sky2: more receive shutdown
[linux-2.6/verdex.git] / drivers / char / tty_io.c
blob939e198d7670adfdad2068b4036a8d9348779444
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
110 #undef TTY_DEBUG_HANGUP
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
126 EXPORT_SYMBOL(tty_std_termios);
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 * alloc_tty_struct - allocate a tty object
161 * Return a new empty tty structure. The data fields have not
162 * been initialized in any way but has been zeroed
164 * Locking: none
167 struct tty_struct *alloc_tty_struct(void)
169 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
173 * free_tty_struct - free a disused tty
174 * @tty: tty struct to free
176 * Free the write buffers, tty queue and tty memory itself.
178 * Locking: none. Must be called after tty is definitely unused
181 void free_tty_struct(struct tty_struct *tty)
183 kfree(tty->write_buf);
184 tty_buffer_free_all(tty);
185 kfree(tty);
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
191 * tty_name - return tty naming
192 * @tty: tty structure
193 * @buf: buffer for output
195 * Convert a tty structure into a name. The name reflects the kernel
196 * naming policy and if udev is in use may not reflect user space
198 * Locking: none
201 char *tty_name(struct tty_struct *tty, char *buf)
203 if (!tty) /* Hmm. NULL pointer. That's fun. */
204 strcpy(buf, "NULL tty");
205 else
206 strcpy(buf, tty->name);
207 return buf;
210 EXPORT_SYMBOL(tty_name);
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213 const char *routine)
215 #ifdef TTY_PARANOIA_CHECK
216 if (!tty) {
217 printk(KERN_WARNING
218 "null TTY for (%d:%d) in %s\n",
219 imajor(inode), iminor(inode), routine);
220 return 1;
222 if (tty->magic != TTY_MAGIC) {
223 printk(KERN_WARNING
224 "bad magic number for tty struct (%d:%d) in %s\n",
225 imajor(inode), iminor(inode), routine);
226 return 1;
228 #endif
229 return 0;
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
234 #ifdef CHECK_TTY_COUNT
235 struct list_head *p;
236 int count = 0;
238 file_list_lock();
239 list_for_each(p, &tty->tty_files) {
240 count++;
242 file_list_unlock();
243 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244 tty->driver->subtype == PTY_TYPE_SLAVE &&
245 tty->link && tty->link->count)
246 count++;
247 if (tty->count != count) {
248 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249 "!= #fd's(%d) in %s\n",
250 tty->name, tty->count, count, routine);
251 return count;
253 #endif
254 return 0;
258 * get_tty_driver - find device of a tty
259 * @dev_t: device identifier
260 * @index: returns the index of the tty
262 * This routine returns a tty driver structure, given a device number
263 * and also passes back the index number.
265 * Locking: caller must hold tty_mutex
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
270 struct tty_driver *p;
272 list_for_each_entry(p, &tty_drivers, tty_drivers) {
273 dev_t base = MKDEV(p->major, p->minor_start);
274 if (device < base || device >= base + p->num)
275 continue;
276 *index = device - base;
277 return tty_driver_kref_get(p);
279 return NULL;
282 #ifdef CONFIG_CONSOLE_POLL
285 * tty_find_polling_driver - find device of a polled tty
286 * @name: name string to match
287 * @line: pointer to resulting tty line nr
289 * This routine returns a tty driver structure, given a name
290 * and the condition that the tty driver is capable of polled
291 * operation.
