2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <asm/atomic.h>
39 #include <linux/bitops.h>
40 #include <linux/module.h>
41 #include <linux/completion.h>
42 #include <linux/moduleparam.h>
43 #include <linux/percpu.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/mutex.h>
47 #include <linux/time.h>
49 #ifdef CONFIG_DEBUG_LOCK_ALLOC
50 static struct lock_class_key rcu_lock_key
;
51 struct lockdep_map rcu_lock_map
=
52 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key
);
53 EXPORT_SYMBOL_GPL(rcu_lock_map
);
56 /* Data structures. */
58 #define RCU_STATE_INITIALIZER(name) { \
59 .level = { &name.node[0] }, \
61 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
66 .signaled = RCU_SIGNAL_INIT, \
69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
72 .n_force_qs_ngp = 0, \
75 struct rcu_state rcu_state
= RCU_STATE_INITIALIZER(rcu_state
);
76 DEFINE_PER_CPU(struct rcu_data
, rcu_data
);
78 struct rcu_state rcu_bh_state
= RCU_STATE_INITIALIZER(rcu_bh_state
);
79 DEFINE_PER_CPU(struct rcu_data
, rcu_bh_data
);
82 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
83 .dynticks_nesting
= 1,
86 #endif /* #ifdef CONFIG_NO_HZ */
88 static int blimit
= 10; /* Maximum callbacks per softirq. */
89 static int qhimark
= 10000; /* If this many pending, ignore blimit. */
90 static int qlowmark
= 100; /* Once only this many pending, use blimit. */
92 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
);
95 * Return the number of RCU batches processed thus far for debug & stats.
97 long rcu_batches_completed(void)
99 return rcu_state
.completed
;
101 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
104 * Return the number of RCU BH batches processed thus far for debug & stats.
106 long rcu_batches_completed_bh(void)
108 return rcu_bh_state
.completed
;
110 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
113 * Does the CPU have callbacks ready to be invoked?
116 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
118 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
];
122 * Does the current CPU require a yet-as-unscheduled grace period?
125 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
127 /* ACCESS_ONCE() because we are accessing outside of lock. */
128 return *rdp
->nxttail
[RCU_DONE_TAIL
] &&
129 ACCESS_ONCE(rsp
->completed
) == ACCESS_ONCE(rsp
->gpnum
);
133 * Return the root node of the specified rcu_state structure.
135 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
137 return &rsp
->node
[0];
143 * If the specified CPU is offline, tell the caller that it is in
144 * a quiescent state. Otherwise, whack it with a reschedule IPI.
145 * Grace periods can end up waiting on an offline CPU when that
146 * CPU is in the process of coming online -- it will be added to the
147 * rcu_node bitmasks before it actually makes it online. The same thing
148 * can happen while a CPU is in the process of coming online. Because this
149 * race is quite rare, we check for it after detecting that the grace
150 * period has been delayed rather than checking each and every CPU
151 * each and every time we start a new grace period.
153 static int rcu_implicit_offline_qs(struct rcu_data
*rdp
)
156 * If the CPU is offline, it is in a quiescent state. We can
157 * trust its state not to change because interrupts are disabled.
159 if (cpu_is_offline(rdp
->cpu
)) {
164 /* The CPU is online, so send it a reschedule IPI. */
165 if (rdp
->cpu
!= smp_processor_id())
166 smp_send_reschedule(rdp
->cpu
);
173 #endif /* #ifdef CONFIG_SMP */
176 static DEFINE_RATELIMIT_STATE(rcu_rs
, 10 * HZ
, 5);
179 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
181 * Enter nohz mode, in other words, -leave- the mode in which RCU
182 * read-side critical sections can occur. (Though RCU read-side
183 * critical sections can occur in irq handlers in nohz mode, a possibility
184 * handled by rcu_irq_enter() and rcu_irq_exit()).
186 void rcu_enter_nohz(void)
189 struct rcu_dynticks
*rdtp
;
191 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
192 local_irq_save(flags
);
193 rdtp
= &__get_cpu_var(rcu_dynticks
);
195 rdtp
->dynticks_nesting
--;
196 WARN_ON_RATELIMIT(rdtp
->dynticks
& 0x1, &rcu_rs
);
197 local_irq_restore(flags
);
201 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
203 * Exit nohz mode, in other words, -enter- the mode in which RCU
204 * read-side critical sections normally occur.
206 void rcu_exit_nohz(void)
209 struct rcu_dynticks
*rdtp
;
211 local_irq_save(flags
);
212 rdtp
= &__get_cpu_var(rcu_dynticks
);
214 rdtp
->dynticks_nesting
++;
215 WARN_ON_RATELIMIT(!(rdtp
->dynticks
& 0x1), &rcu_rs
);
216 local_irq_restore(flags
);
217 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
221 * rcu_nmi_enter - inform RCU of entry to NMI context
223 * If the CPU was idle with dynamic ticks active, and there is no
224 * irq handler running, this updates rdtp->dynticks_nmi to let the
225 * RCU grace-period handling know that the CPU is active.
227 void rcu_nmi_enter(void)
229 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
231 if (rdtp
->dynticks
& 0x1)
233 rdtp
->dynticks_nmi
++;
234 WARN_ON_RATELIMIT(!(rdtp
->dynticks_nmi
& 0x1), &rcu_rs
);
235 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
239 * rcu_nmi_exit - inform RCU of exit from NMI context
241 * If the CPU was idle with dynamic ticks active, and there is no
242 * irq handler running, this updates rdtp->dynticks_nmi to let the
243 * RCU grace-period handling know that the CPU is no longer active.
