4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
37 static DEFINE_SPINLOCK(swap_lock
);
38 static unsigned int nr_swapfiles
;
40 long total_swap_pages
;
41 static int swap_overflow
;
42 static int least_priority
;
44 static const char Bad_file
[] = "Bad swap file entry ";
45 static const char Unused_file
[] = "Unused swap file entry ";
46 static const char Bad_offset
[] = "Bad swap offset entry ";
47 static const char Unused_offset
[] = "Unused swap offset entry ";
49 static struct swap_list_t swap_list
= {-1, -1};
51 static struct swap_info_struct swap_info
[MAX_SWAPFILES
];
53 static DEFINE_MUTEX(swapon_mutex
);
56 * We need this because the bdev->unplug_fn can sleep and we cannot
57 * hold swap_lock while calling the unplug_fn. And swap_lock
58 * cannot be turned into a mutex.
60 static DECLARE_RWSEM(swap_unplug_sem
);
62 void swap_unplug_io_fn(struct backing_dev_info
*unused_bdi
, struct page
*page
)
66 down_read(&swap_unplug_sem
);
67 entry
.val
= page_private(page
);
68 if (PageSwapCache(page
)) {
69 struct block_device
*bdev
= swap_info
[swp_type(entry
)].bdev
;
70 struct backing_dev_info
*bdi
;
73 * If the page is removed from swapcache from under us (with a
74 * racy try_to_unuse/swapoff) we need an additional reference
75 * count to avoid reading garbage from page_private(page) above.
76 * If the WARN_ON triggers during a swapoff it maybe the race
77 * condition and it's harmless. However if it triggers without
78 * swapoff it signals a problem.
80 WARN_ON(page_count(page
) <= 1);
82 bdi
= bdev
->bd_inode
->i_mapping
->backing_dev_info
;
83 blk_run_backing_dev(bdi
, page
);
85 up_read(&swap_unplug_sem
);
89 * swapon tell device that all the old swap contents can be discarded,
90 * to allow the swap device to optimize its wear-levelling.
92 static int discard_swap(struct swap_info_struct
*si
)
94 struct swap_extent
*se
;
97 list_for_each_entry(se
, &si
->extent_list
, list
) {
98 sector_t start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
99 sector_t nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
101 if (se
->start_page
== 0) {
102 /* Do not discard the swap header page! */
103 start_block
+= 1 << (PAGE_SHIFT
- 9);
104 nr_blocks
-= 1 << (PAGE_SHIFT
- 9);
109 err
= blkdev_issue_discard(si
->bdev
, start_block
,
110 nr_blocks
, GFP_KERNEL
);
116 return err
; /* That will often be -EOPNOTSUPP */
120 * swap allocation tell device that a cluster of swap can now be discarded,
121 * to allow the swap device to optimize its wear-levelling.
123 static void discard_swap_cluster(struct swap_info_struct
*si
,
124 pgoff_t start_page
, pgoff_t nr_pages
)
126 struct swap_extent
*se
= si
->curr_swap_extent
;
127 int found_extent
= 0;
130 struct list_head
*lh
;
132 if (se
->start_page
<= start_page
&&
133 start_page
< se
->start_page
+ se
->nr_pages
) {
134 pgoff_t offset
= start_page
- se
->start_page
;
135 sector_t start_block
= se
->start_block
+ offset
;
136 sector_t nr_blocks
= se
->nr_pages
- offset
;
138 if (nr_blocks
> nr_pages
)
139 nr_blocks
= nr_pages
;
140 start_page
+= nr_blocks
;
141 nr_pages
-= nr_blocks
;
144 si
->curr_swap_extent
= se
;
146 start_block
<<= PAGE_SHIFT
- 9;
147 nr_blocks
<<= PAGE_SHIFT
- 9;
148 if (blkdev_issue_discard(si
->bdev
, start_block
,
149 nr_blocks
, GFP_NOIO
))
154 if (lh
== &si
->extent_list
)
156 se
= list_entry(lh
, struct swap_extent
, list
);
160 static int wait_for_discard(void *word
)
166 #define SWAPFILE_CLUSTER 256
167 #define LATENCY_LIMIT 256
169 static inline unsigned long scan_swap_map(struct swap_info_struct
*si
)
171 unsigned long offset
;
172 unsigned long scan_base
;
173 unsigned long last_in_cluster
= 0;
174 int latency_ration
= LATENCY_LIMIT
;
175 int found_free_cluster
= 0;
178 * We try to cluster swap pages by allocating them sequentially
179 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
180 * way, however, we resort to first-free allocation, starting
181 * a new cluster. This prevents us from scattering swap pages
182 * all over the entire swap partition, so that we reduce
183 * overall disk seek times between swap pages. -- sct
184 * But we do now try to find an empty cluster. -Andrea
185 * And we let swap pages go all over an SSD partition. Hugh
188 si
->flags
+= SWP_SCANNING
;
189 scan_base
= offset
= si
->cluster_next
;
191 if (unlikely(!si
->cluster_nr
--)) {
192 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
193 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
196 if (si
->flags
& SWP_DISCARDABLE
) {
198 * Start range check on racing allocations, in case
199 * they overlap the cluster we eventually decide on
200 * (we scan without swap_lock to allow preemption).
201 * It's hardly conceivable that cluster_nr could be
202 * wrapped during our scan, but don't depend on it.
204 if (si
->lowest_alloc
)
206 si
->lowest_alloc
= si
->max
;
207 si
->highest_alloc
= 0;
209 spin_unlock(&swap_lock
);
212 * If seek is expensive, start searching for new cluster from
213 * start of partition, to minimize the span of allocated swap.
214 * But if seek is cheap, search from our current position, so
215 * that swap is allocated from all over the partition: if the
216 * Flash Translation Layer only remaps within limited zones,
217 * we don't want to wear out the first zone too quickly.