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
295 struct tty_driver *p, *res = NULL;
296 int tty_line = 0;
297 int len;
298 char *str, *stp;
300 for (str = name; *str; str++)
301 if ((*str >= '0' && *str <= '9') || *str == ',')
302 break;
303 if (!*str)
304 return NULL;
306 len = str - name;
307 tty_line = simple_strtoul(str, &str, 10);
309 mutex_lock(&tty_mutex);
310 /* Search through the tty devices to look for a match */
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 if (strncmp(name, p->name, len) != 0)
313 continue;
314 stp = str;
315 if (*stp == ',')
316 stp++;
317 if (*stp == '\0')
318 stp = NULL;
320 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
321 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
322 res = tty_driver_kref_get(p);
323 *line = tty_line;
324 break;
327 mutex_unlock(&tty_mutex);
329 return res;
331 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
332 #endif
335 * tty_check_change - check for POSIX terminal changes
336 * @tty: tty to check
338 * If we try to write to, or set the state of, a terminal and we're
339 * not in the foreground, send a SIGTTOU. If the signal is blocked or
340 * ignored, go ahead and perform the operation. (POSIX 7.2)
342 * Locking: ctrl_lock
345 int tty_check_change(struct tty_struct *tty)
347 unsigned long flags;
348 int ret = 0;
350 if (current->signal->tty != tty)
351 return 0;
353 spin_lock_irqsave(&tty->ctrl_lock, flags);
355 if (!tty->pgrp) {
356 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
357 goto out_unlock;
359 if (task_pgrp(current) == tty->pgrp)
360 goto out_unlock;
361 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
362 if (is_ignored(SIGTTOU))
363 goto out;
364 if (is_current_pgrp_orphaned()) {
365 ret = -EIO;
366 goto out;
368 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
369 set_thread_flag(TIF_SIGPENDING);
370 ret = -ERESTARTSYS;
371 out:
372 return ret;
373 out_unlock:
374 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
375 return ret;
378 EXPORT_SYMBOL(tty_check_change);
380 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
381 size_t count, loff_t *ppos)
383 return 0;
386 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
387 size_t count, loff_t *ppos)
389 return -EIO;
392 /* No kernel lock held - none needed ;) */
393 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
395 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
398 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
399 unsigned long arg)
401 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
404 static long hung_up_tty_compat_ioctl(struct file *file,
405 unsigned int cmd, unsigned long arg)
407 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
410 static const struct file_operations tty_fops = {
411 .llseek = no_llseek,
412 .read = tty_read,
413 .write = tty_write,
414 .poll = tty_poll,
415 .unlocked_ioctl = tty_ioctl,
416 .compat_ioctl = tty_compat_ioctl,
417 .open = tty_open,
418 .release = tty_release,
419 .fasync = tty_fasync,
422 static const struct file_operations console_fops = {
423 .llseek = no_llseek,
424 .read = tty_read,
425 .write = redirected_tty_write,
426 .poll = tty_poll,
427 .unlocked_ioctl = tty_ioctl,
428 .compat_ioctl = tty_compat_ioctl,
429 .open = tty_open,
430 .release = tty_release,
431 .fasync = tty_fasync,
434 static const struct file_operations hung_up_tty_fops = {
435 .llseek = no_llseek,
436 .read = hung_up_tty_read,
437 .write = hung_up_tty_write,
438 .poll = hung_up_tty_poll,
439 .unlocked_ioctl = hung_up_tty_ioctl,
440 .compat_ioctl = hung_up_tty_compat_ioctl,
441 .release = tty_release,
444 static DEFINE_SPINLOCK(redirect_lock);
445 static struct file *redirect;
448 * tty_wakeup - request more data
449 * @tty: terminal
451 * Internal and external helper for wakeups of tty. This function
452 * informs the line discipline if present that the driver is ready
453 * to receive more output data.
456 void tty_wakeup(struct tty_struct *tty)
458 struct tty_ldisc *ld;
460 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
461 ld = tty_ldisc_ref(tty);
462 if (ld) {
463 if (ld->ops->write_wakeup)
464 ld->ops->write_wakeup(tty);
465 tty_ldisc_deref(ld);
468 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
471 EXPORT_SYMBOL_GPL(tty_wakeup);
474 * do_tty_hangup - actual handler for hangup events
475 * @work: tty device
477 * This can be called by the "eventd" kernel thread. That is process
478 * synchronous but doesn't hold any locks, so we need to make sure we
479 * have the appropriate locks for what we're doing.
