[PATCH] Drop useless bio passing in may_queue/set_request API
[linux-2.6/verdex.git] / block / ll_rw_blk.c
blobb1ea941f6dc308689083896185d61b1e07da563d
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/interrupt.h>
29 #include <linux/cpu.h>
30 #include <linux/blktrace_api.h>
33 * for max sense size
35 #include <scsi/scsi_cmnd.h>
37 static void blk_unplug_work(void *data);
38 static void blk_unplug_timeout(unsigned long data);
39 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
40 static void init_request_from_bio(struct request *req, struct bio *bio);
41 static int __make_request(request_queue_t *q, struct bio *bio);
44 * For the allocated request tables
46 static kmem_cache_t *request_cachep;
49 * For queue allocation
51 static kmem_cache_t *requestq_cachep;
54 * For io context allocations
56 static kmem_cache_t *iocontext_cachep;
58 static wait_queue_head_t congestion_wqh[2] = {
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
64 * Controlling structure to kblockd
66 static struct workqueue_struct *kblockd_workqueue;
68 unsigned long blk_max_low_pfn, blk_max_pfn;
70 EXPORT_SYMBOL(blk_max_low_pfn);
71 EXPORT_SYMBOL(blk_max_pfn);
73 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
75 /* Amount of time in which a process may batch requests */
76 #define BLK_BATCH_TIME (HZ/50UL)
78 /* Number of requests a "batching" process may submit */
79 #define BLK_BATCH_REQ 32
82 * Return the threshold (number of used requests) at which the queue is
83 * considered to be congested. It include a little hysteresis to keep the
84 * context switch rate down.
86 static inline int queue_congestion_on_threshold(struct request_queue *q)
88 return q->nr_congestion_on;
92 * The threshold at which a queue is considered to be uncongested
94 static inline int queue_congestion_off_threshold(struct request_queue *q)
96 return q->nr_congestion_off;
99 static void blk_queue_congestion_threshold(struct request_queue *q)
101 int nr;
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
115 * A queue has just exitted congestion. Note this in the global counter of
116 * congested queues, and wake up anyone who was waiting for requests to be
117 * put back.
119 static void clear_queue_congested(request_queue_t *q, int rw)
121 enum bdi_state bit;
122 wait_queue_head_t *wqh = &congestion_wqh[rw];
124 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
125 clear_bit(bit, &q->backing_dev_info.state);
126 smp_mb__after_clear_bit();
127 if (waitqueue_active(wqh))
128 wake_up(wqh);
132 * A queue has just entered congestion. Flag that in the queue's VM-visible
133 * state flags and increment the global gounter of congested queues.
135 static void set_queue_congested(request_queue_t *q, int rw)
137 enum bdi_state bit;
139 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
140 set_bit(bit, &q->backing_dev_info.state);
144 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
145 * @bdev: device
147 * Locates the passed device's request queue and returns the address of its
148 * backing_dev_info
150 * Will return NULL if the request queue cannot be located.
152 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
154 struct backing_dev_info *ret = NULL;
155 request_queue_t *q = bdev_get_queue(bdev);
157 if (q)
158 ret = &q->backing_dev_info;
159 return ret;
162 EXPORT_SYMBOL(blk_get_backing_dev_info);
164 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
166 q->activity_fn = fn;
167 q->activity_data = data;
170 EXPORT_SYMBOL(blk_queue_activity_fn);
173 * blk_queue_prep_rq - set a prepare_request function for queue
174 * @q: queue
175 * @pfn: prepare_request function
177 * It's possible for a queue to register a prepare_request callback which
178 * is invoked before the request is handed to the request_fn. The goal of
179 * the function is to prepare a request for I/O, it can be used to build a
180 * cdb from the request data for instance.
183 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
185 q->prep_rq_fn = pfn;
188 EXPORT_SYMBOL(blk_queue_prep_rq);
191 * blk_queue_merge_bvec - set a merge_bvec function for queue
192 * @q: queue
193 * @mbfn: merge_bvec_fn
195 * Usually queues have static limitations on the max sectors or segments that
196 * we can put in a request. Stacking drivers may have some settings that
197 * are dynamic, and thus we have to query the queue whether it is ok to
198 * add a new bio_vec to a bio at a given offset or not. If the block device
199 * has such limitations, it needs to register a merge_bvec_fn to control
200 * the size of bio's sent to it. Note that a block device *must* allow a
201 * single page to be added to an empty bio. The block device driver may want
202 * to use the bio_split() function to deal with these bio's. By default
203 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
204 * honored.
206 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
208 q->merge_bvec_fn = mbfn;
211 EXPORT_SYMBOL(blk_queue_merge_bvec);
213 void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
215 q->softirq_done_fn = fn;
218 EXPORT_SYMBOL(blk_queue_softirq_done);
221 * blk_queue_make_request - define an alternate make_request function for a device
222 * @q: the request queue for the device to be affected
223 * @mfn: the alternate make_request function
225 * Description:
226 * The normal way for &struct bios to be passed to a device
227 * driver is for them to be collected into requests on a request
228 * queue, and then to allow the device driver to select requests
229 * off that queue when it is ready. This works well for many block
230 * devices. However some block devices (typically virtual devices
231 * such as md or lvm) do not benefit from the processing on the
232 * request queue, and are served best by having the requests passed
233 * directly to them. This can be achieved by providing a function
234 * to blk_queue_make_request().
236 * Caveat:
237 * The driver that does this *must* be able to deal appropriately
238 * with buffers in "highmemory". This can be accomplished by either calling
239 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
240 * blk_queue_bounce() to create a buffer in normal memory.
242 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
245 * set defaults
247 q->nr_requests = BLKDEV_MAX_RQ;
248 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
249 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
250 q->make_request_fn = mfn;
251 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
252 q->backing_dev_info.state = 0;
253 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
254 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
255 blk_queue_hardsect_size(q, 512);
256 blk_queue_dma_alignment(q, 511);
257 blk_queue_congestion_threshold(q);
258 q->nr_batching = BLK_BATCH_REQ;
260 q->unplug_thresh = 4; /* hmm */
261 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
262 if (q->unplug_delay == 0)
263 q->unplug_delay = 1;
265 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
267 q->unplug_timer.function = blk_unplug_timeout;
268 q->unplug_timer.data = (unsigned long)q;
271 * by default assume old behaviour and bounce for any highmem page
273 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
275 blk_queue_activity_fn(q, NULL, NULL);
278 EXPORT_SYMBOL(blk_queue_make_request);
280 static inline void rq_init(request_queue_t *q, struct request *rq)
282 INIT_LIST_HEAD(&rq->queuelist);
283 INIT_LIST_HEAD(&rq->donelist);
285 rq->errors = 0;
286 rq->bio = rq->biotail = NULL;
287 INIT_HLIST_NODE(&rq->hash);
288 RB_CLEAR_NODE(&rq->rb_node);
289 rq->ioprio = 0;
290 rq->buffer = NULL;
291 rq->ref_count = 1;
292 rq->q = q;
293 rq->special = NULL;
294 rq->data_len = 0;
295 rq->data = NULL;
296 rq->nr_phys_segments = 0;
297 rq->sense = NULL;
298 rq->end_io = NULL;
299 rq->end_io_data = NULL;
300 rq->completion_data = NULL;
304 * blk_queue_ordered - does this queue support ordered writes
305 * @q: the request queue
306 * @ordered: one of QUEUE_ORDERED_*
307 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
309 * Description:
310 * For journalled file systems, doing ordered writes on a commit
311 * block instead of explicitly doing wait_on_buffer (which is bad
312 * for performance) can be a big win. Block drivers supporting this
313 * feature should call this function and indicate so.
316 int blk_queue_ordered(request_queue_t *q, unsigned ordered,
317 prepare_flush_fn *prepare_flush_fn)
319 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
320 prepare_flush_fn == NULL) {
321 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
322 return -EINVAL;
325 if (ordered != QUEUE_ORDERED_NONE &&
326 ordered != QUEUE_ORDERED_DRAIN &&
327 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
328 ordered != QUEUE_ORDERED_DRAIN_FUA &&
329 ordered != QUEUE_ORDERED_TAG &&
330 ordered != QUEUE_ORDERED_TAG_FLUSH &&
331 ordered != QUEUE_ORDERED_TAG_FUA) {
332 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
333 return -EINVAL;
336 q->ordered = ordered;
337 q->next_ordered = ordered;
338 q->prepare_flush_fn = prepare_flush_fn;
340 return 0;
343 EXPORT_SYMBOL(blk_queue_ordered);
346 * blk_queue_issue_flush_fn - set function for issuing a flush
347 * @q: the request queue
348 * @iff: the function to be called issuing the flush
350 * Description:
351 * If a driver supports issuing a flush command, the support is notified
352 * to the block layer by defining it through this call.
355 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
357 q->issue_flush_fn = iff;
360 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
363 * Cache flushing for ordered writes handling
365 inline unsigned blk_ordered_cur_seq(request_queue_t *q)
367 if (!q->ordseq)
368 return 0;
369 return 1 << ffz(q->ordseq);
372 unsigned blk_ordered_req_seq(struct request *rq)
374 request_queue_t *q = rq->q;
376 BUG_ON(q->ordseq == 0);
378 if (rq == &q->pre_flush_rq)
379 return QUEUE_ORDSEQ_PREFLUSH;
380 if (rq == &q->bar_rq)
381 return QUEUE_ORDSEQ_BAR;
382 if (rq == &q->post_flush_rq)
383 return QUEUE_ORDSEQ_POSTFLUSH;
385 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
386 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
387 return QUEUE_ORDSEQ_DRAIN;
388 else
389 return QUEUE_ORDSEQ_DONE;
392 void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
394 struct request *rq;
395 int uptodate;
397 if (error && !q->orderr)
398 q->orderr = error;
400 BUG_ON(q->ordseq & seq);
401 q->ordseq |= seq;
403 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
404 return;
407 * Okay, sequence complete.
409 rq = q->orig_bar_rq;
410 uptodate = q->orderr ? q->orderr : 1;
412 q->ordseq = 0;
414 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
415 end_that_request_last(rq, uptodate);
418 static void pre_flush_end_io(struct request *rq, int error)
420 elv_completed_request(rq->q, rq);
421 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
424 static void bar_end_io(struct request *rq, int error)
426 elv_completed_request(rq->q, rq);
427 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
430 static void post_flush_end_io(struct request *rq, int error)
432 elv_completed_request(rq->q, rq);
433 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
436 static void queue_flush(request_queue_t *q, unsigned which)
438 struct request *rq;
439 rq_end_io_fn *end_io;
441 if (which == QUEUE_ORDERED_PREFLUSH) {
442 rq = &q->pre_flush_rq;
443 end_io = pre_flush_end_io;
444 } else {
445 rq = &q->post_flush_rq;
446 end_io = post_flush_end_io;
449 rq->cmd_flags = REQ_HARDBARRIER;
450 rq_init(q, rq);
451 rq->elevator_private = NULL;
452 rq->elevator_private2 = NULL;
453 rq->rq_disk = q->bar_rq.rq_disk;
454 rq->end_io = end_io;
455 q->prepare_flush_fn(q, rq);
457 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
460 static inline struct request *start_ordered(request_queue_t *q,
461 struct request *rq)
463 q->bi_size = 0;
464 q->orderr = 0;
465 q->ordered = q->next_ordered;
466 q->ordseq |= QUEUE_ORDSEQ_STARTED;
469 * Prep proxy barrier request.
471 blkdev_dequeue_request(rq);
472 q->orig_bar_rq = rq;
473 rq = &q->bar_rq;
474 rq->cmd_flags = 0;
475 rq_init(q, rq);
476 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
477 rq->cmd_flags |= REQ_RW;
478 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
479 rq->elevator_private = NULL;
480 rq->elevator_private2 = NULL;
481 init_request_from_bio(rq, q->orig_bar_rq->bio);
482 rq->end_io = bar_end_io;
485 * Queue ordered sequence. As we stack them at the head, we
486 * need to queue in reverse order. Note that we rely on that
487 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
488 * request gets inbetween ordered sequence.
490 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
491 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
492 else
493 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
495 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
497 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
498 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
499 rq = &q->pre_flush_rq;
500 } else
501 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
503 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
504 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
505 else
506 rq = NULL;
508 return rq;
511 int blk_do_ordered(request_queue_t *q, struct request **rqp)
513 struct request *rq = *rqp;
514 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
516 if (!q->ordseq) {
517 if (!is_barrier)
518 return 1;
520 if (q->next_ordered != QUEUE_ORDERED_NONE) {
521 *rqp = start_ordered(q, rq);
522 return 1;
523 } else {
525 * This can happen when the queue switches to
526 * ORDERED_NONE while this request is on it.
