1 #ifndef __LINUX_CPUMASK_H
2 #define __LINUX_CPUMASK_H
5 * Cpumasks provide a bitmap suitable for representing the
6 * set of CPU's in a system, one bit position per CPU number.
8 * See detailed comments in the file linux/bitmap.h describing the
9 * data type on which these cpumasks are based.
11 * For details of cpumask_scnprintf() and cpumask_parse(),
12 * see bitmap_scnprintf() and bitmap_parse() in lib/bitmap.c.
13 * For details of cpulist_scnprintf() and cpulist_parse(), see
14 * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c.
16 * The available cpumask operations are:
18 * void cpu_set(cpu, mask) turn on bit 'cpu' in mask
19 * void cpu_clear(cpu, mask) turn off bit 'cpu' in mask
20 * void cpus_setall(mask) set all bits
21 * void cpus_clear(mask) clear all bits
22 * int cpu_isset(cpu, mask) true iff bit 'cpu' set in mask
23 * int cpu_test_and_set(cpu, mask) test and set bit 'cpu' in mask
25 * void cpus_and(dst, src1, src2) dst = src1 & src2 [intersection]
26 * void cpus_or(dst, src1, src2) dst = src1 | src2 [union]
27 * void cpus_xor(dst, src1, src2) dst = src1 ^ src2
28 * void cpus_andnot(dst, src1, src2) dst = src1 & ~src2
29 * void cpus_complement(dst, src) dst = ~src
31 * int cpus_equal(mask1, mask2) Does mask1 == mask2?
32 * int cpus_intersects(mask1, mask2) Do mask1 and mask2 intersect?
33 * int cpus_subset(mask1, mask2) Is mask1 a subset of mask2?
34 * int cpus_empty(mask) Is mask empty (no bits sets)?
35 * int cpus_full(mask) Is mask full (all bits sets)?
36 * int cpus_weight(mask) Hamming weigh - number of set bits
38 * void cpus_shift_right(dst, src, n) Shift right
39 * void cpus_shift_left(dst, src, n) Shift left
41 * int first_cpu(mask) Number lowest set bit, or NR_CPUS
42 * int next_cpu(cpu, mask) Next cpu past 'cpu', or NR_CPUS
44 * cpumask_t cpumask_of_cpu(cpu) Return cpumask with bit 'cpu' set
45 * CPU_MASK_ALL Initializer - all bits set
46 * CPU_MASK_NONE Initializer - no bits set
47 * unsigned long *cpus_addr(mask) Array of unsigned long's in mask
49 * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing
50 * int cpumask_parse(ubuf, ulen, mask) Parse ascii string as cpumask
51 * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing
52 * int cpulist_parse(buf, map) Parse ascii string as cpulist
54 * for_each_cpu_mask(cpu, mask) for-loop cpu over mask
56 * int num_online_cpus() Number of online CPUs
57 * int num_possible_cpus() Number of all possible CPUs
58 * int num_present_cpus() Number of present CPUs
60 * int cpu_online(cpu) Is some cpu online?
61 * int cpu_possible(cpu) Is some cpu possible?
62 * int cpu_present(cpu) Is some cpu present (can schedule)?
64 * int any_online_cpu(mask) First online cpu in mask
66 * for_each_cpu(cpu) for-loop cpu over cpu_possible_map
67 * for_each_online_cpu(cpu) for-loop cpu over cpu_online_map
68 * for_each_present_cpu(cpu) for-loop cpu over cpu_present_map
71 * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway)
72 * to generate slightly worse code. Note for example the additional
73 * 40 lines of assembly code compiling the "for each possible cpu"
74 * loops buried in the disk_stat_read() macros calls when compiling
75 * drivers/block/genhd.c (arch i386, CONFIG_SMP=y). So use a simple
76 * one-line #define for cpu_isset(), instead of wrapping an inline
77 * inside a macro, the way we do the other calls.