481 * The hangup event clears any pending redirections onto the hung up
482 * device. It ensures future writes will error and it does the needed
483 * line discipline hangup and signal delivery. The tty object itself
484 * remains intact.
486 * Locking:
487 * BKL
488 * redirect lock for undoing redirection
489 * file list lock for manipulating list of ttys
490 * tty_ldisc_lock from called functions
491 * termios_mutex resetting termios data
492 * tasklist_lock to walk task list for hangup event
493 * ->siglock to protect ->signal/->sighand
495 static void do_tty_hangup(struct work_struct *work)
497 struct tty_struct *tty =
498 container_of(work, struct tty_struct, hangup_work);
499 struct file *cons_filp = NULL;
500 struct file *filp, *f = NULL;
501 struct task_struct *p;
502 int closecount = 0, n;
503 unsigned long flags;
504 int refs = 0;
506 if (!tty)
507 return;
509 /* inuse_filps is protected by the single kernel lock */
510 lock_kernel();
512 spin_lock(&redirect_lock);
513 if (redirect && redirect->private_data == tty) {
514 f = redirect;
515 redirect = NULL;
517 spin_unlock(&redirect_lock);
519 check_tty_count(tty, "do_tty_hangup");
520 file_list_lock();
521 /* This breaks for file handles being sent over AF_UNIX sockets ? */
522 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
523 if (filp->f_op->write == redirected_tty_write)
524 cons_filp = filp;
525 if (filp->f_op->write != tty_write)
526 continue;
527 closecount++;
528 tty_fasync(-1, filp, 0); /* can't block */
529 filp->f_op = &hung_up_tty_fops;
531 file_list_unlock();
533 tty_ldisc_hangup(tty);
535 read_lock(&tasklist_lock);
536 if (tty->session) {
537 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
538 spin_lock_irq(&p->sighand->siglock);
539 if (p->signal->tty == tty) {
540 p->signal->tty = NULL;
541 /* We defer the dereferences outside fo
542 the tasklist lock */
543 refs++;
545 if (!p->signal->leader) {
546 spin_unlock_irq(&p->sighand->siglock);
547 continue;
549 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
550 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
551 put_pid(p->signal->tty_old_pgrp); /* A noop */
552 spin_lock_irqsave(&tty->ctrl_lock, flags);
553 if (tty->pgrp)
554 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
555 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
556 spin_unlock_irq(&p->sighand->siglock);
557 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
559 read_unlock(&tasklist_lock);
561 spin_lock_irqsave(&tty->ctrl_lock, flags);
562 clear_bit(TTY_THROTTLED, &tty->flags);
563 clear_bit(TTY_PUSH, &tty->flags);
564 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
565 put_pid(tty->session);
566 put_pid(tty->pgrp);
567 tty->session = NULL;
568 tty->pgrp = NULL;
569 tty->ctrl_status = 0;
570 set_bit(TTY_HUPPED, &tty->flags);
571 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
573 /* Account for the p->signal references we killed */
574 while (refs--)
575 tty_kref_put(tty);
578 * If one of the devices matches a console pointer, we
579 * cannot just call hangup() because that will cause
580 * tty->count and state->count to go out of sync.
581 * So we just call close() the right number of times.
583 if (cons_filp) {
584 if (tty->ops->close)
585 for (n = 0; n < closecount; n++)
586 tty->ops->close(tty, cons_filp);
587 } else if (tty->ops->hangup)
588 (tty->ops->hangup)(tty);
590 * We don't want to have driver/ldisc interactions beyond
591 * the ones we did here. The driver layer expects no
592 * calls after ->hangup() from the ldisc side. However we
593 * can't yet guarantee all that.
595 set_bit(TTY_HUPPED, &tty->flags);
596 tty_ldisc_enable(tty);
597 unlock_kernel();
598 if (f)
599 fput(f);
603 * tty_hangup - trigger a hangup event
604 * @tty: tty to hangup
606 * A carrier loss (virtual or otherwise) has occurred on this like
607 * schedule a hangup sequence to run after this event.