528 blkdev_dequeue_request(rq);
529 end_that_request_first(rq, -EOPNOTSUPP,
530 rq->hard_nr_sectors);
531 end_that_request_last(rq, -EOPNOTSUPP);
532 *rqp = NULL;
533 return 0;
538 * Ordered sequence in progress
541 /* Special requests are not subject to ordering rules. */
542 if (!blk_fs_request(rq) &&
543 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
544 return 1;
546 if (q->ordered & QUEUE_ORDERED_TAG) {
547 /* Ordered by tag. Blocking the next barrier is enough. */
548 if (is_barrier && rq != &q->bar_rq)
549 *rqp = NULL;
550 } else {
551 /* Ordered by draining. Wait for turn. */
552 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
553 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
554 *rqp = NULL;
557 return 1;
560 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
562 request_queue_t *q = bio->bi_private;
563 struct bio_vec *bvec;
564 int i;
567 * This is dry run, restore bio_sector and size. We'll finish
568 * this request again with the original bi_end_io after an
569 * error occurs or post flush is complete.
571 q->bi_size += bytes;
573 if (bio->bi_size)
574 return 1;
576 /* Rewind bvec's */
577 bio->bi_idx = 0;
578 bio_for_each_segment(bvec, bio, i) {
579 bvec->bv_len += bvec->bv_offset;
580 bvec->bv_offset = 0;
583 /* Reset bio */
584 set_bit(BIO_UPTODATE, &bio->bi_flags);
585 bio->bi_size = q->bi_size;
586 bio->bi_sector -= (q->bi_size >> 9);
587 q->bi_size = 0;
589 return 0;
592 static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
593 unsigned int nbytes, int error)
595 request_queue_t *q = rq->q;
596 bio_end_io_t *endio;
597 void *private;
599 if (&q->bar_rq != rq)
600 return 0;
603 * Okay, this is the barrier request in progress, dry finish it.
605 if (error && !q->orderr)
606 q->orderr = error;
608 endio = bio->bi_end_io;
609 private = bio->bi_private;
610 bio->bi_end_io = flush_dry_bio_endio;
611 bio->bi_private = q;
613 bio_endio(bio, nbytes, error);
615 bio->bi_end_io = endio;
616 bio->bi_private = private;
618 return 1;
622 * blk_queue_bounce_limit - set bounce buffer limit for queue
623 * @q: the request queue for the device
624 * @dma_addr: bus address limit
626 * Description:
627 * Different hardware can have different requirements as to what pages
628 * it can do I/O directly to. A low level driver can call
629 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
630 * buffers for doing I/O to pages residing above @page.
632 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
634 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
635 int dma = 0;
637 q->bounce_gfp = GFP_NOIO;
638 #if BITS_PER_LONG == 64
639 /* Assume anything <= 4GB can be handled by IOMMU.
640 Actually some IOMMUs can handle everything, but I don't
641 know of a way to test this here. */
642 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
643 dma = 1;
644 q->bounce_pfn = max_low_pfn;
645 #else
646 if (bounce_pfn < blk_max_low_pfn)
647 dma = 1;
648 q->bounce_pfn = bounce_pfn;
649 #endif
650 if (dma) {
651 init_emergency_isa_pool();
652 q->bounce_gfp = GFP_NOIO | GFP_DMA;
653 q->bounce_pfn = bounce_pfn;
657 EXPORT_SYMBOL(blk_queue_bounce_limit);
660 * blk_queue_max_sectors - set max sectors for a request for this queue
661 * @q: the request queue for the device
662 * @max_sectors: max sectors in the usual 512b unit
664 * Description:
665 * Enables a low level driver to set an upper limit on the size of
666 * received requests.
668 void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
670 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
671 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
672 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
675 if (BLK_DEF_MAX_SECTORS > max_sectors)
676 q->max_hw_sectors = q->max_sectors = max_sectors;
677 else {
678 q->max_sectors = BLK_DEF_MAX_SECTORS;
679 q->max_hw_sectors = max_sectors;
683 EXPORT_SYMBOL(blk_queue_max_sectors);
686 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
687 * @q: the request queue for the device
688 * @max_segments: max number of segments
690 * Description:
691 * Enables a low level driver to set an upper limit on the number of
692 * physical data segments in a request. This would be the largest sized
693 * scatter list the driver could handle.
695 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
697 if (!max_segments) {
698 max_segments = 1;
699 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
702 q->max_phys_segments = max_segments;
705 EXPORT_SYMBOL(blk_queue_max_phys_segments);
708 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
709 * @q: the request queue for the device
710 * @max_segments: max number of segments
712 * Description:
713 * Enables a low level driver to set an upper limit on the number of
714 * hw data segments in a request. This would be the largest number of
715 * address/length pairs the host adapter can actually give as once
716 * to the device.
718 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
720 if (!max_segments) {
721 max_segments = 1;
722 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
725 q->max_hw_segments = max_segments;
728 EXPORT_SYMBOL(blk_queue_max_hw_segments);
731 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
732 * @q: the request queue for the device
733 * @max_size: max size of segment in bytes
735 * Description:
736 * Enables a low level driver to set an upper limit on the size of a
737 * coalesced segment
739 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
741 if (max_size < PAGE_CACHE_SIZE) {
742 max_size = PAGE_CACHE_SIZE;
743 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
746 q->max_segment_size = max_size;
749 EXPORT_SYMBOL(blk_queue_max_segment_size);
752 * blk_queue_hardsect_size - set hardware sector size for the queue
753 * @q: the request queue for the device
754 * @size: the hardware sector size, in bytes
756 * Description:
757 * This should typically be set to the lowest possible sector size
758 * that the hardware can operate on (possible without reverting to
759 * even internal read-modify-write operations). Usually the default
760 * of 512 covers most hardware.
762 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
764 q->hardsect_size = size;
767 EXPORT_SYMBOL(blk_queue_hardsect_size);
770 * Returns the minimum that is _not_ zero, unless both are zero.
772 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
775 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
776 * @t: the stacking driver (top)
777 * @b: the underlying device (bottom)
779 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
781 /* zero is "infinity" */
782 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
783 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
785 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
786 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
787 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
788 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
789 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
790 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
793 EXPORT_SYMBOL(blk_queue_stack_limits);
796 * blk_queue_segment_boundary - set boundary rules for segment merging
797 * @q: the request queue for the device
798 * @mask: the memory boundary mask
800 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
802 if (mask < PAGE_CACHE_SIZE - 1) {
803 mask = PAGE_CACHE_SIZE - 1;
804 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
807 q->seg_boundary_mask = mask;
810 EXPORT_SYMBOL(blk_queue_segment_boundary);
813 * blk_queue_dma_alignment - set dma length and memory alignment
814 * @q: the request queue for the device
815 * @mask: alignment mask
817 * description:
818 * set required memory and length aligment for direct dma transactions.
819 * this is used when buiding direct io requests for the queue.
822 void blk_queue_dma_alignment(request_queue_t *q, int mask)
824 q->dma_alignment = mask;
827 EXPORT_SYMBOL(blk_queue_dma_alignment);
830 * blk_queue_find_tag - find a request by its tag and queue
831 * @q: The request queue for the device
832 * @tag: The tag of the request
834 * Notes:
835 * Should be used when a device returns a tag and you want to match
836 * it with a request.
838 * no locks need be held.
840 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
842 struct blk_queue_tag *bqt = q->queue_tags;
844 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
845 return NULL;
847 return bqt->tag_index[tag];
850 EXPORT_SYMBOL(blk_queue_find_tag);
853 * __blk_free_tags - release a given set of tag maintenance info
854 * @bqt: the tag map to free
856 * Tries to free the specified @bqt@. Returns true if it was
857 * actually freed and false if there are still references using it
859 static int __blk_free_tags(struct blk_queue_tag *bqt)
861 int retval;
863 retval = atomic_dec_and_test(&bqt->refcnt);
864 if (retval) {
865 BUG_ON(bqt->busy);
866 BUG_ON(!list_empty(&bqt->busy_list));
868 kfree(bqt->tag_index);
869 bqt->tag_index = NULL;
871 kfree(bqt->tag_map);
872 bqt->tag_map = NULL;
874 kfree(bqt);
878 return retval;
882 * __blk_queue_free_tags - release tag maintenance info
883 * @q: the request queue for the device
885 * Notes:
886 * blk_cleanup_queue() will take care of calling this function, if tagging
887 * has been used. So there's no need to call this directly.
889 static void __blk_queue_free_tags(request_queue_t *q)
891 struct blk_queue_tag *bqt = q->queue_tags;
893 if (!bqt)
894 return;
896 __blk_free_tags(bqt);
898 q->queue_tags = NULL;
899 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
904 * blk_free_tags - release a given set of tag maintenance info
905 * @bqt: the tag map to free
907 * For externally managed @bqt@ frees the map. Callers of this
908 * function must guarantee to have released all the queues that
909 * might have been using this tag map.
911 void blk_free_tags(struct blk_queue_tag *bqt)
913 if (unlikely(!__blk_free_tags(bqt)))
914 BUG();
916 EXPORT_SYMBOL(blk_free_tags);
919 * blk_queue_free_tags - release tag maintenance info
920 * @q: the request queue for the device
922 * Notes:
923 * This is used to disabled tagged queuing to a device, yet leave
924 * queue in function.
926 void blk_queue_free_tags(request_queue_t *q)
928 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
931 EXPORT_SYMBOL(blk_queue_free_tags);
933 static int
934 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
936 struct request **tag_index;
937 unsigned long *tag_map;
938 int nr_ulongs;
940 if (q && depth > q->nr_requests * 2) {
941 depth = q->nr_requests * 2;
942 printk(KERN_ERR "%s: adjusted depth to %d\n",
943 __FUNCTION__, depth);
946 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
947 if (!tag_index)
948 goto fail;
950 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
951 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
952 if (!tag_map)
953 goto fail;
955 tags->real_max_depth = depth;
956 tags->max_depth = depth;
957 tags->tag_index = tag_index;
958 tags->tag_map = tag_map;
960 return 0;
961 fail:
962 kfree(tag_index);
963 return -ENOMEM;
966 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
967 int depth)
969 struct blk_queue_tag *tags;
971 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
972 if (!tags)
973 goto fail;
975 if (init_tag_map(q, tags, depth))
976 goto fail;
978 INIT_LIST_HEAD(&tags->busy_list);
979 tags->busy = 0;
980 atomic_set(&tags->refcnt, 1);
981 return tags;
982 fail:
983 kfree(tags);
984 return NULL;
988 * blk_init_tags - initialize the tag info for an external tag map
989 * @depth: the maximum queue depth supported
990 * @tags: the tag to use
992 struct blk_queue_tag *blk_init_tags(int depth)
994 return __blk_queue_init_tags(NULL, depth);
996 EXPORT_SYMBOL(blk_init_tags);
999 * blk_queue_init_tags - initialize the queue tag info
1000 * @q: the request queue for the device
1001 * @depth: the maximum queue depth supported
1002 * @tags: the tag to use
1004 int blk_queue_init_tags(request_queue_t *q, int depth,
1005 struct blk_queue_tag *tags)
1007 int rc;
1009 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
1011 if (!tags && !q->queue_tags) {
1012 tags = __blk_queue_init_tags(q, depth);
1014 if (!tags)
1015 goto fail;
1016 } else if (q->queue_tags) {
1017 if ((rc = blk_queue_resize_tags(q, depth)))
1018 return rc;
1019 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
1020 return 0;
1021 } else
1022 atomic_inc(&tags->refcnt);
1025 * assign it, all done
1027 q->queue_tags = tags;
1028 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
1029 return 0;
1030 fail:
1031 kfree(tags);
1032 return -ENOMEM;
1035 EXPORT_SYMBOL(blk_queue_init_tags);
1038 * blk_queue_resize_tags - change the queueing depth
1039 * @q: the request queue for the device
1040 * @new_depth: the new max command queueing depth
1042 * Notes:
1043 * Must be called with the queue lock held.
1045 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1047 struct blk_queue_tag *bqt = q->queue_tags;
1048 struct request **tag_index;
1049 unsigned long *tag_map;
1050 int max_depth, nr_ulongs;
1052 if (!bqt)
1053 return -ENXIO;
1056 * if we already have large enough real_max_depth. just
1057 * adjust max_depth. *NOTE* as requests with tag value
1058 * between new_depth and real_max_depth can be in-flight, tag
1059 * map can not be shrunk blindly here.