219 if (!(si
->flags
& SWP_SOLIDSTATE
))
220 scan_base
= offset
= si
->lowest_bit
;
221 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
223 /* Locate the first empty (unaligned) cluster */
224 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
225 if (si
->swap_map
[offset
])
226 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
227 else if (offset
== last_in_cluster
) {
228 spin_lock(&swap_lock
);
229 offset
-= SWAPFILE_CLUSTER
- 1;
230 si
->cluster_next
= offset
;
231 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
232 found_free_cluster
= 1;
235 if (unlikely(--latency_ration
< 0)) {
237 latency_ration
= LATENCY_LIMIT
;
241 offset
= si
->lowest_bit
;
242 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
244 /* Locate the first empty (unaligned) cluster */
245 for (; last_in_cluster
< scan_base
; offset
++) {
246 if (si
->swap_map
[offset
])
247 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
248 else if (offset
== last_in_cluster
) {
249 spin_lock(&swap_lock
);
250 offset
-= SWAPFILE_CLUSTER
- 1;
251 si
->cluster_next
= offset
;
252 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
253 found_free_cluster
= 1;
256 if (unlikely(--latency_ration
< 0)) {
258 latency_ration
= LATENCY_LIMIT
;
263 spin_lock(&swap_lock
);
264 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
265 si
->lowest_alloc
= 0;
269 if (!(si
->flags
& SWP_WRITEOK
))
271 if (!si
->highest_bit
)
273 if (offset
> si
->highest_bit
)
274 scan_base
= offset
= si
->lowest_bit
;
275 if (si
->swap_map
[offset
])
278 if (offset
== si
->lowest_bit
)
280 if (offset
== si
->highest_bit
)
283 if (si
->inuse_pages
== si
->pages
) {
284 si
->lowest_bit
= si
->max
;
287 si
->swap_map
[offset
] = 1;
288 si
->cluster_next
= offset
+ 1;
289 si
->flags
-= SWP_SCANNING
;
291 if (si
->lowest_alloc
) {
293 * Only set when SWP_DISCARDABLE, and there's a scan
294 * for a free cluster in progress or just completed.
296 if (found_free_cluster
) {
298 * To optimize wear-levelling, discard the
299 * old data of the cluster, taking care not to
300 * discard any of its pages that have already
301 * been allocated by racing tasks (offset has
302 * already stepped over any at the beginning).
304 if (offset
< si
->highest_alloc
&&
305 si
->lowest_alloc
<= last_in_cluster
)
306 last_in_cluster
= si
->lowest_alloc
- 1;
307 si
->flags
|= SWP_DISCARDING
;
308 spin_unlock(&swap_lock
);
310 if (offset
< last_in_cluster
)
311 discard_swap_cluster(si
, offset
,
312 last_in_cluster
- offset
+ 1);
314 spin_lock(&swap_lock
);
315 si
->lowest_alloc
= 0;
316 si
->flags
&= ~SWP_DISCARDING
;
318 smp_mb(); /* wake_up_bit advises this */
319 wake_up_bit(&si
->flags
, ilog2(SWP_DISCARDING
));
321 } else if (si
->flags
& SWP_DISCARDING
) {
323 * Delay using pages allocated by racing tasks
324 * until the whole discard has been issued. We
325 * could defer that delay until swap_writepage,
326 * but it's easier to keep this self-contained.
328 spin_unlock(&swap_lock
);
329 wait_on_bit(&si
->flags
, ilog2(SWP_DISCARDING
),
330 wait_for_discard
, TASK_UNINTERRUPTIBLE
);
331 spin_lock(&swap_lock
);
334 * Note pages allocated by racing tasks while
335 * scan for a free cluster is in progress, so
336 * that its final discard can exclude them.
338 if (offset
< si
->lowest_alloc
)
339 si
->lowest_alloc
= offset
;
340 if (offset
> si
->highest_alloc
)
341 si
->highest_alloc
= offset
;
347 spin_unlock(&swap_lock
);
348 while (++offset
<= si
->highest_bit
) {
349 if (!si
->swap_map
[offset
]) {
350 spin_lock(&swap_lock
);
353 if (unlikely(--latency_ration
< 0)) {
355 latency_ration
= LATENCY_LIMIT
;
358 offset
= si
->lowest_bit
;
359 while (++offset
< scan_base
) {
360 if (!si
->swap_map
[offset
]) {
361 spin_lock(&swap_lock
);
364 if (unlikely(--latency_ration
< 0)) {
366 latency_ration
= LATENCY_LIMIT
;
369 spin_lock(&swap_lock
);
372 si
->flags
-= SWP_SCANNING
;
376 swp_entry_t
get_swap_page(void)
378 struct swap_info_struct
*si
;
383 spin_lock(&swap_lock
);
384 if (nr_swap_pages
<= 0)
388 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
389 si
= swap_info
+ type
;
392 (!wrapped
&& si
->prio
!= swap_info
[next
].prio
)) {
393 next
= swap_list
.head
;
397 if (!si
->highest_bit
)
399 if (!(si
->flags
& SWP_WRITEOK
))
402 swap_list
.next
= next
;
403 offset
= scan_swap_map(si
);
405 spin_unlock(&swap_lock
);
406 return swp_entry(type
, offset
);
408 next
= swap_list
.next
;
413 spin_unlock(&swap_lock
);
414 return (swp_entry_t
) {0};
417 swp_entry_t
get_swap_page_of_type(int type
)
419 struct swap_info_struct
*si
;
422 spin_lock(&swap_lock
);
423 si
= swap_info
+ type
;
424 if (si
->flags
& SWP_WRITEOK
) {
426 offset
= scan_swap_map(si
);
428 spin_unlock(&swap_lock
);
429 return swp_entry(type
, offset
);
433 spin_unlock(&swap_lock
);
434 return (swp_entry_t
) {0};
437 static struct swap_info_struct
* swap_info_get(swp_entry_t entry
)
439 struct swap_info_struct
* p
;
440 unsigned long offset
, type
;
444 type
= swp_type(entry
);
445 if (type
>= nr_swapfiles
)
447 p
= & swap_info
[type
];
448 if (!(p
->flags
& SWP_USED
))
450 offset
= swp_offset(entry
);
451 if (offset
>= p
->max
)
453 if (!p
->swap_map
[offset
])
455 spin_lock(&swap_lock
);
459 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
462 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
465 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
468 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
473 static int swap_entry_free(struct swap_info_struct
*p
, unsigned long offset
)
475 int count
= p
->swap_map
[offset
];
477 if (count
< SWAP_MAP_MAX
) {
479 p
->swap_map
[offset
] = count
;
481 if (offset
< p
->lowest_bit
)
482 p
->lowest_bit
= offset
;
483 if (offset
> p
->highest_bit
)
484 p
->highest_bit
= offset
;
485 if (p
->prio
> swap_info
[swap_list
.next
].prio
)
486 swap_list
.next
= p
- swap_info
;
495 * Caller has made sure that the swapdevice corresponding to entry
496 * is still around or has not been recycled.