80 #include <linux/kernel.h>
81 #include <linux/threads.h>
82 #include <linux/bitmap.h>
85 typedef struct { DECLARE_BITMAP(bits
, NR_CPUS
); } cpumask_t
;
86 extern cpumask_t _unused_cpumask_arg_
;
88 #define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
89 static inline void __cpu_set(int cpu
, volatile cpumask_t
*dstp
)
91 set_bit(cpu
, dstp
->bits
);
94 #define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
95 static inline void __cpu_clear(int cpu
, volatile cpumask_t
*dstp
)
97 clear_bit(cpu
, dstp
->bits
);
100 #define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
101 static inline void __cpus_setall(cpumask_t
*dstp
, int nbits
)
103 bitmap_fill(dstp
->bits
, nbits
);
106 #define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
107 static inline void __cpus_clear(cpumask_t
*dstp
, int nbits
)
109 bitmap_zero(dstp
->bits
, nbits
);
112 /* No static inline type checking - see Subtlety (1) above. */
113 #define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
115 #define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
116 static inline int __cpu_test_and_set(int cpu
, cpumask_t
*addr
)
118 return test_and_set_bit(cpu
, addr
->bits
);
121 #define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
122 static inline void __cpus_and(cpumask_t
*dstp
, const cpumask_t
*src1p
,
123 const cpumask_t
*src2p
, int nbits
)
125 bitmap_and(dstp
->bits
, src1p
->bits
, src2p
->bits
, nbits
);
128 #define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
129 static inline void __cpus_or(cpumask_t
*dstp
, const cpumask_t
*src1p
,
130 const cpumask_t
*src2p
, int nbits
)
132 bitmap_or(dstp
->bits
, src1p
->bits
, src2p
->bits
, nbits
);
135 #define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
136 static inline void __cpus_xor(cpumask_t
*dstp
, const cpumask_t
*src1p
,
137 const cpumask_t
*src2p
, int nbits
)
139 bitmap_xor(dstp
->bits
, src1p
->bits
, src2p
->bits
, nbits
);
142 #define cpus_andnot(dst, src1, src2) \
143 __cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
144 static inline void __cpus_andnot(cpumask_t
*dstp
, const cpumask_t
*src1p
,
145 const cpumask_t
*src2p
, int nbits
)
147 bitmap_andnot(dstp
->bits
, src1p
->bits
, src2p
->bits
, nbits
);
150 #define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)
151 static inline void __cpus_complement(cpumask_t
*dstp
,
152 const cpumask_t
*srcp
, int nbits
)
154 bitmap_complement(dstp
->bits
, srcp
->bits
, nbits
);
157 #define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
158 static inline int __cpus_equal(const cpumask_t
*src1p
,
159 const cpumask_t
*src2p
, int nbits
)
161 return bitmap_equal(src1p
->bits
, src2p
->bits
, nbits
);
164 #define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
165 static inline int __cpus_intersects(const cpumask_t
*src1p
,
166 const cpumask_t
*src2p
, int nbits
)
168 return bitmap_intersects(src1p
->bits
, src2p
->bits
, nbits
);
171 #define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
172 static inline int __cpus_subset(const cpumask_t
*src1p
,
173 const cpumask_t
*src2p
, int nbits
)
175 return bitmap_subset(src1p
->bits
, src2p
->bits
, nbits
);
178 #define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
179 static inline int __cpus_empty(const cpumask_t
*srcp
, int nbits
)
181 return bitmap_empty(srcp
->bits
, nbits
);
184 #define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)
185 static inline int __cpus_full(const cpumask_t
*srcp
, int nbits
)
187 return bitmap_full(srcp
->bits
, nbits
);
190 #define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
191 static inline int __cpus_weight(const cpumask_t
*srcp
, int nbits
)
193 return bitmap_weight(srcp
->bits
, nbits
);
196 #define cpus_shift_right(dst, src, n) \
197 __cpus_shift_right(&(dst), &(src), (n), NR_CPUS)
198 static inline void __cpus_shift_right(cpumask_t
*dstp
,
199 const cpumask_t
*srcp
, int n
, int nbits
)
201 bitmap_shift_right(dstp
->bits
, srcp
->bits
, n
, nbits
);
204 #define cpus_shift_left(dst, src, n) \
205 __cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
206 static inline void __cpus_shift_left(cpumask_t
*dstp
,
207 const cpumask_t
*srcp
, int n
, int nbits
)
209 bitmap_shift_left(dstp
->bits
, srcp
->bits
, n
, nbits
);
212 #define first_cpu(src) __first_cpu(&(src), NR_CPUS)
213 static inline int __first_cpu(const cpumask_t
*srcp
, int nbits
)
215 return min_t(int, nbits
, find_first_bit(srcp
->bits
, nbits
));
218 #define next_cpu(n, src) __next_cpu((n), &(src), NR_CPUS)
219 static inline int __next_cpu(int n
, const cpumask_t
*srcp
, int nbits
)
221 return min_t(int, nbits
, find_next_bit(srcp
->bits
, nbits
, n
+1));
224 #define cpumask_of_cpu(cpu) \
226 typeof(_unused_cpumask_arg_) m; \
227 if (sizeof(m) == sizeof(unsigned long)) { \
228 m.bits[0] = 1UL<<(cpu); \
236 #define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
238 #if NR_CPUS <= BITS_PER_LONG
240 #define CPU_MASK_ALL \
242 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
247 #define CPU_MASK_ALL \
249 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
250 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
255 #define CPU_MASK_NONE \
257 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
260 #define CPU_MASK_CPU0 \
265 #define cpus_addr(src) ((src).bits)
267 #define cpumask_scnprintf(buf, len, src) \
268 __cpumask_scnprintf((buf), (len), &(src), NR_CPUS)
269 static inline int __cpumask_scnprintf(char *buf
, int len
,
270 const cpumask_t
*srcp
, int nbits
)
272 return bitmap_scnprintf(buf
, len
, srcp
->bits
, nbits
);
275 #define cpumask_parse(ubuf, ulen, dst) \
276 __cpumask_parse((ubuf), (ulen), &(dst), NR_CPUS)
277 static inline int __cpumask_parse(const char __user
*buf
, int len
,
278 cpumask_t
*dstp
, int nbits
)
280 return bitmap_parse(buf
, len
, dstp
->bits
, nbits
);
283 #define cpulist_scnprintf(buf, len, src) \
284 __cpulist_scnprintf((buf), (len), &(src), NR_CPUS)
285 static inline int __cpulist_scnprintf(char *buf
, int len
,
286 const cpumask_t
*srcp
, int nbits
)
288 return bitmap_scnlistprintf(buf
, len
, srcp
->bits
, nbits
);
291 #define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS)
292 static inline int __cpulist_parse(const char *buf
, cpumask_t
*dstp
, int nbits
)
294 return bitmap_parselist(buf
, dstp
->bits
, nbits
);
298 #define for_each_cpu_mask(cpu, mask) \
299 for ((cpu) = first_cpu(mask); \
301 (cpu) = next_cpu((cpu), (mask)))
302 #else /* NR_CPUS == 1 */
303 #define for_each_cpu_mask(cpu, mask) for ((cpu) = 0; (cpu) < 1; (cpu)++)
307 * The following particular system cpumasks and operations manage
308 * possible, present and online cpus. Each of them is a fixed size
309 * bitmap of size NR_CPUS.