1061 if (new_depth <= bqt->real_max_depth) {
1062 bqt->max_depth = new_depth;
1063 return 0;
1067 * Currently cannot replace a shared tag map with a new
1068 * one, so error out if this is the case
1070 if (atomic_read(&bqt->refcnt) != 1)
1071 return -EBUSY;
1074 * save the old state info, so we can copy it back
1076 tag_index = bqt->tag_index;
1077 tag_map = bqt->tag_map;
1078 max_depth = bqt->real_max_depth;
1080 if (init_tag_map(q, bqt, new_depth))
1081 return -ENOMEM;
1083 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1084 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1085 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1087 kfree(tag_index);
1088 kfree(tag_map);
1089 return 0;
1092 EXPORT_SYMBOL(blk_queue_resize_tags);
1095 * blk_queue_end_tag - end tag operations for a request
1096 * @q: the request queue for the device
1097 * @rq: the request that has completed
1099 * Description:
1100 * Typically called when end_that_request_first() returns 0, meaning
1101 * all transfers have been done for a request. It's important to call
1102 * this function before end_that_request_last(), as that will put the
1103 * request back on the free list thus corrupting the internal tag list.
1105 * Notes:
1106 * queue lock must be held.
1108 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1110 struct blk_queue_tag *bqt = q->queue_tags;
1111 int tag = rq->tag;
1113 BUG_ON(tag == -1);
1115 if (unlikely(tag >= bqt->real_max_depth))
1117 * This can happen after tag depth has been reduced.
1118 * FIXME: how about a warning or info message here?
1120 return;
1122 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1123 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1124 __FUNCTION__, tag);
1125 return;
1128 list_del_init(&rq->queuelist);
1129 rq->cmd_flags &= ~REQ_QUEUED;
1130 rq->tag = -1;
1132 if (unlikely(bqt->tag_index[tag] == NULL))
1133 printk(KERN_ERR "%s: tag %d is missing\n",
1134 __FUNCTION__, tag);
1136 bqt->tag_index[tag] = NULL;
1137 bqt->busy--;
1140 EXPORT_SYMBOL(blk_queue_end_tag);
1143 * blk_queue_start_tag - find a free tag and assign it
1144 * @q: the request queue for the device
1145 * @rq: the block request that needs tagging
1147 * Description:
1148 * This can either be used as a stand-alone helper, or possibly be
1149 * assigned as the queue &prep_rq_fn (in which case &struct request
1150 * automagically gets a tag assigned). Note that this function
1151 * assumes that any type of request can be queued! if this is not
1152 * true for your device, you must check the request type before
1153 * calling this function. The request will also be removed from
1154 * the request queue, so it's the drivers responsibility to readd
1155 * it if it should need to be restarted for some reason.
1157 * Notes:
1158 * queue lock must be held.
1160 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1162 struct blk_queue_tag *bqt = q->queue_tags;
1163 int tag;
1165 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1166 printk(KERN_ERR
1167 "%s: request %p for device [%s] already tagged %d",
1168 __FUNCTION__, rq,
1169 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1170 BUG();
1173 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1174 if (tag >= bqt->max_depth)
1175 return 1;
1177 __set_bit(tag, bqt->tag_map);
1179 rq->cmd_flags |= REQ_QUEUED;
1180 rq->tag = tag;
1181 bqt->tag_index[tag] = rq;
1182 blkdev_dequeue_request(rq);
1183 list_add(&rq->queuelist, &bqt->busy_list);
1184 bqt->busy++;
1185 return 0;
1188 EXPORT_SYMBOL(blk_queue_start_tag);
1191 * blk_queue_invalidate_tags - invalidate all pending tags
1192 * @q: the request queue for the device
1194 * Description:
1195 * Hardware conditions may dictate a need to stop all pending requests.
1196 * In this case, we will safely clear the block side of the tag queue and
1197 * readd all requests to the request queue in the right order.
1199 * Notes:
1200 * queue lock must be held.
1202 void blk_queue_invalidate_tags(request_queue_t *q)
1204 struct blk_queue_tag *bqt = q->queue_tags;
1205 struct list_head *tmp, *n;
1206 struct request *rq;
1208 list_for_each_safe(tmp, n, &bqt->busy_list) {
1209 rq = list_entry_rq(tmp);
1211 if (rq->tag == -1) {
1212 printk(KERN_ERR
1213 "%s: bad tag found on list\n", __FUNCTION__);
1214 list_del_init(&rq->queuelist);
1215 rq->cmd_flags &= ~REQ_QUEUED;
1216 } else
1217 blk_queue_end_tag(q, rq);
1219 rq->cmd_flags &= ~REQ_STARTED;
1220 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1224 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1226 void blk_dump_rq_flags(struct request *rq, char *msg)
1228 int bit;
1230 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1231 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1232 rq->cmd_flags);
1234 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1235 rq->nr_sectors,
1236 rq->current_nr_sectors);
1237 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1239 if (blk_pc_request(rq)) {
1240 printk("cdb: ");
1241 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1242 printk("%02x ", rq->cmd[bit]);
1243 printk("\n");
1247 EXPORT_SYMBOL(blk_dump_rq_flags);
1249 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1251 struct bio_vec *bv, *bvprv = NULL;
1252 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1253 int high, highprv = 1;
1255 if (unlikely(!bio->bi_io_vec))
1256 return;
1258 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1259 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1260 bio_for_each_segment(bv, bio, i) {
1262 * the trick here is making sure that a high page is never
1263 * considered part of another segment, since that might
1264 * change with the bounce page.
1266 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1267 if (high || highprv)
1268 goto new_hw_segment;
1269 if (cluster) {
1270 if (seg_size + bv->bv_len > q->max_segment_size)
1271 goto new_segment;
1272 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1273 goto new_segment;
1274 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1275 goto new_segment;
1276 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1277 goto new_hw_segment;
1279 seg_size += bv->bv_len;
1280 hw_seg_size += bv->bv_len;
1281 bvprv = bv;
1282 continue;
1284 new_segment:
1285 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1286 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1287 hw_seg_size += bv->bv_len;
1288 } else {
1289 new_hw_segment:
1290 if (hw_seg_size > bio->bi_hw_front_size)
1291 bio->bi_hw_front_size = hw_seg_size;
1292 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1293 nr_hw_segs++;
1296 nr_phys_segs++;
1297 bvprv = bv;
1298 seg_size = bv->bv_len;
1299 highprv = high;
1301 if (hw_seg_size > bio->bi_hw_back_size)
1302 bio->bi_hw_back_size = hw_seg_size;
1303 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1304 bio->bi_hw_front_size = hw_seg_size;
1305 bio->bi_phys_segments = nr_phys_segs;
1306 bio->bi_hw_segments = nr_hw_segs;
1307 bio->bi_flags |= (1 << BIO_SEG_VALID);
1311 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1312 struct bio *nxt)
1314 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1315 return 0;
1317 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1318 return 0;
1319 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1320 return 0;
1323 * bio and nxt are contigous in memory, check if the queue allows
1324 * these two to be merged into one
1326 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1327 return 1;
1329 return 0;
1332 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1333 struct bio *nxt)
1335 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1336 blk_recount_segments(q, bio);
1337 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1338 blk_recount_segments(q, nxt);
1339 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1340 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1341 return 0;
1342 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1343 return 0;
1345 return 1;
1349 * map a request to scatterlist, return number of sg entries setup. Caller
1350 * must make sure sg can hold rq->nr_phys_segments entries
1352 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1354 struct bio_vec *bvec, *bvprv;
1355 struct bio *bio;
1356 int nsegs, i, cluster;
1358 nsegs = 0;
1359 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1362 * for each bio in rq
1364 bvprv = NULL;
1365 rq_for_each_bio(bio, rq) {
1367 * for each segment in bio
1369 bio_for_each_segment(bvec, bio, i) {
1370 int nbytes = bvec->bv_len;
1372 if (bvprv && cluster) {
1373 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1374 goto new_segment;
1376 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1377 goto new_segment;
1378 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1379 goto new_segment;
1381 sg[nsegs - 1].length += nbytes;
1382 } else {
1383 new_segment:
1384 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1385 sg[nsegs].page = bvec->bv_page;
1386 sg[nsegs].length = nbytes;
1387 sg[nsegs].offset = bvec->bv_offset;
1389 nsegs++;
1391 bvprv = bvec;
1392 } /* segments in bio */
1393 } /* bios in rq */
1395 return nsegs;
1398 EXPORT_SYMBOL(blk_rq_map_sg);
1401 * the standard queue merge functions, can be overridden with device
1402 * specific ones if so desired
1405 static inline int ll_new_mergeable(request_queue_t *q,
1406 struct request *req,
1407 struct bio *bio)
1409 int nr_phys_segs = bio_phys_segments(q, bio);
1411 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1412 req->cmd_flags |= REQ_NOMERGE;
1413 if (req == q->last_merge)
1414 q->last_merge = NULL;
1415 return 0;
1419 * A hw segment is just getting larger, bump just the phys
1420 * counter.
1422 req->nr_phys_segments += nr_phys_segs;
1423 return 1;
1426 static inline int ll_new_hw_segment(request_queue_t *q,
1427 struct request *req,
1428 struct bio *bio)
1430 int nr_hw_segs = bio_hw_segments(q, bio);
1431 int nr_phys_segs = bio_phys_segments(q, bio);
1433 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1434 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1435 req->cmd_flags |= REQ_NOMERGE;
1436 if (req == q->last_merge)
1437 q->last_merge = NULL;
1438 return 0;
1442 * This will form the start of a new hw segment. Bump both
1443 * counters.
1445 req->nr_hw_segments += nr_hw_segs;
1446 req->nr_phys_segments += nr_phys_segs;
1447 return 1;
1450 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1451 struct bio *bio)
1453 unsigned short max_sectors;
1454 int len;
1456 if (unlikely(blk_pc_request(req)))
1457 max_sectors = q->max_hw_sectors;
1458 else
1459 max_sectors = q->max_sectors;
1461 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1462 req->cmd_flags |= REQ_NOMERGE;
1463 if (req == q->last_merge)
1464 q->last_merge = NULL;
1465 return 0;
1467 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1468 blk_recount_segments(q, req->biotail);
1469 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1470 blk_recount_segments(q, bio);
1471 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1472 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1473 !BIOVEC_VIRT_OVERSIZE(len)) {
1474 int mergeable = ll_new_mergeable(q, req, bio);
1476 if (mergeable) {
1477 if (req->nr_hw_segments == 1)
1478 req->bio->bi_hw_front_size = len;
1479 if (bio->bi_hw_segments == 1)
1480 bio->bi_hw_back_size = len;
1482 return mergeable;
1485 return ll_new_hw_segment(q, req, bio);
1488 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1489 struct bio *bio)
1491 unsigned short max_sectors;
1492 int len;
1494 if (unlikely(blk_pc_request(req)))
1495 max_sectors = q->max_hw_sectors;
1496 else
1497 max_sectors = q->max_sectors;
1500 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1501 req->cmd_flags |= REQ_NOMERGE;
1502 if (req == q->last_merge)
1503 q->last_merge = NULL;
1504 return 0;
1506 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1507 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1508 blk_recount_segments(q, bio);
1509 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1510 blk_recount_segments(q, req->bio);
1511 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1512 !BIOVEC_VIRT_OVERSIZE(len)) {
1513 int mergeable = ll_new_mergeable(q, req, bio);
1515 if (mergeable) {
1516 if (bio->bi_hw_segments == 1)
1517 bio->bi_hw_front_size = len;
1518 if (req->nr_hw_segments == 1)
1519 req->biotail->bi_hw_back_size = len;
1521 return mergeable;
1524 return ll_new_hw_segment(q, req, bio);
1527 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1528 struct request *next)
1530 int total_phys_segments;
1531 int total_hw_segments;
1534 * First check if the either of the requests are re-queued
1535 * requests. Can't merge them if they are.
1537 if (req->special || next->special)
1538 return 0;
1541 * Will it become too large?
1543 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1544 return 0;
1546 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1547 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1548 total_phys_segments--;
1550 if (total_phys_segments > q->max_phys_segments)
1551 return 0;
1553 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1554 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1555 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1557 * propagate the combined length to the end of the requests
1559 if (req->nr_hw_segments == 1)
1560 req->bio->bi_hw_front_size = len;
1561 if (next->nr_hw_segments == 1)
1562 next->biotail->bi_hw_back_size = len;
1563 total_hw_segments--;
1566 if (total_hw_segments > q->max_hw_segments)
1567 return 0;
1569 /* Merge is OK... */
1570 req->nr_phys_segments = total_phys_segments;
1571 req->nr_hw_segments = total_hw_segments;
1572 return 1;
1576 * "plug" the device if there are no outstanding requests: this will
1577 * force the transfer to start only after we have put all the requests
1578 * on the list.
1580 * This is called with interrupts off and no requests on the queue and
1581 * with the queue lock held.