498 void swap_free(swp_entry_t entry
)
500 struct swap_info_struct
* p
;
502 p
= swap_info_get(entry
);
504 swap_entry_free(p
, swp_offset(entry
));
505 spin_unlock(&swap_lock
);
510 * How many references to page are currently swapped out?
512 static inline int page_swapcount(struct page
*page
)
515 struct swap_info_struct
*p
;
518 entry
.val
= page_private(page
);
519 p
= swap_info_get(entry
);
521 /* Subtract the 1 for the swap cache itself */
522 count
= p
->swap_map
[swp_offset(entry
)] - 1;
523 spin_unlock(&swap_lock
);
529 * We can write to an anon page without COW if there are no other references
530 * to it. And as a side-effect, free up its swap: because the old content
531 * on disk will never be read, and seeking back there to write new content
532 * later would only waste time away from clustering.
534 int reuse_swap_page(struct page
*page
)
538 VM_BUG_ON(!PageLocked(page
));
539 count
= page_mapcount(page
);
540 if (count
<= 1 && PageSwapCache(page
)) {
541 count
+= page_swapcount(page
);
542 if (count
== 1 && !PageWriteback(page
)) {
543 delete_from_swap_cache(page
);
551 * If swap is getting full, or if there are no more mappings of this page,
552 * then try_to_free_swap is called to free its swap space.
554 int try_to_free_swap(struct page
*page
)
556 VM_BUG_ON(!PageLocked(page
));
558 if (!PageSwapCache(page
))
560 if (PageWriteback(page
))
562 if (page_swapcount(page
))
565 delete_from_swap_cache(page
);
571 * Free the swap entry like above, but also try to
572 * free the page cache entry if it is the last user.
574 int free_swap_and_cache(swp_entry_t entry
)
576 struct swap_info_struct
*p
;
577 struct page
*page
= NULL
;
579 if (is_migration_entry(entry
))
582 p
= swap_info_get(entry
);
584 if (swap_entry_free(p
, swp_offset(entry
)) == 1) {
585 page
= find_get_page(&swapper_space
, entry
.val
);
586 if (page
&& !trylock_page(page
)) {
587 page_cache_release(page
);
591 spin_unlock(&swap_lock
);
595 * Not mapped elsewhere, or swap space full? Free it!
596 * Also recheck PageSwapCache now page is locked (above).
598 if (PageSwapCache(page
) && !PageWriteback(page
) &&
599 (!page_mapped(page
) || vm_swap_full())) {
600 delete_from_swap_cache(page
);
604 page_cache_release(page
);
609 #ifdef CONFIG_HIBERNATION
611 * Find the swap type that corresponds to given device (if any).
613 * @offset - number of the PAGE_SIZE-sized block of the device, starting
614 * from 0, in which the swap header is expected to be located.
616 * This is needed for the suspend to disk (aka swsusp).
618 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
620 struct block_device
*bdev
= NULL
;
624 bdev
= bdget(device
);
626 spin_lock(&swap_lock
);
627 for (i
= 0; i
< nr_swapfiles
; i
++) {
628 struct swap_info_struct
*sis
= swap_info
+ i
;
630 if (!(sis
->flags
& SWP_WRITEOK
))
637 spin_unlock(&swap_lock
);
640 if (bdev
== sis
->bdev
) {
641 struct swap_extent
*se
;
643 se
= list_entry(sis
->extent_list
.next
,
644 struct swap_extent
, list
);
645 if (se
->start_block
== offset
) {
649 spin_unlock(&swap_lock
);
655 spin_unlock(&swap_lock
);
663 * Return either the total number of swap pages of given type, or the number
664 * of free pages of that type (depending on @free)
666 * This is needed for software suspend
668 unsigned int count_swap_pages(int type
, int free
)
672 if (type
< nr_swapfiles
) {
673 spin_lock(&swap_lock
);
674 if (swap_info
[type
].flags
& SWP_WRITEOK
) {
675 n
= swap_info
[type
].pages
;
677 n
-= swap_info
[type
].inuse_pages
;
679 spin_unlock(&swap_lock
);
686 * No need to decide whether this PTE shares the swap entry with others,
687 * just let do_wp_page work it out if a write is requested later - to
688 * force COW, vm_page_prot omits write permission from any private vma.
690 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
691 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
697 if (mem_cgroup_charge(page
, vma
->vm_mm
, GFP_KERNEL
))
700 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
701 if (unlikely(!pte_same(*pte
, swp_entry_to_pte(entry
)))) {
703 mem_cgroup_uncharge_page(page
);
708 inc_mm_counter(vma
->vm_mm
, anon_rss
);
710 set_pte_at(vma
->vm_mm
, addr
, pte
,
711 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
712 page_add_anon_rmap(page
, vma
, addr
);
715 * Move the page to the active list so it is not
716 * immediately swapped out again after swapon.
720 pte_unmap_unlock(pte
, ptl
);
724 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
725 unsigned long addr
, unsigned long end
,
726 swp_entry_t entry
, struct page
*page
)
728 pte_t swp_pte
= swp_entry_to_pte(entry
);
733 * We don't actually need pte lock while scanning for swp_pte: since
734 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
735 * page table while we're scanning; though it could get zapped, and on
736 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
737 * of unmatched parts which look like swp_pte, so unuse_pte must
738 * recheck under pte lock. Scanning without pte lock lets it be
739 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
741 pte
= pte_offset_map(pmd
, addr
);
744 * swapoff spends a _lot_ of time in this loop!
745 * Test inline before going to call unuse_pte.
