[TCP]: spelling fixes
[linux-2.6/verdex.git] / net / ipv4 / tcp_input.c
blob34cfa58eab7667ef3769bb63f0c3288b31b7e327
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
91 int sysctl_tcp_moderate_rcvbuf = 1;
92 int sysctl_tcp_abc = 1;
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
115 /* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
118 static inline void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 unsigned int len;
125 icsk->icsk_ack.last_seg_size = 0;
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
130 len = skb->len;
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
137 * "len" is invariant segment length, including TCP header.
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
154 if (len == lss) {
155 icsk->icsk_ack.rcv_mss = len;
156 return;
159 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
163 static void tcp_incr_quickack(struct sock *sk)
165 struct inet_connection_sock *icsk = inet_csk(sk);
166 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
168 if (quickacks==0)
169 quickacks=2;
170 if (quickacks > icsk->icsk_ack.quick)
171 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 void tcp_enter_quickack_mode(struct sock *sk)
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 tcp_incr_quickack(sk);
178 icsk->icsk_ack.pingpong = 0;
179 icsk->icsk_ack.ato = TCP_ATO_MIN;
182 /* Send ACKs quickly, if "quick" count is not exhausted
183 * and the session is not interactive.
186 static inline int tcp_in_quickack_mode(const struct sock *sk)
188 const struct inet_connection_sock *icsk = inet_csk(sk);
189 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 /* Buffer size and advertised window tuning.
194 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 static void tcp_fixup_sndbuf(struct sock *sk)
199 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
200 sizeof(struct sk_buff);
202 if (sk->sk_sndbuf < 3 * sndmem)
203 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
208 * All tcp_full_space() is split to two parts: "network" buffer, allocated
209 * forward and advertised in receiver window (tp->rcv_wnd) and
210 * "application buffer", required to isolate scheduling/application
211 * latencies from network.
212 * window_clamp is maximal advertised window. It can be less than
213 * tcp_full_space(), in this case tcp_full_space() - window_clamp
214 * is reserved for "application" buffer. The less window_clamp is
215 * the smoother our behaviour from viewpoint of network, but the lower
216 * throughput and the higher sensitivity of the connection to losses. 8)
218 * rcv_ssthresh is more strict window_clamp used at "slow start"
219 * phase to predict further behaviour of this connection.
220 * It is used for two goals:
221 * - to enforce header prediction at sender, even when application
222 * requires some significant "application buffer". It is check #1.
223 * - to prevent pruning of receive queue because of misprediction
224 * of receiver window. Check #2.
226 * The scheme does not work when sender sends good segments opening
227 * window and then starts to feed us spaghetti. But it should work
228 * in common situations. Otherwise, we have to rely on queue collapsing.
231 /* Slow part of check#2. */
232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
233 const struct sk_buff *skb)
235 /* Optimize this! */
236 int truesize = tcp_win_from_space(skb->truesize)/2;
237 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
239 while (tp->rcv_ssthresh <= window) {
240 if (truesize <= skb->len)
241 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
243 truesize >>= 1;
244 window >>= 1;
246 return 0;
249 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
250 struct sk_buff *skb)
252 /* Check #1 */
253 if (tp->rcv_ssthresh < tp->window_clamp &&
254 (int)tp->rcv_ssthresh < tcp_space(sk) &&
255 !tcp_memory_pressure) {
256 int incr;
258 /* Check #2. Increase window, if skb with such overhead
259 * will fit to rcvbuf in future.
261 if (tcp_win_from_space(skb->truesize) <= skb->len)
262 incr = 2*tp->advmss;
263 else
264 incr = __tcp_grow_window(sk, tp, skb);
266 if (incr) {
267 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
268 inet_csk(sk)->icsk_ack.quick |= 1;
273 /* 3. Tuning rcvbuf, when connection enters established state. */
275 static void tcp_fixup_rcvbuf(struct sock *sk)
277 struct tcp_sock *tp = tcp_sk(sk);
278 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
280 /* Try to select rcvbuf so that 4 mss-sized segments
281 * will fit to window and corresponding skbs will fit to our rcvbuf.
282 * (was 3; 4 is minimum to allow fast retransmit to work.)
284 while (tcp_win_from_space(rcvmem) < tp->advmss)
285 rcvmem += 128;
286 if (sk->sk_rcvbuf < 4 * rcvmem)
287 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 /* 4. Try to fixup all. It is made immediately after connection enters
291 * established state.
293 static void tcp_init_buffer_space(struct sock *sk)
295 struct tcp_sock *tp = tcp_sk(sk);
296 int maxwin;
298 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
299 tcp_fixup_rcvbuf(sk);
300 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
301 tcp_fixup_sndbuf(sk);
303 tp->rcvq_space.space = tp->rcv_wnd;
305 maxwin = tcp_full_space(sk);
307 if (tp->window_clamp >= maxwin) {
308 tp->window_clamp = maxwin;
310 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
311 tp->window_clamp = max(maxwin -
312 (maxwin >> sysctl_tcp_app_win),
313 4 * tp->advmss);
316 /* Force reservation of one segment. */
317 if (sysctl_tcp_app_win &&
318 tp->window_clamp > 2 * tp->advmss &&
319 tp->window_clamp + tp->advmss > maxwin)
320 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
322 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
323 tp->snd_cwnd_stamp = tcp_time_stamp;
326 /* 5. Recalculate window clamp after socket hit its memory bounds. */
327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
329 struct inet_connection_sock *icsk = inet_csk(sk);
331 icsk->icsk_ack.quick = 0;
333 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
334 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
335 !tcp_memory_pressure &&
336 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
337 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
338 sysctl_tcp_rmem[2]);
340 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
341 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
344 /* Receiver "autotuning" code.
346 * The algorithm for RTT estimation w/o timestamps is based on
347 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
348 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
350 * More detail on this code can be found at
351 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
352 * though this reference is out of date. A new paper
353 * is pending.
355 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
357 u32 new_sample = tp->rcv_rtt_est.rtt;
358 long m = sample;
360 if (m == 0)
361 m = 1;
363 if (new_sample != 0) {
364 /* If we sample in larger samples in the non-timestamp
365 * case, we could grossly overestimate the RTT especially
366 * with chatty applications or bulk transfer apps which
367 * are stalled on filesystem I/O.
369 * Also, since we are only going for a minimum in the
370 * non-timestamp case, we do not smoother things out
371 * else with timestamps disabled convergence takes too
372 * long.
374 if (!win_dep) {
375 m -= (new_sample >> 3);
376 new_sample += m;
377 } else if (m < new_sample)
378 new_sample = m << 3;
379 } else {
380 /* No previous measure. */
381 new_sample = m << 3;
384 if (tp->rcv_rtt_est.rtt != new_sample)
385 tp->rcv_rtt_est.rtt = new_sample;
388 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
390 if (tp->rcv_rtt_est.time == 0)
391 goto new_measure;
392 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
393 return;
394 tcp_rcv_rtt_update(tp,
395 jiffies - tp->rcv_rtt_est.time,
398 new_measure:
399 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
400 tp->rcv_rtt_est.time = tcp_time_stamp;
403 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
405 struct tcp_sock *tp = tcp_sk(sk);
406 if (tp->rx_opt.rcv_tsecr &&
407 (TCP_SKB_CB(skb)->end_seq -
408 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
409 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
413 * This function should be called every time data is copied to user space.
414 * It calculates the appropriate TCP receive buffer space.
416 void tcp_rcv_space_adjust(struct sock *sk)
418 struct tcp_sock *tp = tcp_sk(sk);
419 int time;
420 int space;
422 if (tp->rcvq_space.time == 0)
423 goto new_measure;
425 time = tcp_time_stamp - tp->rcvq_space.time;
426 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
427 tp->rcv_rtt_est.rtt == 0)
428 return;
430 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
432 space = max(tp->rcvq_space.space, space);
434 if (tp->rcvq_space.space != space) {
435 int rcvmem;
437 tp->rcvq_space.space = space;
439 if (sysctl_tcp_moderate_rcvbuf) {
440 int new_clamp = space;
442 /* Receive space grows, normalize in order to
443 * take into account packet headers and sk_buff
444 * structure overhead.
446 space /= tp->advmss;
447 if (!space)
448 space = 1;
449 rcvmem = (tp->advmss + MAX_TCP_HEADER +
450 16 + sizeof(struct sk_buff));
451 while (tcp_win_from_space(rcvmem) < tp->advmss)
452 rcvmem += 128;
453 space *= rcvmem;
454 space = min(space, sysctl_tcp_rmem[2]);
455 if (space > sk->sk_rcvbuf) {
456 sk->sk_rcvbuf = space;
458 /* Make the window clamp follow along. */
459 tp->window_clamp = new_clamp;
464 new_measure:
465 tp->rcvq_space.seq = tp->copied_seq;
466 tp->rcvq_space.time = tcp_time_stamp;
469 /* There is something which you must keep in mind when you analyze the
470 * behavior of the tp->ato delayed ack timeout interval. When a
471 * connection starts up, we want to ack as quickly as possible. The
472 * problem is that "good" TCP's do slow start at the beginning of data
473 * transmission. The means that until we send the first few ACK's the
474 * sender will sit on his end and only queue most of his data, because
475 * he can only send snd_cwnd unacked packets at any given time. For
476 * each ACK we send, he increments snd_cwnd and transmits more of his
477 * queue. -DaveM
479 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
481 struct inet_connection_sock *icsk = inet_csk(sk);
482 u32 now;
484 inet_csk_schedule_ack(sk);
486 tcp_measure_rcv_mss(sk, skb);
488 tcp_rcv_rtt_measure(tp);
490 now = tcp_time_stamp;
492 if (!icsk->icsk_ack.ato) {
493 /* The _first_ data packet received, initialize
494 * delayed ACK engine.
496 tcp_incr_quickack(sk);
497 icsk->icsk_ack.ato = TCP_ATO_MIN;
498 } else {
499 int m = now - icsk->icsk_ack.lrcvtime;
501 if (m <= TCP_ATO_MIN/2) {
502 /* The fastest case is the first. */
503 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
504 } else if (m < icsk->icsk_ack.ato) {
505 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
506 if (icsk->icsk_ack.ato > icsk->icsk_rto)
507 icsk->icsk_ack.ato = icsk->icsk_rto;
508 } else if (m > icsk->icsk_rto) {
509 /* Too long gap. Apparently sender failed to
510 * restart window, so that we send ACKs quickly.
512 tcp_incr_quickack(sk);
513 sk_stream_mem_reclaim(sk);
516 icsk->icsk_ack.lrcvtime = now;
518 TCP_ECN_check_ce(tp, skb);
520 if (skb->len >= 128)
521 tcp_grow_window(sk, tp, skb);
524 /* Called to compute a smoothed rtt estimate. The data fed to this
525 * routine either comes from timestamps, or from segments that were
526 * known _not_ to have been retransmitted [see Karn/Partridge
527 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
528 * piece by Van Jacobson.
529 * NOTE: the next three routines used to be one big routine.
530 * To save cycles in the RFC 1323 implementation it was better to break
531 * it up into three procedures. -- erics
533 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
535 struct tcp_sock *tp = tcp_sk(sk);
536 long m = mrtt; /* RTT */
538 /* The following amusing code comes from Jacobson's
539 * article in SIGCOMM '88. Note that rtt and mdev
540 * are scaled versions of rtt and mean deviation.
541 * This is designed to be as fast as possible
542 * m stands for "measurement".
544 * On a 1990 paper the rto value is changed to:
545 * RTO = rtt + 4 * mdev
547 * Funny. This algorithm seems to be very broken.
548 * These formulae increase RTO, when it should be decreased, increase
549 * too slowly, when it should be increased fastly, decrease too fastly
550 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
551 * does not matter how to _calculate_ it. Seems, it was trap
552 * that VJ failed to avoid. 8)
554 if(m == 0)
555 m = 1;
556 if (tp->srtt != 0) {
557 m -= (tp->srtt >> 3); /* m is now error in rtt est */
558 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
559 if (m < 0) {
560 m = -m; /* m is now abs(error) */
561 m -= (tp->mdev >> 2); /* similar update on mdev */
562 /* This is similar to one of Eifel findings.
563 * Eifel blocks mdev updates when rtt decreases.
564 * This solution is a bit different: we use finer gain
565 * for mdev in this case (alpha*beta).
566 * Like Eifel it also prevents growth of rto,
567 * but also it limits too fast rto decreases,
568 * happening in pure Eifel.
570 if (m > 0)
571 m >>= 3;
572 } else {
573 m -= (tp->mdev >> 2); /* similar update on mdev */
575 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
576 if (tp->mdev > tp->mdev_max) {
577 tp->mdev_max = tp->mdev;
578 if (tp->mdev_max > tp->rttvar)
579 tp->rttvar = tp->mdev_max;
581 if (after(tp->snd_una, tp->rtt_seq)) {
582 if (tp->mdev_max < tp->rttvar)
583 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
584 tp->rtt_seq = tp->snd_nxt;
585 tp->mdev_max = TCP_RTO_MIN;
587 } else {
588 /* no previous measure. */
589 tp->srtt = m<<3; /* take the measured time to be rtt */
590 tp->mdev = m<<1; /* make sure rto = 3*rtt */
591 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
592 tp->rtt_seq = tp->snd_nxt;
596 /* Calculate rto without backoff. This is the second half of Van Jacobson's
597 * routine referred to above.
599 static inline void tcp_set_rto(struct sock *sk)
601 const struct tcp_sock *tp = tcp_sk(sk);
602 /* Old crap is replaced with new one. 8)
604 * More seriously:
605 * 1. If rtt variance happened to be less 50msec, it is hallucination.
606 * It cannot be less due to utterly erratic ACK generation made
607 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
608 * to do with delayed acks, because at cwnd>2 true delack timeout
609 * is invisible. Actually, Linux-2.4 also generates erratic
610 * ACKs in some circumstances.
612 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
614 /* 2. Fixups made earlier cannot be right.
615 * If we do not estimate RTO correctly without them,
616 * all the algo is pure shit and should be replaced
617 * with correct one. It is exactly, which we pretend to do.
621 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
622 * guarantees that rto is higher.
624 static inline void tcp_bound_rto(struct sock *sk)
626 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
627 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
630 /* Save metrics learned by this TCP session.
631 This function is called only, when TCP finishes successfully
632 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
634 void tcp_update_metrics(struct sock *sk)
636 struct tcp_sock *tp = tcp_sk(sk);
637 struct dst_entry *dst = __sk_dst_get(sk);
639 if (sysctl_tcp_nometrics_save)
640 return;
642 dst_confirm(dst);
644 if (dst && (dst->flags&DST_HOST)) {
645 const struct inet_connection_sock *icsk = inet_csk(sk);
646 int m;
648 if (icsk->icsk_backoff || !tp->srtt) {
649 /* This session failed to estimate rtt. Why?
650 * Probably, no packets returned in time.
651 * Reset our results.
653 if (!(dst_metric_locked(dst, RTAX_RTT)))
654 dst->metrics[RTAX_RTT-1] = 0;
655 return;
658 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
660 /* If newly calculated rtt larger than stored one,
661 * store new one. Otherwise, use EWMA. Remember,
662 * rtt overestimation is always better than underestimation.