1583 void blk_plug_device(request_queue_t *q)
1585 WARN_ON(!irqs_disabled());
1588 * don't plug a stopped queue, it must be paired with blk_start_queue()
1589 * which will restart the queueing
1591 if (blk_queue_stopped(q))
1592 return;
1594 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1595 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1596 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1600 EXPORT_SYMBOL(blk_plug_device);
1603 * remove the queue from the plugged list, if present. called with
1604 * queue lock held and interrupts disabled.
1606 int blk_remove_plug(request_queue_t *q)
1608 WARN_ON(!irqs_disabled());
1610 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1611 return 0;
1613 del_timer(&q->unplug_timer);
1614 return 1;
1617 EXPORT_SYMBOL(blk_remove_plug);
1620 * remove the plug and let it rip..
1622 void __generic_unplug_device(request_queue_t *q)
1624 if (unlikely(blk_queue_stopped(q)))
1625 return;
1627 if (!blk_remove_plug(q))
1628 return;
1630 q->request_fn(q);
1632 EXPORT_SYMBOL(__generic_unplug_device);
1635 * generic_unplug_device - fire a request queue
1636 * @q: The &request_queue_t in question
1638 * Description:
1639 * Linux uses plugging to build bigger requests queues before letting
1640 * the device have at them. If a queue is plugged, the I/O scheduler
1641 * is still adding and merging requests on the queue. Once the queue
1642 * gets unplugged, the request_fn defined for the queue is invoked and
1643 * transfers started.
1645 void generic_unplug_device(request_queue_t *q)
1647 spin_lock_irq(q->queue_lock);
1648 __generic_unplug_device(q);
1649 spin_unlock_irq(q->queue_lock);
1651 EXPORT_SYMBOL(generic_unplug_device);
1653 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1654 struct page *page)
1656 request_queue_t *q = bdi->unplug_io_data;
1659 * devices don't necessarily have an ->unplug_fn defined
1661 if (q->unplug_fn) {
1662 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1663 q->rq.count[READ] + q->rq.count[WRITE]);
1665 q->unplug_fn(q);
1669 static void blk_unplug_work(void *data)
1671 request_queue_t *q = data;
1673 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1674 q->rq.count[READ] + q->rq.count[WRITE]);
1676 q->unplug_fn(q);
1679 static void blk_unplug_timeout(unsigned long data)
1681 request_queue_t *q = (request_queue_t *)data;
1683 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1684 q->rq.count[READ] + q->rq.count[WRITE]);
1686 kblockd_schedule_work(&q->unplug_work);
1690 * blk_start_queue - restart a previously stopped queue
1691 * @q: The &request_queue_t in question
1693 * Description:
1694 * blk_start_queue() will clear the stop flag on the queue, and call
1695 * the request_fn for the queue if it was in a stopped state when
1696 * entered. Also see blk_stop_queue(). Queue lock must be held.
1698 void blk_start_queue(request_queue_t *q)
1700 WARN_ON(!irqs_disabled());
1702 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1705 * one level of recursion is ok and is much faster than kicking
1706 * the unplug handling
1708 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1709 q->request_fn(q);
1710 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1711 } else {
1712 blk_plug_device(q);
1713 kblockd_schedule_work(&q->unplug_work);
1717 EXPORT_SYMBOL(blk_start_queue);
1720 * blk_stop_queue - stop a queue
1721 * @q: The &request_queue_t in question
1723 * Description:
1724 * The Linux block layer assumes that a block driver will consume all
1725 * entries on the request queue when the request_fn strategy is called.
1726 * Often this will not happen, because of hardware limitations (queue
1727 * depth settings). If a device driver gets a 'queue full' response,
1728 * or if it simply chooses not to queue more I/O at one point, it can
1729 * call this function to prevent the request_fn from being called until
1730 * the driver has signalled it's ready to go again. This happens by calling
1731 * blk_start_queue() to restart queue operations. Queue lock must be held.
1733 void blk_stop_queue(request_queue_t *q)
1735 blk_remove_plug(q);
1736 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1738 EXPORT_SYMBOL(blk_stop_queue);
1741 * blk_sync_queue - cancel any pending callbacks on a queue
1742 * @q: the queue
1744 * Description:
1745 * The block layer may perform asynchronous callback activity
1746 * on a queue, such as calling the unplug function after a timeout.
1747 * A block device may call blk_sync_queue to ensure that any
1748 * such activity is cancelled, thus allowing it to release resources
1749 * the the callbacks might use. The caller must already have made sure
1750 * that its ->make_request_fn will not re-add plugging prior to calling
1751 * this function.
1754 void blk_sync_queue(struct request_queue *q)
1756 del_timer_sync(&q->unplug_timer);
1757 kblockd_flush();
1759 EXPORT_SYMBOL(blk_sync_queue);
1762 * blk_run_queue - run a single device queue
1763 * @q: The queue to run
1765 void blk_run_queue(struct request_queue *q)
1767 unsigned long flags;
1769 spin_lock_irqsave(q->queue_lock, flags);
1770 blk_remove_plug(q);
1773 * Only recurse once to avoid overrunning the stack, let the unplug
1774 * handling reinvoke the handler shortly if we already got there.
1776 if (!elv_queue_empty(q)) {
1777 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1778 q->request_fn(q);
1779 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1780 } else {
1781 blk_plug_device(q);
1782 kblockd_schedule_work(&q->unplug_work);
1786 spin_unlock_irqrestore(q->queue_lock, flags);
1788 EXPORT_SYMBOL(blk_run_queue);
1791 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1792 * @kobj: the kobj belonging of the request queue to be released
1794 * Description:
1795 * blk_cleanup_queue is the pair to blk_init_queue() or
1796 * blk_queue_make_request(). It should be called when a request queue is
1797 * being released; typically when a block device is being de-registered.
1798 * Currently, its primary task it to free all the &struct request
1799 * structures that were allocated to the queue and the queue itself.
1801 * Caveat:
1802 * Hopefully the low level driver will have finished any
1803 * outstanding requests first...
1805 static void blk_release_queue(struct kobject *kobj)
1807 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1808 struct request_list *rl = &q->rq;
1810 blk_sync_queue(q);
1812 if (rl->rq_pool)
1813 mempool_destroy(rl->rq_pool);
1815 if (q->queue_tags)
1816 __blk_queue_free_tags(q);
1818 blk_trace_shutdown(q);
1820 kmem_cache_free(requestq_cachep, q);
1823 void blk_put_queue(request_queue_t *q)
1825 kobject_put(&q->kobj);
1827 EXPORT_SYMBOL(blk_put_queue);
1829 void blk_cleanup_queue(request_queue_t * q)
1831 mutex_lock(&q->sysfs_lock);
1832 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1833 mutex_unlock(&q->sysfs_lock);
1835 if (q->elevator)
1836 elevator_exit(q->elevator);
1838 blk_put_queue(q);
1841 EXPORT_SYMBOL(blk_cleanup_queue);
1843 static int blk_init_free_list(request_queue_t *q)
1845 struct request_list *rl = &q->rq;
1847 rl->count[READ] = rl->count[WRITE] = 0;
1848 rl->starved[READ] = rl->starved[WRITE] = 0;
1849 rl->elvpriv = 0;
1850 init_waitqueue_head(&rl->wait[READ]);
1851 init_waitqueue_head(&rl->wait[WRITE]);
1853 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1854 mempool_free_slab, request_cachep, q->node);
1856 if (!rl->rq_pool)
1857 return -ENOMEM;
1859 return 0;
1862 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1864 return blk_alloc_queue_node(gfp_mask, -1);
1866 EXPORT_SYMBOL(blk_alloc_queue);
1868 static struct kobj_type queue_ktype;
1870 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1872 request_queue_t *q;
1874 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1875 if (!q)
1876 return NULL;
1878 memset(q, 0, sizeof(*q));
1879 init_timer(&q->unplug_timer);
1881 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1882 q->kobj.ktype = &queue_ktype;
1883 kobject_init(&q->kobj);
1885 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1886 q->backing_dev_info.unplug_io_data = q;
1888 mutex_init(&q->sysfs_lock);
1890 return q;
1892 EXPORT_SYMBOL(blk_alloc_queue_node);
1895 * blk_init_queue - prepare a request queue for use with a block device
1896 * @rfn: The function to be called to process requests that have been
1897 * placed on the queue.
1898 * @lock: Request queue spin lock
1900 * Description:
1901 * If a block device wishes to use the standard request handling procedures,
1902 * which sorts requests and coalesces adjacent requests, then it must
1903 * call blk_init_queue(). The function @rfn will be called when there
1904 * are requests on the queue that need to be processed. If the device
1905 * supports plugging, then @rfn may not be called immediately when requests
1906 * are available on the queue, but may be called at some time later instead.
1907 * Plugged queues are generally unplugged when a buffer belonging to one
1908 * of the requests on the queue is needed, or due to memory pressure.
1910 * @rfn is not required, or even expected, to remove all requests off the
1911 * queue, but only as many as it can handle at a time. If it does leave
1912 * requests on the queue, it is responsible for arranging that the requests
1913 * get dealt with eventually.
1915 * The queue spin lock must be held while manipulating the requests on the
1916 * request queue; this lock will be taken also from interrupt context, so irq
1917 * disabling is needed for it.
1919 * Function returns a pointer to the initialized request queue, or NULL if
1920 * it didn't succeed.
1922 * Note:
1923 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1924 * when the block device is deactivated (such as at module unload).
1927 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1929 return blk_init_queue_node(rfn, lock, -1);
1931 EXPORT_SYMBOL(blk_init_queue);
1933 request_queue_t *
1934 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1936 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1938 if (!q)
1939 return NULL;
1941 q->node = node_id;
1942 if (blk_init_free_list(q)) {
1943 kmem_cache_free(requestq_cachep, q);
1944 return NULL;
1948 * if caller didn't supply a lock, they get per-queue locking with
1949 * our embedded lock
1951 if (!lock) {
1952 spin_lock_init(&q->__queue_lock);
1953 lock = &q->__queue_lock;
1956 q->request_fn = rfn;
1957 q->back_merge_fn = ll_back_merge_fn;
1958 q->front_merge_fn = ll_front_merge_fn;
1959 q->merge_requests_fn = ll_merge_requests_fn;
1960 q->prep_rq_fn = NULL;
1961 q->unplug_fn = generic_unplug_device;
1962 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1963 q->queue_lock = lock;
1965 blk_queue_segment_boundary(q, 0xffffffff);
1967 blk_queue_make_request(q, __make_request);
1968 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1970 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1971 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1974 * all done
1976 if (!elevator_init(q, NULL)) {
1977 blk_queue_congestion_threshold(q);
1978 return q;
1981 blk_put_queue(q);
1982 return NULL;
1984 EXPORT_SYMBOL(blk_init_queue_node);
1986 int blk_get_queue(request_queue_t *q)
1988 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1989 kobject_get(&q->kobj);
1990 return 0;
1993 return 1;
1996 EXPORT_SYMBOL(blk_get_queue);
1998 static inline void blk_free_request(request_queue_t *q, struct request *rq)
2000 if (rq->cmd_flags & REQ_ELVPRIV)
2001 elv_put_request(q, rq);
2002 mempool_free(rq, q->rq.rq_pool);
2005 static inline struct request *
2006 blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
2008 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2010 if (!rq)
2011 return NULL;
2014 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2015 * see bio.h and blkdev.h
2017 rq->cmd_flags = rw | REQ_ALLOCED;
2019 if (priv) {
2020 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
2021 mempool_free(rq, q->rq.rq_pool);
2022 return NULL;
2024 rq->cmd_flags |= REQ_ELVPRIV;
2027 return rq;
2031 * ioc_batching returns true if the ioc is a valid batching request and
2032 * should be given priority access to a request.
2034 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2036 if (!ioc)
2037 return 0;
2040 * Make sure the process is able to allocate at least 1 request
2041 * even if the batch times out, otherwise we could theoretically
2042 * lose wakeups.
2044 return ioc->nr_batch_requests == q->nr_batching ||
2045 (ioc->nr_batch_requests > 0
2046 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2050 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2051 * will cause the process to be a "batcher" on all queues in the system. This
2052 * is the behaviour we want though - once it gets a wakeup it should be given
2053 * a nice run.
2055 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
2057 if (!ioc || ioc_batching(q, ioc))
2058 return;
2060 ioc->nr_batch_requests = q->nr_batching;
2061 ioc->last_waited = jiffies;
2064 static void __freed_request(request_queue_t *q, int rw)
2066 struct request_list *rl = &q->rq;
2068 if (rl->count[rw] < queue_congestion_off_threshold(q))
2069 clear_queue_congested(q, rw);
2071 if (rl->count[rw] + 1 <= q->nr_requests) {
2072 if (waitqueue_active(&rl->wait[rw]))
2073 wake_up(&rl->wait[rw]);
2075 blk_clear_queue_full(q, rw);
2080 * A request has just been released. Account for it, update the full and
2081 * congestion status, wake up any waiters. Called under q->queue_lock.