610 void tty_hangup(struct tty_struct *tty)
612 #ifdef TTY_DEBUG_HANGUP
613 char buf[64];
614 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
615 #endif
616 schedule_work(&tty->hangup_work);
619 EXPORT_SYMBOL(tty_hangup);
622 * tty_vhangup - process vhangup
623 * @tty: tty to hangup
625 * The user has asked via system call for the terminal to be hung up.
626 * We do this synchronously so that when the syscall returns the process
627 * is complete. That guarantee is necessary for security reasons.
630 void tty_vhangup(struct tty_struct *tty)
632 #ifdef TTY_DEBUG_HANGUP
633 char buf[64];
635 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
636 #endif
637 do_tty_hangup(&tty->hangup_work);
640 EXPORT_SYMBOL(tty_vhangup);
643 * tty_vhangup_self - process vhangup for own ctty
645 * Perform a vhangup on the current controlling tty
648 void tty_vhangup_self(void)
650 struct tty_struct *tty;
652 tty = get_current_tty();
653 if (tty) {
654 tty_vhangup(tty);
655 tty_kref_put(tty);
660 * tty_hung_up_p - was tty hung up
661 * @filp: file pointer of tty
663 * Return true if the tty has been subject to a vhangup or a carrier
664 * loss
667 int tty_hung_up_p(struct file *filp)
669 return (filp->f_op == &hung_up_tty_fops);
672 EXPORT_SYMBOL(tty_hung_up_p);
674 static void session_clear_tty(struct pid *session)
676 struct task_struct *p;
677 do_each_pid_task(session, PIDTYPE_SID, p) {
678 proc_clear_tty(p);
679 } while_each_pid_task(session, PIDTYPE_SID, p);
683 * disassociate_ctty - disconnect controlling tty
684 * @on_exit: true if exiting so need to "hang up" the session
686 * This function is typically called only by the session leader, when
687 * it wants to disassociate itself from its controlling tty.
689 * It performs the following functions:
690 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
691 * (2) Clears the tty from being controlling the session
692 * (3) Clears the controlling tty for all processes in the
693 * session group.
695 * The argument on_exit is set to 1 if called when a process is
696 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
698 * Locking:
699 * BKL is taken for hysterical raisins
700 * tty_mutex is taken to protect tty
701 * ->siglock is taken to protect ->signal/->sighand
702 * tasklist_lock is taken to walk process list for sessions
703 * ->siglock is taken to protect ->signal/->sighand
706 void disassociate_ctty(int on_exit)
708 struct tty_struct *tty;
709 struct pid *tty_pgrp = NULL;
712 tty = get_current_tty();
713 if (tty) {
714 tty_pgrp = get_pid(tty->pgrp);
715 lock_kernel();
716 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
717 tty_vhangup(tty);
718 unlock_kernel();
719 tty_kref_put(tty);
720 } else if (on_exit) {
721 struct pid *old_pgrp;
722 spin_lock_irq(&current->sighand->siglock);
723 old_pgrp = current->signal->tty_old_pgrp;
724 current->signal->tty_old_pgrp = NULL;
725 spin_unlock_irq(&current->sighand->siglock);
726 if (old_pgrp) {
727 kill_pgrp(old_pgrp, SIGHUP, on_exit);
728 kill_pgrp(old_pgrp, SIGCONT, on_exit);
729 put_pid(old_pgrp);
731 return;
733 if (tty_pgrp) {
734 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
735 if (!on_exit)
736 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
737 put_pid(tty_pgrp);
740 spin_lock_irq(&current->sighand->siglock);
741 put_pid(current->signal->tty_old_pgrp);
742 current->signal->tty_old_pgrp = NULL;
743 spin_unlock_irq(&current->sighand->siglock);