664 if (!(dst_metric_locked(dst, RTAX_RTT))) {
665 if (m <= 0)
666 dst->metrics[RTAX_RTT-1] = tp->srtt;
667 else
668 dst->metrics[RTAX_RTT-1] -= (m>>3);
671 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
672 if (m < 0)
673 m = -m;
675 /* Scale deviation to rttvar fixed point */
676 m >>= 1;
677 if (m < tp->mdev)
678 m = tp->mdev;
680 if (m >= dst_metric(dst, RTAX_RTTVAR))
681 dst->metrics[RTAX_RTTVAR-1] = m;
682 else
683 dst->metrics[RTAX_RTTVAR-1] -=
684 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
687 if (tp->snd_ssthresh >= 0xFFFF) {
688 /* Slow start still did not finish. */
689 if (dst_metric(dst, RTAX_SSTHRESH) &&
690 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
691 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
692 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
693 if (!dst_metric_locked(dst, RTAX_CWND) &&
694 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
695 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
696 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
697 icsk->icsk_ca_state == TCP_CA_Open) {
698 /* Cong. avoidance phase, cwnd is reliable. */
699 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
700 dst->metrics[RTAX_SSTHRESH-1] =
701 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
702 if (!dst_metric_locked(dst, RTAX_CWND))
703 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
704 } else {
705 /* Else slow start did not finish, cwnd is non-sense,
706 ssthresh may be also invalid.
708 if (!dst_metric_locked(dst, RTAX_CWND))
709 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
710 if (dst->metrics[RTAX_SSTHRESH-1] &&
711 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
712 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
713 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
716 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
717 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
718 tp->reordering != sysctl_tcp_reordering)
719 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
724 /* Numbers are taken from RFC2414. */
725 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
727 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
729 if (!cwnd) {
730 if (tp->mss_cache > 1460)
731 cwnd = 2;
732 else
733 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
735 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
738 /* Initialize metrics on socket. */
740 static void tcp_init_metrics(struct sock *sk)
742 struct tcp_sock *tp = tcp_sk(sk);
743 struct dst_entry *dst = __sk_dst_get(sk);
745 if (dst == NULL)
746 goto reset;
748 dst_confirm(dst);
750 if (dst_metric_locked(dst, RTAX_CWND))
751 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
752 if (dst_metric(dst, RTAX_SSTHRESH)) {
753 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
754 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
755 tp->snd_ssthresh = tp->snd_cwnd_clamp;
757 if (dst_metric(dst, RTAX_REORDERING) &&
758 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
759 tp->rx_opt.sack_ok &= ~2;
760 tp->reordering = dst_metric(dst, RTAX_REORDERING);
763 if (dst_metric(dst, RTAX_RTT) == 0)
764 goto reset;
766 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
767 goto reset;
769 /* Initial rtt is determined from SYN,SYN-ACK.
770 * The segment is small and rtt may appear much
771 * less than real one. Use per-dst memory
772 * to make it more realistic.
774 * A bit of theory. RTT is time passed after "normal" sized packet
775 * is sent until it is ACKed. In normal circumstances sending small
776 * packets force peer to delay ACKs and calculation is correct too.
777 * The algorithm is adaptive and, provided we follow specs, it
778 * NEVER underestimate RTT. BUT! If peer tries to make some clever
779 * tricks sort of "quick acks" for time long enough to decrease RTT
780 * to low value, and then abruptly stops to do it and starts to delay
781 * ACKs, wait for troubles.
783 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
784 tp->srtt = dst_metric(dst, RTAX_RTT);
785 tp->rtt_seq = tp->snd_nxt;
787 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
788 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
789 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
791 tcp_set_rto(sk);
792 tcp_bound_rto(sk);
793 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
794 goto reset;
795 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
796 tp->snd_cwnd_stamp = tcp_time_stamp;
797 return;
799 reset:
800 /* Play conservative. If timestamps are not
801 * supported, TCP will fail to recalculate correct
802 * rtt, if initial rto is too small. FORGET ALL AND RESET!
804 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
805 tp->srtt = 0;
806 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
807 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
811 static void tcp_update_reordering(struct sock *sk, const int metric,
812 const int ts)
814 struct tcp_sock *tp = tcp_sk(sk);
815 if (metric > tp->reordering) {
816 tp->reordering = min(TCP_MAX_REORDERING, metric);
818 /* This exciting event is worth to be remembered. 8) */
819 if (ts)
820 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
821 else if (IsReno(tp))
822 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
823 else if (IsFack(tp))
824 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
825 else
826 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
827 #if FASTRETRANS_DEBUG > 1
828 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
829 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
830 tp->reordering,
831 tp->fackets_out,
832 tp->sacked_out,
833 tp->undo_marker ? tp->undo_retrans : 0);
834 #endif
835 /* Disable FACK yet. */
836 tp->rx_opt.sack_ok &= ~2;
840 /* This procedure tags the retransmission queue when SACKs arrive.
842 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
843 * Packets in queue with these bits set are counted in variables
844 * sacked_out, retrans_out and lost_out, correspondingly.
846 * Valid combinations are:
847 * Tag InFlight Description
848 * 0 1 - orig segment is in flight.
849 * S 0 - nothing flies, orig reached receiver.
850 * L 0 - nothing flies, orig lost by net.
851 * R 2 - both orig and retransmit are in flight.
852 * L|R 1 - orig is lost, retransmit is in flight.
853 * S|R 1 - orig reached receiver, retrans is still in flight.
854 * (L|S|R is logically valid, it could occur when L|R is sacked,
855 * but it is equivalent to plain S and code short-curcuits it to S.
856 * L|S is logically invalid, it would mean -1 packet in flight 8))
858 * These 6 states form finite state machine, controlled by the following events:
859 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
860 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
861 * 3. Loss detection event of one of three flavors:
862 * A. Scoreboard estimator decided the packet is lost.
863 * A'. Reno "three dupacks" marks head of queue lost.
864 * A''. Its FACK modfication, head until snd.fack is lost.
865 * B. SACK arrives sacking data transmitted after never retransmitted
866 * hole was sent out.
867 * C. SACK arrives sacking SND.NXT at the moment, when the
868 * segment was retransmitted.
869 * 4. D-SACK added new rule: D-SACK changes any tag to S.
871 * It is pleasant to note, that state diagram turns out to be commutative,
872 * so that we are allowed not to be bothered by order of our actions,
873 * when multiple events arrive simultaneously. (see the function below).
875 * Reordering detection.
876 * --------------------
877 * Reordering metric is maximal distance, which a packet can be displaced
878 * in packet stream. With SACKs we can estimate it:
880 * 1. SACK fills old hole and the corresponding segment was not
881 * ever retransmitted -> reordering. Alas, we cannot use it
882 * when segment was retransmitted.
883 * 2. The last flaw is solved with D-SACK. D-SACK arrives
884 * for retransmitted and already SACKed segment -> reordering..
885 * Both of these heuristics are not used in Loss state, when we cannot
886 * account for retransmits accurately.
888 static int
889 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
891 const struct inet_connection_sock *icsk = inet_csk(sk);
892 struct tcp_sock *tp = tcp_sk(sk);
893 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
894 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
895 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
896 int reord = tp->packets_out;
897 int prior_fackets;
898 u32 lost_retrans = 0;
899 int flag = 0;
900 int i;
902 if (!tp->sacked_out)
903 tp->fackets_out = 0;
904 prior_fackets = tp->fackets_out;
906 for (i=0; i<num_sacks; i++, sp++) {
907 struct sk_buff *skb;
908 __u32 start_seq = ntohl(sp->start_seq);
909 __u32 end_seq = ntohl(sp->end_seq);
910 int fack_count = 0;
911 int dup_sack = 0;
913 /* Check for D-SACK. */
914 if (i == 0) {
915 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
917 if (before(start_seq, ack)) {
918 dup_sack = 1;
919 tp->rx_opt.sack_ok |= 4;
920 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
921 } else if (num_sacks > 1 &&
922 !after(end_seq, ntohl(sp[1].end_seq)) &&
923 !before(start_seq, ntohl(sp[1].start_seq))) {
924 dup_sack = 1;
925 tp->rx_opt.sack_ok |= 4;
926 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
929 /* D-SACK for already forgotten data...
930 * Do dumb counting. */
931 if (dup_sack &&
932 !after(end_seq, prior_snd_una) &&
933 after(end_seq, tp->undo_marker))
934 tp->undo_retrans--;
936 /* Eliminate too old ACKs, but take into
937 * account more or less fresh ones, they can
938 * contain valid SACK info.
940 if (before(ack, prior_snd_una - tp->max_window))
941 return 0;
944 /* Event "B" in the comment above. */
945 if (after(end_seq, tp->high_seq))
946 flag |= FLAG_DATA_LOST;
948 sk_stream_for_retrans_queue(skb, sk) {
949 int in_sack, pcount;
950 u8 sacked;
952 /* The retransmission queue is always in order, so
953 * we can short-circuit the walk early.
955 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
956 break;
958 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
959 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
961 pcount = tcp_skb_pcount(skb);
963 if (pcount > 1 && !in_sack &&
964 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
965 unsigned int pkt_len;
967 in_sack = !after(start_seq,
968 TCP_SKB_CB(skb)->seq);
970 if (!in_sack)
971 pkt_len = (start_seq -
972 TCP_SKB_CB(skb)->seq);
973 else
974 pkt_len = (end_seq -
975 TCP_SKB_CB(skb)->seq);
976 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size))
977 break;
978 pcount = tcp_skb_pcount(skb);
981 fack_count += pcount;
983 sacked = TCP_SKB_CB(skb)->sacked;
985 /* Account D-SACK for retransmitted packet. */
986 if ((dup_sack && in_sack) &&
987 (sacked & TCPCB_RETRANS) &&
988 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
989 tp->undo_retrans--;
991 /* The frame is ACKed. */
992 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
993 if (sacked&TCPCB_RETRANS) {
994 if ((dup_sack && in_sack) &&
995 (sacked&TCPCB_SACKED_ACKED))
996 reord = min(fack_count, reord);
997 } else {
998 /* If it was in a hole, we detected reordering. */
999 if (fack_count < prior_fackets &&
1000 !(sacked&TCPCB_SACKED_ACKED))
1001 reord = min(fack_count, reord);
1004 /* Nothing to do; acked frame is about to be dropped. */
1005 continue;
1008 if ((sacked&TCPCB_SACKED_RETRANS) &&
1009 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1010 (!lost_retrans || after(end_seq, lost_retrans)))
1011 lost_retrans = end_seq;
1013 if (!in_sack)
1014 continue;
1016 if (!(sacked&TCPCB_SACKED_ACKED)) {
1017 if (sacked & TCPCB_SACKED_RETRANS) {
1018 /* If the segment is not tagged as lost,
1019 * we do not clear RETRANS, believing
1020 * that retransmission is still in flight.
1022 if (sacked & TCPCB_LOST) {
1023 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1024 tp->lost_out -= tcp_skb_pcount(skb);
1025 tp->retrans_out -= tcp_skb_pcount(skb);
1027 } else {
1028 /* New sack for not retransmitted frame,
1029 * which was in hole. It is reordering.
1031 if (!(sacked & TCPCB_RETRANS) &&
1032 fack_count < prior_fackets)
1033 reord = min(fack_count, reord);
1035 if (sacked & TCPCB_LOST) {
1036 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1037 tp->lost_out -= tcp_skb_pcount(skb);
1041 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1042 flag |= FLAG_DATA_SACKED;
1043 tp->sacked_out += tcp_skb_pcount(skb);
1045 if (fack_count > tp->fackets_out)
1046 tp->fackets_out = fack_count;
1047 } else {
1048 if (dup_sack && (sacked&TCPCB_RETRANS))
1049 reord = min(fack_count, reord);
1052 /* D-SACK. We can detect redundant retransmission
1053 * in S|R and plain R frames and clear it.
1054 * undo_retrans is decreased above, L|R frames
1055 * are accounted above as well.
1057 if (dup_sack &&
1058 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1059 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1060 tp->retrans_out -= tcp_skb_pcount(skb);
1065 /* Check for lost retransmit. This superb idea is
1066 * borrowed from "ratehalving". Event "C".
1067 * Later note: FACK people cheated me again 8),
1068 * we have to account for reordering! Ugly,
1069 * but should help.
1071 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1072 struct sk_buff *skb;
1074 sk_stream_for_retrans_queue(skb, sk) {
1075 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1076 break;
1077 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1078 continue;
1079 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1080 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1081 (IsFack(tp) ||
1082 !before(lost_retrans,
1083 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1084 tp->mss_cache))) {
1085 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1086 tp->retrans_out -= tcp_skb_pcount(skb);
1088 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1089 tp->lost_out += tcp_skb_pcount(skb);
1090 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1091 flag |= FLAG_DATA_SACKED;
1092 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1098 tp->left_out = tp->sacked_out + tp->lost_out;
1100 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1101 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1103 #if FASTRETRANS_DEBUG > 0
1104 BUG_TRAP((int)tp->sacked_out >= 0);
1105 BUG_TRAP((int)tp->lost_out >= 0);
1106 BUG_TRAP((int)tp->retrans_out >= 0);
1107 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1108 #endif
1109 return flag;
1112 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1113 * segments to see from the next ACKs whether any data was really missing.
1114 * If the RTO was spurious, new ACKs should arrive.
1116 void tcp_enter_frto(struct sock *sk)
1118 const struct inet_connection_sock *icsk = inet_csk(sk);
1119 struct tcp_sock *tp = tcp_sk(sk);
1120 struct sk_buff *skb;
1122 tp->frto_counter = 1;
1124 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1125 tp->snd_una == tp->high_seq ||
1126 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1127 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1128 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1129 tcp_ca_event(sk, CA_EVENT_FRTO);
1132 /* Have to clear retransmission markers here to keep the bookkeeping
1133 * in shape, even though we are not yet in Loss state.
1134 * If something was really lost, it is eventually caught up
1135 * in tcp_enter_frto_loss.
1137 tp->retrans_out = 0;
1138 tp->undo_marker = tp->snd_una;
1139 tp->undo_retrans = 0;
1141 sk_stream_for_retrans_queue(skb, sk) {
1142 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1144 tcp_sync_left_out(tp);
1146 tcp_set_ca_state(sk, TCP_CA_Open);
1147 tp->frto_highmark = tp->snd_nxt;
1150 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1151 * which indicates that we should follow the traditional RTO recovery,
1152 * i.e. mark everything lost and do go-back-N retransmission.