2083 static void freed_request(request_queue_t *q, int rw, int priv)
2085 struct request_list *rl = &q->rq;
2087 rl->count[rw]--;
2088 if (priv)
2089 rl->elvpriv--;
2091 __freed_request(q, rw);
2093 if (unlikely(rl->starved[rw ^ 1]))
2094 __freed_request(q, rw ^ 1);
2097 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2099 * Get a free request, queue_lock must be held.
2100 * Returns NULL on failure, with queue_lock held.
2101 * Returns !NULL on success, with queue_lock *not held*.
2103 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
2104 gfp_t gfp_mask)
2106 struct request *rq = NULL;
2107 struct request_list *rl = &q->rq;
2108 struct io_context *ioc = NULL;
2109 int may_queue, priv;
2111 may_queue = elv_may_queue(q, rw);
2112 if (may_queue == ELV_MQUEUE_NO)
2113 goto rq_starved;
2115 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2116 if (rl->count[rw]+1 >= q->nr_requests) {
2117 ioc = current_io_context(GFP_ATOMIC);
2119 * The queue will fill after this allocation, so set
2120 * it as full, and mark this process as "batching".
2121 * This process will be allowed to complete a batch of
2122 * requests, others will be blocked.
2124 if (!blk_queue_full(q, rw)) {
2125 ioc_set_batching(q, ioc);
2126 blk_set_queue_full(q, rw);
2127 } else {
2128 if (may_queue != ELV_MQUEUE_MUST
2129 && !ioc_batching(q, ioc)) {
2131 * The queue is full and the allocating
2132 * process is not a "batcher", and not
2133 * exempted by the IO scheduler
2135 goto out;
2139 set_queue_congested(q, rw);
2143 * Only allow batching queuers to allocate up to 50% over the defined
2144 * limit of requests, otherwise we could have thousands of requests
2145 * allocated with any setting of ->nr_requests
2147 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2148 goto out;
2150 rl->count[rw]++;
2151 rl->starved[rw] = 0;
2153 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2154 if (priv)
2155 rl->elvpriv++;
2157 spin_unlock_irq(q->queue_lock);
2159 rq = blk_alloc_request(q, rw, priv, gfp_mask);
2160 if (unlikely(!rq)) {
2162 * Allocation failed presumably due to memory. Undo anything
2163 * we might have messed up.
2165 * Allocating task should really be put onto the front of the
2166 * wait queue, but this is pretty rare.
2168 spin_lock_irq(q->queue_lock);
2169 freed_request(q, rw, priv);
2172 * in the very unlikely event that allocation failed and no
2173 * requests for this direction was pending, mark us starved
2174 * so that freeing of a request in the other direction will
2175 * notice us. another possible fix would be to split the
2176 * rq mempool into READ and WRITE
2178 rq_starved:
2179 if (unlikely(rl->count[rw] == 0))
2180 rl->starved[rw] = 1;
2182 goto out;
2186 * ioc may be NULL here, and ioc_batching will be false. That's
2187 * OK, if the queue is under the request limit then requests need
2188 * not count toward the nr_batch_requests limit. There will always
2189 * be some limit enforced by BLK_BATCH_TIME.
2191 if (ioc_batching(q, ioc))
2192 ioc->nr_batch_requests--;
2194 rq_init(q, rq);
2196 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2197 out:
2198 return rq;
2202 * No available requests for this queue, unplug the device and wait for some
2203 * requests to become available.
2205 * Called with q->queue_lock held, and returns with it unlocked.
2207 static struct request *get_request_wait(request_queue_t *q, int rw,
2208 struct bio *bio)
2210 struct request *rq;
2212 rq = get_request(q, rw, bio, GFP_NOIO);
2213 while (!rq) {
2214 DEFINE_WAIT(wait);
2215 struct request_list *rl = &q->rq;
2217 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2218 TASK_UNINTERRUPTIBLE);
2220 rq = get_request(q, rw, bio, GFP_NOIO);
2222 if (!rq) {
2223 struct io_context *ioc;
2225 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2227 __generic_unplug_device(q);
2228 spin_unlock_irq(q->queue_lock);
2229 io_schedule();
2232 * After sleeping, we become a "batching" process and
2233 * will be able to allocate at least one request, and
2234 * up to a big batch of them for a small period time.
2235 * See ioc_batching, ioc_set_batching
2237 ioc = current_io_context(GFP_NOIO);
2238 ioc_set_batching(q, ioc);
2240 spin_lock_irq(q->queue_lock);
2242 finish_wait(&rl->wait[rw], &wait);
2245 return rq;
2248 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2250 struct request *rq;
2252 BUG_ON(rw != READ && rw != WRITE);
2254 spin_lock_irq(q->queue_lock);
2255 if (gfp_mask & __GFP_WAIT) {
2256 rq = get_request_wait(q, rw, NULL);
2257 } else {
2258 rq = get_request(q, rw, NULL, gfp_mask);
2259 if (!rq)
2260 spin_unlock_irq(q->queue_lock);
2262 /* q->queue_lock is unlocked at this point */
2264 return rq;
2266 EXPORT_SYMBOL(blk_get_request);
2269 * blk_requeue_request - put a request back on queue
2270 * @q: request queue where request should be inserted
2271 * @rq: request to be inserted
2273 * Description:
2274 * Drivers often keep queueing requests until the hardware cannot accept
2275 * more, when that condition happens we need to put the request back
2276 * on the queue. Must be called with queue lock held.
2278 void blk_requeue_request(request_queue_t *q, struct request *rq)
2280 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2282 if (blk_rq_tagged(rq))
2283 blk_queue_end_tag(q, rq);
2285 elv_requeue_request(q, rq);
2288 EXPORT_SYMBOL(blk_requeue_request);
2291 * blk_insert_request - insert a special request in to a request queue
2292 * @q: request queue where request should be inserted
2293 * @rq: request to be inserted
2294 * @at_head: insert request at head or tail of queue
2295 * @data: private data
2297 * Description:
2298 * Many block devices need to execute commands asynchronously, so they don't
2299 * block the whole kernel from preemption during request execution. This is
2300 * accomplished normally by inserting aritficial requests tagged as
2301 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2302 * scheduled for actual execution by the request queue.
2304 * We have the option of inserting the head or the tail of the queue.
2305 * Typically we use the tail for new ioctls and so forth. We use the head
2306 * of the queue for things like a QUEUE_FULL message from a device, or a
2307 * host that is unable to accept a particular command.
2309 void blk_insert_request(request_queue_t *q, struct request *rq,
2310 int at_head, void *data)
2312 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2313 unsigned long flags;
2316 * tell I/O scheduler that this isn't a regular read/write (ie it
2317 * must not attempt merges on this) and that it acts as a soft
2318 * barrier
2320 rq->cmd_type = REQ_TYPE_SPECIAL;
2321 rq->cmd_flags |= REQ_SOFTBARRIER;
2323 rq->special = data;
2325 spin_lock_irqsave(q->queue_lock, flags);
2328 * If command is tagged, release the tag
2330 if (blk_rq_tagged(rq))
2331 blk_queue_end_tag(q, rq);
2333 drive_stat_acct(rq, rq->nr_sectors, 1);
2334 __elv_add_request(q, rq, where, 0);
2336 if (blk_queue_plugged(q))
2337 __generic_unplug_device(q);
2338 else
2339 q->request_fn(q);
2340 spin_unlock_irqrestore(q->queue_lock, flags);
2343 EXPORT_SYMBOL(blk_insert_request);
2346 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2347 * @q: request queue where request should be inserted
2348 * @rq: request structure to fill
2349 * @ubuf: the user buffer
2350 * @len: length of user data
2352 * Description:
2353 * Data will be mapped directly for zero copy io, if possible. Otherwise
2354 * a kernel bounce buffer is used.
2356 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2357 * still in process context.
2359 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2360 * before being submitted to the device, as pages mapped may be out of
2361 * reach. It's the callers responsibility to make sure this happens. The
2362 * original bio must be passed back in to blk_rq_unmap_user() for proper
2363 * unmapping.
2365 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2366 unsigned int len)
2368 unsigned long uaddr;
2369 struct bio *bio;
2370 int reading;
2372 if (len > (q->max_hw_sectors << 9))
2373 return -EINVAL;
2374 if (!len || !ubuf)
2375 return -EINVAL;
2377 reading = rq_data_dir(rq) == READ;
2380 * if alignment requirement is satisfied, map in user pages for
2381 * direct dma. else, set up kernel bounce buffers
2383 uaddr = (unsigned long) ubuf;
2384 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2385 bio = bio_map_user(q, NULL, uaddr, len, reading);
2386 else
2387 bio = bio_copy_user(q, uaddr, len, reading);
2389 if (!IS_ERR(bio)) {
2390 rq->bio = rq->biotail = bio;
2391 blk_rq_bio_prep(q, rq, bio);
2393 rq->buffer = rq->data = NULL;
2394 rq->data_len = len;
2395 return 0;
2399 * bio is the err-ptr
2401 return PTR_ERR(bio);
2404 EXPORT_SYMBOL(blk_rq_map_user);
2407 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2408 * @q: request queue where request should be inserted
2409 * @rq: request to map data to
2410 * @iov: pointer to the iovec
2411 * @iov_count: number of elements in the iovec
2413 * Description:
2414 * Data will be mapped directly for zero copy io, if possible. Otherwise
2415 * a kernel bounce buffer is used.
2417 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2418 * still in process context.
2420 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2421 * before being submitted to the device, as pages mapped may be out of
2422 * reach. It's the callers responsibility to make sure this happens. The
2423 * original bio must be passed back in to blk_rq_unmap_user() for proper
2424 * unmapping.
2426 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2427 struct sg_iovec *iov, int iov_count)
2429 struct bio *bio;
2431 if (!iov || iov_count <= 0)
2432 return -EINVAL;
2434 /* we don't allow misaligned data like bio_map_user() does. If the
2435 * user is using sg, they're expected to know the alignment constraints
2436 * and respect them accordingly */
2437 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2438 if (IS_ERR(bio))
2439 return PTR_ERR(bio);
2441 rq->bio = rq->biotail = bio;
2442 blk_rq_bio_prep(q, rq, bio);
2443 rq->buffer = rq->data = NULL;
2444 rq->data_len = bio->bi_size;
2445 return 0;
2448 EXPORT_SYMBOL(blk_rq_map_user_iov);
2451 * blk_rq_unmap_user - unmap a request with user data
2452 * @bio: bio to be unmapped
2453 * @ulen: length of user buffer
2455 * Description:
2456 * Unmap a bio previously mapped by blk_rq_map_user().
2458 int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
2460 int ret = 0;
2462 if (bio) {
2463 if (bio_flagged(bio, BIO_USER_MAPPED))
2464 bio_unmap_user(bio);
2465 else
2466 ret = bio_uncopy_user(bio);
2469 return 0;
2472 EXPORT_SYMBOL(blk_rq_unmap_user);
2475 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2476 * @q: request queue where request should be inserted
2477 * @rq: request to fill
2478 * @kbuf: the kernel buffer
2479 * @len: length of user data
2480 * @gfp_mask: memory allocation flags
2482 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2483 unsigned int len, gfp_t gfp_mask)
2485 struct bio *bio;
2487 if (len > (q->max_hw_sectors << 9))
2488 return -EINVAL;
2489 if (!len || !kbuf)
2490 return -EINVAL;
2492 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2493 if (IS_ERR(bio))
2494 return PTR_ERR(bio);
2496 if (rq_data_dir(rq) == WRITE)
2497 bio->bi_rw |= (1 << BIO_RW);
2499 rq->bio = rq->biotail = bio;
2500 blk_rq_bio_prep(q, rq, bio);
2502 rq->buffer = rq->data = NULL;
2503 rq->data_len = len;
2504 return 0;
2507 EXPORT_SYMBOL(blk_rq_map_kern);
2510 * blk_execute_rq_nowait - insert a request into queue for execution
2511 * @q: queue to insert the request in
2512 * @bd_disk: matching gendisk
2513 * @rq: request to insert
2514 * @at_head: insert request at head or tail of queue
2515 * @done: I/O completion handler
2517 * Description:
2518 * Insert a fully prepared request at the back of the io scheduler queue
2519 * for execution. Don't wait for completion.
2521 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2522 struct request *rq, int at_head,
2523 rq_end_io_fn *done)
2525 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2527 rq->rq_disk = bd_disk;
2528 rq->cmd_flags |= REQ_NOMERGE;
2529 rq->end_io = done;
2530 WARN_ON(irqs_disabled());
2531 spin_lock_irq(q->queue_lock);
2532 __elv_add_request(q, rq, where, 1);
2533 __generic_unplug_device(q);
2534 spin_unlock_irq(q->queue_lock);
2536 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2539 * blk_execute_rq - insert a request into queue for execution
2540 * @q: queue to insert the request in
2541 * @bd_disk: matching gendisk
2542 * @rq: request to insert
2543 * @at_head: insert request at head or tail of queue
2545 * Description:
2546 * Insert a fully prepared request at the back of the io scheduler queue
2547 * for execution and wait for completion.