245 void rcu_nmi_exit(void)
247 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
249 if (rdtp
->dynticks
& 0x1)
251 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
252 rdtp
->dynticks_nmi
++;
253 WARN_ON_RATELIMIT(rdtp
->dynticks_nmi
& 0x1, &rcu_rs
);
257 * rcu_irq_enter - inform RCU of entry to hard irq context
259 * If the CPU was idle with dynamic ticks active, this updates the
260 * rdtp->dynticks to let the RCU handling know that the CPU is active.
262 void rcu_irq_enter(void)
264 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
266 if (rdtp
->dynticks_nesting
++)
269 WARN_ON_RATELIMIT(!(rdtp
->dynticks
& 0x1), &rcu_rs
);
270 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
274 * rcu_irq_exit - inform RCU of exit from hard irq context
276 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
277 * to put let the RCU handling be aware that the CPU is going back to idle
280 void rcu_irq_exit(void)
282 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
284 if (--rdtp
->dynticks_nesting
)
286 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
288 WARN_ON_RATELIMIT(rdtp
->dynticks
& 0x1, &rcu_rs
);
290 /* If the interrupt queued a callback, get out of dyntick mode. */
291 if (__get_cpu_var(rcu_data
).nxtlist
||
292 __get_cpu_var(rcu_bh_data
).nxtlist
)
297 * Record the specified "completed" value, which is later used to validate
298 * dynticks counter manipulations. Specify "rsp->completed - 1" to
299 * unconditionally invalidate any future dynticks manipulations (which is
300 * useful at the beginning of a grace period).
302 static void dyntick_record_completed(struct rcu_state
*rsp
, long comp
)
304 rsp
->dynticks_completed
= comp
;
310 * Recall the previously recorded value of the completion for dynticks.
312 static long dyntick_recall_completed(struct rcu_state
*rsp
)
314 return rsp
->dynticks_completed
;
318 * Snapshot the specified CPU's dynticks counter so that we can later
319 * credit them with an implicit quiescent state. Return 1 if this CPU
320 * is already in a quiescent state courtesy of dynticks idle mode.
322 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
328 snap
= rdp
->dynticks
->dynticks
;
329 snap_nmi
= rdp
->dynticks
->dynticks_nmi
;
330 smp_mb(); /* Order sampling of snap with end of grace period. */
331 rdp
->dynticks_snap
= snap
;
332 rdp
->dynticks_nmi_snap
= snap_nmi
;
333 ret
= ((snap
& 0x1) == 0) && ((snap_nmi
& 0x1) == 0);
340 * Return true if the specified CPU has passed through a quiescent
341 * state by virtue of being in or having passed through an dynticks
342 * idle state since the last call to dyntick_save_progress_counter()
345 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
352 curr
= rdp
->dynticks
->dynticks
;
353 snap
= rdp
->dynticks_snap
;
354 curr_nmi
= rdp
->dynticks
->dynticks_nmi
;
355 snap_nmi
= rdp
->dynticks_nmi_snap
;
356 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
359 * If the CPU passed through or entered a dynticks idle phase with
360 * no active irq/NMI handlers, then we can safely pretend that the CPU
361 * already acknowledged the request to pass through a quiescent
362 * state. Either way, that CPU cannot possibly be in an RCU
363 * read-side critical section that started before the beginning
364 * of the current RCU grace period.
366 if ((curr
!= snap
|| (curr
& 0x1) == 0) &&
367 (curr_nmi
!= snap_nmi
|| (curr_nmi
& 0x1) == 0)) {
372 /* Go check for the CPU being offline. */
373 return rcu_implicit_offline_qs(rdp
);
376 #endif /* #ifdef CONFIG_SMP */
378 #else /* #ifdef CONFIG_NO_HZ */
380 static void dyntick_record_completed(struct rcu_state
*rsp
, long comp
)
387 * If there are no dynticks, then the only way that a CPU can passively
388 * be in a quiescent state is to be offline. Unlike dynticks idle, which
389 * is a point in time during the prior (already finished) grace period,
390 * an offline CPU is always in a quiescent state, and thus can be
391 * unconditionally applied. So just return the current value of completed.