1154 static void tcp_enter_frto_loss(struct sock *sk)
1156 struct tcp_sock *tp = tcp_sk(sk);
1157 struct sk_buff *skb;
1158 int cnt = 0;
1160 tp->sacked_out = 0;
1161 tp->lost_out = 0;
1162 tp->fackets_out = 0;
1164 sk_stream_for_retrans_queue(skb, sk) {
1165 cnt += tcp_skb_pcount(skb);
1166 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1167 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1169 /* Do not mark those segments lost that were
1170 * forward transmitted after RTO
1172 if (!after(TCP_SKB_CB(skb)->end_seq,
1173 tp->frto_highmark)) {
1174 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1175 tp->lost_out += tcp_skb_pcount(skb);
1177 } else {
1178 tp->sacked_out += tcp_skb_pcount(skb);
1179 tp->fackets_out = cnt;
1182 tcp_sync_left_out(tp);
1184 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1185 tp->snd_cwnd_cnt = 0;
1186 tp->snd_cwnd_stamp = tcp_time_stamp;
1187 tp->undo_marker = 0;
1188 tp->frto_counter = 0;
1190 tp->reordering = min_t(unsigned int, tp->reordering,
1191 sysctl_tcp_reordering);
1192 tcp_set_ca_state(sk, TCP_CA_Loss);
1193 tp->high_seq = tp->frto_highmark;
1194 TCP_ECN_queue_cwr(tp);
1197 void tcp_clear_retrans(struct tcp_sock *tp)
1199 tp->left_out = 0;
1200 tp->retrans_out = 0;
1202 tp->fackets_out = 0;
1203 tp->sacked_out = 0;
1204 tp->lost_out = 0;
1206 tp->undo_marker = 0;
1207 tp->undo_retrans = 0;
1210 /* Enter Loss state. If "how" is not zero, forget all SACK information
1211 * and reset tags completely, otherwise preserve SACKs. If receiver
1212 * dropped its ofo queue, we will know this due to reneging detection.
1214 void tcp_enter_loss(struct sock *sk, int how)
1216 const struct inet_connection_sock *icsk = inet_csk(sk);
1217 struct tcp_sock *tp = tcp_sk(sk);
1218 struct sk_buff *skb;
1219 int cnt = 0;
1221 /* Reduce ssthresh if it has not yet been made inside this window. */
1222 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1223 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1224 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1225 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1226 tcp_ca_event(sk, CA_EVENT_LOSS);
1228 tp->snd_cwnd = 1;
1229 tp->snd_cwnd_cnt = 0;
1230 tp->snd_cwnd_stamp = tcp_time_stamp;
1232 tp->bytes_acked = 0;
1233 tcp_clear_retrans(tp);
1235 /* Push undo marker, if it was plain RTO and nothing
1236 * was retransmitted. */
1237 if (!how)
1238 tp->undo_marker = tp->snd_una;
1240 sk_stream_for_retrans_queue(skb, sk) {
1241 cnt += tcp_skb_pcount(skb);
1242 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1243 tp->undo_marker = 0;
1244 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1245 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1246 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1247 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1248 tp->lost_out += tcp_skb_pcount(skb);
1249 } else {
1250 tp->sacked_out += tcp_skb_pcount(skb);
1251 tp->fackets_out = cnt;
1254 tcp_sync_left_out(tp);
1256 tp->reordering = min_t(unsigned int, tp->reordering,
1257 sysctl_tcp_reordering);
1258 tcp_set_ca_state(sk, TCP_CA_Loss);
1259 tp->high_seq = tp->snd_nxt;
1260 TCP_ECN_queue_cwr(tp);
1263 static int tcp_check_sack_reneging(struct sock *sk)
1265 struct sk_buff *skb;
1267 /* If ACK arrived pointing to a remembered SACK,
1268 * it means that our remembered SACKs do not reflect
1269 * real state of receiver i.e.
1270 * receiver _host_ is heavily congested (or buggy).
1271 * Do processing similar to RTO timeout.
1273 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1274 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1275 struct inet_connection_sock *icsk = inet_csk(sk);
1276 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1278 tcp_enter_loss(sk, 1);
1279 icsk->icsk_retransmits++;
1280 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1281 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1282 icsk->icsk_rto, TCP_RTO_MAX);
1283 return 1;
1285 return 0;
1288 static inline int tcp_fackets_out(struct tcp_sock *tp)
1290 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1293 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1295 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1298 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1300 return tp->packets_out &&
1301 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1304 /* Linux NewReno/SACK/FACK/ECN state machine.
1305 * --------------------------------------
1307 * "Open" Normal state, no dubious events, fast path.
1308 * "Disorder" In all the respects it is "Open",
1309 * but requires a bit more attention. It is entered when
1310 * we see some SACKs or dupacks. It is split of "Open"
1311 * mainly to move some processing from fast path to slow one.
1312 * "CWR" CWND was reduced due to some Congestion Notification event.
1313 * It can be ECN, ICMP source quench, local device congestion.
1314 * "Recovery" CWND was reduced, we are fast-retransmitting.
1315 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1317 * tcp_fastretrans_alert() is entered:
1318 * - each incoming ACK, if state is not "Open"
1319 * - when arrived ACK is unusual, namely:
1320 * * SACK
1321 * * Duplicate ACK.
1322 * * ECN ECE.
1324 * Counting packets in flight is pretty simple.
1326 * in_flight = packets_out - left_out + retrans_out
1328 * packets_out is SND.NXT-SND.UNA counted in packets.
1330 * retrans_out is number of retransmitted segments.
1332 * left_out is number of segments left network, but not ACKed yet.
1334 * left_out = sacked_out + lost_out
1336 * sacked_out: Packets, which arrived to receiver out of order
1337 * and hence not ACKed. With SACKs this number is simply
1338 * amount of SACKed data. Even without SACKs
1339 * it is easy to give pretty reliable estimate of this number,
1340 * counting duplicate ACKs.
1342 * lost_out: Packets lost by network. TCP has no explicit
1343 * "loss notification" feedback from network (for now).
1344 * It means that this number can be only _guessed_.
1345 * Actually, it is the heuristics to predict lossage that
1346 * distinguishes different algorithms.
1348 * F.e. after RTO, when all the queue is considered as lost,
1349 * lost_out = packets_out and in_flight = retrans_out.
1351 * Essentially, we have now two algorithms counting
1352 * lost packets.
1354 * FACK: It is the simplest heuristics. As soon as we decided
1355 * that something is lost, we decide that _all_ not SACKed
1356 * packets until the most forward SACK are lost. I.e.
1357 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1358 * It is absolutely correct estimate, if network does not reorder
1359 * packets. And it loses any connection to reality when reordering
1360 * takes place. We use FACK by default until reordering
1361 * is suspected on the path to this destination.
1363 * NewReno: when Recovery is entered, we assume that one segment
1364 * is lost (classic Reno). While we are in Recovery and
1365 * a partial ACK arrives, we assume that one more packet
1366 * is lost (NewReno). This heuristics are the same in NewReno
1367 * and SACK.
1369 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1370 * deflation etc. CWND is real congestion window, never inflated, changes
1371 * only according to classic VJ rules.
1373 * Really tricky (and requiring careful tuning) part of algorithm
1374 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1375 * The first determines the moment _when_ we should reduce CWND and,
1376 * hence, slow down forward transmission. In fact, it determines the moment
1377 * when we decide that hole is caused by loss, rather than by a reorder.
1379 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1380 * holes, caused by lost packets.
1382 * And the most logically complicated part of algorithm is undo
1383 * heuristics. We detect false retransmits due to both too early
1384 * fast retransmit (reordering) and underestimated RTO, analyzing
1385 * timestamps and D-SACKs. When we detect that some segments were
1386 * retransmitted by mistake and CWND reduction was wrong, we undo
1387 * window reduction and abort recovery phase. This logic is hidden
1388 * inside several functions named tcp_try_undo_<something>.
1391 /* This function decides, when we should leave Disordered state
1392 * and enter Recovery phase, reducing congestion window.
1394 * Main question: may we further continue forward transmission
1395 * with the same cwnd?
1397 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1399 __u32 packets_out;
1401 /* Trick#1: The loss is proven. */
1402 if (tp->lost_out)
1403 return 1;
1405 /* Not-A-Trick#2 : Classic rule... */
1406 if (tcp_fackets_out(tp) > tp->reordering)
1407 return 1;
1409 /* Trick#3 : when we use RFC2988 timer restart, fast
1410 * retransmit can be triggered by timeout of queue head.
1412 if (tcp_head_timedout(sk, tp))
1413 return 1;
1415 /* Trick#4: It is still not OK... But will it be useful to delay
1416 * recovery more?
1418 packets_out = tp->packets_out;
1419 if (packets_out <= tp->reordering &&
1420 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1421 !tcp_may_send_now(sk, tp)) {
1422 /* We have nothing to send. This connection is limited
1423 * either by receiver window or by application.
1425 return 1;
1428 return 0;
1431 /* If we receive more dupacks than we expected counting segments
1432 * in assumption of absent reordering, interpret this as reordering.
1433 * The only another reason could be bug in receiver TCP.
1435 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1437 struct tcp_sock *tp = tcp_sk(sk);
1438 u32 holes;
1440 holes = max(tp->lost_out, 1U);
1441 holes = min(holes, tp->packets_out);
1443 if ((tp->sacked_out + holes) > tp->packets_out) {
1444 tp->sacked_out = tp->packets_out - holes;
1445 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1449 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1451 static void tcp_add_reno_sack(struct sock *sk)
1453 struct tcp_sock *tp = tcp_sk(sk);
1454 tp->sacked_out++;
1455 tcp_check_reno_reordering(sk, 0);
1456 tcp_sync_left_out(tp);
1459 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1461 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1463 if (acked > 0) {
1464 /* One ACK acked hole. The rest eat duplicate ACKs. */
1465 if (acked-1 >= tp->sacked_out)
1466 tp->sacked_out = 0;
1467 else
1468 tp->sacked_out -= acked-1;
1470 tcp_check_reno_reordering(sk, acked);
1471 tcp_sync_left_out(tp);
1474 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1476 tp->sacked_out = 0;
1477 tp->left_out = tp->lost_out;
1480 /* Mark head of queue up as lost. */
1481 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1482 int packets, u32 high_seq)
1484 struct sk_buff *skb;
1485 int cnt = packets;
1487 BUG_TRAP(cnt <= tp->packets_out);
1489 sk_stream_for_retrans_queue(skb, sk) {
1490 cnt -= tcp_skb_pcount(skb);
1491 if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1492 break;
1493 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1494 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1495 tp->lost_out += tcp_skb_pcount(skb);
1498 tcp_sync_left_out(tp);
1501 /* Account newly detected lost packet(s) */
1503 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1505 if (IsFack(tp)) {
1506 int lost = tp->fackets_out - tp->reordering;
1507 if (lost <= 0)
1508 lost = 1;
1509 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1510 } else {
1511 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1514 /* New heuristics: it is possible only after we switched
1515 * to restart timer each time when something is ACKed.
1516 * Hence, we can detect timed out packets during fast
1517 * retransmit without falling to slow start.
1519 if (tcp_head_timedout(sk, tp)) {
1520 struct sk_buff *skb;
1522 sk_stream_for_retrans_queue(skb, sk) {
1523 if (tcp_skb_timedout(sk, skb) &&
1524 !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1525 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1526 tp->lost_out += tcp_skb_pcount(skb);
1529 tcp_sync_left_out(tp);
1533 /* CWND moderation, preventing bursts due to too big ACKs
1534 * in dubious situations.
1536 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1538 tp->snd_cwnd = min(tp->snd_cwnd,
1539 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1540 tp->snd_cwnd_stamp = tcp_time_stamp;
1543 /* Decrease cwnd each second ack. */
1544 static void tcp_cwnd_down(struct sock *sk)
1546 const struct inet_connection_sock *icsk = inet_csk(sk);
1547 struct tcp_sock *tp = tcp_sk(sk);
1548 int decr = tp->snd_cwnd_cnt + 1;
1550 tp->snd_cwnd_cnt = decr&1;
1551 decr >>= 1;
1553 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1554 tp->snd_cwnd -= decr;
1556 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1557 tp->snd_cwnd_stamp = tcp_time_stamp;
1560 /* Nothing was retransmitted or returned timestamp is less
1561 * than timestamp of the first retransmission.
1563 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1565 return !tp->retrans_stamp ||
1566 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1567 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1570 /* Undo procedures. */
1572 #if FASTRETRANS_DEBUG > 1
1573 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1575 struct inet_sock *inet = inet_sk(sk);
1576 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1577 msg,
1578 NIPQUAD(inet->daddr), ntohs(inet->dport),
1579 tp->snd_cwnd, tp->left_out,
1580 tp->snd_ssthresh, tp->prior_ssthresh,
1581 tp->packets_out);
1583 #else
1584 #define DBGUNDO(x...) do { } while (0)
1585 #endif
1587 static void tcp_undo_cwr(struct sock *sk, const int undo)
1589 struct tcp_sock *tp = tcp_sk(sk);
1591 if (tp->prior_ssthresh) {
1592 const struct inet_connection_sock *icsk = inet_csk(sk);
1594 if (icsk->icsk_ca_ops->undo_cwnd)
1595 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1596 else
1597 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1599 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1600 tp->snd_ssthresh = tp->prior_ssthresh;
1601 TCP_ECN_withdraw_cwr(tp);
1603 } else {
1604 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1606 tcp_moderate_cwnd(tp);
1607 tp->snd_cwnd_stamp = tcp_time_stamp;
1610 static inline int tcp_may_undo(struct tcp_sock *tp)
1612 return tp->undo_marker &&
1613 (!tp->undo_retrans || tcp_packet_delayed(tp));
1616 /* People celebrate: "We love our President!" */
1617 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1619 if (tcp_may_undo(tp)) {
1620 /* Happy end! We did not retransmit anything
1621 * or our original transmission succeeded.
1623 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1624 tcp_undo_cwr(sk, 1);
1625 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1626 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1627 else
1628 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1629 tp->undo_marker = 0;
1631 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1632 /* Hold old state until something *above* high_seq
1633 * is ACKed. For Reno it is MUST to prevent false
1634 * fast retransmits (RFC2582). SACK TCP is safe. */
1635 tcp_moderate_cwnd(tp);
1636 return 1;
1638 tcp_set_ca_state(sk, TCP_CA_Open);
1639 return 0;
1642 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1643 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1645 if (tp->undo_marker && !tp->undo_retrans) {
1646 DBGUNDO(sk, tp, "D-SACK");
1647 tcp_undo_cwr(sk, 1);
1648 tp->undo_marker = 0;
1649 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1653 /* Undo during fast recovery after partial ACK. */
1655 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1656 int acked)
1658 /* Partial ACK arrived. Force Hoe's retransmit. */
1659 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1661 if (tcp_may_undo(tp)) {
1662 /* Plain luck! Hole if filled with delayed
1663 * packet, rather than with a retransmit.
1665 if (tp->retrans_out == 0)
1666 tp->retrans_stamp = 0;
1668 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1670 DBGUNDO(sk, tp, "Hoe");
1671 tcp_undo_cwr(sk, 0);
1672 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1674 /* So... Do not make Hoe's retransmit yet.
1675 * If the first packet was delayed, the rest
1676 * ones are most probably delayed as well.