2549 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2550 struct request *rq, int at_head)
2552 DECLARE_COMPLETION_ONSTACK(wait);
2553 char sense[SCSI_SENSE_BUFFERSIZE];
2554 int err = 0;
2557 * we need an extra reference to the request, so we can look at
2558 * it after io completion
2560 rq->ref_count++;
2562 if (!rq->sense) {
2563 memset(sense, 0, sizeof(sense));
2564 rq->sense = sense;
2565 rq->sense_len = 0;
2568 rq->end_io_data = &wait;
2569 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2570 wait_for_completion(&wait);
2572 if (rq->errors)
2573 err = -EIO;
2575 return err;
2578 EXPORT_SYMBOL(blk_execute_rq);
2581 * blkdev_issue_flush - queue a flush
2582 * @bdev: blockdev to issue flush for
2583 * @error_sector: error sector
2585 * Description:
2586 * Issue a flush for the block device in question. Caller can supply
2587 * room for storing the error offset in case of a flush error, if they
2588 * wish to. Caller must run wait_for_completion() on its own.
2590 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2592 request_queue_t *q;
2594 if (bdev->bd_disk == NULL)
2595 return -ENXIO;
2597 q = bdev_get_queue(bdev);
2598 if (!q)
2599 return -ENXIO;
2600 if (!q->issue_flush_fn)
2601 return -EOPNOTSUPP;
2603 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2606 EXPORT_SYMBOL(blkdev_issue_flush);
2608 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2610 int rw = rq_data_dir(rq);
2612 if (!blk_fs_request(rq) || !rq->rq_disk)
2613 return;
2615 if (!new_io) {
2616 __disk_stat_inc(rq->rq_disk, merges[rw]);
2617 } else {
2618 disk_round_stats(rq->rq_disk);
2619 rq->rq_disk->in_flight++;
2624 * add-request adds a request to the linked list.
2625 * queue lock is held and interrupts disabled, as we muck with the
2626 * request queue list.
2628 static inline void add_request(request_queue_t * q, struct request * req)
2630 drive_stat_acct(req, req->nr_sectors, 1);
2632 if (q->activity_fn)
2633 q->activity_fn(q->activity_data, rq_data_dir(req));
2636 * elevator indicated where it wants this request to be
2637 * inserted at elevator_merge time
2639 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2643 * disk_round_stats() - Round off the performance stats on a struct
2644 * disk_stats.
2646 * The average IO queue length and utilisation statistics are maintained
2647 * by observing the current state of the queue length and the amount of
2648 * time it has been in this state for.
2650 * Normally, that accounting is done on IO completion, but that can result
2651 * in more than a second's worth of IO being accounted for within any one
2652 * second, leading to >100% utilisation. To deal with that, we call this
2653 * function to do a round-off before returning the results when reading
2654 * /proc/diskstats. This accounts immediately for all queue usage up to
2655 * the current jiffies and restarts the counters again.
2657 void disk_round_stats(struct gendisk *disk)
2659 unsigned long now = jiffies;
2661 if (now == disk->stamp)
2662 return;
2664 if (disk->in_flight) {
2665 __disk_stat_add(disk, time_in_queue,
2666 disk->in_flight * (now - disk->stamp));
2667 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2669 disk->stamp = now;
2672 EXPORT_SYMBOL_GPL(disk_round_stats);
2675 * queue lock must be held
2677 void __blk_put_request(request_queue_t *q, struct request *req)
2679 if (unlikely(!q))
2680 return;
2681 if (unlikely(--req->ref_count))
2682 return;
2684 elv_completed_request(q, req);
2687 * Request may not have originated from ll_rw_blk. if not,
2688 * it didn't come out of our reserved rq pools
2690 if (req->cmd_flags & REQ_ALLOCED) {
2691 int rw = rq_data_dir(req);
2692 int priv = req->cmd_flags & REQ_ELVPRIV;
2694 BUG_ON(!list_empty(&req->queuelist));
2695 BUG_ON(!hlist_unhashed(&req->hash));
2697 blk_free_request(q, req);
2698 freed_request(q, rw, priv);
2702 EXPORT_SYMBOL_GPL(__blk_put_request);
2704 void blk_put_request(struct request *req)
2706 unsigned long flags;
2707 request_queue_t *q = req->q;
2710 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2711 * following if (q) test.
2713 if (q) {
2714 spin_lock_irqsave(q->queue_lock, flags);
2715 __blk_put_request(q, req);
2716 spin_unlock_irqrestore(q->queue_lock, flags);
2720 EXPORT_SYMBOL(blk_put_request);
2723 * blk_end_sync_rq - executes a completion event on a request
2724 * @rq: request to complete
2725 * @error: end io status of the request
2727 void blk_end_sync_rq(struct request *rq, int error)
2729 struct completion *waiting = rq->end_io_data;
2731 rq->end_io_data = NULL;
2732 __blk_put_request(rq->q, rq);
2735 * complete last, if this is a stack request the process (and thus
2736 * the rq pointer) could be invalid right after this complete()
2738 complete(waiting);
2740 EXPORT_SYMBOL(blk_end_sync_rq);
2743 * blk_congestion_wait - wait for a queue to become uncongested
2744 * @rw: READ or WRITE
2745 * @timeout: timeout in jiffies
2747 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2748 * If no queues are congested then just wait for the next request to be
2749 * returned.
2751 long blk_congestion_wait(int rw, long timeout)
2753 long ret;
2754 DEFINE_WAIT(wait);
2755 wait_queue_head_t *wqh = &congestion_wqh[rw];
2757 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2758 ret = io_schedule_timeout(timeout);
2759 finish_wait(wqh, &wait);
2760 return ret;
2763 EXPORT_SYMBOL(blk_congestion_wait);
2766 * blk_congestion_end - wake up sleepers on a congestion queue
2767 * @rw: READ or WRITE
2769 void blk_congestion_end(int rw)
2771 wait_queue_head_t *wqh = &congestion_wqh[rw];
2773 if (waitqueue_active(wqh))
2774 wake_up(wqh);
2778 * Has to be called with the request spinlock acquired
2780 static int attempt_merge(request_queue_t *q, struct request *req,
2781 struct request *next)
2783 if (!rq_mergeable(req) || !rq_mergeable(next))
2784 return 0;
2787 * not contiguous
2789 if (req->sector + req->nr_sectors != next->sector)
2790 return 0;
2792 if (rq_data_dir(req) != rq_data_dir(next)
2793 || req->rq_disk != next->rq_disk
2794 || next->special)
2795 return 0;
2798 * If we are allowed to merge, then append bio list
2799 * from next to rq and release next. merge_requests_fn
2800 * will have updated segment counts, update sector
2801 * counts here.
2803 if (!q->merge_requests_fn(q, req, next))
2804 return 0;
2807 * At this point we have either done a back merge
2808 * or front merge. We need the smaller start_time of
2809 * the merged requests to be the current request
2810 * for accounting purposes.
2812 if (time_after(req->start_time, next->start_time))
2813 req->start_time = next->start_time;
2815 req->biotail->bi_next = next->bio;
2816 req->biotail = next->biotail;
2818 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2820 elv_merge_requests(q, req, next);
2822 if (req->rq_disk) {
2823 disk_round_stats(req->rq_disk);
2824 req->rq_disk->in_flight--;
2827 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2829 __blk_put_request(q, next);
2830 return 1;
2833 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2835 struct request *next = elv_latter_request(q, rq);
2837 if (next)
2838 return attempt_merge(q, rq, next);
2840 return 0;
2843 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2845 struct request *prev = elv_former_request(q, rq);
2847 if (prev)
2848 return attempt_merge(q, prev, rq);
2850 return 0;
2853 static void init_request_from_bio(struct request *req, struct bio *bio)
2855 req->cmd_type = REQ_TYPE_FS;
2858 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2860 if (bio_rw_ahead(bio) || bio_failfast(bio))
2861 req->cmd_flags |= REQ_FAILFAST;
2864 * REQ_BARRIER implies no merging, but lets make it explicit
2866 if (unlikely(bio_barrier(bio)))
2867 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2869 if (bio_sync(bio))
2870 req->cmd_flags |= REQ_RW_SYNC;
2872 req->errors = 0;
2873 req->hard_sector = req->sector = bio->bi_sector;
2874 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2875 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2876 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2877 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2878 req->buffer = bio_data(bio); /* see ->buffer comment above */
2879 req->bio = req->biotail = bio;
2880 req->ioprio = bio_prio(bio);
2881 req->rq_disk = bio->bi_bdev->bd_disk;
2882 req->start_time = jiffies;
2885 static int __make_request(request_queue_t *q, struct bio *bio)
2887 struct request *req;
2888 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2889 unsigned short prio;
2890 sector_t sector;
2892 sector = bio->bi_sector;
2893 nr_sectors = bio_sectors(bio);
2894 cur_nr_sectors = bio_cur_sectors(bio);
2895 prio = bio_prio(bio);
2897 rw = bio_data_dir(bio);
2898 sync = bio_sync(bio);
2901 * low level driver can indicate that it wants pages above a
2902 * certain limit bounced to low memory (ie for highmem, or even
2903 * ISA dma in theory)
2905 blk_queue_bounce(q, &bio);
2907 spin_lock_prefetch(q->queue_lock);
2909 barrier = bio_barrier(bio);
2910 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2911 err = -EOPNOTSUPP;
2912 goto end_io;
2915 spin_lock_irq(q->queue_lock);
2917 if (unlikely(barrier) || elv_queue_empty(q))
2918 goto get_rq;
2920 el_ret = elv_merge(q, &req, bio);
2921 switch (el_ret) {
2922 case ELEVATOR_BACK_MERGE:
2923 BUG_ON(!rq_mergeable(req));
2925 if (!q->back_merge_fn(q, req, bio))
2926 break;
2928 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2930 req->biotail->bi_next = bio;
2931 req->biotail = bio;
2932 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2933 req->ioprio = ioprio_best(req->ioprio, prio);
2934 drive_stat_acct(req, nr_sectors, 0);
2935 if (!attempt_back_merge(q, req))
2936 elv_merged_request(q, req, el_ret);
2937 goto out;
2939 case ELEVATOR_FRONT_MERGE:
2940 BUG_ON(!rq_mergeable(req));
2942 if (!q->front_merge_fn(q, req, bio))
2943 break;
2945 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2947 bio->bi_next = req->bio;
2948 req->bio = bio;
2951 * may not be valid. if the low level driver said
2952 * it didn't need a bounce buffer then it better
2953 * not touch req->buffer either...
2955 req->buffer = bio_data(bio);
2956 req->current_nr_sectors = cur_nr_sectors;
2957 req->hard_cur_sectors = cur_nr_sectors;
2958 req->sector = req->hard_sector = sector;
2959 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2960 req->ioprio = ioprio_best(req->ioprio, prio);
2961 drive_stat_acct(req, nr_sectors, 0);
2962 if (!attempt_front_merge(q, req))
2963 elv_merged_request(q, req, el_ret);
2964 goto out;
2966 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2967 default:
2971 get_rq:
2973 * Grab a free request. This is might sleep but can not fail.
2974 * Returns with the queue unlocked.
2976 req = get_request_wait(q, rw, bio);
2979 * After dropping the lock and possibly sleeping here, our request
2980 * may now be mergeable after it had proven unmergeable (above).
2981 * We don't worry about that case for efficiency. It won't happen
2982 * often, and the elevators are able to handle it.
2984 init_request_from_bio(req, bio);
2986 spin_lock_irq(q->queue_lock);
2987 if (elv_queue_empty(q))
2988 blk_plug_device(q);
2989 add_request(q, req);
2990 out:
2991 if (sync)
2992 __generic_unplug_device(q);
2994 spin_unlock_irq(q->queue_lock);
2995 return 0;
2997 end_io:
2998 bio_endio(bio, nr_sectors << 9, err);
2999 return 0;
3003 * If bio->bi_dev is a partition, remap the location
3005 static inline void blk_partition_remap(struct bio *bio)
3007 struct block_device *bdev = bio->bi_bdev;
3009 if (bdev != bdev->bd_contains) {
3010 struct hd_struct *p = bdev->bd_part;
3011 const int rw = bio_data_dir(bio);
3013 p->sectors[rw] += bio_sectors(bio);
3014 p->ios[rw]++;
3016 bio->bi_sector += p->start_sect;
3017 bio->bi_bdev = bdev->bd_contains;
3021 static void handle_bad_sector(struct bio *bio)
3023 char b[BDEVNAME_SIZE];
3025 printk(KERN_INFO "attempt to access beyond end of device\n");
3026 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3027 bdevname(bio->bi_bdev, b),
3028 bio->bi_rw,
3029 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3030 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3032 set_bit(BIO_EOF, &bio->bi_flags);
3036 * generic_make_request: hand a buffer to its device driver for I/O
3037 * @bio: The bio describing the location in memory and on the device.