393 static long dyntick_recall_completed(struct rcu_state
*rsp
)
395 return rsp
->completed
;
398 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
403 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
405 return rcu_implicit_offline_qs(rdp
);
408 #endif /* #ifdef CONFIG_SMP */
410 #endif /* #else #ifdef CONFIG_NO_HZ */
412 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
414 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
416 rsp
->gp_start
= jiffies
;
417 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_CHECK
;
420 static void print_other_cpu_stall(struct rcu_state
*rsp
)
425 struct rcu_node
*rnp
= rcu_get_root(rsp
);
426 struct rcu_node
*rnp_cur
= rsp
->level
[NUM_RCU_LVLS
- 1];
427 struct rcu_node
*rnp_end
= &rsp
->node
[NUM_RCU_NODES
];
429 /* Only let one CPU complain about others per time interval. */
431 spin_lock_irqsave(&rnp
->lock
, flags
);
432 delta
= jiffies
- rsp
->jiffies_stall
;
433 if (delta
< RCU_STALL_RAT_DELAY
|| rsp
->gpnum
== rsp
->completed
) {
434 spin_unlock_irqrestore(&rnp
->lock
, flags
);
437 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
438 spin_unlock_irqrestore(&rnp
->lock
, flags
);
440 /* OK, time to rat on our buddy... */
442 printk(KERN_ERR
"INFO: RCU detected CPU stalls:");
443 for (; rnp_cur
< rnp_end
; rnp_cur
++) {
444 if (rnp_cur
->qsmask
== 0)
446 for (cpu
= 0; cpu
<= rnp_cur
->grphi
- rnp_cur
->grplo
; cpu
++)
447 if (rnp_cur
->qsmask
& (1UL << cpu
))
448 printk(" %d", rnp_cur
->grplo
+ cpu
);
450 printk(" (detected by %d, t=%ld jiffies)\n",
451 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
));
452 force_quiescent_state(rsp
, 0); /* Kick them all. */
455 static void print_cpu_stall(struct rcu_state
*rsp
)
458 struct rcu_node
*rnp
= rcu_get_root(rsp
);
460 printk(KERN_ERR
"INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
461 smp_processor_id(), jiffies
- rsp
->gp_start
);
463 spin_lock_irqsave(&rnp
->lock
, flags
);
464 if ((long)(jiffies
- rsp
->jiffies_stall
) >= 0)
466 jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
467 spin_unlock_irqrestore(&rnp
->lock
, flags
);
468 set_need_resched(); /* kick ourselves to get things going. */
471 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
474 struct rcu_node
*rnp
;
476 delta
= jiffies
- rsp
->jiffies_stall
;
478 if ((rnp
->qsmask
& rdp
->grpmask
) && delta
>= 0) {
480 /* We haven't checked in, so go dump stack. */
481 print_cpu_stall(rsp
);
483 } else if (rsp
->gpnum
!= rsp
->completed
&&
484 delta
>= RCU_STALL_RAT_DELAY
) {
486 /* They had two time units to dump stack, so complain. */
487 print_other_cpu_stall(rsp
);
491 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
493 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
497 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
501 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
504 * Update CPU-local rcu_data state to record the newly noticed grace period.
505 * This is used both when we started the grace period and when we notice
506 * that someone else started the grace period.
508 static void note_new_gpnum(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
511 rdp
->passed_quiesc
= 0;
512 rdp
->gpnum
= rsp
->gpnum
;
513 rdp
->n_rcu_pending_force_qs
= rdp
->n_rcu_pending
+
514 RCU_JIFFIES_TILL_FORCE_QS
;
518 * Did someone else start a new RCU grace period start since we last
519 * checked? Update local state appropriately if so. Must be called
520 * on the CPU corresponding to rdp.
523 check_for_new_grace_period(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
528 local_irq_save(flags
);
529 if (rdp
->gpnum
!= rsp
->gpnum
) {
530 note_new_gpnum(rsp
, rdp
);
533 local_irq_restore(flags
);
538 * Start a new RCU grace period if warranted, re-initializing the hierarchy
539 * in preparation for detecting the next grace period. The caller must hold
540 * the root node's ->lock, which is released before return. Hard irqs must
544 rcu_start_gp(struct rcu_state
*rsp
, unsigned long flags
)
545 __releases(rcu_get_root(rsp
)->lock
)
547 struct rcu_data
*rdp
= rsp
->rda
[smp_processor_id()];
548 struct rcu_node
*rnp
= rcu_get_root(rsp
);
549 struct rcu_node
*rnp_cur
;
550 struct rcu_node
*rnp_end
;
552 if (!cpu_needs_another_gp(rsp
, rdp
)) {
553 spin_unlock_irqrestore(&rnp
->lock
, flags
);
557 /* Advance to a new grace period and initialize state. */
559 rsp
->signaled
= RCU_GP_INIT
; /* Hold off force_quiescent_state. */
560 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
561 rdp
->n_rcu_pending_force_qs
= rdp
->n_rcu_pending
+
562 RCU_JIFFIES_TILL_FORCE_QS
;
563 record_gp_stall_check_time(rsp
);
564 dyntick_record_completed(rsp
, rsp
->completed
- 1);
565 note_new_gpnum(rsp
, rdp
);
568 * Because we are first, we know that all our callbacks will
569 * be covered by this upcoming grace period, even the ones
570 * that were registered arbitrarily recently.
572 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
573 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
575 /* Special-case the common single-level case. */
576 if (NUM_RCU_NODES
== 1) {
577 rnp
->qsmask
= rnp
->qsmaskinit
;
578 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state OK. */
579 spin_unlock_irqrestore(&rnp
->lock
, flags
);
583 spin_unlock(&rnp
->lock
); /* leave irqs disabled. */
586 /* Exclude any concurrent CPU-hotplug operations. */
587 spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
590 * Set the quiescent-state-needed bits in all the non-leaf RCU
591 * nodes for all currently online CPUs. This operation relies
592 * on the layout of the hierarchy within the rsp->node[] array.
593 * Note that other CPUs will access only the leaves of the
594 * hierarchy, which still indicate that no grace period is in
595 * progress. In addition, we have excluded CPU-hotplug operations.
597 * We therefore do not need to hold any locks. Any required
598 * memory barriers will be supplied by the locks guarding the
599 * leaf rcu_nodes in the hierarchy.
602 rnp_end
= rsp
->level
[NUM_RCU_LVLS
- 1];
603 for (rnp_cur
= &rsp
->node
[0]; rnp_cur
< rnp_end
; rnp_cur
++)
604 rnp_cur
->qsmask
= rnp_cur
->qsmaskinit
;
607 * Now set up the leaf nodes. Here we must be careful. First,
608 * we need to hold the lock in order to exclude other CPUs, which
609 * might be contending for the leaf nodes' locks. Second, as
610 * soon as we initialize a given leaf node, its CPUs might run
611 * up the rest of the hierarchy. We must therefore acquire locks
612 * for each node that we touch during this stage. (But we still
613 * are excluding CPU-hotplug operations.)
615 * Note that the grace period cannot complete until we finish
616 * the initialization process, as there will be at least one
617 * qsmask bit set in the root node until that time, namely the
618 * one corresponding to this CPU.