745 tty = get_current_tty();
746 if (tty) {
747 unsigned long flags;
748 spin_lock_irqsave(&tty->ctrl_lock, flags);
749 put_pid(tty->session);
750 put_pid(tty->pgrp);
751 tty->session = NULL;
752 tty->pgrp = NULL;
753 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
754 tty_kref_put(tty);
755 } else {
756 #ifdef TTY_DEBUG_HANGUP
757 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
758 " = NULL", tty);
759 #endif
762 /* Now clear signal->tty under the lock */
763 read_lock(&tasklist_lock);
764 session_clear_tty(task_session(current));
765 read_unlock(&tasklist_lock);
770 * no_tty - Ensure the current process does not have a controlling tty
772 void no_tty(void)
774 struct task_struct *tsk = current;
775 lock_kernel();
776 if (tsk->signal->leader)
777 disassociate_ctty(0);
778 unlock_kernel();
779 proc_clear_tty(tsk);
784 * stop_tty - propagate flow control
785 * @tty: tty to stop
787 * Perform flow control to the driver. For PTY/TTY pairs we
788 * must also propagate the TIOCKPKT status. May be called
789 * on an already stopped device and will not re-call the driver
790 * method.
792 * This functionality is used by both the line disciplines for
793 * halting incoming flow and by the driver. It may therefore be
794 * called from any context, may be under the tty atomic_write_lock
795 * but not always.
797 * Locking:
798 * Uses the tty control lock internally
801 void stop_tty(struct tty_struct *tty)
803 unsigned long flags;
804 spin_lock_irqsave(&tty->ctrl_lock, flags);
805 if (tty->stopped) {
806 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
807 return;
809 tty->stopped = 1;
810 if (tty->link && tty->link->packet) {
811 tty->ctrl_status &= ~TIOCPKT_START;
812 tty->ctrl_status |= TIOCPKT_STOP;
813 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
815 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
816 if (tty->ops->stop)
817 (tty->ops->stop)(tty);
820 EXPORT_SYMBOL(stop_tty);
823 * start_tty - propagate flow control
824 * @tty: tty to start
826 * Start a tty that has been stopped if at all possible. Perform
827 * any necessary wakeups and propagate the TIOCPKT status. If this
828 * is the tty was previous stopped and is being started then the
829 * driver start method is invoked and the line discipline woken.
831 * Locking:
832 * ctrl_lock
835 void start_tty(struct tty_struct *tty)
837 unsigned long flags;
838 spin_lock_irqsave(&tty->ctrl_lock, flags);
839 if (!tty->stopped || tty->flow_stopped) {
840 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
841 return;
843 tty->stopped = 0;
844 if (tty->link && tty->link->packet) {
845 tty->ctrl_status &= ~TIOCPKT_STOP;
846 tty->ctrl_status |= TIOCPKT_START;
847 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
849 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
850 if (tty->ops->start)
851 (tty->ops->start)(tty);
852 /* If we have a running line discipline it may need kicking */
853 tty_wakeup(tty);
856 EXPORT_SYMBOL(start_tty);
859 * tty_read - read method for tty device files
860 * @file: pointer to tty file
861 * @buf: user buffer
862 * @count: size of user buffer
863 * @ppos: unused
865 * Perform the read system call function on this terminal device. Checks
866 * for hung up devices before calling the line discipline method.
868 * Locking:
869 * Locks the line discipline internally while needed. Multiple
870 * read calls may be outstanding in parallel.