311 * #ifdef CONFIG_HOTPLUG_CPU
312 * cpu_possible_map - all NR_CPUS bits set
313 * cpu_present_map - has bit 'cpu' set iff cpu is populated
314 * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
316 * cpu_possible_map - has bit 'cpu' set iff cpu is populated
317 * cpu_present_map - copy of cpu_possible_map
318 * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
321 * In either case, NR_CPUS is fixed at compile time, as the static
322 * size of these bitmaps. The cpu_possible_map is fixed at boot
323 * time, as the set of CPU id's that it is possible might ever
324 * be plugged in at anytime during the life of that system boot.
325 * The cpu_present_map is dynamic(*), representing which CPUs
326 * are currently plugged in. And cpu_online_map is the dynamic
327 * subset of cpu_present_map, indicating those CPUs available
330 * If HOTPLUG is enabled, then cpu_possible_map is forced to have
331 * all NR_CPUS bits set, otherwise it is just the set of CPUs that
332 * ACPI reports present at boot.
334 * If HOTPLUG is enabled, then cpu_present_map varies dynamically,
335 * depending on what ACPI reports as currently plugged in, otherwise
336 * cpu_present_map is just a copy of cpu_possible_map.
338 * (*) Well, cpu_present_map is dynamic in the hotplug case. If not
339 * hotplug, it's a copy of cpu_possible_map, hence fixed at boot.
342 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
343 * assumption that their single CPU is online. The UP
344 * cpu_{online,possible,present}_maps are placebos. Changing them
345 * will have no useful affect on the following num_*_cpus()
346 * and cpu_*() macros in the UP case. This ugliness is a UP
347 * optimization - don't waste any instructions or memory references
348 * asking if you're online or how many CPUs there are if there is
350 * 2) Most SMP arch's #define some of these maps to be some
351 * other map specific to that arch. Therefore, the following
352 * must be #define macros, not inlines. To see why, examine
353 * the assembly code produced by the following. Note that
354 * set1() writes phys_x_map, but set2() writes x_map:
355 * int x_map, phys_x_map;
356 * #define set1(a) x_map = a
357 * inline void set2(int a) { x_map = a; }
358 * #define x_map phys_x_map
359 * main(){ set1(3); set2(5); }
362 extern cpumask_t cpu_possible_map
;
363 extern cpumask_t cpu_online_map
;
364 extern cpumask_t cpu_present_map
;
367 #define num_online_cpus() cpus_weight(cpu_online_map)
368 #define num_possible_cpus() cpus_weight(cpu_possible_map)
369 #define num_present_cpus() cpus_weight(cpu_present_map)
370 #define cpu_online(cpu) cpu_isset((cpu), cpu_online_map)
371 #define cpu_possible(cpu) cpu_isset((cpu), cpu_possible_map)
372 #define cpu_present(cpu) cpu_isset((cpu), cpu_present_map)
374 #define num_online_cpus() 1
375 #define num_possible_cpus() 1
376 #define num_present_cpus() 1
377 #define cpu_online(cpu) ((cpu) == 0)
378 #define cpu_possible(cpu) ((cpu) == 0)
379 #define cpu_present(cpu) ((cpu) == 0)
382 #define any_online_cpu(mask) \
385 for_each_cpu_mask(cpu, (mask)) \
386 if (cpu_online(cpu)) \
391 #define for_each_cpu(cpu) for_each_cpu_mask((cpu), cpu_possible_map)
392 #define for_each_online_cpu(cpu) for_each_cpu_mask((cpu), cpu_online_map)
393 #define for_each_present_cpu(cpu) for_each_cpu_mask((cpu), cpu_present_map)
395 #endif /* __LINUX_CPUMASK_H */