620 rnp_end
= &rsp
->node
[NUM_RCU_NODES
];
621 rnp_cur
= rsp
->level
[NUM_RCU_LVLS
- 1];
622 for (; rnp_cur
< rnp_end
; rnp_cur
++) {
623 spin_lock(&rnp_cur
->lock
); /* irqs already disabled. */
624 rnp_cur
->qsmask
= rnp_cur
->qsmaskinit
;
625 spin_unlock(&rnp_cur
->lock
); /* irqs already disabled. */
628 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state now OK. */
629 spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
633 * Advance this CPU's callbacks, but only if the current grace period
634 * has ended. This may be called only from the CPU to whom the rdp
638 rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
643 local_irq_save(flags
);
644 completed_snap
= ACCESS_ONCE(rsp
->completed
); /* outside of lock. */
646 /* Did another grace period end? */
647 if (rdp
->completed
!= completed_snap
) {
649 /* Advance callbacks. No harm if list empty. */
650 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[RCU_WAIT_TAIL
];
651 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_READY_TAIL
];
652 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
654 /* Remember that we saw this grace-period completion. */
655 rdp
->completed
= completed_snap
;
657 local_irq_restore(flags
);
661 * Similar to cpu_quiet(), for which it is a helper function. Allows
662 * a group of CPUs to be quieted at one go, though all the CPUs in the
663 * group must be represented by the same leaf rcu_node structure.
664 * That structure's lock must be held upon entry, and it is released
668 cpu_quiet_msk(unsigned long mask
, struct rcu_state
*rsp
, struct rcu_node
*rnp
,
670 __releases(rnp
->lock
)
672 /* Walk up the rcu_node hierarchy. */
674 if (!(rnp
->qsmask
& mask
)) {
676 /* Our bit has already been cleared, so done. */
677 spin_unlock_irqrestore(&rnp
->lock
, flags
);
680 rnp
->qsmask
&= ~mask
;
681 if (rnp
->qsmask
!= 0) {
683 /* Other bits still set at this level, so done. */
684 spin_unlock_irqrestore(&rnp
->lock
, flags
);
688 if (rnp
->parent
== NULL
) {
690 /* No more levels. Exit loop holding root lock. */
694 spin_unlock_irqrestore(&rnp
->lock
, flags
);
696 spin_lock_irqsave(&rnp
->lock
, flags
);
700 * Get here if we are the last CPU to pass through a quiescent
701 * state for this grace period. Clean up and let rcu_start_gp()
702 * start up the next grace period if one is needed. Note that
703 * we still hold rnp->lock, as required by rcu_start_gp(), which
706 rsp
->completed
= rsp
->gpnum
;
707 rcu_process_gp_end(rsp
, rsp
->rda
[smp_processor_id()]);
708 rcu_start_gp(rsp
, flags
); /* releases rnp->lock. */
712 * Record a quiescent state for the specified CPU, which must either be
713 * the current CPU or an offline CPU. The lastcomp argument is used to
714 * make sure we are still in the grace period of interest. We don't want
715 * to end the current grace period based on quiescent states detected in
716 * an earlier grace period!
719 cpu_quiet(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
, long lastcomp
)
723 struct rcu_node
*rnp
;
726 spin_lock_irqsave(&rnp
->lock
, flags
);
727 if (lastcomp
!= ACCESS_ONCE(rsp
->completed
)) {
730 * Someone beat us to it for this grace period, so leave.
731 * The race with GP start is resolved by the fact that we
732 * hold the leaf rcu_node lock, so that the per-CPU bits
733 * cannot yet be initialized -- so we would simply find our
734 * CPU's bit already cleared in cpu_quiet_msk() if this race
737 rdp
->passed_quiesc
= 0; /* try again later! */
738 spin_unlock_irqrestore(&rnp
->lock
, flags
);
742 if ((rnp
->qsmask
& mask
) == 0) {
743 spin_unlock_irqrestore(&rnp
->lock
, flags
);
748 * This GP can't end until cpu checks in, so all of our
749 * callbacks can be processed during the next GP.
751 rdp
= rsp
->rda
[smp_processor_id()];
752 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
754 cpu_quiet_msk(mask
, rsp
, rnp
, flags
); /* releases rnp->lock */
759 * Check to see if there is a new grace period of which this CPU
760 * is not yet aware, and if so, set up local rcu_data state for it.
761 * Otherwise, see if this CPU has just passed through its first
762 * quiescent state for this grace period, and record that fact if so.
765 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
767 /* If there is now a new grace period, record and return. */
768 if (check_for_new_grace_period(rsp
, rdp
))
772 * Does this CPU still need to do its part for current grace period?
773 * If no, return and let the other CPUs do their part as well.
775 if (!rdp
->qs_pending
)
779 * Was there a quiescent state since the beginning of the grace
780 * period? If no, then exit and wait for the next call.
782 if (!rdp
->passed_quiesc
)
785 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
786 cpu_quiet(rdp
->cpu
, rsp
, rdp
, rdp
->passed_quiesc_completed
);
789 #ifdef CONFIG_HOTPLUG_CPU
792 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
793 * and move all callbacks from the outgoing CPU to the current one.