873 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
874 loff_t *ppos)
876 int i;
877 struct tty_struct *tty;
878 struct inode *inode;
879 struct tty_ldisc *ld;
881 tty = (struct tty_struct *)file->private_data;
882 inode = file->f_path.dentry->d_inode;
883 if (tty_paranoia_check(tty, inode, "tty_read"))
884 return -EIO;
885 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
886 return -EIO;
888 /* We want to wait for the line discipline to sort out in this
889 situation */
890 ld = tty_ldisc_ref_wait(tty);
891 if (ld->ops->read)
892 i = (ld->ops->read)(tty, file, buf, count);
893 else
894 i = -EIO;
895 tty_ldisc_deref(ld);
896 if (i > 0)
897 inode->i_atime = current_fs_time(inode->i_sb);
898 return i;
901 void tty_write_unlock(struct tty_struct *tty)
903 mutex_unlock(&tty->atomic_write_lock);
904 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
907 int tty_write_lock(struct tty_struct *tty, int ndelay)
909 if (!mutex_trylock(&tty->atomic_write_lock)) {
910 if (ndelay)
911 return -EAGAIN;
912 if (mutex_lock_interruptible(&tty->atomic_write_lock))
913 return -ERESTARTSYS;
915 return 0;
919 * Split writes up in sane blocksizes to avoid
920 * denial-of-service type attacks
922 static inline ssize_t do_tty_write(
923 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
924 struct tty_struct *tty,
925 struct file *file,
926 const char __user *buf,
927 size_t count)
929 ssize_t ret, written = 0;
930 unsigned int chunk;
932 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
933 if (ret < 0)
934 return ret;
937 * We chunk up writes into a temporary buffer. This
938 * simplifies low-level drivers immensely, since they
939 * don't have locking issues and user mode accesses.
941 * But if TTY_NO_WRITE_SPLIT is set, we should use a
942 * big chunk-size..
944 * The default chunk-size is 2kB, because the NTTY
945 * layer has problems with bigger chunks. It will
946 * claim to be able to handle more characters than
947 * it actually does.
949 * FIXME: This can probably go away now except that 64K chunks
950 * are too likely to fail unless switched to vmalloc...
952 chunk = 2048;
953 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
954 chunk = 65536;
955 if (count < chunk)
956 chunk = count;
958 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
959 if (tty->write_cnt < chunk) {
960 unsigned char *buf_chunk;
962 if (chunk < 1024)
963 chunk = 1024;
965 buf_chunk = kmalloc(chunk, GFP_KERNEL);
966 if (!buf_chunk) {
967 ret = -ENOMEM;
968 goto out;
970 kfree(tty->write_buf);
971 tty->write_cnt = chunk;
972 tty->write_buf = buf_chunk;
975 /* Do the write .. */
976 for (;;) {
977 size_t size = count;
978 if (size > chunk)
979 size = chunk;
980 ret = -EFAULT;
981 if (copy_from_user(tty->write_buf, buf, size))
982 break;
983 ret = write(tty, file, tty->write_buf, size);
984 if (ret <= 0)
985 break;
986 written += ret;
987 buf += ret;
988 count -= ret;
989 if (!count)
990 break;
991 ret = -ERESTARTSYS;
992 if (signal_pending(current))
993 break;
994 cond_resched();
996 if (written) {
997 struct inode *inode = file->f_path.dentry->d_inode;
998 inode->i_mtime = current_fs_time(inode->i_sb);
999 ret = written;
1001 out:
1002 tty_write_unlock(tty);
1003 return ret;
1007 * tty_write_message - write a message to a certain tty, not just the console.
1008 * @tty: the destination tty_struct
1009 * @msg: the message to write
1011 * This is used for messages that need to be redirected to a specific tty.
1012 * We don't put it into the syslog queue right now maybe in the future if
1013 * really needed.
1015 * We must still hold the BKL and test the CLOSING flag for the moment.
1018 void tty_write_message(struct tty_struct *tty, char *msg)
1020 lock_kernel();
1021 if (tty) {
1022 mutex_lock(&tty->atomic_write_lock);
1023 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1024 tty->ops->write(tty, msg, strlen(msg));
1025 tty_write_unlock(tty);
1027 unlock_kernel();
1028 return;
1033 * tty_write - write method for tty device file
1034 * @file: tty file pointer
1035 * @buf: user data to write
1036 * @count: bytes to write
1037 * @ppos: unused
1039 * Write data to a tty device via the line discipline.