1678 failed = 0;
1680 return failed;
1683 /* Undo during loss recovery after partial ACK. */
1684 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1686 if (tcp_may_undo(tp)) {
1687 struct sk_buff *skb;
1688 sk_stream_for_retrans_queue(skb, sk) {
1689 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1691 DBGUNDO(sk, tp, "partial loss");
1692 tp->lost_out = 0;
1693 tp->left_out = tp->sacked_out;
1694 tcp_undo_cwr(sk, 1);
1695 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1696 inet_csk(sk)->icsk_retransmits = 0;
1697 tp->undo_marker = 0;
1698 if (!IsReno(tp))
1699 tcp_set_ca_state(sk, TCP_CA_Open);
1700 return 1;
1702 return 0;
1705 static inline void tcp_complete_cwr(struct sock *sk)
1707 struct tcp_sock *tp = tcp_sk(sk);
1708 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1709 tp->snd_cwnd_stamp = tcp_time_stamp;
1710 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1713 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1715 tp->left_out = tp->sacked_out;
1717 if (tp->retrans_out == 0)
1718 tp->retrans_stamp = 0;
1720 if (flag&FLAG_ECE)
1721 tcp_enter_cwr(sk);
1723 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1724 int state = TCP_CA_Open;
1726 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1727 state = TCP_CA_Disorder;
1729 if (inet_csk(sk)->icsk_ca_state != state) {
1730 tcp_set_ca_state(sk, state);
1731 tp->high_seq = tp->snd_nxt;
1733 tcp_moderate_cwnd(tp);
1734 } else {
1735 tcp_cwnd_down(sk);
1739 /* Process an event, which can update packets-in-flight not trivially.
1740 * Main goal of this function is to calculate new estimate for left_out,
1741 * taking into account both packets sitting in receiver's buffer and
1742 * packets lost by network.
1744 * Besides that it does CWND reduction, when packet loss is detected
1745 * and changes state of machine.
1747 * It does _not_ decide what to send, it is made in function
1748 * tcp_xmit_retransmit_queue().
1750 static void
1751 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1752 int prior_packets, int flag)
1754 struct inet_connection_sock *icsk = inet_csk(sk);
1755 struct tcp_sock *tp = tcp_sk(sk);
1756 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1758 /* Some technical things:
1759 * 1. Reno does not count dupacks (sacked_out) automatically. */
1760 if (!tp->packets_out)
1761 tp->sacked_out = 0;
1762 /* 2. SACK counts snd_fack in packets inaccurately. */
1763 if (tp->sacked_out == 0)
1764 tp->fackets_out = 0;
1766 /* Now state machine starts.
1767 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1768 if (flag&FLAG_ECE)
1769 tp->prior_ssthresh = 0;
1771 /* B. In all the states check for reneging SACKs. */
1772 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1773 return;
1775 /* C. Process data loss notification, provided it is valid. */
1776 if ((flag&FLAG_DATA_LOST) &&
1777 before(tp->snd_una, tp->high_seq) &&
1778 icsk->icsk_ca_state != TCP_CA_Open &&
1779 tp->fackets_out > tp->reordering) {
1780 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1781 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1784 /* D. Synchronize left_out to current state. */
1785 tcp_sync_left_out(tp);
1787 /* E. Check state exit conditions. State can be terminated
1788 * when high_seq is ACKed. */
1789 if (icsk->icsk_ca_state == TCP_CA_Open) {
1790 if (!sysctl_tcp_frto)
1791 BUG_TRAP(tp->retrans_out == 0);
1792 tp->retrans_stamp = 0;
1793 } else if (!before(tp->snd_una, tp->high_seq)) {
1794 switch (icsk->icsk_ca_state) {
1795 case TCP_CA_Loss:
1796 icsk->icsk_retransmits = 0;
1797 if (tcp_try_undo_recovery(sk, tp))
1798 return;
1799 break;
1801 case TCP_CA_CWR:
1802 /* CWR is to be held something *above* high_seq
1803 * is ACKed for CWR bit to reach receiver. */
1804 if (tp->snd_una != tp->high_seq) {
1805 tcp_complete_cwr(sk);
1806 tcp_set_ca_state(sk, TCP_CA_Open);
1808 break;
1810 case TCP_CA_Disorder:
1811 tcp_try_undo_dsack(sk, tp);
1812 if (!tp->undo_marker ||
1813 /* For SACK case do not Open to allow to undo
1814 * catching for all duplicate ACKs. */
1815 IsReno(tp) || tp->snd_una != tp->high_seq) {
1816 tp->undo_marker = 0;
1817 tcp_set_ca_state(sk, TCP_CA_Open);
1819 break;
1821 case TCP_CA_Recovery:
1822 if (IsReno(tp))
1823 tcp_reset_reno_sack(tp);
1824 if (tcp_try_undo_recovery(sk, tp))
1825 return;
1826 tcp_complete_cwr(sk);
1827 break;
1831 /* F. Process state. */
1832 switch (icsk->icsk_ca_state) {
1833 case TCP_CA_Recovery:
1834 if (prior_snd_una == tp->snd_una) {
1835 if (IsReno(tp) && is_dupack)
1836 tcp_add_reno_sack(sk);
1837 } else {
1838 int acked = prior_packets - tp->packets_out;
1839 if (IsReno(tp))
1840 tcp_remove_reno_sacks(sk, tp, acked);
1841 is_dupack = tcp_try_undo_partial(sk, tp, acked);
1843 break;
1844 case TCP_CA_Loss:
1845 if (flag&FLAG_DATA_ACKED)
1846 icsk->icsk_retransmits = 0;
1847 if (!tcp_try_undo_loss(sk, tp)) {
1848 tcp_moderate_cwnd(tp);
1849 tcp_xmit_retransmit_queue(sk);
1850 return;
1852 if (icsk->icsk_ca_state != TCP_CA_Open)
1853 return;
1854 /* Loss is undone; fall through to processing in Open state. */
1855 default:
1856 if (IsReno(tp)) {
1857 if (tp->snd_una != prior_snd_una)
1858 tcp_reset_reno_sack(tp);
1859 if (is_dupack)
1860 tcp_add_reno_sack(sk);
1863 if (icsk->icsk_ca_state == TCP_CA_Disorder)
1864 tcp_try_undo_dsack(sk, tp);
1866 if (!tcp_time_to_recover(sk, tp)) {
1867 tcp_try_to_open(sk, tp, flag);
1868 return;
1871 /* Otherwise enter Recovery state */
1873 if (IsReno(tp))
1874 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1875 else
1876 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1878 tp->high_seq = tp->snd_nxt;
1879 tp->prior_ssthresh = 0;
1880 tp->undo_marker = tp->snd_una;
1881 tp->undo_retrans = tp->retrans_out;
1883 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1884 if (!(flag&FLAG_ECE))
1885 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1886 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1887 TCP_ECN_queue_cwr(tp);
1890 tp->bytes_acked = 0;
1891 tp->snd_cwnd_cnt = 0;
1892 tcp_set_ca_state(sk, TCP_CA_Recovery);
1895 if (is_dupack || tcp_head_timedout(sk, tp))
1896 tcp_update_scoreboard(sk, tp);
1897 tcp_cwnd_down(sk);
1898 tcp_xmit_retransmit_queue(sk);
1901 /* Read draft-ietf-tcplw-high-performance before mucking
1902 * with this code. (Supersedes RFC1323)
1904 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1906 /* RTTM Rule: A TSecr value received in a segment is used to
1907 * update the averaged RTT measurement only if the segment
1908 * acknowledges some new data, i.e., only if it advances the
1909 * left edge of the send window.
1911 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1912 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1914 * Changed: reset backoff as soon as we see the first valid sample.
1915 * If we do not, we get strongly overestimated rto. With timestamps
1916 * samples are accepted even from very old segments: f.e., when rtt=1
1917 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1918 * answer arrives rto becomes 120 seconds! If at least one of segments
1919 * in window is lost... Voila. --ANK (010210)
1921 struct tcp_sock *tp = tcp_sk(sk);
1922 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
1923 tcp_rtt_estimator(sk, seq_rtt);
1924 tcp_set_rto(sk);
1925 inet_csk(sk)->icsk_backoff = 0;
1926 tcp_bound_rto(sk);
1929 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1931 /* We don't have a timestamp. Can only use
1932 * packets that are not retransmitted to determine
1933 * rtt estimates. Also, we must not reset the
1934 * backoff for rto until we get a non-retransmitted
1935 * packet. This allows us to deal with a situation
1936 * where the network delay has increased suddenly.
1937 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1940 if (flag & FLAG_RETRANS_DATA_ACKED)
1941 return;
1943 tcp_rtt_estimator(sk, seq_rtt);
1944 tcp_set_rto(sk);
1945 inet_csk(sk)->icsk_backoff = 0;
1946 tcp_bound_rto(sk);
1949 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
1950 const s32 seq_rtt)
1952 const struct tcp_sock *tp = tcp_sk(sk);
1953 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1954 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
1955 tcp_ack_saw_tstamp(sk, flag);
1956 else if (seq_rtt >= 0)
1957 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1960 static inline void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
1961 u32 in_flight, int good)
1963 const struct inet_connection_sock *icsk = inet_csk(sk);
1964 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
1965 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1968 /* Restart timer after forward progress on connection.
1969 * RFC2988 recommends to restart timer to now+rto.
1972 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1974 if (!tp->packets_out) {
1975 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1976 } else {
1977 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1981 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
1982 __u32 now, __s32 *seq_rtt)
1984 struct tcp_sock *tp = tcp_sk(sk);
1985 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1986 __u32 seq = tp->snd_una;
1987 __u32 packets_acked;
1988 int acked = 0;
1990 /* If we get here, the whole TSO packet has not been
1991 * acked.
1993 BUG_ON(!after(scb->end_seq, seq));
1995 packets_acked = tcp_skb_pcount(skb);
1996 if (tcp_trim_head(sk, skb, seq - scb->seq))
1997 return 0;
1998 packets_acked -= tcp_skb_pcount(skb);
2000 if (packets_acked) {
2001 __u8 sacked = scb->sacked;
2003 acked |= FLAG_DATA_ACKED;
2004 if (sacked) {
2005 if (sacked & TCPCB_RETRANS) {
2006 if (sacked & TCPCB_SACKED_RETRANS)
2007 tp->retrans_out -= packets_acked;
2008 acked |= FLAG_RETRANS_DATA_ACKED;
2009 *seq_rtt = -1;
2010 } else if (*seq_rtt < 0)
2011 *seq_rtt = now - scb->when;
2012 if (sacked & TCPCB_SACKED_ACKED)
2013 tp->sacked_out -= packets_acked;
2014 if (sacked & TCPCB_LOST)
2015 tp->lost_out -= packets_acked;
2016 if (sacked & TCPCB_URG) {
2017 if (tp->urg_mode &&
2018 !before(seq, tp->snd_up))
2019 tp->urg_mode = 0;
2021 } else if (*seq_rtt < 0)
2022 *seq_rtt = now - scb->when;
2024 if (tp->fackets_out) {
2025 __u32 dval = min(tp->fackets_out, packets_acked);
2026 tp->fackets_out -= dval;
2028 tp->packets_out -= packets_acked;
2030 BUG_ON(tcp_skb_pcount(skb) == 0);
2031 BUG_ON(!before(scb->seq, scb->end_seq));
2034 return acked;
2037 static inline u32 tcp_usrtt(const struct sk_buff *skb)
2039 struct timeval tv, now;
2041 do_gettimeofday(&now);
2042 skb_get_timestamp(skb, &tv);
2043 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec);
2046 /* Remove acknowledged frames from the retransmission queue. */
2047 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2049 struct tcp_sock *tp = tcp_sk(sk);
2050 const struct inet_connection_sock *icsk = inet_csk(sk);
2051 struct sk_buff *skb;
2052 __u32 now = tcp_time_stamp;
2053 int acked = 0;
2054 __s32 seq_rtt = -1;
2055 u32 pkts_acked = 0;
2056 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2057 = icsk->icsk_ca_ops->rtt_sample;
2059 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2060 skb != sk->sk_send_head) {
2061 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2062 __u8 sacked = scb->sacked;
2064 /* If our packet is before the ack sequence we can
2065 * discard it as it's confirmed to have arrived at
2066 * the other end.
2068 if (after(scb->end_seq, tp->snd_una)) {
2069 if (tcp_skb_pcount(skb) > 1 &&
2070 after(tp->snd_una, scb->seq))
2071 acked |= tcp_tso_acked(sk, skb,
2072 now, &seq_rtt);
2073 break;
2076 /* Initial outgoing SYN's get put onto the write_queue
2077 * just like anything else we transmit. It is not
2078 * true data, and if we misinform our callers that
2079 * this ACK acks real data, we will erroneously exit
2080 * connection startup slow start one packet too
2081 * quickly. This is severely frowned upon behavior.
2083 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2084 acked |= FLAG_DATA_ACKED;
2085 ++pkts_acked;
2086 } else {
2087 acked |= FLAG_SYN_ACKED;
2088 tp->retrans_stamp = 0;
2091 if (sacked) {
2092 if (sacked & TCPCB_RETRANS) {
2093 if(sacked & TCPCB_SACKED_RETRANS)
2094 tp->retrans_out -= tcp_skb_pcount(skb);
2095 acked |= FLAG_RETRANS_DATA_ACKED;
2096 seq_rtt = -1;
2097 } else if (seq_rtt < 0) {
2098 seq_rtt = now - scb->when;
2099 if (rtt_sample)
2100 (*rtt_sample)(sk, tcp_usrtt(skb));
2102 if (sacked & TCPCB_SACKED_ACKED)
2103 tp->sacked_out -= tcp_skb_pcount(skb);
2104 if (sacked & TCPCB_LOST)
2105 tp->lost_out -= tcp_skb_pcount(skb);
2106 if (sacked & TCPCB_URG) {
2107 if (tp->urg_mode &&
2108 !before(scb->end_seq, tp->snd_up))
2109 tp->urg_mode = 0;
2111 } else if (seq_rtt < 0) {
2112 seq_rtt = now - scb->when;
2113 if (rtt_sample)
2114 (*rtt_sample)(sk, tcp_usrtt(skb));
2116 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2117 tcp_packets_out_dec(tp, skb);
2118 __skb_unlink(skb, &sk->sk_write_queue);
2119 sk_stream_free_skb(sk, skb);
2122 if (acked&FLAG_ACKED) {
2123 tcp_ack_update_rtt(sk, acked, seq_rtt);
2124 tcp_ack_packets_out(sk, tp);
2126 if (icsk->icsk_ca_ops->pkts_acked)
2127 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2130 #if FASTRETRANS_DEBUG > 0
2131 BUG_TRAP((int)tp->sacked_out >= 0);
2132 BUG_TRAP((int)tp->lost_out >= 0);
2133 BUG_TRAP((int)tp->retrans_out >= 0);
2134 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2135 const struct inet_connection_sock *icsk = inet_csk(sk);
2136 if (tp->lost_out) {
2137 printk(KERN_DEBUG "Leak l=%u %d\n",
2138 tp->lost_out, icsk->icsk_ca_state);
2139 tp->lost_out = 0;
2141 if (tp->sacked_out) {
2142 printk(KERN_DEBUG "Leak s=%u %d\n",
2143 tp->sacked_out, icsk->icsk_ca_state);
2144 tp->sacked_out = 0;
2146 if (tp->retrans_out) {
2147 printk(KERN_DEBUG "Leak r=%u %d\n",
2148 tp->retrans_out, icsk->icsk_ca_state);
2149 tp->retrans_out = 0;
2152 #endif
2153 *seq_rtt_p = seq_rtt;
2154 return acked;
2157 static void tcp_ack_probe(struct sock *sk)
2159 const struct tcp_sock *tp = tcp_sk(sk);
2160 struct inet_connection_sock *icsk = inet_csk(sk);
2162 /* Was it a usable window open? */
2164 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2165 tp->snd_una + tp->snd_wnd)) {
2166 icsk->icsk_backoff = 0;
2167 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2168 /* Socket must be waked up by subsequent tcp_data_snd_check().