795 static void __rcu_offline_cpu(int cpu
, struct rcu_state
*rsp
)
801 struct rcu_data
*rdp
= rsp
->rda
[cpu
];
802 struct rcu_data
*rdp_me
;
803 struct rcu_node
*rnp
;
805 /* Exclude any attempts to start a new grace period. */
806 spin_lock_irqsave(&rsp
->onofflock
, flags
);
808 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
810 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
812 spin_lock(&rnp
->lock
); /* irqs already disabled. */
813 rnp
->qsmaskinit
&= ~mask
;
814 if (rnp
->qsmaskinit
!= 0) {
815 spin_unlock(&rnp
->lock
); /* irqs already disabled. */
819 spin_unlock(&rnp
->lock
); /* irqs already disabled. */
821 } while (rnp
!= NULL
);
822 lastcomp
= rsp
->completed
;
824 spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
826 /* Being offline is a quiescent state, so go record it. */
827 cpu_quiet(cpu
, rsp
, rdp
, lastcomp
);
830 * Move callbacks from the outgoing CPU to the running CPU.
831 * Note that the outgoing CPU is now quiscent, so it is now
832 * (uncharacteristically) safe to access it rcu_data structure.
833 * Note also that we must carefully retain the order of the
834 * outgoing CPU's callbacks in order for rcu_barrier() to work
835 * correctly. Finally, note that we start all the callbacks
836 * afresh, even those that have passed through a grace period
837 * and are therefore ready to invoke. The theory is that hotplug
838 * events are rare, and that if they are frequent enough to
839 * indefinitely delay callbacks, you have far worse things to
842 rdp_me
= rsp
->rda
[smp_processor_id()];
843 if (rdp
->nxtlist
!= NULL
) {
844 *rdp_me
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxtlist
;
845 rdp_me
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
847 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
848 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
849 rdp_me
->qlen
+= rdp
->qlen
;
852 local_irq_restore(flags
);
856 * Remove the specified CPU from the RCU hierarchy and move any pending
857 * callbacks that it might have to the current CPU. This code assumes
858 * that at least one CPU in the system will remain running at all times.
859 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
861 static void rcu_offline_cpu(int cpu
)
863 __rcu_offline_cpu(cpu
, &rcu_state
);
864 __rcu_offline_cpu(cpu
, &rcu_bh_state
);
867 #else /* #ifdef CONFIG_HOTPLUG_CPU */
869 static void rcu_offline_cpu(int cpu
)
873 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
876 * Invoke any RCU callbacks that have made it to the end of their grace
877 * period. Thottle as specified by rdp->blimit.
879 static void rcu_do_batch(struct rcu_data
*rdp
)
882 struct rcu_head
*next
, *list
, **tail
;
885 /* If no callbacks are ready, just return.*/
886 if (!cpu_has_callbacks_ready_to_invoke(rdp
))
890 * Extract the list of ready callbacks, disabling to prevent
891 * races with call_rcu() from interrupt handlers.
893 local_irq_save(flags
);
895 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
896 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
897 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
898 for (count
= RCU_NEXT_SIZE
- 1; count
>= 0; count
--)
899 if (rdp
->nxttail
[count
] == rdp
->nxttail
[RCU_DONE_TAIL
])
900 rdp
->nxttail
[count
] = &rdp
->nxtlist
;
901 local_irq_restore(flags
);
903 /* Invoke callbacks. */
910 if (++count
>= rdp
->blimit
)
914 local_irq_save(flags
);
916 /* Update count, and requeue any remaining callbacks. */
919 *tail
= rdp
->nxtlist
;
921 for (count
= 0; count
< RCU_NEXT_SIZE
; count
++)
922 if (&rdp
->nxtlist
== rdp
->nxttail
[count
])
923 rdp
->nxttail
[count
] = tail
;
928 /* Reinstate batch limit if we have worked down the excess. */
929 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
930 rdp
->blimit
= blimit
;
932 local_irq_restore(flags
);
934 /* Re-raise the RCU softirq if there are callbacks remaining. */
935 if (cpu_has_callbacks_ready_to_invoke(rdp
))
936 raise_softirq(RCU_SOFTIRQ
);
940 * Check to see if this CPU is in a non-context-switch quiescent state
941 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
942 * Also schedule the RCU softirq handler.
944 * This function must be called with hardirqs disabled. It is normally
945 * invoked from the scheduling-clock interrupt. If rcu_pending returns
946 * false, there is no point in invoking rcu_check_callbacks().
948 void rcu_check_callbacks(int cpu
, int user
)
951 (idle_cpu(cpu
) && !in_softirq() &&
952 hardirq_count() <= (1 << HARDIRQ_SHIFT
))) {
955 * Get here if this CPU took its interrupt from user
956 * mode or from the idle loop, and if this is not a
957 * nested interrupt. In this case, the CPU is in
958 * a quiescent state, so count it.
960 * No memory barrier is required here because both
961 * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference
962 * only CPU-local variables that other CPUs neither
963 * access nor modify, at least not while the corresponding
968 rcu_bh_qsctr_inc(cpu
);
970 } else if (!in_softirq()) {
973 * Get here if this CPU did not take its interrupt from
974 * softirq, in other words, if it is not interrupting
975 * a rcu_bh read-side critical section. This is an _bh
976 * critical section, so count it.
979 rcu_bh_qsctr_inc(cpu
);
981 raise_softirq(RCU_SOFTIRQ
);
987 * Scan the leaf rcu_node structures, processing dyntick state for any that
988 * have not yet encountered a quiescent state, using the function specified.
989 * Returns 1 if the current grace period ends while scanning (possibly
990 * because we made it end).
