORT_SYMBOL(invalidate_bdev
);
3323 EXPORT_SYMBOL(ll_rw_block
);
3324 EXPORT_SYMBOL(mark_buffer_dirty
);
3325 EXPORT_SYMBOL(submit_bh
);
3326 EXPORT_SYMBOL(sync_dirty_buffer
);
3327 EXPORT_SYMBOL(unlock_buffer
);