3039 * generic_make_request() is used to make I/O requests of block
3040 * devices. It is passed a &struct bio, which describes the I/O that needs
3041 * to be done.
3043 * generic_make_request() does not return any status. The
3044 * success/failure status of the request, along with notification of
3045 * completion, is delivered asynchronously through the bio->bi_end_io
3046 * function described (one day) else where.
3048 * The caller of generic_make_request must make sure that bi_io_vec
3049 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3050 * set to describe the device address, and the
3051 * bi_end_io and optionally bi_private are set to describe how
3052 * completion notification should be signaled.
3054 * generic_make_request and the drivers it calls may use bi_next if this
3055 * bio happens to be merged with someone else, and may change bi_dev and
3056 * bi_sector for remaps as it sees fit. So the values of these fields
3057 * should NOT be depended on after the call to generic_make_request.
3059 void generic_make_request(struct bio *bio)
3061 request_queue_t *q;
3062 sector_t maxsector;
3063 int ret, nr_sectors = bio_sectors(bio);
3064 dev_t old_dev;
3066 might_sleep();
3067 /* Test device or partition size, when known. */
3068 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3069 if (maxsector) {
3070 sector_t sector = bio->bi_sector;
3072 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3074 * This may well happen - the kernel calls bread()
3075 * without checking the size of the device, e.g., when
3076 * mounting a device.
3078 handle_bad_sector(bio);
3079 goto end_io;
3084 * Resolve the mapping until finished. (drivers are
3085 * still free to implement/resolve their own stacking
3086 * by explicitly returning 0)
3088 * NOTE: we don't repeat the blk_size check for each new device.
3089 * Stacking drivers are expected to know what they are doing.
3091 maxsector = -1;
3092 old_dev = 0;
3093 do {
3094 char b[BDEVNAME_SIZE];
3096 q = bdev_get_queue(bio->bi_bdev);
3097 if (!q) {
3098 printk(KERN_ERR
3099 "generic_make_request: Trying to access "
3100 "nonexistent block-device %s (%Lu)\n",
3101 bdevname(bio->bi_bdev, b),
3102 (long long) bio->bi_sector);
3103 end_io:
3104 bio_endio(bio, bio->bi_size, -EIO);
3105 break;
3108 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3109 printk("bio too big device %s (%u > %u)\n",
3110 bdevname(bio->bi_bdev, b),
3111 bio_sectors(bio),
3112 q->max_hw_sectors);
3113 goto end_io;
3116 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3117 goto end_io;
3120 * If this device has partitions, remap block n
3121 * of partition p to block n+start(p) of the disk.
3123 blk_partition_remap(bio);
3125 if (maxsector != -1)
3126 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3127 maxsector);
3129 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3131 maxsector = bio->bi_sector;
3132 old_dev = bio->bi_bdev->bd_dev;
3134 ret = q->make_request_fn(q, bio);
3135 } while (ret);
3138 EXPORT_SYMBOL(generic_make_request);
3141 * submit_bio: submit a bio to the block device layer for I/O
3142 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3143 * @bio: The &struct bio which describes the I/O
3145 * submit_bio() is very similar in purpose to generic_make_request(), and
3146 * uses that function to do most of the work. Both are fairly rough
3147 * interfaces, @bio must be presetup and ready for I/O.
3150 void submit_bio(int rw, struct bio *bio)
3152 int count = bio_sectors(bio);
3154 BIO_BUG_ON(!bio->bi_size);
3155 BIO_BUG_ON(!bio->bi_io_vec);
3156 bio->bi_rw |= rw;
3157 if (rw & WRITE)
3158 count_vm_events(PGPGOUT, count);
3159 else
3160 count_vm_events(PGPGIN, count);
3162 if (unlikely(block_dump)) {
3163 char b[BDEVNAME_SIZE];
3164 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3165 current->comm, current->pid,
3166 (rw & WRITE) ? "WRITE" : "READ",
3167 (unsigned long long)bio->bi_sector,
3168 bdevname(bio->bi_bdev,b));
3171 generic_make_request(bio);
3174 EXPORT_SYMBOL(submit_bio);
3176 static void blk_recalc_rq_segments(struct request *rq)
3178 struct bio *bio, *prevbio = NULL;
3179 int nr_phys_segs, nr_hw_segs;
3180 unsigned int phys_size, hw_size;
3181 request_queue_t *q = rq->q;
3183 if (!rq->bio)
3184 return;
3186 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3187 rq_for_each_bio(bio, rq) {
3188 /* Force bio hw/phys segs to be recalculated. */
3189 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3191 nr_phys_segs += bio_phys_segments(q, bio);
3192 nr_hw_segs += bio_hw_segments(q, bio);
3193 if (prevbio) {
3194 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3195 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3197 if (blk_phys_contig_segment(q, prevbio, bio) &&
3198 pseg <= q->max_segment_size) {
3199 nr_phys_segs--;
3200 phys_size += prevbio->bi_size + bio->bi_size;
3201 } else
3202 phys_size = 0;
3204 if (blk_hw_contig_segment(q, prevbio, bio) &&
3205 hseg <= q->max_segment_size) {
3206 nr_hw_segs--;
3207 hw_size += prevbio->bi_size + bio->bi_size;
3208 } else
3209 hw_size = 0;
3211 prevbio = bio;
3214 rq->nr_phys_segments = nr_phys_segs;
3215 rq->nr_hw_segments = nr_hw_segs;
3218 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3220 if (blk_fs_request(rq)) {
3221 rq->hard_sector += nsect;
3222 rq->hard_nr_sectors -= nsect;
3225 * Move the I/O submission pointers ahead if required.
3227 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3228 (rq->sector <= rq->hard_sector)) {
3229 rq->sector = rq->hard_sector;
3230 rq->nr_sectors = rq->hard_nr_sectors;
3231 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3232 rq->current_nr_sectors = rq->hard_cur_sectors;
3233 rq->buffer = bio_data(rq->bio);
3237 * if total number of sectors is less than the first segment
3238 * size, something has gone terribly wrong
3240 if (rq->nr_sectors < rq->current_nr_sectors) {
3241 printk("blk: request botched\n");
3242 rq->nr_sectors = rq->current_nr_sectors;
3247 static int __end_that_request_first(struct request *req, int uptodate,
3248 int nr_bytes)
3250 int total_bytes, bio_nbytes, error, next_idx = 0;
3251 struct bio *bio;
3253 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3256 * extend uptodate bool to allow < 0 value to be direct io error
3258 error = 0;
3259 if (end_io_error(uptodate))
3260 error = !uptodate ? -EIO : uptodate;
3263 * for a REQ_BLOCK_PC request, we want to carry any eventual
3264 * sense key with us all the way through
3266 if (!blk_pc_request(req))
3267 req->errors = 0;
3269 if (!uptodate) {
3270 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3271 printk("end_request: I/O error, dev %s, sector %llu\n",
3272 req->rq_disk ? req->rq_disk->disk_name : "?",
3273 (unsigned long long)req->sector);
3276 if (blk_fs_request(req) && req->rq_disk) {
3277 const int rw = rq_data_dir(req);
3279 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3282 total_bytes = bio_nbytes = 0;
3283 while ((bio = req->bio) != NULL) {
3284 int nbytes;
3286 if (nr_bytes >= bio->bi_size) {
3287 req->bio = bio->bi_next;
3288 nbytes = bio->bi_size;
3289 if (!ordered_bio_endio(req, bio, nbytes, error))
3290 bio_endio(bio, nbytes, error);
3291 next_idx = 0;
3292 bio_nbytes = 0;
3293 } else {
3294 int idx = bio->bi_idx + next_idx;
3296 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3297 blk_dump_rq_flags(req, "__end_that");
3298 printk("%s: bio idx %d >= vcnt %d\n",
3299 __FUNCTION__,
3300 bio->bi_idx, bio->bi_vcnt);
3301 break;
3304 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3305 BIO_BUG_ON(nbytes > bio->bi_size);
3308 * not a complete bvec done
3310 if (unlikely(nbytes > nr_bytes)) {
3311 bio_nbytes += nr_bytes;
3312 total_bytes += nr_bytes;
3313 break;
3317 * advance to the next vector
3319 next_idx++;
3320 bio_nbytes += nbytes;
3323 total_bytes += nbytes;
3324 nr_bytes -= nbytes;
3326 if ((bio = req->bio)) {
3328 * end more in this run, or just return 'not-done'
3330 if (unlikely(nr_bytes <= 0))
3331 break;
3336 * completely done
3338 if (!req->bio)
3339 return 0;
3342 * if the request wasn't completed, update state
3344 if (bio_nbytes) {
3345 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3346 bio_endio(bio, bio_nbytes, error);
3347 bio->bi_idx += next_idx;
3348 bio_iovec(bio)->bv_offset += nr_bytes;
3349 bio_iovec(bio)->bv_len -= nr_bytes;
3352 blk_recalc_rq_sectors(req, total_bytes >> 9);
3353 blk_recalc_rq_segments(req);
3354 return 1;
3358 * end_that_request_first - end I/O on a request
3359 * @req: the request being processed
3360 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3361 * @nr_sectors: number of sectors to end I/O on
3363 * Description:
3364 * Ends I/O on a number of sectors attached to @req, and sets it up
3365 * for the next range of segments (if any) in the cluster.
3367 * Return:
3368 * 0 - we are done with this request, call end_that_request_last()
3369 * 1 - still buffers pending for this request
3371 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3373 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3376 EXPORT_SYMBOL(end_that_request_first);
3379 * end_that_request_chunk - end I/O on a request
3380 * @req: the request being processed
3381 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3382 * @nr_bytes: number of bytes to complete
3384 * Description:
3385 * Ends I/O on a number of bytes attached to @req, and sets it up
3386 * for the next range of segments (if any). Like end_that_request_first(),
3387 * but deals with bytes instead of sectors.
3389 * Return:
3390 * 0 - we are done with this request, call end_that_request_last()
3391 * 1 - still buffers pending for this request
3393 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3395 return __end_that_request_first(req, uptodate, nr_bytes);
3398 EXPORT_SYMBOL(end_that_request_chunk);
3401 * splice the completion data to a local structure and hand off to
3402 * process_completion_queue() to complete the requests
3404 static void blk_done_softirq(struct softirq_action *h)
3406 struct list_head *cpu_list, local_list;
3408 local_irq_disable();
3409 cpu_list = &__get_cpu_var(blk_cpu_done);
3410 list_replace_init(cpu_list, &local_list);
3411 local_irq_enable();
3413 while (!list_empty(&local_list)) {
3414 struct request *rq = list_entry(local_list.next, struct request, donelist);
3416 list_del_init(&rq->donelist);
3417 rq->q->softirq_done_fn(rq);
3421 #ifdef CONFIG_HOTPLUG_CPU
3423 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3424 void *hcpu)
3427 * If a CPU goes away, splice its entries to the current CPU
3428 * and trigger a run of the softirq
3430 if (action == CPU_DEAD) {
3431 int cpu = (unsigned long) hcpu;
3433 local_irq_disable();
3434 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3435 &__get_cpu_var(blk_cpu_done));
3436 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3437 local_irq_enable();
3440 return NOTIFY_OK;
3444 static struct notifier_block __devinitdata blk_cpu_notifier = {
3445 .notifier_call = blk_cpu_notify,
3448 #endif /* CONFIG_HOTPLUG_CPU */
3451 * blk_complete_request - end I/O on a request
3452 * @req: the request being processed
3454 * Description:
3455 * Ends all I/O on a request. It does not handle partial completions,
3456 * unless the driver actually implements this in its completion callback
3457 * through requeueing. Theh actual completion happens out-of-order,
3458 * through a softirq handler. The user must have registered a completion
3459 * callback through blk_queue_softirq_done().
3462 void blk_complete_request(struct request *req)
3464 struct list_head *cpu_list;
3465 unsigned long flags;
3467 BUG_ON(!req->q->softirq_done_fn);
3469 local_irq_save(flags);
3471 cpu_list = &__get_cpu_var(blk_cpu_done);
3472 list_add_tail(&req->donelist, cpu_list);
3473 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3475 local_irq_restore(flags);
3478 EXPORT_SYMBOL(blk_complete_request);
3481 * queue lock must be held
3483 void end_that_request_last(struct request *req, int uptodate)
3485 struct gendisk *disk = req->rq_disk;
3486 int error;
3489 * extend uptodate bool to allow < 0 value to be direct io error
3491 error = 0;
3492 if (end_io_error(uptodate))
3493 error = !uptodate ? -EIO : uptodate;
3495 if (unlikely(laptop_mode) && blk_fs_request(req))
3496 laptop_io_completion();
3499 * Account IO completion. bar_rq isn't accounted as a normal
3500 * IO on queueing nor completion. Accounting the containing
3501 * request is enough.