992 static int rcu_process_dyntick(struct rcu_state
*rsp
, long lastcomp
,
993 int (*f
)(struct rcu_data
*))
999 struct rcu_node
*rnp_cur
= rsp
->level
[NUM_RCU_LVLS
- 1];
1000 struct rcu_node
*rnp_end
= &rsp
->node
[NUM_RCU_NODES
];
1002 for (; rnp_cur
< rnp_end
; rnp_cur
++) {
1004 spin_lock_irqsave(&rnp_cur
->lock
, flags
);
1005 if (rsp
->completed
!= lastcomp
) {
1006 spin_unlock_irqrestore(&rnp_cur
->lock
, flags
);
1009 if (rnp_cur
->qsmask
== 0) {
1010 spin_unlock_irqrestore(&rnp_cur
->lock
, flags
);
1013 cpu
= rnp_cur
->grplo
;
1015 for (; cpu
<= rnp_cur
->grphi
; cpu
++, bit
<<= 1) {
1016 if ((rnp_cur
->qsmask
& bit
) != 0 && f(rsp
->rda
[cpu
]))
1019 if (mask
!= 0 && rsp
->completed
== lastcomp
) {
1021 /* cpu_quiet_msk() releases rnp_cur->lock. */
1022 cpu_quiet_msk(mask
, rsp
, rnp_cur
, flags
);
1025 spin_unlock_irqrestore(&rnp_cur
->lock
, flags
);
1031 * Force quiescent states on reluctant CPUs, and also detect which
1032 * CPUs are in dyntick-idle mode.
1034 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1036 unsigned long flags
;
1038 struct rcu_data
*rdp
= rsp
->rda
[smp_processor_id()];
1039 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1042 if (ACCESS_ONCE(rsp
->completed
) == ACCESS_ONCE(rsp
->gpnum
))
1043 return; /* No grace period in progress, nothing to force. */
1044 if (!spin_trylock_irqsave(&rsp
->fqslock
, flags
)) {
1045 rsp
->n_force_qs_lh
++; /* Inexact, can lose counts. Tough! */
1046 return; /* Someone else is already on the job. */
1049 (long)(rsp
->jiffies_force_qs
- jiffies
) >= 0 &&
1050 (rdp
->n_rcu_pending_force_qs
- rdp
->n_rcu_pending
) >= 0)
1051 goto unlock_ret
; /* no emergency and done recently. */
1053 spin_lock(&rnp
->lock
);
1054 lastcomp
= rsp
->completed
;
1055 signaled
= rsp
->signaled
;
1056 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1057 rdp
->n_rcu_pending_force_qs
= rdp
->n_rcu_pending
+
1058 RCU_JIFFIES_TILL_FORCE_QS
;
1059 if (lastcomp
== rsp
->gpnum
) {
1060 rsp
->n_force_qs_ngp
++;
1061 spin_unlock(&rnp
->lock
);
1062 goto unlock_ret
; /* no GP in progress, time updated. */
1064 spin_unlock(&rnp
->lock
);
1068 break; /* grace period still initializing, ignore. */
1070 case RCU_SAVE_DYNTICK
:
1072 if (RCU_SIGNAL_INIT
!= RCU_SAVE_DYNTICK
)
1073 break; /* So gcc recognizes the dead code. */
1075 /* Record dyntick-idle state. */
1076 if (rcu_process_dyntick(rsp
, lastcomp
,
1077 dyntick_save_progress_counter
))
1080 /* Update state, record completion counter. */
1081 spin_lock(&rnp
->lock
);
1082 if (lastcomp
== rsp
->completed
) {
1083 rsp
->signaled
= RCU_FORCE_QS
;
1084 dyntick_record_completed(rsp
, lastcomp
);
1086 spin_unlock(&rnp
->lock
);
1091 /* Check dyntick-idle state, send IPI to laggarts. */
1092 if (rcu_process_dyntick(rsp
, dyntick_recall_completed(rsp
),
1093 rcu_implicit_dynticks_qs
))
1096 /* Leave state in case more forcing is required. */
1101 spin_unlock_irqrestore(&rsp
->fqslock
, flags
);
1104 #else /* #ifdef CONFIG_SMP */
1106 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1111 #endif /* #else #ifdef CONFIG_SMP */
1114 * This does the RCU processing work from softirq context for the
1115 * specified rcu_state and rcu_data structures. This may be called
1116 * only from the CPU to whom the rdp belongs.
1119 __rcu_process_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1121 unsigned long flags
;
1124 * If an RCU GP has gone long enough, go check for dyntick
1125 * idle CPUs and, if needed, send resched IPIs.
1127 if ((long)(ACCESS_ONCE(rsp
->jiffies_force_qs
) - jiffies
) < 0 ||
1128 (rdp
->n_rcu_pending_force_qs
- rdp
->n_rcu_pending
) < 0)
1129 force_quiescent_state(rsp
, 1);
1132 * Advance callbacks in response to end of earlier grace
1133 * period that some other CPU ended.
1135 rcu_process_gp_end(rsp
, rdp
);
1137 /* Update RCU state based on any recent quiescent states. */
1138 rcu_check_quiescent_state(rsp
, rdp
);
1140 /* Does this CPU require a not-yet-started grace period? */
1141 if (cpu_needs_another_gp(rsp
, rdp
)) {
1142 spin_lock_irqsave(&rcu_get_root(rsp
)->lock
, flags
);
1143 rcu_start_gp(rsp
, flags
); /* releases above lock */
1146 /* If there are callbacks ready, invoke them. */
1151 * Do softirq processing for the current CPU.
1153 static void rcu_process_callbacks(struct softirq_action
*unused
)
1156 * Memory references from any prior RCU read-side critical sections
1157 * executed by the interrupted code must be seen before any RCU
1158 * grace-period manipulations below.
1160 smp_mb(); /* See above block comment. */
1162 __rcu_process_callbacks(&rcu_state
, &__get_cpu_var(rcu_data
));
1163 __rcu_process_callbacks(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1166 * Memory references from any later RCU read-side critical sections
1167 * executed by the interrupted code must be seen after any RCU
1168 * grace-period manipulations above.