747 if (unlikely(pte_same(*pte
, swp_pte
))) {
749 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
752 pte
= pte_offset_map(pmd
, addr
);
754 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
760 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
761 unsigned long addr
, unsigned long end
,
762 swp_entry_t entry
, struct page
*page
)
768 pmd
= pmd_offset(pud
, addr
);
770 next
= pmd_addr_end(addr
, end
);
771 if (pmd_none_or_clear_bad(pmd
))
773 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
776 } while (pmd
++, addr
= next
, addr
!= end
);
780 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
781 unsigned long addr
, unsigned long end
,
782 swp_entry_t entry
, struct page
*page
)
788 pud
= pud_offset(pgd
, addr
);
790 next
= pud_addr_end(addr
, end
);
791 if (pud_none_or_clear_bad(pud
))
793 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
796 } while (pud
++, addr
= next
, addr
!= end
);
800 static int unuse_vma(struct vm_area_struct
*vma
,
801 swp_entry_t entry
, struct page
*page
)
804 unsigned long addr
, end
, next
;
808 addr
= page_address_in_vma(page
, vma
);
812 end
= addr
+ PAGE_SIZE
;
814 addr
= vma
->vm_start
;
818 pgd
= pgd_offset(vma
->vm_mm
, addr
);
820 next
= pgd_addr_end(addr
, end
);
821 if (pgd_none_or_clear_bad(pgd
))
823 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
826 } while (pgd
++, addr
= next
, addr
!= end
);
830 static int unuse_mm(struct mm_struct
*mm
,
831 swp_entry_t entry
, struct page
*page
)
833 struct vm_area_struct
*vma
;
836 if (!down_read_trylock(&mm
->mmap_sem
)) {
838 * Activate page so shrink_inactive_list is unlikely to unmap
839 * its ptes while lock is dropped, so swapoff can make progress.
843 down_read(&mm
->mmap_sem
);
846 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
847 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
850 up_read(&mm
->mmap_sem
);
851 return (ret
< 0)? ret
: 0;
855 * Scan swap_map from current position to next entry still in use.
856 * Recycle to start on reaching the end, returning 0 when empty.
858 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
861 unsigned int max
= si
->max
;
862 unsigned int i
= prev
;
866 * No need for swap_lock here: we're just looking
867 * for whether an entry is in use, not modifying it; false
868 * hits are okay, and sys_swapoff() has already prevented new
869 * allocations from this area (while holding swap_lock).
878 * No entries in use at top of swap_map,
879 * loop back to start and recheck there.
885 count
= si
->swap_map
[i
];
886 if (count
&& count
!= SWAP_MAP_BAD
)
893 * We completely avoid races by reading each swap page in advance,
894 * and then search for the process using it. All the necessary
895 * page table adjustments can then be made atomically.
897 static int try_to_unuse(unsigned int type
)
899 struct swap_info_struct
* si
= &swap_info
[type
];
900 struct mm_struct
*start_mm
;
901 unsigned short *swap_map
;
902 unsigned short swcount
;
907 int reset_overflow
= 0;
911 * When searching mms for an entry, a good strategy is to
912 * start at the first mm we freed the previous entry from
913 * (though actually we don't notice whether we or coincidence
914 * freed the entry). Initialize this start_mm with a hold.
916 * A simpler strategy would be to start at the last mm we
917 * freed the previous entry from; but that would take less
918 * advantage of mmlist ordering, which clusters forked mms
919 * together, child after parent. If we race with dup_mmap(), we
920 * prefer to resolve parent before child, lest we miss entries
921 * duplicated after we scanned child: using last mm would invert
922 * that. Though it's only a serious concern when an overflowed
923 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
926 atomic_inc(&init_mm
.mm_users
);
929 * Keep on scanning until all entries have gone. Usually,
930 * one pass through swap_map is enough, but not necessarily:
931 * there are races when an instance of an entry might be missed.
933 while ((i
= find_next_to_unuse(si
, i
)) != 0) {
934 if (signal_pending(current
)) {
940 * Get a page for the entry, using the existing swap
941 * cache page if there is one. Otherwise, get a clean
942 * page and read the swap into it.
944 swap_map
= &si
->swap_map
[i
];
945 entry
= swp_entry(type
, i
);
946 page
= read_swap_cache_async(entry
,
947 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
950 * Either swap_duplicate() failed because entry
951 * has been freed independently, and will not be
952 * reused since sys_swapoff() already disabled
953 * allocation from here, or alloc_page() failed.
962 * Don't hold on to start_mm if it looks like exiting.
964 if (atomic_read(&start_mm
->mm_users
) == 1) {
967 atomic_inc(&init_mm
.mm_users
);
971 * Wait for and lock page. When do_swap_page races with
972 * try_to_unuse, do_swap_page can handle the fault much
973 * faster than try_to_unuse can locate the entry. This
974 * apparently redundant "wait_on_page_locked" lets try_to_unuse
975 * defer to do_swap_page in such a case - in some tests,
976 * do_swap_page and try_to_unuse repeatedly compete.
978 wait_on_page_locked(page
);
979 wait_on_page_writeback(page
);
981 wait_on_page_writeback(page
);
984 * Remove all references to entry.
985 * Whenever we reach init_mm, there's no address space
986 * to search, but use it as a reminder to search shmem.
991 if (start_mm
== &init_mm
)
992 shmem
= shmem_unuse(entry
, page
);
994 retval
= unuse_mm(start_mm
, entry
, page
);
997 int set_start_mm
= (*swap_map
>= swcount
);
998 struct list_head
*p
= &start_mm
->mmlist
;
999 struct mm_struct
*new_start_mm
= start_mm
;
1000 struct mm_struct
*prev_mm
= start_mm
;
1001 struct mm_struct
*mm
;
1003 atomic_inc(&new_start_mm
->mm_users
);
1004 atomic_inc(&prev_mm
->mm_users
);
1005 spin_lock(&mmlist_lock
);
1006 while (*swap_map
> 1 && !retval
&& !shmem
&&
1007 (p
= p
->next
) != &start_mm
->mmlist
) {
1008 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1009 if (!atomic_inc_not_zero(&mm
->mm_users
))
1011 spin_unlock(&mmlist_lock
);
1017 swcount
= *swap_map
;
1020 else if (mm
== &init_mm
) {
1022 shmem
= shmem_unuse(entry
, page
);
1024 retval
= unuse_mm(mm
, entry
, page
);
1025 if (set_start_mm
&& *swap_map
< swcount
) {
1026 mmput(new_start_mm
);
1027 atomic_inc(&mm
->mm_users
);
1031 spin_lock(&mmlist_lock
);
1033 spin_unlock(&mmlist_lock
);
1036 start_mm
= new_start_mm
;
1039 /* page has already been unlocked and released */
1047 page_cache_release(page
);
1052 * How could swap count reach 0x7fff when the maximum
1053 * pid is 0x7fff, and there's no way to repeat a swap
1054 * page within an mm (except in shmem, where it's the
1055 * shared object which takes the reference count)?