1041 * Locking:
1042 * Locks the line discipline as required
1043 * Writes to the tty driver are serialized by the atomic_write_lock
1044 * and are then processed in chunks to the device. The line discipline
1045 * write method will not be invoked in parallel for each device.
1048 static ssize_t tty_write(struct file *file, const char __user *buf,
1049 size_t count, loff_t *ppos)
1051 struct tty_struct *tty;
1052 struct inode *inode = file->f_path.dentry->d_inode;
1053 ssize_t ret;
1054 struct tty_ldisc *ld;
1056 tty = (struct tty_struct *)file->private_data;
1057 if (tty_paranoia_check(tty, inode, "tty_write"))
1058 return -EIO;
1059 if (!tty || !tty->ops->write ||
1060 (test_bit(TTY_IO_ERROR, &tty->flags)))
1061 return -EIO;
1062 /* Short term debug to catch buggy drivers */
1063 if (tty->ops->write_room == NULL)
1064 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1065 tty->driver->name);
1066 ld = tty_ldisc_ref_wait(tty);
1067 if (!ld->ops->write)
1068 ret = -EIO;
1069 else
1070 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1071 tty_ldisc_deref(ld);
1072 return ret;
1075 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1076 size_t count, loff_t *ppos)
1078 struct file *p = NULL;
1080 spin_lock(&redirect_lock);
1081 if (redirect) {
1082 get_file(redirect);
1083 p = redirect;
1085 spin_unlock(&redirect_lock);
1087 if (p) {
1088 ssize_t res;
1089 res = vfs_write(p, buf, count, &p->f_pos);
1090 fput(p);
1091 return res;
1093 return tty_write(file, buf, count, ppos);
1096 static char ptychar[] = "pqrstuvwxyzabcde";
1099 * pty_line_name - generate name for a pty
1100 * @driver: the tty driver in use
1101 * @index: the minor number
1102 * @p: output buffer of at least 6 bytes
1104 * Generate a name from a driver reference and write it to the output
1105 * buffer.
1107 * Locking: None
1109 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1111 int i = index + driver->name_base;
1112 /* ->name is initialized to "ttyp", but "tty" is expected */
1113 sprintf(p, "%s%c%x",
1114 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1115 ptychar[i >> 4 & 0xf], i & 0xf);
1119 * tty_line_name - generate name for a tty
1120 * @driver: the tty driver in use
1121 * @index: the minor number
1122 * @p: output buffer of at least 7 bytes
1124 * Generate a name from a driver reference and write it to the output
1125 * buffer.
1127 * Locking: None
1129 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1131 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1135 * tty_driver_lookup_tty() - find an existing tty, if any
1136 * @driver: the driver for the tty
1137 * @idx: the minor number
1139 * Return the tty, if found or ERR_PTR() otherwise.
1141 * Locking: tty_mutex must be held. If tty is found, the mutex must
1142 * be held until the 'fast-open' is also done. Will change once we
1143 * have refcounting in the driver and per driver locking
1145 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1146 struct inode *inode, int idx)
1148 struct tty_struct *tty;
1150 if (driver->ops->lookup)
1151 return driver->ops->lookup(driver, inode, idx);
1153 tty = driver->ttys[idx];
1154 return tty;
1158 * tty_init_termios - helper for termios setup
1159 * @tty: the tty to set up
1161 * Initialise the termios structures for this tty. Thus runs under
1162 * the tty_mutex currently so we can be relaxed about ordering.