1170 smp_mb(); /* See above block comment. */
1174 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
1175 struct rcu_state
*rsp
)
1177 unsigned long flags
;
1178 struct rcu_data
*rdp
;
1183 smp_mb(); /* Ensure RCU update seen before callback registry. */
1186 * Opportunistically note grace-period endings and beginnings.
1187 * Note that we might see a beginning right after we see an
1188 * end, but never vice versa, since this CPU has to pass through
1189 * a quiescent state betweentimes.
1191 local_irq_save(flags
);
1192 rdp
= rsp
->rda
[smp_processor_id()];
1193 rcu_process_gp_end(rsp
, rdp
);
1194 check_for_new_grace_period(rsp
, rdp
);
1196 /* Add the callback to our list. */
1197 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
1198 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
1200 /* Start a new grace period if one not already started. */
1201 if (ACCESS_ONCE(rsp
->completed
) == ACCESS_ONCE(rsp
->gpnum
)) {
1202 unsigned long nestflag
;
1203 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
1205 spin_lock_irqsave(&rnp_root
->lock
, nestflag
);
1206 rcu_start_gp(rsp
, nestflag
); /* releases rnp_root->lock. */
1209 /* Force the grace period if too many callbacks or too long waiting. */
1210 if (unlikely(++rdp
->qlen
> qhimark
)) {
1211 rdp
->blimit
= LONG_MAX
;
1212 force_quiescent_state(rsp
, 0);
1213 } else if ((long)(ACCESS_ONCE(rsp
->jiffies_force_qs
) - jiffies
) < 0 ||
1214 (rdp
->n_rcu_pending_force_qs
- rdp
->n_rcu_pending
) < 0)
1215 force_quiescent_state(rsp
, 1);
1216 local_irq_restore(flags
);
1220 * Queue an RCU callback for invocation after a grace period.
1222 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1224 __call_rcu(head
, func
, &rcu_state
);
1226 EXPORT_SYMBOL_GPL(call_rcu
);
1229 * Queue an RCU for invocation after a quicker grace period.
1231 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1233 __call_rcu(head
, func
, &rcu_bh_state
);
1235 EXPORT_SYMBOL_GPL(call_rcu_bh
);
1238 * Check to see if there is any immediate RCU-related work to be done
1239 * by the current CPU, for the specified type of RCU, returning 1 if so.
1240 * The checks are in order of increasing expense: checks that can be
1241 * carried out against CPU-local state are performed first. However,
1242 * we must check for CPU stalls first, else we might not get a chance.
1244 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1246 rdp
->n_rcu_pending
++;
1248 /* Check for CPU stalls, if enabled. */
1249 check_cpu_stall(rsp
, rdp
);
1251 /* Is the RCU core waiting for a quiescent state from this CPU? */
1252 if (rdp
->qs_pending
)
1255 /* Does this CPU have callbacks ready to invoke? */
1256 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1259 /* Has RCU gone idle with this CPU needing another grace period? */
1260 if (cpu_needs_another_gp(rsp
, rdp
))
1263 /* Has another RCU grace period completed? */
1264 if (ACCESS_ONCE(rsp
->completed
) != rdp
->completed
) /* outside of lock */
1267 /* Has a new RCU grace period started? */
1268 if (ACCESS_ONCE(rsp
->gpnum
) != rdp
->gpnum
) /* outside of lock */
1271 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1272 if (ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
) &&
1273 ((long)(ACCESS_ONCE(rsp
->jiffies_force_qs
) - jiffies
) < 0 ||
1274 (rdp
->n_rcu_pending_force_qs
- rdp
->n_rcu_pending
) < 0))
1282 * Check to see if there is any immediate RCU-related work to be done
1283 * by the current CPU, returning 1 if so. This function is part of the
1284 * RCU implementation; it is -not- an exported member of the RCU API.
1286 int rcu_pending(int cpu
)
1288 return __rcu_pending(&rcu_state
, &per_cpu(rcu_data
, cpu
)) ||
1289 __rcu_pending(&rcu_bh_state
, &per_cpu(rcu_bh_data
, cpu
));
1293 * Check to see if any future RCU-related work will need to be done
1294 * by the current CPU, even if none need be done immediately, returning
1295 * 1 if so. This function is part of the RCU implementation; it is -not-
1296 * an exported member of the RCU API.
1298 int rcu_needs_cpu(int cpu
)
1300 /* RCU callbacks either ready or pending? */
1301 return per_cpu(rcu_data
, cpu
).nxtlist
||
1302 per_cpu(rcu_bh_data
, cpu
).nxtlist
;
1306 * Initialize a CPU's per-CPU RCU data. We take this "scorched earth"
1307 * approach so that we don't have to worry about how long the CPU has
1308 * been gone, or whether it ever was online previously. We do trust the
1309 * ->mynode field, as it is constant for a given struct rcu_data and
1310 * initialized during early boot.
1312 * Note that only one online or offline event can be happening at a given
1313 * time. Note also that we can accept some slop in the rsp->completed
1314 * access due to the fact that this CPU cannot possibly have any RCU
1315 * callbacks in flight yet.