1056 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
1058 * If that's wrong, then we should worry more about
1059 * exit_mmap() and do_munmap() cases described above:
1060 * we might be resetting SWAP_MAP_MAX too early here.
1061 * We know "Undead"s can happen, they're okay, so don't
1062 * report them; but do report if we reset SWAP_MAP_MAX.
1064 if (*swap_map
== SWAP_MAP_MAX
) {
1065 spin_lock(&swap_lock
);
1067 spin_unlock(&swap_lock
);
1072 * If a reference remains (rare), we would like to leave
1073 * the page in the swap cache; but try_to_unmap could
1074 * then re-duplicate the entry once we drop page lock,
1075 * so we might loop indefinitely; also, that page could
1076 * not be swapped out to other storage meanwhile. So:
1077 * delete from cache even if there's another reference,
1078 * after ensuring that the data has been saved to disk -
1079 * since if the reference remains (rarer), it will be
1080 * read from disk into another page. Splitting into two
1081 * pages would be incorrect if swap supported "shared
1082 * private" pages, but they are handled by tmpfs files.
1084 if ((*swap_map
> 1) && PageDirty(page
) && PageSwapCache(page
)) {
1085 struct writeback_control wbc
= {
1086 .sync_mode
= WB_SYNC_NONE
,
1089 swap_writepage(page
, &wbc
);
1091 wait_on_page_writeback(page
);
1095 * It is conceivable that a racing task removed this page from
1096 * swap cache just before we acquired the page lock at the top,
1097 * or while we dropped it in unuse_mm(). The page might even
1098 * be back in swap cache on another swap area: that we must not
1099 * delete, since it may not have been written out to swap yet.
1101 if (PageSwapCache(page
) &&
1102 likely(page_private(page
) == entry
.val
))
1103 delete_from_swap_cache(page
);
1106 * So we could skip searching mms once swap count went
1107 * to 1, we did not mark any present ptes as dirty: must
1108 * mark page dirty so shrink_page_list will preserve it.
1112 page_cache_release(page
);
1115 * Make sure that we aren't completely killing
1116 * interactive performance.
1122 if (reset_overflow
) {
1123 printk(KERN_WARNING
"swapoff: cleared swap entry overflow\n");
1130 * After a successful try_to_unuse, if no swap is now in use, we know
1131 * we can empty the mmlist. swap_lock must be held on entry and exit.
1132 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1133 * added to the mmlist just after page_duplicate - before would be racy.
1135 static void drain_mmlist(void)
1137 struct list_head
*p
, *next
;
1140 for (i
= 0; i
< nr_swapfiles
; i
++)
1141 if (swap_info
[i
].inuse_pages
)
1143 spin_lock(&mmlist_lock
);
1144 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1146 spin_unlock(&mmlist_lock
);
1150 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1151 * corresponds to page offset `offset'.
1153 sector_t
map_swap_page(struct swap_info_struct
*sis
, pgoff_t offset
)
1155 struct swap_extent
*se
= sis
->curr_swap_extent
;
1156 struct swap_extent
*start_se
= se
;
1159 struct list_head
*lh
;
1161 if (se
->start_page
<= offset
&&
1162 offset
< (se
->start_page
+ se
->nr_pages
)) {
1163 return se
->start_block
+ (offset
- se
->start_page
);
1166 if (lh
== &sis
->extent_list
)
1168 se
= list_entry(lh
, struct swap_extent
, list
);
1169 sis
->curr_swap_extent
= se
;
1170 BUG_ON(se
== start_se
); /* It *must* be present */
1174 #ifdef CONFIG_HIBERNATION
1176 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1177 * corresponding to given index in swap_info (swap type).
1179 sector_t
swapdev_block(int swap_type
, pgoff_t offset
)
1181 struct swap_info_struct
*sis
;
1183 if (swap_type
>= nr_swapfiles
)
1186 sis
= swap_info
+ swap_type
;
1187 return (sis
->flags
& SWP_WRITEOK
) ? map_swap_page(sis
, offset
) : 0;
1189 #endif /* CONFIG_HIBERNATION */
1192 * Free all of a swapdev's extent information
1194 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1196 while (!list_empty(&sis
->extent_list
)) {
1197 struct swap_extent
*se
;
1199 se
= list_entry(sis
->extent_list
.next
,
1200 struct swap_extent
, list
);
1201 list_del(&se
->list
);
1207 * Add a block range (and the corresponding page range) into this swapdev's
1208 * extent list. The extent list is kept sorted in page order.
1210 * This function rather assumes that it is called in ascending page order.
1213 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1214 unsigned long nr_pages
, sector_t start_block
)
1216 struct swap_extent
*se
;
1217 struct swap_extent
*new_se
;
1218 struct list_head
*lh
;
1220 lh
= sis
->extent_list
.prev
; /* The highest page extent */
1221 if (lh
!= &sis
->extent_list
) {
1222 se
= list_entry(lh
, struct swap_extent
, list
);
1223 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1224 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1226 se
->nr_pages
+= nr_pages
;
1232 * No merge. Insert a new extent, preserving ordering.
1234 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1237 new_se
->start_page
= start_page
;
1238 new_se
->nr_pages
= nr_pages
;
1239 new_se
->start_block
= start_block
;
1241 list_add_tail(&new_se
->list
, &sis
->extent_list
);
1246 * A `swap extent' is a simple thing which maps a contiguous range of pages
1247 * onto a contiguous range of disk blocks. An ordered list of swap extents
1248 * is built at swapon time and is then used at swap_writepage/swap_readpage
1249 * time for locating where on disk a page belongs.
1251 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1252 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1253 * swap files identically.
1255 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1256 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1257 * swapfiles are handled *identically* after swapon time.
1259 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1260 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1261 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1262 * requirements, they are simply tossed out - we will never use those blocks
1265 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1266 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1267 * which will scribble on the fs.
1269 * The amount of disk space which a single swap extent represents varies.