2169 * This function is not for random using!
2171 } else {
2172 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2173 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2174 TCP_RTO_MAX);
2178 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2180 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2181 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2184 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2186 const struct tcp_sock *tp = tcp_sk(sk);
2187 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2188 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2191 /* Check that window update is acceptable.
2192 * The function assumes that snd_una<=ack<=snd_next.
2194 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2195 const u32 ack_seq, const u32 nwin)
2197 return (after(ack, tp->snd_una) ||
2198 after(ack_seq, tp->snd_wl1) ||
2199 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2202 /* Update our send window.
2204 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2205 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2207 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2208 struct sk_buff *skb, u32 ack, u32 ack_seq)
2210 int flag = 0;
2211 u32 nwin = ntohs(skb->h.th->window);
2213 if (likely(!skb->h.th->syn))
2214 nwin <<= tp->rx_opt.snd_wscale;
2216 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2217 flag |= FLAG_WIN_UPDATE;
2218 tcp_update_wl(tp, ack, ack_seq);
2220 if (tp->snd_wnd != nwin) {
2221 tp->snd_wnd = nwin;
2223 /* Note, it is the only place, where
2224 * fast path is recovered for sending TCP.
2226 tp->pred_flags = 0;
2227 tcp_fast_path_check(sk, tp);
2229 if (nwin > tp->max_window) {
2230 tp->max_window = nwin;
2231 tcp_sync_mss(sk, tp->pmtu_cookie);
2236 tp->snd_una = ack;
2238 return flag;
2241 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2243 struct tcp_sock *tp = tcp_sk(sk);
2245 tcp_sync_left_out(tp);
2247 if (tp->snd_una == prior_snd_una ||
2248 !before(tp->snd_una, tp->frto_highmark)) {
2249 /* RTO was caused by loss, start retransmitting in
2250 * go-back-N slow start
2252 tcp_enter_frto_loss(sk);
2253 return;
2256 if (tp->frto_counter == 1) {
2257 /* First ACK after RTO advances the window: allow two new
2258 * segments out.
2260 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2261 } else {
2262 /* Also the second ACK after RTO advances the window.
2263 * The RTO was likely spurious. Reduce cwnd and continue
2264 * in congestion avoidance
2266 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2267 tcp_moderate_cwnd(tp);
2270 /* F-RTO affects on two new ACKs following RTO.
2271 * At latest on third ACK the TCP behavior is back to normal.
2273 tp->frto_counter = (tp->frto_counter + 1) % 3;
2276 /* This routine deals with incoming acks, but not outgoing ones. */
2277 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2279 struct inet_connection_sock *icsk = inet_csk(sk);
2280 struct tcp_sock *tp = tcp_sk(sk);
2281 u32 prior_snd_una = tp->snd_una;
2282 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2283 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2284 u32 prior_in_flight;
2285 s32 seq_rtt;
2286 int prior_packets;
2288 /* If the ack is newer than sent or older than previous acks
2289 * then we can probably ignore it.
2291 if (after(ack, tp->snd_nxt))
2292 goto uninteresting_ack;
2294 if (before(ack, prior_snd_una))
2295 goto old_ack;
2297 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR)
2298 tp->bytes_acked += ack - prior_snd_una;
2300 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2301 /* Window is constant, pure forward advance.
2302 * No more checks are required.
2303 * Note, we use the fact that SND.UNA>=SND.WL2.
2305 tcp_update_wl(tp, ack, ack_seq);
2306 tp->snd_una = ack;
2307 flag |= FLAG_WIN_UPDATE;
2309 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2311 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2312 } else {
2313 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2314 flag |= FLAG_DATA;
2315 else
2316 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2318 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2320 if (TCP_SKB_CB(skb)->sacked)
2321 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2323 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2324 flag |= FLAG_ECE;
2326 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2329 /* We passed data and got it acked, remove any soft error
2330 * log. Something worked...
2332 sk->sk_err_soft = 0;
2333 tp->rcv_tstamp = tcp_time_stamp;
2334 prior_packets = tp->packets_out;
2335 if (!prior_packets)
2336 goto no_queue;
2338 prior_in_flight = tcp_packets_in_flight(tp);
2340 /* See if we can take anything off of the retransmit queue. */
2341 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2343 if (tp->frto_counter)
2344 tcp_process_frto(sk, prior_snd_una);
2346 if (tcp_ack_is_dubious(sk, flag)) {
2347 /* Advance CWND, if state allows this. */
2348 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2349 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2350 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2351 } else {
2352 if ((flag & FLAG_DATA_ACKED))
2353 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2356 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2357 dst_confirm(sk->sk_dst_cache);
2359 return 1;
2361 no_queue:
2362 icsk->icsk_probes_out = 0;
2364 /* If this ack opens up a zero window, clear backoff. It was
2365 * being used to time the probes, and is probably far higher than
2366 * it needs to be for normal retransmission.
2368 if (sk->sk_send_head)
2369 tcp_ack_probe(sk);
2370 return 1;
2372 old_ack:
2373 if (TCP_SKB_CB(skb)->sacked)
2374 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2376 uninteresting_ack:
2377 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2378 return 0;
2382 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2383 * But, this can also be called on packets in the established flow when
2384 * the fast version below fails.
2386 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2388 unsigned char *ptr;
2389 struct tcphdr *th = skb->h.th;
2390 int length=(th->doff*4)-sizeof(struct tcphdr);
2392 ptr = (unsigned char *)(th + 1);
2393 opt_rx->saw_tstamp = 0;
2395 while(length>0) {
2396 int opcode=*ptr++;
2397 int opsize;
2399 switch (opcode) {
2400 case TCPOPT_EOL:
2401 return;
2402 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2403 length--;
2404 continue;
2405 default:
2406 opsize=*ptr++;
2407 if (opsize < 2) /* "silly options" */
2408 return;
2409 if (opsize > length)
2410 return; /* don't parse partial options */
2411 switch(opcode) {
2412 case TCPOPT_MSS:
2413 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2414 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2415 if (in_mss) {
2416 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2417 in_mss = opt_rx->user_mss;
2418 opt_rx->mss_clamp = in_mss;
2421 break;
2422 case TCPOPT_WINDOW:
2423 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2424 if (sysctl_tcp_window_scaling) {
2425 __u8 snd_wscale = *(__u8 *) ptr;
2426 opt_rx->wscale_ok = 1;
2427 if (snd_wscale > 14) {
2428 if(net_ratelimit())
2429 printk(KERN_INFO "tcp_parse_options: Illegal window "
2430 "scaling value %d >14 received.\n",
2431 snd_wscale);
2432 snd_wscale = 14;
2434 opt_rx->snd_wscale = snd_wscale;
2436 break;
2437 case TCPOPT_TIMESTAMP:
2438 if(opsize==TCPOLEN_TIMESTAMP) {
2439 if ((estab && opt_rx->tstamp_ok) ||
2440 (!estab && sysctl_tcp_timestamps)) {
2441 opt_rx->saw_tstamp = 1;
2442 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2443 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2446 break;
2447 case TCPOPT_SACK_PERM:
2448 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2449 if (sysctl_tcp_sack) {
2450 opt_rx->sack_ok = 1;
2451 tcp_sack_reset(opt_rx);
2454 break;
2456 case TCPOPT_SACK:
2457 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2458 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2459 opt_rx->sack_ok) {
2460 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2463 ptr+=opsize-2;
2464 length-=opsize;
2469 /* Fast parse options. This hopes to only see timestamps.
2470 * If it is wrong it falls back on tcp_parse_options().
2472 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2473 struct tcp_sock *tp)
2475 if (th->doff == sizeof(struct tcphdr)>>2) {
2476 tp->rx_opt.saw_tstamp = 0;
2477 return 0;
2478 } else if (tp->rx_opt.tstamp_ok &&
2479 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2480 __u32 *ptr = (__u32 *)(th + 1);
2481 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2482 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2483 tp->rx_opt.saw_tstamp = 1;
2484 ++ptr;
2485 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2486 ++ptr;
2487 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2488 return 1;
2491 tcp_parse_options(skb, &tp->rx_opt, 1);
2492 return 1;
2495 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2497 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2498 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2501 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2503 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2504 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2505 * extra check below makes sure this can only happen
2506 * for pure ACK frames. -DaveM
2508 * Not only, also it occurs for expired timestamps.
2511 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2512 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2513 tcp_store_ts_recent(tp);
2517 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2519 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2520 * it can pass through stack. So, the following predicate verifies that
2521 * this segment is not used for anything but congestion avoidance or
2522 * fast retransmit. Moreover, we even are able to eliminate most of such
2523 * second order effects, if we apply some small "replay" window (~RTO)
2524 * to timestamp space.
2526 * All these measures still do not guarantee that we reject wrapped ACKs
2527 * on networks with high bandwidth, when sequence space is recycled fastly,
2528 * but it guarantees that such events will be very rare and do not affect
2529 * connection seriously. This doesn't look nice, but alas, PAWS is really
2530 * buggy extension.
2532 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2533 * states that events when retransmit arrives after original data are rare.
2534 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2535 * the biggest problem on large power networks even with minor reordering.
2536 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2537 * up to bandwidth of 18Gigabit/sec. 8) ]
2540 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2542 struct tcp_sock *tp = tcp_sk(sk);
2543 struct tcphdr *th = skb->h.th;
2544 u32 seq = TCP_SKB_CB(skb)->seq;
2545 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2547 return (/* 1. Pure ACK with correct sequence number. */
2548 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2550 /* 2. ... and duplicate ACK. */
2551 ack == tp->snd_una &&
2553 /* 3. ... and does not update window. */
2554 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2556 /* 4. ... and sits in replay window. */
2557 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2560 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2562 const struct tcp_sock *tp = tcp_sk(sk);
2563 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2564 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2565 !tcp_disordered_ack(sk, skb));
2568 /* Check segment sequence number for validity.
2570 * Segment controls are considered valid, if the segment
2571 * fits to the window after truncation to the window. Acceptability
2572 * of data (and SYN, FIN, of course) is checked separately.
2573 * See tcp_data_queue(), for example.
2575 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2576 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2577 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2578 * (borrowed from freebsd)
2581 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2583 return !before(end_seq, tp->rcv_wup) &&
2584 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2587 /* When we get a reset we do this. */
2588 static void tcp_reset(struct sock *sk)
2590 /* We want the right error as BSD sees it (and indeed as we do). */
2591 switch (sk->sk_state) {
2592 case TCP_SYN_SENT:
2593 sk->sk_err = ECONNREFUSED;
2594 break;
2595 case TCP_CLOSE_WAIT:
2596 sk->sk_err = EPIPE;
2597 break;
2598 case TCP_CLOSE:
2599 return;
2600 default:
2601 sk->sk_err = ECONNRESET;
2604 if (!sock_flag(sk, SOCK_DEAD))
2605 sk->sk_error_report(sk);
2607 tcp_done(sk);
2611 * Process the FIN bit. This now behaves as it is supposed to work
2612 * and the FIN takes effect when it is validly part of sequence
2613 * space. Not before when we get holes.
2615 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2616 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2617 * TIME-WAIT)
2619 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2620 * close and we go into CLOSING (and later onto TIME-WAIT)
2622 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2624 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2626 struct tcp_sock *tp = tcp_sk(sk);
2628 inet_csk_schedule_ack(sk);
2630 sk->sk_shutdown |= RCV_SHUTDOWN;
2631 sock_set_flag(sk, SOCK_DONE);
2633 switch (sk->sk_state) {
2634 case TCP_SYN_RECV:
2635 case TCP_ESTABLISHED:
2636 /* Move to CLOSE_WAIT */
2637 tcp_set_state(sk, TCP_CLOSE_WAIT);
2638 inet_csk(sk)->icsk_ack.pingpong = 1;
2639 break;
2641 case TCP_CLOSE_WAIT:
2642 case TCP_CLOSING:
2643 /* Received a retransmission of the FIN, do
2644 * nothing.
2646 break;
2647 case TCP_LAST_ACK:
2648 /* RFC793: Remain in the LAST-ACK state. */
2649 break;
2651 case TCP_FIN_WAIT1:
2652 /* This case occurs when a simultaneous close
2653 * happens, we must ack the received FIN and
2654 * enter the CLOSING state.
2656 tcp_send_ack(sk);
2657 tcp_set_state(sk, TCP_CLOSING);
2658 break;
2659 case TCP_FIN_WAIT2:
2660 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2661 tcp_send_ack(sk);
2662 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2663 break;
2664 default:
2665 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2666 * cases we should never reach this piece of code.
2668 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2669 __FUNCTION__, sk->sk_state);
2670 break;
2673 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2674 * Probably, we should reset in this case. For now drop them.
2676 __skb_queue_purge(&tp->out_of_order_queue);
2677 if (tp->rx_opt.sack_ok)
2678 tcp_sack_reset(&tp->rx_opt);
2679 sk_stream_mem_reclaim(sk);
2681 if (!sock_flag(sk, SOCK_DEAD)) {
2682 sk->sk_state_change(sk);
2684 /* Do not send POLL_HUP for half duplex close. */
2685 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2686 sk->sk_state == TCP_CLOSE)
2687 sk_wake_async(sk, 1, POLL_HUP);
2688 else
2689 sk_wake_async(sk, 1, POLL_IN);
2693 static __inline__ int
2694 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2696 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2697 if (before(seq, sp->start_seq))
2698 sp->start_seq = seq;
2699 if (after(end_seq, sp->end_seq))
2700 sp->end_seq = end_seq;
2701 return 1;
2703 return 0;
2706 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2708 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2709 if (before(seq, tp->rcv_nxt))
2710 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2711 else
2712 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2714 tp->rx_opt.dsack = 1;
2715 tp->duplicate_sack[0].start_seq = seq;
2716 tp->duplicate_sack[0].end_seq = end_seq;
2717 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2721 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2723 if (!tp->rx_opt.dsack)
2724 tcp_dsack_set(tp, seq, end_seq);
2725 else
2726 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2729 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2731 struct tcp_sock *tp = tcp_sk(sk);
2733 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2734 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2735 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2736 tcp_enter_quickack_mode(sk);
2738 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2739 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2741 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2742 end_seq = tp->rcv_nxt;
2743 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2747 tcp_send_ack(sk);
2750 /* These routines update the SACK block as out-of-order packets arrive or
2751 * in-order packets close up the sequence space.