3503 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3504 unsigned long duration = jiffies - req->start_time;
3505 const int rw = rq_data_dir(req);
3507 __disk_stat_inc(disk, ios[rw]);
3508 __disk_stat_add(disk, ticks[rw], duration);
3509 disk_round_stats(disk);
3510 disk->in_flight--;
3512 if (req->end_io)
3513 req->end_io(req, error);
3514 else
3515 __blk_put_request(req->q, req);
3518 EXPORT_SYMBOL(end_that_request_last);
3520 void end_request(struct request *req, int uptodate)
3522 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3523 add_disk_randomness(req->rq_disk);
3524 blkdev_dequeue_request(req);
3525 end_that_request_last(req, uptodate);
3529 EXPORT_SYMBOL(end_request);
3531 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3533 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3534 rq->cmd_flags |= (bio->bi_rw & 3);
3536 rq->nr_phys_segments = bio_phys_segments(q, bio);
3537 rq->nr_hw_segments = bio_hw_segments(q, bio);
3538 rq->current_nr_sectors = bio_cur_sectors(bio);
3539 rq->hard_cur_sectors = rq->current_nr_sectors;
3540 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3541 rq->buffer = bio_data(bio);
3543 rq->bio = rq->biotail = bio;
3546 EXPORT_SYMBOL(blk_rq_bio_prep);
3548 int kblockd_schedule_work(struct work_struct *work)
3550 return queue_work(kblockd_workqueue, work);
3553 EXPORT_SYMBOL(kblockd_schedule_work);
3555 void kblockd_flush(void)
3557 flush_workqueue(kblockd_workqueue);
3559 EXPORT_SYMBOL(kblockd_flush);
3561 int __init blk_dev_init(void)
3563 int i;
3565 kblockd_workqueue = create_workqueue("kblockd");
3566 if (!kblockd_workqueue)
3567 panic("Failed to create kblockd\n");
3569 request_cachep = kmem_cache_create("blkdev_requests",
3570 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3572 requestq_cachep = kmem_cache_create("blkdev_queue",
3573 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3575 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3576 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3578 for_each_possible_cpu(i)
3579 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3581 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3582 register_hotcpu_notifier(&blk_cpu_notifier);
3584 blk_max_low_pfn = max_low_pfn;
3585 blk_max_pfn = max_pfn;
3587 return 0;
3591 * IO Context helper functions
3593 void put_io_context(struct io_context *ioc)
3595 if (ioc == NULL)
3596 return;
3598 BUG_ON(atomic_read(&ioc->refcount) == 0);
3600 if (atomic_dec_and_test(&ioc->refcount)) {
3601 struct cfq_io_context *cic;
3603 rcu_read_lock();
3604 if (ioc->aic && ioc->aic->dtor)
3605 ioc->aic->dtor(ioc->aic);
3606 if (ioc->cic_root.rb_node != NULL) {
3607 struct rb_node *n = rb_first(&ioc->cic_root);
3609 cic = rb_entry(n, struct cfq_io_context, rb_node);
3610 cic->dtor(ioc);
3612 rcu_read_unlock();
3614 kmem_cache_free(iocontext_cachep, ioc);
3617 EXPORT_SYMBOL(put_io_context);
3619 /* Called by the exitting task */
3620 void exit_io_context(void)
3622 unsigned long flags;
3623 struct io_context *ioc;
3624 struct cfq_io_context *cic;
3626 local_irq_save(flags);
3627 task_lock(current);
3628 ioc = current->io_context;
3629 current->io_context = NULL;
3630 ioc->task = NULL;
3631 task_unlock(current);
3632 local_irq_restore(flags);
3634 if (ioc->aic && ioc->aic->exit)
3635 ioc->aic->exit(ioc->aic);
3636 if (ioc->cic_root.rb_node != NULL) {
3637 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3638 cic->exit(ioc);
3641 put_io_context(ioc);
3645 * If the current task has no IO context then create one and initialise it.
3646 * Otherwise, return its existing IO context.
3648 * This returned IO context doesn't have a specifically elevated refcount,
3649 * but since the current task itself holds a reference, the context can be
3650 * used in general code, so long as it stays within `current` context.
3652 struct io_context *current_io_context(gfp_t gfp_flags)
3654 struct task_struct *tsk = current;
3655 struct io_context *ret;
3657 ret = tsk->io_context;
3658 if (likely(ret))
3659 return ret;
3661 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3662 if (ret) {
3663 atomic_set(&ret->refcount, 1);
3664 ret->task = current;
3665 ret->set_ioprio = NULL;
3666 ret->last_waited = jiffies; /* doesn't matter... */
3667 ret->nr_batch_requests = 0; /* because this is 0 */
3668 ret->aic = NULL;
3669 ret->cic_root.rb_node = NULL;
3670 /* make sure set_task_ioprio() sees the settings above */
3671 smp_wmb();
3672 tsk->io_context = ret;
3675 return ret;
3677 EXPORT_SYMBOL(current_io_context);
3680 * If the current task has no IO context then create one and initialise it.
3681 * If it does have a context, take a ref on it.
3683 * This is always called in the context of the task which submitted the I/O.
3685 struct io_context *get_io_context(gfp_t gfp_flags)
3687 struct io_context *ret;
3688 ret = current_io_context(gfp_flags);
3689 if (likely(ret))
3690 atomic_inc(&ret->refcount);
3691 return ret;
3693 EXPORT_SYMBOL(get_io_context);
3695 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3697 struct io_context *src = *psrc;
3698 struct io_context *dst = *pdst;
3700 if (src) {
3701 BUG_ON(atomic_read(&src->refcount) == 0);
3702 atomic_inc(&src->refcount);
3703 put_io_context(dst);
3704 *pdst = src;
3707 EXPORT_SYMBOL(copy_io_context);
3709 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3711 struct io_context *temp;
3712 temp = *ioc1;
3713 *ioc1 = *ioc2;
3714 *ioc2 = temp;
3716 EXPORT_SYMBOL(swap_io_context);
3719 * sysfs parts below
3721 struct queue_sysfs_entry {
3722 struct attribute attr;
3723 ssize_t (*show)(struct request_queue *, char *);
3724 ssize_t (*store)(struct request_queue *, const char *, size_t);
3727 static ssize_t
3728 queue_var_show(unsigned int var, char *page)
3730 return sprintf(page, "%d\n", var);
3733 static ssize_t
3734 queue_var_store(unsigned long *var, const char *page, size_t count)
3736 char *p = (char *) page;
3738 *var = simple_strtoul(p, &p, 10);
3739 return count;
3742 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3744 return queue_var_show(q->nr_requests, (page));
3747 static ssize_t
3748 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3750 struct request_list *rl = &q->rq;
3751 unsigned long nr;
3752 int ret = queue_var_store(&nr, page, count);
3753 if (nr < BLKDEV_MIN_RQ)
3754 nr = BLKDEV_MIN_RQ;
3756 spin_lock_irq(q->queue_lock);
3757 q->nr_requests = nr;
3758 blk_queue_congestion_threshold(q);
3760 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3761 set_queue_congested(q, READ);
3762 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3763 clear_queue_congested(q, READ);
3765 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3766 set_queue_congested(q, WRITE);
3767 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3768 clear_queue_congested(q, WRITE);
3770 if (rl->count[READ] >= q->nr_requests) {
3771 blk_set_queue_full(q, READ);
3772 } else if (rl->count[READ]+1 <= q->nr_requests) {
3773 blk_clear_queue_full(q, READ);
3774 wake_up(&rl->wait[READ]);
3777 if (rl->count[WRITE] >= q->nr_requests) {
3778 blk_set_queue_full(q, WRITE);
3779 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3780 blk_clear_queue_full(q, WRITE);
3781 wake_up(&rl->wait[WRITE]);
3783 spin_unlock_irq(q->queue_lock);
3784 return ret;
3787 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3789 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3791 return queue_var_show(ra_kb, (page));
3794 static ssize_t
3795 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3797 unsigned long ra_kb;
3798 ssize_t ret = queue_var_store(&ra_kb, page, count);
3800 spin_lock_irq(q->queue_lock);
3801 if (ra_kb > (q->max_sectors >> 1))
3802 ra_kb = (q->max_sectors >> 1);
3804 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3805 spin_unlock_irq(q->queue_lock);
3807 return ret;
3810 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3812 int max_sectors_kb = q->max_sectors >> 1;
3814 return queue_var_show(max_sectors_kb, (page));
3817 static ssize_t
3818 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3820 unsigned long max_sectors_kb,
3821 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3822 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3823 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3824 int ra_kb;
3826 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3827 return -EINVAL;
3829 * Take the queue lock to update the readahead and max_sectors
3830 * values synchronously:
3832 spin_lock_irq(q->queue_lock);
3834 * Trim readahead window as well, if necessary:
3836 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3837 if (ra_kb > max_sectors_kb)
3838 q->backing_dev_info.ra_pages =
3839 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3841 q->max_sectors = max_sectors_kb << 1;
3842 spin_unlock_irq(q->queue_lock);
3844 return ret;
3847 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3849 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3851 return queue_var_show(max_hw_sectors_kb, (page));
3855 static struct queue_sysfs_entry queue_requests_entry = {
3856 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3857 .show = queue_requests_show,
3858 .store = queue_requests_store,
3861 static struct queue_sysfs_entry queue_ra_entry = {
3862 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3863 .show = queue_ra_show,
3864 .store = queue_ra_store,
3867 static struct queue_sysfs_entry queue_max_sectors_entry = {
3868 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3869 .show = queue_max_sectors_show,
3870 .store = queue_max_sectors_store,
3873 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3874 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3875 .show = queue_max_hw_sectors_show,
3878 static struct queue_sysfs_entry queue_iosched_entry = {
3879 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3880 .show = elv_iosched_show,
3881 .store = elv_iosched_store,
3884 static struct attribute *default_attrs[] = {
3885 &queue_requests_entry.attr,
3886 &queue_ra_entry.attr,
3887 &queue_max_hw_sectors_entry.attr,
3888 &queue_max_sectors_entry.attr,
3889 &queue_iosched_entry.attr,
3890 NULL,
3893 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3895 static ssize_t
3896 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3898 struct queue_sysfs_entry *entry = to_queue(attr);
3899 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3900 ssize_t res;
3902 if (!entry->show)
3903 return -EIO;
3904 mutex_lock(&q->sysfs_lock);
3905 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3906 mutex_unlock(&q->sysfs_lock);
3907 return -ENOENT;
3909 res = entry->show(q, page);
3910 mutex_unlock(&q->sysfs_lock);
3911 return res;
3914 static ssize_t
3915 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3916 const char *page, size_t length)
3918 struct queue_sysfs_entry *entry = to_queue(attr);
3919 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3921 ssize_t res;
3923 if (!entry->store)
3924 return -EIO;
3925 mutex_lock(&q->sysfs_lock);
3926 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3927 mutex_unlock(&q->sysfs_lock);
3928 return -ENOENT;
3930 res = entry->store(q, page, length);
3931 mutex_unlock(&q->sysfs_lock);
3932 return res;
3935 static struct sysfs_ops queue_sysfs_ops = {
3936 .show = queue_attr_show,
3937 .store = queue_attr_store,
3940 static struct kobj_type queue_ktype = {
3941 .sysfs_ops = &queue_sysfs_ops,
3942 .default_attrs = default_attrs,
3943 .release = blk_release_queue,
3946 int blk_register_queue(struct gendisk *disk)
3948 int ret;
3950 request_queue_t *q = disk->queue;
3952 if (!q || !q->request_fn)
3953 return -ENXIO;
3955 q->kobj.parent = kobject_get(&disk->kobj);
3957 ret = kobject_add(&q->kobj);
3958 if (ret < 0)
3959 return ret;
3961 kobject_uevent(&q->kobj, KOBJ_ADD);
3963 ret = elv_register_queue(q);
3964 if (ret) {
3965 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3966 kobject_del(&q->kobj);
3967 return ret;
3970 return 0;
3973 void blk_unregister_queue(struct gendisk *disk)
3975 request_queue_t *q = disk->queue;
3977 if (q && q->request_fn) {
3978 elv_unregister_queue(q);
3980 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3981 kobject_del(&q->kobj);
3982 kobject_put(&disk->kobj);