1270 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1271 * extents in the list. To avoid much list walking, we cache the previous
1272 * search location in `curr_swap_extent', and start new searches from there.
1273 * This is extremely effective. The average number of iterations in
1274 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1276 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1278 struct inode
*inode
;
1279 unsigned blocks_per_page
;
1280 unsigned long page_no
;
1282 sector_t probe_block
;
1283 sector_t last_block
;
1284 sector_t lowest_block
= -1;
1285 sector_t highest_block
= 0;
1289 inode
= sis
->swap_file
->f_mapping
->host
;
1290 if (S_ISBLK(inode
->i_mode
)) {
1291 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1296 blkbits
= inode
->i_blkbits
;
1297 blocks_per_page
= PAGE_SIZE
>> blkbits
;
1300 * Map all the blocks into the extent list. This code doesn't try
1305 last_block
= i_size_read(inode
) >> blkbits
;
1306 while ((probe_block
+ blocks_per_page
) <= last_block
&&
1307 page_no
< sis
->max
) {
1308 unsigned block_in_page
;
1309 sector_t first_block
;
1311 first_block
= bmap(inode
, probe_block
);
1312 if (first_block
== 0)
1316 * It must be PAGE_SIZE aligned on-disk
1318 if (first_block
& (blocks_per_page
- 1)) {
1323 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
1327 block
= bmap(inode
, probe_block
+ block_in_page
);
1330 if (block
!= first_block
+ block_in_page
) {
1337 first_block
>>= (PAGE_SHIFT
- blkbits
);
1338 if (page_no
) { /* exclude the header page */
1339 if (first_block
< lowest_block
)
1340 lowest_block
= first_block
;
1341 if (first_block
> highest_block
)
1342 highest_block
= first_block
;
1346 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1348 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1353 probe_block
+= blocks_per_page
;
1358 *span
= 1 + highest_block
- lowest_block
;
1360 page_no
= 1; /* force Empty message */
1362 sis
->pages
= page_no
- 1;
1363 sis
->highest_bit
= page_no
- 1;
1365 sis
->curr_swap_extent
= list_entry(sis
->extent_list
.prev
,
1366 struct swap_extent
, list
);
1369 printk(KERN_ERR
"swapon: swapfile has holes\n");
1375 asmlinkage
long sys_swapoff(const char __user
* specialfile
)
1377 struct swap_info_struct
* p
= NULL
;
1378 unsigned short *swap_map
;
1379 struct file
*swap_file
, *victim
;
1380 struct address_space
*mapping
;
1381 struct inode
*inode
;
1386 if (!capable(CAP_SYS_ADMIN
))
1389 pathname
= getname(specialfile
);
1390 err
= PTR_ERR(pathname
);
1391 if (IS_ERR(pathname
))
1394 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1396 err
= PTR_ERR(victim
);
1400 mapping
= victim
->f_mapping
;
1402 spin_lock(&swap_lock
);
1403 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
].next
) {
1404 p
= swap_info
+ type
;
1405 if (p
->flags
& SWP_WRITEOK
) {
1406 if (p
->swap_file
->f_mapping
== mapping
)
1413 spin_unlock(&swap_lock
);
1416 if (!security_vm_enough_memory(p
->pages
))
1417 vm_unacct_memory(p
->pages
);
1420 spin_unlock(&swap_lock
);
1424 swap_list
.head
= p
->next
;
1426 swap_info
[prev
].next
= p
->next
;
1428 if (type
== swap_list
.next
) {
1429 /* just pick something that's safe... */
1430 swap_list
.next
= swap_list
.head
;
1433 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
].next
)
1434 swap_info
[i
].prio
= p
->prio
--;
1437 nr_swap_pages
-= p
->pages
;
1438 total_swap_pages
-= p
->pages
;
1439 p
->flags
&= ~SWP_WRITEOK
;
1440 spin_unlock(&swap_lock
);
1442 current
->flags
|= PF_SWAPOFF
;
1443 err
= try_to_unuse(type
);
1444 current
->flags
&= ~PF_SWAPOFF
;
1447 /* re-insert swap space back into swap_list */
1448 spin_lock(&swap_lock
);
1450 p
->prio
= --least_priority
;
1452 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
1453 if (p
->prio
>= swap_info
[i
].prio
)
1459 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1461 swap_info
[prev
].next
= p
- swap_info
;
1462 nr_swap_pages
+= p
->pages
;
1463 total_swap_pages
+= p
->pages
;
1464 p
->flags
|= SWP_WRITEOK
;
1465 spin_unlock(&swap_lock
);
1469 /* wait for any unplug function to finish */
1470 down_write(&swap_unplug_sem
);
1471 up_write(&swap_unplug_sem
);
1473 destroy_swap_extents(p
);
1474 mutex_lock(&swapon_mutex
);
1475 spin_lock(&swap_lock
);
1478 /* wait for anyone still in scan_swap_map */
1479 p
->highest_bit
= 0; /* cuts scans short */
1480 while (p
->flags
>= SWP_SCANNING
) {
1481 spin_unlock(&swap_lock
);
1482 schedule_timeout_uninterruptible(1);
1483 spin_lock(&swap_lock
);
1486 swap_file
= p
->swap_file
;
1487 p
->swap_file
= NULL
;
1489 swap_map
= p
->swap_map
;
1492 spin_unlock(&swap_lock
);
1493 mutex_unlock(&swapon_mutex
);
1495 inode
= mapping
->host
;
1496 if (S_ISBLK(inode
->i_mode
)) {
1497 struct block_device
*bdev
= I_BDEV(inode
);
1498 set_blocksize(bdev
, p
->old_block_size
);
1501 mutex_lock(&inode
->i_mutex
);
1502 inode
->i_flags
&= ~S_SWAPFILE
;
1503 mutex_unlock(&inode
->i_mutex
);
1505 filp_close(swap_file
, NULL
);
1509 filp_close(victim
, NULL
);
1514 #ifdef CONFIG_PROC_FS
1516 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1518 struct swap_info_struct
*ptr
= swap_info
;
1522 mutex_lock(&swapon_mutex
);
1525 return SEQ_START_TOKEN
;
1527 for (i
= 0; i
< nr_swapfiles
; i
++, ptr
++) {
1528 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1537 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1539 struct swap_info_struct
*ptr
;
1540 struct swap_info_struct
*endptr
= swap_info
+ nr_swapfiles
;
1542 if (v
== SEQ_START_TOKEN
)
1549 for (; ptr
< endptr
; ptr
++) {
1550 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1559 static void swap_stop(struct seq_file
*swap
, void *v
)
1561 mutex_unlock(&swapon_mutex
);
1564 static int swap_show(struct seq_file
*swap
, void *v
)
1566 struct swap_info_struct
*ptr
= v
;
1570 if (ptr
== SEQ_START_TOKEN
) {
1571 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1575 file
= ptr
->swap_file
;
1576 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1577 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1578 len
< 40 ? 40 - len
: 1, " ",
1579 S_ISBLK(file
->f_path
.dentry
->d_inode
->i_mode
) ?