2753 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2755 int this_sack;
2756 struct tcp_sack_block *sp = &tp->selective_acks[0];
2757 struct tcp_sack_block *swalk = sp+1;
2759 /* See if the recent change to the first SACK eats into
2760 * or hits the sequence space of other SACK blocks, if so coalesce.
2762 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2763 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2764 int i;
2766 /* Zap SWALK, by moving every further SACK up by one slot.
2767 * Decrease num_sacks.
2769 tp->rx_opt.num_sacks--;
2770 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2771 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2772 sp[i] = sp[i+1];
2773 continue;
2775 this_sack++, swalk++;
2779 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2781 __u32 tmp;
2783 tmp = sack1->start_seq;
2784 sack1->start_seq = sack2->start_seq;
2785 sack2->start_seq = tmp;
2787 tmp = sack1->end_seq;
2788 sack1->end_seq = sack2->end_seq;
2789 sack2->end_seq = tmp;
2792 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2794 struct tcp_sock *tp = tcp_sk(sk);
2795 struct tcp_sack_block *sp = &tp->selective_acks[0];
2796 int cur_sacks = tp->rx_opt.num_sacks;
2797 int this_sack;
2799 if (!cur_sacks)
2800 goto new_sack;
2802 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2803 if (tcp_sack_extend(sp, seq, end_seq)) {
2804 /* Rotate this_sack to the first one. */
2805 for (; this_sack>0; this_sack--, sp--)
2806 tcp_sack_swap(sp, sp-1);
2807 if (cur_sacks > 1)
2808 tcp_sack_maybe_coalesce(tp);
2809 return;
2813 /* Could not find an adjacent existing SACK, build a new one,
2814 * put it at the front, and shift everyone else down. We
2815 * always know there is at least one SACK present already here.
2817 * If the sack array is full, forget about the last one.
2819 if (this_sack >= 4) {
2820 this_sack--;
2821 tp->rx_opt.num_sacks--;
2822 sp--;
2824 for(; this_sack > 0; this_sack--, sp--)
2825 *sp = *(sp-1);
2827 new_sack:
2828 /* Build the new head SACK, and we're done. */
2829 sp->start_seq = seq;
2830 sp->end_seq = end_seq;
2831 tp->rx_opt.num_sacks++;
2832 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2835 /* RCV.NXT advances, some SACKs should be eaten. */
2837 static void tcp_sack_remove(struct tcp_sock *tp)
2839 struct tcp_sack_block *sp = &tp->selective_acks[0];
2840 int num_sacks = tp->rx_opt.num_sacks;
2841 int this_sack;
2843 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2844 if (skb_queue_empty(&tp->out_of_order_queue)) {
2845 tp->rx_opt.num_sacks = 0;
2846 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
2847 return;
2850 for(this_sack = 0; this_sack < num_sacks; ) {
2851 /* Check if the start of the sack is covered by RCV.NXT. */
2852 if (!before(tp->rcv_nxt, sp->start_seq)) {
2853 int i;
2855 /* RCV.NXT must cover all the block! */
2856 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2858 /* Zap this SACK, by moving forward any other SACKS. */
2859 for (i=this_sack+1; i < num_sacks; i++)
2860 tp->selective_acks[i-1] = tp->selective_acks[i];
2861 num_sacks--;
2862 continue;
2864 this_sack++;
2865 sp++;
2867 if (num_sacks != tp->rx_opt.num_sacks) {
2868 tp->rx_opt.num_sacks = num_sacks;
2869 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2873 /* This one checks to see if we can put data from the
2874 * out_of_order queue into the receive_queue.
2876 static void tcp_ofo_queue(struct sock *sk)
2878 struct tcp_sock *tp = tcp_sk(sk);
2879 __u32 dsack_high = tp->rcv_nxt;
2880 struct sk_buff *skb;
2882 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2883 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2884 break;
2886 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
2887 __u32 dsack = dsack_high;
2888 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
2889 dsack_high = TCP_SKB_CB(skb)->end_seq;
2890 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
2893 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2894 SOCK_DEBUG(sk, "ofo packet was already received \n");
2895 __skb_unlink(skb, &tp->out_of_order_queue);
2896 __kfree_skb(skb);
2897 continue;
2899 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
2900 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2901 TCP_SKB_CB(skb)->end_seq);
2903 __skb_unlink(skb, &tp->out_of_order_queue);
2904 __skb_queue_tail(&sk->sk_receive_queue, skb);
2905 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2906 if(skb->h.th->fin)
2907 tcp_fin(skb, sk, skb->h.th);
2911 static int tcp_prune_queue(struct sock *sk);
2913 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
2915 struct tcphdr *th = skb->h.th;
2916 struct tcp_sock *tp = tcp_sk(sk);
2917 int eaten = -1;
2919 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
2920 goto drop;
2922 __skb_pull(skb, th->doff*4);
2924 TCP_ECN_accept_cwr(tp, skb);
2926 if (tp->rx_opt.dsack) {
2927 tp->rx_opt.dsack = 0;
2928 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
2929 4 - tp->rx_opt.tstamp_ok);
2932 /* Queue data for delivery to the user.
2933 * Packets in sequence go to the receive queue.
2934 * Out of sequence packets to the out_of_order_queue.
2936 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
2937 if (tcp_receive_window(tp) == 0)
2938 goto out_of_window;
2940 /* Ok. In sequence. In window. */
2941 if (tp->ucopy.task == current &&
2942 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
2943 sock_owned_by_user(sk) && !tp->urg_data) {
2944 int chunk = min_t(unsigned int, skb->len,
2945 tp->ucopy.len);
2947 __set_current_state(TASK_RUNNING);
2949 local_bh_enable();
2950 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
2951 tp->ucopy.len -= chunk;
2952 tp->copied_seq += chunk;
2953 eaten = (chunk == skb->len && !th->fin);
2954 tcp_rcv_space_adjust(sk);
2956 local_bh_disable();
2959 if (eaten <= 0) {
2960 queue_and_out:
2961 if (eaten < 0 &&
2962 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2963 !sk_stream_rmem_schedule(sk, skb))) {
2964 if (tcp_prune_queue(sk) < 0 ||
2965 !sk_stream_rmem_schedule(sk, skb))
2966 goto drop;
2968 sk_stream_set_owner_r(skb, sk);
2969 __skb_queue_tail(&sk->sk_receive_queue, skb);
2971 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2972 if(skb->len)
2973 tcp_event_data_recv(sk, tp, skb);
2974 if(th->fin)
2975 tcp_fin(skb, sk, th);
2977 if (!skb_queue_empty(&tp->out_of_order_queue)) {
2978 tcp_ofo_queue(sk);
2980 /* RFC2581. 4.2. SHOULD send immediate ACK, when
2981 * gap in queue is filled.
2983 if (skb_queue_empty(&tp->out_of_order_queue))
2984 inet_csk(sk)->icsk_ack.pingpong = 0;
2987 if (tp->rx_opt.num_sacks)
2988 tcp_sack_remove(tp);
2990 tcp_fast_path_check(sk, tp);
2992 if (eaten > 0)
2993 __kfree_skb(skb);
2994 else if (!sock_flag(sk, SOCK_DEAD))
2995 sk->sk_data_ready(sk, 0);
2996 return;
2999 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3000 /* A retransmit, 2nd most common case. Force an immediate ack. */
3001 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3002 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3004 out_of_window:
3005 tcp_enter_quickack_mode(sk);
3006 inet_csk_schedule_ack(sk);
3007 drop:
3008 __kfree_skb(skb);
3009 return;
3012 /* Out of window. F.e. zero window probe. */
3013 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3014 goto out_of_window;
3016 tcp_enter_quickack_mode(sk);
3018 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3019 /* Partial packet, seq < rcv_next < end_seq */
3020 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3021 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3022 TCP_SKB_CB(skb)->end_seq);
3024 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3026 /* If window is closed, drop tail of packet. But after
3027 * remembering D-SACK for its head made in previous line.
3029 if (!tcp_receive_window(tp))
3030 goto out_of_window;
3031 goto queue_and_out;
3034 TCP_ECN_check_ce(tp, skb);
3036 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3037 !sk_stream_rmem_schedule(sk, skb)) {
3038 if (tcp_prune_queue(sk) < 0 ||
3039 !sk_stream_rmem_schedule(sk, skb))
3040 goto drop;
3043 /* Disable header prediction. */
3044 tp->pred_flags = 0;
3045 inet_csk_schedule_ack(sk);
3047 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3048 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3050 sk_stream_set_owner_r(skb, sk);
3052 if (!skb_peek(&tp->out_of_order_queue)) {
3053 /* Initial out of order segment, build 1 SACK. */
3054 if (tp->rx_opt.sack_ok) {
3055 tp->rx_opt.num_sacks = 1;
3056 tp->rx_opt.dsack = 0;
3057 tp->rx_opt.eff_sacks = 1;
3058 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3059 tp->selective_acks[0].end_seq =
3060 TCP_SKB_CB(skb)->end_seq;
3062 __skb_queue_head(&tp->out_of_order_queue,skb);
3063 } else {
3064 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3065 u32 seq = TCP_SKB_CB(skb)->seq;
3066 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3068 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3069 __skb_append(skb1, skb, &tp->out_of_order_queue);
3071 if (!tp->rx_opt.num_sacks ||
3072 tp->selective_acks[0].end_seq != seq)
3073 goto add_sack;
3075 /* Common case: data arrive in order after hole. */
3076 tp->selective_acks[0].end_seq = end_seq;
3077 return;
3080 /* Find place to insert this segment. */
3081 do {
3082 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3083 break;
3084 } while ((skb1 = skb1->prev) !=
3085 (struct sk_buff*)&tp->out_of_order_queue);
3087 /* Do skb overlap to previous one? */
3088 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3089 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3090 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3091 /* All the bits are present. Drop. */
3092 __kfree_skb(skb);
3093 tcp_dsack_set(tp, seq, end_seq);
3094 goto add_sack;
3096 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3097 /* Partial overlap. */
3098 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3099 } else {
3100 skb1 = skb1->prev;
3103 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3105 /* And clean segments covered by new one as whole. */
3106 while ((skb1 = skb->next) !=
3107 (struct sk_buff*)&tp->out_of_order_queue &&
3108 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3109 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3110 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3111 break;
3113 __skb_unlink(skb1, &tp->out_of_order_queue);
3114 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3115 __kfree_skb(skb1);
3118 add_sack:
3119 if (tp->rx_opt.sack_ok)
3120 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3124 /* Collapse contiguous sequence of skbs head..tail with
3125 * sequence numbers start..end.
3126 * Segments with FIN/SYN are not collapsed (only because this
3127 * simplifies code)
3129 static void
3130 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3131 struct sk_buff *head, struct sk_buff *tail,
3132 u32 start, u32 end)
3134 struct sk_buff *skb;
3136 /* First, check that queue is collapsible and find
3137 * the point where collapsing can be useful. */
3138 for (skb = head; skb != tail; ) {
3139 /* No new bits? It is possible on ofo queue. */
3140 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3141 struct sk_buff *next = skb->next;
3142 __skb_unlink(skb, list);
3143 __kfree_skb(skb);
3144 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3145 skb = next;
3146 continue;
3149 /* The first skb to collapse is:
3150 * - not SYN/FIN and
3151 * - bloated or contains data before "start" or
3152 * overlaps to the next one.
3154 if (!skb->h.th->syn && !skb->h.th->fin &&
3155 (tcp_win_from_space(skb->truesize) > skb->len ||
3156 before(TCP_SKB_CB(skb)->seq, start) ||
3157 (skb->next != tail &&
3158 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3159 break;
3161 /* Decided to skip this, advance start seq. */
3162 start = TCP_SKB_CB(skb)->end_seq;
3163 skb = skb->next;
3165 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3166 return;
3168 while (before(start, end)) {
3169 struct sk_buff *nskb;
3170 int header = skb_headroom(skb);
3171 int copy = SKB_MAX_ORDER(header, 0);
3173 /* Too big header? This can happen with IPv6. */
3174 if (copy < 0)
3175 return;
3176 if (end-start < copy)
3177 copy = end-start;
3178 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3179 if (!nskb)
3180 return;
3181 skb_reserve(nskb, header);
3182 memcpy(nskb->head, skb->head, header);
3183 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3184 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3185 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3186 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3187 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3188 __skb_insert(nskb, skb->prev, skb, list);
3189 sk_stream_set_owner_r(nskb, sk);
3191 /* Copy data, releasing collapsed skbs. */
3192 while (copy > 0) {
3193 int offset = start - TCP_SKB_CB(skb)->seq;
3194 int size = TCP_SKB_CB(skb)->end_seq - start;
3196 if (offset < 0) BUG();
3197 if (size > 0) {
3198 size = min(copy, size);
3199 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3200 BUG();
3201 TCP_SKB_CB(nskb)->end_seq += size;
3202 copy -= size;
3203 start += size;
3205 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3206 struct sk_buff *next = skb->next;
3207 __skb_unlink(skb, list);
3208 __kfree_skb(skb);
3209 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3210 skb = next;
3211 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3212 return;
3218 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3219 * and tcp_collapse() them until all the queue is collapsed.
3221 static void tcp_collapse_ofo_queue(struct sock *sk)
3223 struct tcp_sock *tp = tcp_sk(sk);
3224 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3225 struct sk_buff *head;
3226 u32 start, end;
3228 if (skb == NULL)
3229 return;
3231 start = TCP_SKB_CB(skb)->seq;
3232 end = TCP_SKB_CB(skb)->end_seq;
3233 head = skb;
3235 for (;;) {
3236 skb = skb->next;
3238 /* Segment is terminated when we see gap or when
3239 * we are at the end of all the queue. */
3240 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3241 after(TCP_SKB_CB(skb)->seq, end) ||
3242 before(TCP_SKB_CB(skb)->end_seq, start)) {
3243 tcp_collapse(sk, &tp->out_of_order_queue,
3244 head, skb, start, end);
3245 head = skb;
3246 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3247 break;
3248 /* Start new segment */
3249 start = TCP_SKB_CB(skb)->seq;
3250 end = TCP_SKB_CB(skb)->end_seq;
3251 } else {
3252 if (before(TCP_SKB_CB(skb)->seq, start))
3253 start = TCP_SKB_CB(skb)->seq;
3254 if (after(TCP_SKB_CB(skb)->end_seq, end))
3255 end = TCP_SKB_CB(skb)->end_seq;
3260 /* Reduce allocated memory if we can, trying to get
3261 * the socket within its memory limits again.
3263 * Return less than zero if we should start dropping frames
3264 * until the socket owning process reads some of the data
3265 * to stabilize the situation.
3267 static int tcp_prune_queue(struct sock *sk)
3269 struct tcp_sock *tp = tcp_sk(sk);
3271 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3273 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3275 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3276 tcp_clamp_window(sk, tp);
3277 else if (tcp_memory_pressure)
3278 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3280 tcp_collapse_ofo_queue(sk);
3281 tcp_collapse(sk, &sk->sk_receive_queue,
3282 sk->sk_receive_queue.next,
3283 (struct sk_buff*)&sk->sk_receive_queue,
3284 tp->copied_seq, tp->rcv_nxt);
3285 sk_stream_mem_reclaim(sk);
3287 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3288 return 0;
3290 /* Collapsing did not help, destructive actions follow.