1318 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
1320 unsigned long flags
;
1324 struct rcu_data
*rdp
= rsp
->rda
[cpu
];
1325 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1327 /* Set up local state, ensuring consistent view of global state. */
1328 spin_lock_irqsave(&rnp
->lock
, flags
);
1329 lastcomp
= rsp
->completed
;
1330 rdp
->completed
= lastcomp
;
1331 rdp
->gpnum
= lastcomp
;
1332 rdp
->passed_quiesc
= 0; /* We could be racing with new GP, */
1333 rdp
->qs_pending
= 1; /* so set up to respond to current GP. */
1334 rdp
->beenonline
= 1; /* We have now been online. */
1335 rdp
->passed_quiesc_completed
= lastcomp
- 1;
1336 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
1337 rdp
->nxtlist
= NULL
;
1338 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1339 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1341 rdp
->blimit
= blimit
;
1343 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
1344 #endif /* #ifdef CONFIG_NO_HZ */
1346 spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1349 * A new grace period might start here. If so, we won't be part
1350 * of it, but that is OK, as we are currently in a quiescent state.
1353 /* Exclude any attempts to start a new GP on large systems. */
1354 spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
1356 /* Add CPU to rcu_node bitmasks. */
1358 mask
= rdp
->grpmask
;
1360 /* Exclude any attempts to start a new GP on small systems. */
1361 spin_lock(&rnp
->lock
); /* irqs already disabled. */
1362 rnp
->qsmaskinit
|= mask
;
1363 mask
= rnp
->grpmask
;
1364 spin_unlock(&rnp
->lock
); /* irqs already disabled. */
1366 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
1368 spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
1371 * A new grace period might start here. If so, we will be part of
1372 * it, and its gpnum will be greater than ours, so we will
1373 * participate. It is also possible for the gpnum to have been
1374 * incremented before this function was called, and the bitmasks
1375 * to not be filled out until now, in which case we will also
1376 * participate due to our gpnum being behind.
1379 /* Since it is coming online, the CPU is in a quiescent state. */
1380 cpu_quiet(cpu
, rsp
, rdp
, lastcomp
);
1381 local_irq_restore(flags
);
1384 static void __cpuinit
rcu_online_cpu(int cpu
)
1386 rcu_init_percpu_data(cpu
, &rcu_state
);
1387 rcu_init_percpu_data(cpu
, &rcu_bh_state
);
1388 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
1392 * Handle CPU online/offline notifcation events.
1394 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
1395 unsigned long action
, void *hcpu
)
1397 long cpu
= (long)hcpu
;
1400 case CPU_UP_PREPARE
:
1401 case CPU_UP_PREPARE_FROZEN
:
1402 rcu_online_cpu(cpu
);
1405 case CPU_DEAD_FROZEN
:
1406 case CPU_UP_CANCELED
:
1407 case CPU_UP_CANCELED_FROZEN
:
1408 rcu_offline_cpu(cpu
);
1417 * Compute the per-level fanout, either using the exact fanout specified
1418 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1420 #ifdef CONFIG_RCU_FANOUT_EXACT
1421 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
1425 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--)
1426 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
1428 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1429 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
1436 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
1437 ccur
= rsp
->levelcnt
[i
];
1438 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
1442 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1445 * Helper function for rcu_init() that initializes one rcu_state structure.
1447 static void __init
rcu_init_one(struct rcu_state
*rsp
)
1452 struct rcu_node
*rnp
;
1454 /* Initialize the level-tracking arrays. */
1456 for (i
= 1; i
< NUM_RCU_LVLS
; i
++)
1457 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
1458 rcu_init_levelspread(rsp
);
1460 /* Initialize the elements themselves, starting from the leaves. */
1462 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
1463 cpustride
*= rsp
->levelspread
[i
];
1464 rnp
= rsp
->level
[i
];
1465 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
1466 spin_lock_init(&rnp
->lock
);
1468 rnp
->qsmaskinit
= 0;
1469 rnp
->grplo
= j
* cpustride
;
1470 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
1471 if (rnp
->grphi
>= NR_CPUS
)
1472 rnp
->grphi
= NR_CPUS
- 1;
1478 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
1479 rnp
->grpmask
= 1UL << rnp
->grpnum
;
1480 rnp
->parent
= rsp
->level
[i
- 1] +
1481 j
/ rsp
->levelspread
[i
- 1];
1489 * Helper macro for __rcu_init(). To be used nowhere else!
1490 * Assigns leaf node pointers into each CPU's rcu_data structure.
1492 #define RCU_DATA_PTR_INIT(rsp, rcu_data) \
1494 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1496 for_each_possible_cpu(i) { \
1497 if (i > rnp[j].grphi) \
1499 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1500 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1504 static struct notifier_block __cpuinitdata rcu_nb
= {
1505 .notifier_call
= rcu_cpu_notify
,
1508 void __init
__rcu_init(void)
1510 int i
; /* All used by RCU_DATA_PTR_INIT(). */
1512 struct rcu_node
*rnp
;
1514 printk(KERN_WARNING
"Experimental hierarchical RCU implementation.\n");
1515 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1516 printk(KERN_INFO
"RCU-based detection of stalled CPUs is enabled.\n");
1517 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1518 rcu_init_one(&rcu_state
);
1519 RCU_DATA_PTR_INIT(&rcu_state
, rcu_data
);
1520 rcu_init_one(&rcu_bh_state
);
1521 RCU_DATA_PTR_INIT(&rcu_bh_state
, rcu_bh_data
);
1523 for_each_online_cpu(i
)
1524 rcu_cpu_notify(&rcu_nb
, CPU_UP_PREPARE
, (void *)(long)i
);
1525 /* Register notifier for non-boot CPUs */
1526 register_cpu_notifier(&rcu_nb
);
1527 printk(KERN_WARNING
"Experimental hierarchical RCU init done.\n");
1530 module_param(blimit
, int, 0);
1531 module_param(qhimark
, int, 0);
1532 module_param(qlowmark
, int, 0);