1580 "partition" : "file\t",
1581 ptr
->pages
<< (PAGE_SHIFT
- 10),
1582 ptr
->inuse_pages
<< (PAGE_SHIFT
- 10),
1587 static const struct seq_operations swaps_op
= {
1588 .start
= swap_start
,
1594 static int swaps_open(struct inode
*inode
, struct file
*file
)
1596 return seq_open(file
, &swaps_op
);
1599 static const struct file_operations proc_swaps_operations
= {
1602 .llseek
= seq_lseek
,
1603 .release
= seq_release
,
1606 static int __init
procswaps_init(void)
1608 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
1611 __initcall(procswaps_init
);
1612 #endif /* CONFIG_PROC_FS */
1614 #ifdef MAX_SWAPFILES_CHECK
1615 static int __init
max_swapfiles_check(void)
1617 MAX_SWAPFILES_CHECK();
1620 late_initcall(max_swapfiles_check
);
1624 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1626 * The swapon system call
1628 asmlinkage
long sys_swapon(const char __user
* specialfile
, int swap_flags
)
1630 struct swap_info_struct
* p
;
1632 struct block_device
*bdev
= NULL
;
1633 struct file
*swap_file
= NULL
;
1634 struct address_space
*mapping
;
1638 union swap_header
*swap_header
= NULL
;
1639 unsigned int nr_good_pages
= 0;
1642 unsigned long maxpages
= 1;
1643 unsigned long swapfilepages
;
1644 unsigned short *swap_map
= NULL
;
1645 struct page
*page
= NULL
;
1646 struct inode
*inode
= NULL
;
1649 if (!capable(CAP_SYS_ADMIN
))
1651 spin_lock(&swap_lock
);
1653 for (type
= 0 ; type
< nr_swapfiles
; type
++,p
++)
1654 if (!(p
->flags
& SWP_USED
))
1657 if (type
>= MAX_SWAPFILES
) {
1658 spin_unlock(&swap_lock
);
1661 if (type
>= nr_swapfiles
)
1662 nr_swapfiles
= type
+1;
1663 memset(p
, 0, sizeof(*p
));
1664 INIT_LIST_HEAD(&p
->extent_list
);
1665 p
->flags
= SWP_USED
;
1667 spin_unlock(&swap_lock
);
1668 name
= getname(specialfile
);
1669 error
= PTR_ERR(name
);
1674 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
1675 error
= PTR_ERR(swap_file
);
1676 if (IS_ERR(swap_file
)) {
1681 p
->swap_file
= swap_file
;
1682 mapping
= swap_file
->f_mapping
;
1683 inode
= mapping
->host
;
1686 for (i
= 0; i
< nr_swapfiles
; i
++) {
1687 struct swap_info_struct
*q
= &swap_info
[i
];
1689 if (i
== type
|| !q
->swap_file
)
1691 if (mapping
== q
->swap_file
->f_mapping
)
1696 if (S_ISBLK(inode
->i_mode
)) {
1697 bdev
= I_BDEV(inode
);
1698 error
= bd_claim(bdev
, sys_swapon
);
1704 p
->old_block_size
= block_size(bdev
);
1705 error
= set_blocksize(bdev
, PAGE_SIZE
);
1709 } else if (S_ISREG(inode
->i_mode
)) {
1710 p
->bdev
= inode
->i_sb
->s_bdev
;
1711 mutex_lock(&inode
->i_mutex
);
1713 if (IS_SWAPFILE(inode
)) {
1721 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
1724 * Read the swap header.
1726 if (!mapping
->a_ops
->readpage
) {
1730 page
= read_mapping_page(mapping
, 0, swap_file
);
1732 error
= PTR_ERR(page
);
1735 swap_header
= kmap(page
);
1737 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
1738 printk(KERN_ERR
"Unable to find swap-space signature\n");
1743 /* swap partition endianess hack... */
1744 if (swab32(swap_header
->info
.version
) == 1) {
1745 swab32s(&swap_header
->info
.version
);
1746 swab32s(&swap_header
->info
.last_page
);
1747 swab32s(&swap_header
->info
.nr_badpages
);
1748 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1749 swab32s(&swap_header
->info
.badpages
[i
]);
1751 /* Check the swap header's sub-version */
1752 if (swap_header
->info
.version
!= 1) {
1754 "Unable to handle swap header version %d\n",
1755 swap_header
->info
.version
);
1761 p
->cluster_next
= 1;
1764 * Find out how many pages are allowed for a single swap
1765 * device. There are two limiting factors: 1) the number of
1766 * bits for the swap offset in the swp_entry_t type and
1767 * 2) the number of bits in the a swap pte as defined by
1768 * the different architectures. In order to find the
1769 * largest possible bit mask a swap entry with swap type 0
1770 * and swap offset ~0UL is created, encoded to a swap pte,
1771 * decoded to a swp_entry_t again and finally the swap
1772 * offset is extracted. This will mask all the bits from
1773 * the initial ~0UL mask that can't be encoded in either
1774 * the swp_entry_t or the architecture definition of a
1777 maxpages
= swp_offset(pte_to_swp_entry(
1778 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1779 if (maxpages
> swap_header
->info
.last_page
)
1780 maxpages
= swap_header
->info
.last_page
;
1781 p
->highest_bit
= maxpages
- 1;
1786 if (swapfilepages
&& maxpages
> swapfilepages
) {
1788 "Swap area shorter than signature indicates\n");
1791 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1793 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1796 /* OK, set up the swap map and apply the bad block list */
1797 swap_map
= vmalloc(maxpages
* sizeof(short));
1803 memset(swap_map
, 0, maxpages
* sizeof(short));
1804 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
1805 int page_nr
= swap_header
->info
.badpages
[i
];
1806 if (page_nr
<= 0 || page_nr