3291 * This must not ever occur. */
3293 /* First, purge the out_of_order queue. */
3294 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3295 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3296 __skb_queue_purge(&tp->out_of_order_queue);
3298 /* Reset SACK state. A conforming SACK implementation will
3299 * do the same at a timeout based retransmit. When a connection
3300 * is in a sad state like this, we care only about integrity
3301 * of the connection not performance.
3303 if (tp->rx_opt.sack_ok)
3304 tcp_sack_reset(&tp->rx_opt);
3305 sk_stream_mem_reclaim(sk);
3308 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3309 return 0;
3311 /* If we are really being abused, tell the caller to silently
3312 * drop receive data on the floor. It will get retransmitted
3313 * and hopefully then we'll have sufficient space.
3315 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3317 /* Massive buffer overcommit. */
3318 tp->pred_flags = 0;
3319 return -1;
3323 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3324 * As additional protections, we do not touch cwnd in retransmission phases,
3325 * and if application hit its sndbuf limit recently.
3327 void tcp_cwnd_application_limited(struct sock *sk)
3329 struct tcp_sock *tp = tcp_sk(sk);
3331 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3332 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3333 /* Limited by application or receiver window. */
3334 u32 win_used = max(tp->snd_cwnd_used, 2U);
3335 if (win_used < tp->snd_cwnd) {
3336 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3337 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3339 tp->snd_cwnd_used = 0;
3341 tp->snd_cwnd_stamp = tcp_time_stamp;
3344 static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3346 /* If the user specified a specific send buffer setting, do
3347 * not modify it.
3349 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3350 return 0;
3352 /* If we are under global TCP memory pressure, do not expand. */
3353 if (tcp_memory_pressure)
3354 return 0;
3356 /* If we are under soft global TCP memory pressure, do not expand. */
3357 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3358 return 0;
3360 /* If we filled the congestion window, do not expand. */
3361 if (tp->packets_out >= tp->snd_cwnd)
3362 return 0;
3364 return 1;
3367 /* When incoming ACK allowed to free some skb from write_queue,
3368 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3369 * on the exit from tcp input handler.
3371 * PROBLEM: sndbuf expansion does not work well with largesend.
3373 static void tcp_new_space(struct sock *sk)
3375 struct tcp_sock *tp = tcp_sk(sk);
3377 if (tcp_should_expand_sndbuf(sk, tp)) {
3378 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3379 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3380 demanded = max_t(unsigned int, tp->snd_cwnd,
3381 tp->reordering + 1);
3382 sndmem *= 2*demanded;
3383 if (sndmem > sk->sk_sndbuf)
3384 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3385 tp->snd_cwnd_stamp = tcp_time_stamp;
3388 sk->sk_write_space(sk);
3391 static inline void tcp_check_space(struct sock *sk)
3393 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3394 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3395 if (sk->sk_socket &&
3396 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3397 tcp_new_space(sk);
3401 static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3403 tcp_push_pending_frames(sk, tp);
3404 tcp_check_space(sk);
3408 * Check if sending an ack is needed.
3410 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3412 struct tcp_sock *tp = tcp_sk(sk);
3414 /* More than one full frame received... */
3415 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3416 /* ... and right edge of window advances far enough.
3417 * (tcp_recvmsg() will send ACK otherwise). Or...
3419 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3420 /* We ACK each frame or... */
3421 tcp_in_quickack_mode(sk) ||
3422 /* We have out of order data. */
3423 (ofo_possible &&
3424 skb_peek(&tp->out_of_order_queue))) {
3425 /* Then ack it now */
3426 tcp_send_ack(sk);
3427 } else {
3428 /* Else, send delayed ack. */
3429 tcp_send_delayed_ack(sk);
3433 static __inline__ void tcp_ack_snd_check(struct sock *sk)
3435 if (!inet_csk_ack_scheduled(sk)) {
3436 /* We sent a data segment already. */
3437 return;
3439 __tcp_ack_snd_check(sk, 1);
3443 * This routine is only called when we have urgent data
3444 * signaled. Its the 'slow' part of tcp_urg. It could be
3445 * moved inline now as tcp_urg is only called from one
3446 * place. We handle URGent data wrong. We have to - as
3447 * BSD still doesn't use the correction from RFC961.
3448 * For 1003.1g we should support a new option TCP_STDURG to permit
3449 * either form (or just set the sysctl tcp_stdurg).
3452 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3454 struct tcp_sock *tp = tcp_sk(sk);
3455 u32 ptr = ntohs(th->urg_ptr);
3457 if (ptr && !sysctl_tcp_stdurg)
3458 ptr--;
3459 ptr += ntohl(th->seq);
3461 /* Ignore urgent data that we've already seen and read. */
3462 if (after(tp->copied_seq, ptr))
3463 return;
3465 /* Do not replay urg ptr.
3467 * NOTE: interesting situation not covered by specs.
3468 * Misbehaving sender may send urg ptr, pointing to segment,
3469 * which we already have in ofo queue. We are not able to fetch
3470 * such data and will stay in TCP_URG_NOTYET until will be eaten
3471 * by recvmsg(). Seems, we are not obliged to handle such wicked
3472 * situations. But it is worth to think about possibility of some
3473 * DoSes using some hypothetical application level deadlock.
3475 if (before(ptr, tp->rcv_nxt))
3476 return;
3478 /* Do we already have a newer (or duplicate) urgent pointer? */
3479 if (tp->urg_data && !after(ptr, tp->urg_seq))
3480 return;
3482 /* Tell the world about our new urgent pointer. */
3483 sk_send_sigurg(sk);
3485 /* We may be adding urgent data when the last byte read was
3486 * urgent. To do this requires some care. We cannot just ignore
3487 * tp->copied_seq since we would read the last urgent byte again
3488 * as data, nor can we alter copied_seq until this data arrives
3489 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3491 * NOTE. Double Dutch. Rendering to plain English: author of comment
3492 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3493 * and expect that both A and B disappear from stream. This is _wrong_.
3494 * Though this happens in BSD with high probability, this is occasional.
3495 * Any application relying on this is buggy. Note also, that fix "works"
3496 * only in this artificial test. Insert some normal data between A and B and we will
3497 * decline of BSD again. Verdict: it is better to remove to trap
3498 * buggy users.
3500 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3501 !sock_flag(sk, SOCK_URGINLINE) &&
3502 tp->copied_seq != tp->rcv_nxt) {
3503 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3504 tp->copied_seq++;
3505 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3506 __skb_unlink(skb, &sk->sk_receive_queue);
3507 __kfree_skb(skb);
3511 tp->urg_data = TCP_URG_NOTYET;
3512 tp->urg_seq = ptr;
3514 /* Disable header prediction. */
3515 tp->pred_flags = 0;
3518 /* This is the 'fast' part of urgent handling. */
3519 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3521 struct tcp_sock *tp = tcp_sk(sk);
3523 /* Check if we get a new urgent pointer - normally not. */
3524 if (th->urg)
3525 tcp_check_urg(sk,th);
3527 /* Do we wait for any urgent data? - normally not... */
3528 if (tp->urg_data == TCP_URG_NOTYET) {
3529 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3530 th->syn;
3532 /* Is the urgent pointer pointing into this packet? */
3533 if (ptr < skb->len) {
3534 u8 tmp;
3535 if (skb_copy_bits(skb, ptr, &tmp, 1))
3536 BUG();
3537 tp->urg_data = TCP_URG_VALID | tmp;
3538 if (!sock_flag(sk, SOCK_DEAD))
3539 sk->sk_data_ready(sk, 0);
3544 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3546 struct tcp_sock *tp = tcp_sk(sk);
3547 int chunk = skb->len - hlen;
3548 int err;
3550 local_bh_enable();
3551 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3552 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3553 else
3554 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3555 tp->ucopy.iov);
3557 if (!err) {
3558 tp->ucopy.len -= chunk;
3559 tp->copied_seq += chunk;
3560 tcp_rcv_space_adjust(sk);
3563 local_bh_disable();
3564 return err;
3567 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3569 int result;
3571 if (sock_owned_by_user(sk)) {
3572 local_bh_enable();
3573 result = __tcp_checksum_complete(skb);
3574 local_bh_disable();
3575 } else {
3576 result = __tcp_checksum_complete(skb);
3578 return result;
3581 static __inline__ int
3582 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3584 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3585 __tcp_checksum_complete_user(sk, skb);
3589 * TCP receive function for the ESTABLISHED state.
3591 * It is split into a fast path and a slow path. The fast path is
3592 * disabled when:
3593 * - A zero window was announced from us - zero window probing
3594 * is only handled properly in the slow path.
3595 * - Out of order segments arrived.
3596 * - Urgent data is expected.
3597 * - There is no buffer space left
3598 * - Unexpected TCP flags/window values/header lengths are received
3599 * (detected by checking the TCP header against pred_flags)
3600 * - Data is sent in both directions. Fast path only supports pure senders
3601 * or pure receivers (this means either the sequence number or the ack
3602 * value must stay constant)
3603 * - Unexpected TCP option.
3605 * When these conditions are not satisfied it drops into a standard
3606 * receive procedure patterned after RFC793 to handle all cases.
3607 * The first three cases are guaranteed by proper pred_flags setting,
3608 * the rest is checked inline. Fast processing is turned on in
3609 * tcp_data_queue when everything is OK.
3611 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3612 struct tcphdr *th, unsigned len)
3614 struct tcp_sock *tp = tcp_sk(sk);
3617 * Header prediction.
3618 * The code loosely follows the one in the famous
3619 * "30 instruction TCP receive" Van Jacobson mail.
3621 * Van's trick is to deposit buffers into socket queue
3622 * on a device interrupt, to call tcp_recv function
3623 * on the receive process context and checksum and copy
3624 * the buffer to user space. smart...
3626 * Our current scheme is not silly either but we take the
3627 * extra cost of the net_bh soft interrupt processing...
3628 * We do checksum and copy also but from device to kernel.
3631 tp->rx_opt.saw_tstamp = 0;
3633 /* pred_flags is 0xS?10 << 16 + snd_wnd
3634 * if header_prediction is to be made
3635 * 'S' will always be tp->tcp_header_len >> 2
3636 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3637 * turn it off (when there are holes in the receive
3638 * space for instance)
3639 * PSH flag is ignored.
3642 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3643 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3644 int tcp_header_len = tp->tcp_header_len;
3646 /* Timestamp header prediction: tcp_header_len
3647 * is automatically equal to th->doff*4 due to pred_flags
3648 * match.
3651 /* Check timestamp */
3652 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3653 __u32 *ptr = (__u32 *)(th + 1);
3655 /* No? Slow path! */
3656 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3657 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3658 goto slow_path;
3660 tp->rx_opt.saw_tstamp = 1;
3661 ++ptr;
3662 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3663 ++ptr;
3664 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3666 /* If PAWS failed, check it more carefully in slow path */
3667 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3668 goto slow_path;
3670 /* DO NOT update ts_recent here, if checksum fails
3671 * and timestamp was corrupted part, it will result
3672 * in a hung connection since we will drop all
3673 * future packets due to the PAWS test.
3677 if (len <= tcp_header_len) {
3678 /* Bulk data transfer: sender */
3679 if (len == tcp_header_len) {
3680 /* Predicted packet is in window by definition.
3681 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3682 * Hence, check seq<=rcv_wup reduces to:
3684 if (tcp_header_len ==
3685 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3686 tp->rcv_nxt == tp->rcv_wup)
3687 tcp_store_ts_recent(tp);
3689 tcp_rcv_rtt_measure_ts(sk, skb);
3691 /* We know that such packets are checksummed
3692 * on entry.
3694 tcp_ack(sk, skb, 0);
3695 __kfree_skb(skb);
3696 tcp_data_snd_check(sk, tp);
3697 return 0;
3698 } else { /* Header too small */
3699 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3700 goto discard;
3702 } else {
3703 int eaten = 0;
3705 if (tp->ucopy.task == current &&
3706 tp->copied_seq == tp->rcv_nxt &&
3707 len - tcp_header_len <= tp->ucopy.len &&
3708 sock_owned_by_user(sk)) {
3709 __set_current_state(TASK_RUNNING);
3711 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3712 /* Predicted packet is in window by definition.
3713 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3714 * Hence, check seq<=rcv_wup reduces to:
3716 if (tcp_header_len ==
3717 (sizeof(struct tcphdr) +
3718 TCPOLEN_TSTAMP_ALIGNED) &&
3719 tp->rcv_nxt == tp->rcv_wup)
3720 tcp_store_ts_recent(tp);
3722 tcp_rcv_rtt_measure_ts(sk, skb);
3724 __skb_pull(skb, tcp_header_len);
3725 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3726 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3727 eaten = 1;
3730 if (!eaten) {
3731 if (tcp_checksum_complete_user(sk, skb))
3732 goto csum_error;
3734 /* Predicted packet is in window by definition.
3735 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3736 * Hence, check seq<=rcv_wup reduces to:
3738 if (tcp_header_len ==
3739 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3740 tp->rcv_nxt == tp->rcv_wup)
3741 tcp_store_ts_recent(tp);
3743 tcp_rcv_rtt_measure_ts(sk, skb);
3745 if ((int)skb->truesize > sk->sk_forward_alloc)
3746 goto step5;
3748 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3750 /* Bulk data transfer: receiver */
3751 __skb_pull(skb,tcp_header_len);
3752 __skb_queue_tail(&sk->sk_receive_queue, skb);
3753 sk_stream_set_owner_r(skb, sk);
3754 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3757 tcp_event_data_recv(sk, tp, skb);
3759 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3760 /* Well, only one small jumplet in fast path... */
3761 tcp_ack(sk, skb, FLAG_DATA);
3762 tcp_data_snd_check(sk, tp);
3763 if (!inet_csk_ack_scheduled(sk))
3764 goto no_ack;
3767 __tcp_ack_snd_check(sk, 0);
3768 no_ack:
3769 if (eaten)
3770 __kfree_skb(skb);
3771 else
3772 sk->sk_data_ready(sk, 0);
3773 return 0;
3777 slow_path:
3778 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3779 goto csum_error;
3782 * RFC1323: H1. Apply PAWS check first.
3784 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3785 tcp_paws_discard(sk, skb)) {
3786 if (!th->rst) {
3787 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3788 tcp_send_dupack(sk, skb);
3789 goto discard;
3791 /* Resets are accepted even if PAWS failed.
3793 ts_recent update must be made after we are sure
3794 that the packet is in window.
3799 * Standard slow path.
3802 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3803 /* RFC793, page 37: "In all states except SYN-SENT, all reset
3804 * (RST) segments are validated by checking their SEQ-fields."
3805 * And page 69: "If an incoming segment is not acceptable,
3806 * an acknowledgment should be sent in reply (unless the RST bit
3807 * is set, if so drop the segment and return)".