>= swap_header
->info
.last_page
) {
1810 swap_map
[page_nr
] = SWAP_MAP_BAD
;
1812 nr_good_pages
= swap_header
->info
.last_page
-
1813 swap_header
->info
.nr_badpages
-
1814 1 /* header page */;
1816 if (nr_good_pages
) {
1817 swap_map
[0] = SWAP_MAP_BAD
;
1819 p
->pages
= nr_good_pages
;
1820 nr_extents
= setup_swap_extents(p
, &span
);
1821 if (nr_extents
< 0) {
1825 nr_good_pages
= p
->pages
;
1827 if (!nr_good_pages
) {
1828 printk(KERN_WARNING
"Empty swap-file\n");
1833 if (blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
1834 p
->flags
|= SWP_SOLIDSTATE
;
1835 p
->cluster_next
= 1 + (random32() % p
->highest_bit
);
1837 if (discard_swap(p
) == 0)
1838 p
->flags
|= SWP_DISCARDABLE
;
1840 mutex_lock(&swapon_mutex
);
1841 spin_lock(&swap_lock
);
1842 if (swap_flags
& SWAP_FLAG_PREFER
)
1844 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
1846 p
->prio
= --least_priority
;
1847 p
->swap_map
= swap_map
;
1848 p
->flags
|= SWP_WRITEOK
;
1849 nr_swap_pages
+= nr_good_pages
;
1850 total_swap_pages
+= nr_good_pages
;
1852 printk(KERN_INFO
"Adding %uk swap on %s. "
1853 "Priority:%d extents:%d across:%lluk %s%s\n",
1854 nr_good_pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
1855 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
1856 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
1857 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "");
1859 /* insert swap space into swap_list: */
1861 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
1862 if (p
->prio
>= swap_info
[i
].prio
) {
1869 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1871 swap_info
[prev
].next
= p
- swap_info
;
1873 spin_unlock(&swap_lock
);
1874 mutex_unlock(&swapon_mutex
);
1879 set_blocksize(bdev
, p
->old_block_size
);
1882 destroy_swap_extents(p
);
1884 spin_lock(&swap_lock
);
1885 p
->swap_file
= NULL
;
1887 spin_unlock(&swap_lock
);
1890 filp_close(swap_file
, NULL
);
1892 if (page
&& !IS_ERR(page
)) {
1894 page_cache_release(page
);
1900 inode
->i_flags
|= S_SWAPFILE
;
1901 mutex_unlock(&inode
->i_mutex
);
1906 void si_swapinfo(struct sysinfo
*val
)
1909 unsigned long nr_to_be_unused
= 0;
1911 spin_lock(&swap_lock
);
1912 for (i
= 0; i
< nr_swapfiles
; i
++) {
1913 if (!(swap_info
[i
].flags
& SWP_USED
) ||
1914 (swap_info
[i
].flags
& SWP_WRITEOK
))
1916 nr_to_be_unused
+= swap_info
[i
].inuse_pages
;
1918 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
1919 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
1920 spin_unlock(&swap_lock
);
1924 * Verify that a swap entry is valid and increment its swap map count.
1926 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1927 * "permanent", but will be reclaimed by the next swapoff.
1929 int swap_duplicate(swp_entry_t entry
)
1931 struct swap_info_struct
* p
;
1932 unsigned long offset
, type
;
1935 if (is_migration_entry(entry
))
1938 type
= swp_type(entry
);
1939 if (type
>= nr_swapfiles
)
1941 p
= type
+ swap_info
;
1942 offset
= swp_offset(entry
);
1944 spin_lock(&swap_lock
);
1945 if (offset
< p
->max
&& p
->swap_map
[offset
]) {
1946 if (p
->swap_map
[offset
] < SWAP_MAP_MAX
- 1) {
1947 p
->swap_map
[offset
]++;
1949 } else if (p
->swap_map
[offset
] <= SWAP_MAP_MAX
) {
1950 if (swap_overflow
++ < 5)
1951 printk(KERN_WARNING
"swap_dup: swap entry overflow\n");
1952 p
->swap_map
[offset
] = SWAP_MAP_MAX
;
1956 spin_unlock(&swap_lock
);
1961 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
1965 struct swap_info_struct
*
1966 get_swap_info_struct(unsigned type
)
1968 return &swap_info
[type
];
1972 * swap_lock prevents swap_map being freed. Don't grab an extra
1973 * reference on the swaphandle, it doesn't matter if it becomes unused.
1975 int valid_swaphandles(swp_entry_t entry
, unsigned long *offset
)
1977 struct swap_info_struct
*si
;
1978 int our_page_cluster
= page_cluster
;
1979 pgoff_t target
, toff
;
1983 if (!our_page_cluster
) /* no readahead */
1986 si
= &swap_info
[swp_type(entry
)];
1987 target
= swp_offset(entry
);
1988 base
= (target
>> our_page_cluster
) << our_page_cluster
;
1989 end
= base
+ (1 << our_page_cluster
);
1990 if (!base
) /* first page is swap header */
1993 spin_lock(&swap_lock
);
1994 if (end
> si
->max
) /* don't go beyond end of map */
1997 /* Count contiguous allocated slots above our target */
1998 for (toff
= target
; ++toff
< end
; nr_pages
++) {
1999 /* Don't read in free or bad pages */
2000 if (!si
->swap_map
[toff
])
2002 if (si
->swap_map
[toff
] == SWAP_MAP_BAD
)
2005 /* Count contiguous allocated slots below our target */
2006 for (toff
= target
; --toff
>= base
; nr_pages
++) {
2007 /* Don't read in free or bad pages */
2008 if (!si
->swap_map
[toff
])
2010 if (si
->swap_map
[toff
] == SWAP_MAP_BAD
)
2013 spin_unlock(&swap_lock
);
2016 * Indicate starting offset, and return number of pages to get:
2017 * if only 1, say 0, since there's then no readahead to be done.
2020 return nr_pages
? ++nr_pages
: 0;