3809 if (!th->rst)
3810 tcp_send_dupack(sk, skb);
3811 goto discard;
3814 if(th->rst) {
3815 tcp_reset(sk);
3816 goto discard;
3819 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3821 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3822 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3823 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3824 tcp_reset(sk);
3825 return 1;
3828 step5:
3829 if(th->ack)
3830 tcp_ack(sk, skb, FLAG_SLOWPATH);
3832 tcp_rcv_rtt_measure_ts(sk, skb);
3834 /* Process urgent data. */
3835 tcp_urg(sk, skb, th);
3837 /* step 7: process the segment text */
3838 tcp_data_queue(sk, skb);
3840 tcp_data_snd_check(sk, tp);
3841 tcp_ack_snd_check(sk);
3842 return 0;
3844 csum_error:
3845 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3847 discard:
3848 __kfree_skb(skb);
3849 return 0;
3852 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3853 struct tcphdr *th, unsigned len)
3855 struct tcp_sock *tp = tcp_sk(sk);
3856 int saved_clamp = tp->rx_opt.mss_clamp;
3858 tcp_parse_options(skb, &tp->rx_opt, 0);
3860 if (th->ack) {
3861 struct inet_connection_sock *icsk;
3862 /* rfc793:
3863 * "If the state is SYN-SENT then
3864 * first check the ACK bit
3865 * If the ACK bit is set
3866 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3867 * a reset (unless the RST bit is set, if so drop
3868 * the segment and return)"
3870 * We do not send data with SYN, so that RFC-correct
3871 * test reduces to:
3873 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3874 goto reset_and_undo;
3876 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3877 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
3878 tcp_time_stamp)) {
3879 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
3880 goto reset_and_undo;
3883 /* Now ACK is acceptable.
3885 * "If the RST bit is set
3886 * If the ACK was acceptable then signal the user "error:
3887 * connection reset", drop the segment, enter CLOSED state,
3888 * delete TCB, and return."
3891 if (th->rst) {
3892 tcp_reset(sk);
3893 goto discard;
3896 /* rfc793:
3897 * "fifth, if neither of the SYN or RST bits is set then
3898 * drop the segment and return."
3900 * See note below!
3901 * --ANK(990513)
3903 if (!th->syn)
3904 goto discard_and_undo;
3906 /* rfc793:
3907 * "If the SYN bit is on ...
3908 * are acceptable then ...
3909 * (our SYN has been ACKed), change the connection
3910 * state to ESTABLISHED..."
3913 TCP_ECN_rcv_synack(tp, th);
3914 if (tp->ecn_flags&TCP_ECN_OK)
3915 sock_set_flag(sk, SOCK_NO_LARGESEND);
3917 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3918 tcp_ack(sk, skb, FLAG_SLOWPATH);
3920 /* Ok.. it's good. Set up sequence numbers and
3921 * move to established.
3923 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3924 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3926 /* RFC1323: The window in SYN & SYN/ACK segments is
3927 * never scaled.
3929 tp->snd_wnd = ntohs(th->window);
3930 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3932 if (!tp->rx_opt.wscale_ok) {
3933 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
3934 tp->window_clamp = min(tp->window_clamp, 65535U);
3937 if (tp->rx_opt.saw_tstamp) {
3938 tp->rx_opt.tstamp_ok = 1;
3939 tp->tcp_header_len =
3940 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3941 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
3942 tcp_store_ts_recent(tp);
3943 } else {
3944 tp->tcp_header_len = sizeof(struct tcphdr);
3947 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
3948 tp->rx_opt.sack_ok |= 2;
3950 tcp_sync_mss(sk, tp->pmtu_cookie);
3951 tcp_initialize_rcv_mss(sk);
3953 /* Remember, tcp_poll() does not lock socket!
3954 * Change state from SYN-SENT only after copied_seq
3955 * is initialized. */
3956 tp->copied_seq = tp->rcv_nxt;
3957 mb();
3958 tcp_set_state(sk, TCP_ESTABLISHED);
3960 /* Make sure socket is routed, for correct metrics. */
3961 tp->af_specific->rebuild_header(sk);
3963 tcp_init_metrics(sk);
3965 tcp_init_congestion_control(sk);
3967 /* Prevent spurious tcp_cwnd_restart() on first data
3968 * packet.
3970 tp->lsndtime = tcp_time_stamp;
3972 tcp_init_buffer_space(sk);
3974 if (sock_flag(sk, SOCK_KEEPOPEN))
3975 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
3977 if (!tp->rx_opt.snd_wscale)
3978 __tcp_fast_path_on(tp, tp->snd_wnd);
3979 else
3980 tp->pred_flags = 0;
3982 if (!sock_flag(sk, SOCK_DEAD)) {
3983 sk->sk_state_change(sk);
3984 sk_wake_async(sk, 0, POLL_OUT);
3987 icsk = inet_csk(sk);
3989 if (sk->sk_write_pending ||
3990 icsk->icsk_accept_queue.rskq_defer_accept ||
3991 icsk->icsk_ack.pingpong) {
3992 /* Save one ACK. Data will be ready after
3993 * several ticks, if write_pending is set.
3995 * It may be deleted, but with this feature tcpdumps
3996 * look so _wonderfully_ clever, that I was not able
3997 * to stand against the temptation 8) --ANK
3999 inet_csk_schedule_ack(sk);
4000 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4001 icsk->icsk_ack.ato = TCP_ATO_MIN;
4002 tcp_incr_quickack(sk);
4003 tcp_enter_quickack_mode(sk);
4004 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4005 TCP_DELACK_MAX, TCP_RTO_MAX);
4007 discard:
4008 __kfree_skb(skb);
4009 return 0;
4010 } else {
4011 tcp_send_ack(sk);
4013 return -1;
4016 /* No ACK in the segment */
4018 if (th->rst) {
4019 /* rfc793:
4020 * "If the RST bit is set
4022 * Otherwise (no ACK) drop the segment and return."
4025 goto discard_and_undo;
4028 /* PAWS check. */
4029 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4030 goto discard_and_undo;
4032 if (th->syn) {
4033 /* We see SYN without ACK. It is attempt of
4034 * simultaneous connect with crossed SYNs.
4035 * Particularly, it can be connect to self.
4037 tcp_set_state(sk, TCP_SYN_RECV);
4039 if (tp->rx_opt.saw_tstamp) {
4040 tp->rx_opt.tstamp_ok = 1;
4041 tcp_store_ts_recent(tp);
4042 tp->tcp_header_len =
4043 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4044 } else {
4045 tp->tcp_header_len = sizeof(struct tcphdr);
4048 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4049 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4051 /* RFC1323: The window in SYN & SYN/ACK segments is
4052 * never scaled.
4054 tp->snd_wnd = ntohs(th->window);
4055 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4056 tp->max_window = tp->snd_wnd;
4058 TCP_ECN_rcv_syn(tp, th);
4059 if (tp->ecn_flags&TCP_ECN_OK)
4060 sock_set_flag(sk, SOCK_NO_LARGESEND);
4062 tcp_sync_mss(sk, tp->pmtu_cookie);
4063 tcp_initialize_rcv_mss(sk);
4066 tcp_send_synack(sk);
4067 #if 0
4068 /* Note, we could accept data and URG from this segment.
4069 * There are no obstacles to make this.
4071 * However, if we ignore data in ACKless segments sometimes,
4072 * we have no reasons to accept it sometimes.
4073 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4074 * is not flawless. So, discard packet for sanity.
4075 * Uncomment this return to process the data.
4077 return -1;
4078 #else
4079 goto discard;
4080 #endif
4082 /* "fifth, if neither of the SYN or RST bits is set then
4083 * drop the segment and return."
4086 discard_and_undo:
4087 tcp_clear_options(&tp->rx_opt);
4088 tp->rx_opt.mss_clamp = saved_clamp;
4089 goto discard;
4091 reset_and_undo:
4092 tcp_clear_options(&tp->rx_opt);
4093 tp->rx_opt.mss_clamp = saved_clamp;
4094 return 1;
4099 * This function implements the receiving procedure of RFC 793 for
4100 * all states except ESTABLISHED and TIME_WAIT.
4101 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4102 * address independent.
4105 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4106 struct tcphdr *th, unsigned len)
4108 struct tcp_sock *tp = tcp_sk(sk);
4109 int queued = 0;
4111 tp->rx_opt.saw_tstamp = 0;
4113 switch (sk->sk_state) {
4114 case TCP_CLOSE:
4115 goto discard;
4117 case TCP_LISTEN:
4118 if(th->ack)
4119 return 1;
4121 if(th->rst)
4122 goto discard;
4124 if(th->syn) {
4125 if(tp->af_specific->conn_request(sk, skb) < 0)
4126 return 1;
4128 /* Now we have several options: In theory there is
4129 * nothing else in the frame. KA9Q has an option to
4130 * send data with the syn, BSD accepts data with the
4131 * syn up to the [to be] advertised window and
4132 * Solaris 2.1 gives you a protocol error. For now
4133 * we just ignore it, that fits the spec precisely
4134 * and avoids incompatibilities. It would be nice in
4135 * future to drop through and process the data.
4137 * Now that TTCP is starting to be used we ought to
4138 * queue this data.
4139 * But, this leaves one open to an easy denial of
4140 * service attack, and SYN cookies can't defend
4141 * against this problem. So, we drop the data
4142 * in the interest of security over speed.
4144 goto discard;
4146 goto discard;
4148 case TCP_SYN_SENT:
4149 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4150 if (queued >= 0)
4151 return queued;
4153 /* Do step6 onward by hand. */
4154 tcp_urg(sk, skb, th);
4155 __kfree_skb(skb);
4156 tcp_data_snd_check(sk, tp);
4157 return 0;
4160 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4161 tcp_paws_discard(sk, skb)) {
4162 if (!th->rst) {
4163 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4164 tcp_send_dupack(sk, skb);
4165 goto discard;
4167 /* Reset is accepted even if it did not pass PAWS. */
4170 /* step 1: check sequence number */
4171 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4172 if (!th->rst)
4173 tcp_send_dupack(sk, skb);
4174 goto discard;
4177 /* step 2: check RST bit */
4178 if(th->rst) {
4179 tcp_reset(sk);
4180 goto discard;
4183 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4185 /* step 3: check security and precedence [ignored] */
4187 /* step 4:
4189 * Check for a SYN in window.
4191 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4192 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4193 tcp_reset(sk);
4194 return 1;
4197 /* step 5: check the ACK field */
4198 if (th->ack) {
4199 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4201 switch(sk->sk_state) {
4202 case TCP_SYN_RECV:
4203 if (acceptable) {
4204 tp->copied_seq = tp->rcv_nxt;
4205 mb();
4206 tcp_set_state(sk, TCP_ESTABLISHED);
4207 sk->sk_state_change(sk);
4209 /* Note, that this wakeup is only for marginal
4210 * crossed SYN case. Passively open sockets
4211 * are not waked up, because sk->sk_sleep ==
4212 * NULL and sk->sk_socket == NULL.
4214 if (sk->sk_socket) {
4215 sk_wake_async(sk,0,POLL_OUT);
4218 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4219 tp->snd_wnd = ntohs(th->window) <<
4220 tp->rx_opt.snd_wscale;
4221 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4222 TCP_SKB_CB(skb)->seq);
4224 /* tcp_ack considers this ACK as duplicate
4225 * and does not calculate rtt.
4226 * Fix it at least with timestamps.
4228 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4229 !tp->srtt)
4230 tcp_ack_saw_tstamp(sk, 0);
4232 if (tp->rx_opt.tstamp_ok)
4233 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4235 /* Make sure socket is routed, for
4236 * correct metrics.
4238 tp->af_specific->rebuild_header(sk);
4240 tcp_init_metrics(sk);
4242 tcp_init_congestion_control(sk);
4244 /* Prevent spurious tcp_cwnd_restart() on
4245 * first data packet.
4247 tp->lsndtime = tcp_time_stamp;
4249 tcp_initialize_rcv_mss(sk);
4250 tcp_init_buffer_space(sk);
4251 tcp_fast_path_on(tp);
4252 } else {
4253 return 1;
4255 break;
4257 case TCP_FIN_WAIT1:
4258 if (tp->snd_una == tp->write_seq) {
4259 tcp_set_state(sk, TCP_FIN_WAIT2);
4260 sk->sk_shutdown |= SEND_SHUTDOWN;
4261 dst_confirm(sk->sk_dst_cache);
4263 if (!sock_flag(sk, SOCK_DEAD))
4264 /* Wake up lingering close() */
4265 sk->sk_state_change(sk);
4266 else {
4267 int tmo;
4269 if (tp->linger2 < 0 ||
4270 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4271 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4272 tcp_done(sk);
4273 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4274 return 1;
4277 tmo = tcp_fin_time(sk);
4278 if (tmo > TCP_TIMEWAIT_LEN) {
4279 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4280 } else if (th->fin || sock_owned_by_user(sk)) {
4281 /* Bad case. We could lose such FIN otherwise.
4282 * It is not a big problem, but it looks confusing
4283 * and not so rare event. We still can lose it now,
4284 * if it spins in bh_lock_sock(), but it is really
4285 * marginal case.
4287 inet_csk_reset_keepalive_timer(sk, tmo);
4288 } else {
4289 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4290 goto discard;
4294 break;
4296 case TCP_CLOSING:
4297 if (tp->snd_una == tp->write_seq) {
4298 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4299 goto discard;
4301 break;
4303 case TCP_LAST_ACK:
4304 if (tp->snd_una == tp->write_seq) {
4305 tcp_update_metrics(sk);
4306 tcp_done(sk);
4307 goto discard;
4309 break;
4311 } else
4312 goto discard;
4314 /* step 6: check the URG bit */
4315 tcp_urg(sk, skb, th);
4317 /* step 7: process the segment text */
4318 switch (sk->sk_state) {
4319 case TCP_CLOSE_WAIT:
4320 case TCP_CLOSING:
4321 case TCP_LAST_ACK:
4322 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4323 break;
4324 case TCP_FIN_WAIT1:
4325 case TCP_FIN_WAIT2:
4326 /* RFC 793 says to queue data in these states,
4327 * RFC 1122 says we MUST send a reset.
4328 * BSD 4.4 also does reset.
4330 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4331 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4332 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4333 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4334 tcp_reset(sk);
4335 return 1;
4338 /* Fall through */
4339 case TCP_ESTABLISHED:
4340 tcp_data_queue(sk, skb);
4341 queued = 1;
4342 break;
4345 /* tcp_data could move socket to TIME-WAIT */
4346 if (sk->sk_state != TCP_CLOSE) {
4347 tcp_data_snd_check(sk, tp);
4348 tcp_ack_snd_check(sk);
4351 if (!queued) {
4352 discard:
4353 __kfree_skb(skb);
4355 return 0;
4358 EXPORT_SYMBOL(sysctl_tcp_ecn);
4359 EXPORT_SYMBOL(sysctl_tcp_reordering);
4360 EXPORT_SYMBOL(sysctl_tcp_abc);
4361 EXPORT_SYMBOL(tcp_parse_options);
4362 EXPORT_SYMBOL(tcp_rcv_established);
4363 EXPORT_SYMBOL(tcp_rcv_state_process);