1165 int tty_init_termios(struct tty_struct *tty)
1167 struct ktermios *tp;
1168 int idx = tty->index;
1170 tp = tty->driver->termios[idx];
1171 if (tp == NULL) {
1172 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1173 if (tp == NULL)
1174 return -ENOMEM;
1175 memcpy(tp, &tty->driver->init_termios,
1176 sizeof(struct ktermios));
1177 tty->driver->termios[idx] = tp;
1179 tty->termios = tp;
1180 tty->termios_locked = tp + 1;
1182 /* Compatibility until drivers always set this */
1183 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1184 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1185 return 0;
1189 * tty_driver_install_tty() - install a tty entry in the driver
1190 * @driver: the driver for the tty
1191 * @tty: the tty
1193 * Install a tty object into the driver tables. The tty->index field
1194 * will be set by the time this is called. This method is responsible
1195 * for ensuring any need additional structures are allocated and
1196 * configured.
1198 * Locking: tty_mutex for now
1200 static int tty_driver_install_tty(struct tty_driver *driver,
1201 struct tty_struct *tty)
1203 int idx = tty->index;
1205 if (driver->ops->install)
1206 return driver->ops->install(driver, tty);
1208 if (tty_init_termios(tty) == 0) {
1209 tty_driver_kref_get(driver);
1210 tty->count++;
1211 driver->ttys[idx] = tty;
1212 return 0;
1214 return -ENOMEM;
1218 * tty_driver_remove_tty() - remove a tty from the driver tables
1219 * @driver: the driver for the tty
1220 * @idx: the minor number
1222 * Remvoe a tty object from the driver tables. The tty->index field
1223 * will be set by the time this is called.
1225 * Locking: tty_mutex for now
1227 static void tty_driver_remove_tty(struct tty_driver *driver,
1228 struct tty_struct *tty)
1230 if (driver->ops->remove)
1231 driver->ops->remove(driver, tty);
1232 else
1233 driver->ttys[tty->index] = NULL;
1237 * tty_reopen() - fast re-open of an open tty
1238 * @tty - the tty to open
1240 * Return 0 on success, -errno on error.
1242 * Locking: tty_mutex must be held from the time the tty was found
1243 * till this open completes.
1245 static int tty_reopen(struct tty_struct *tty)
1247 struct tty_driver *driver = tty->driver;
1249 if (test_bit(TTY_CLOSING, &tty->flags))
1250 return -EIO;
1252 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1253 driver->subtype == PTY_TYPE_MASTER) {
1255 * special case for PTY masters: only one open permitted,
1256 * and the slave side open count is incremented as well.
1258 if (tty->count)
1259 return -EIO;
1261 tty->link->count++;
1263 tty->count++;
1264 tty->driver = driver; /* N.B. why do this every time?? */
1266 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1268 return 0;
1272 * tty_init_dev - initialise a tty device
1273 * @driver: tty driver we are opening a device on
1274 * @idx: device index
1275 * @ret_tty: returned tty structure
1276 * @first_ok: ok to open a new device (used by ptmx)
1278 * Prepare a tty device. This may not be a "new" clean device but
1279 * could also be an active device. The pty drivers require special
1280 * handling because of this.
1282 * Locking:
1283 * The function is called under the tty_mutex, which
1284 * protects us from the tty struct or driver itself going away.
1286 * On exit the tty device has the line discipline attached and
1287 * a reference count of 1. If a pair was created for pty/tty use
1288 * and the other was a pty master then it too has a reference count of 1.
1290 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1291 * failed open. The new code protects the open with a mutex, so it's
1292 * really quite straightforward. The mutex locking can probably be
1293 * relaxed for the (most common) case of reopening a tty.
1296 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1297 int first_ok)
1299 struct tty_struct *tty;
1300 int retval;
1302 /* Check if pty master is being opened multiple times */
1303 if (driver->subtype == PTY_TYPE_MASTER &&
1304 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1305 return ERR_PTR(-EIO);
1308 * First time open is complex, especially for PTY devices.
1309 * This code guarantees that either everything succeeds and the
1310 * TTY is ready for operation, or else the table slots are vacated
1311 * and the allocated memory released. (Except that the termios
1312 * and locked termios may be retained.)
1315 if (!try_module_get(driver->owner))
1316 return ERR_PTR(-ENODEV);
1318 tty = alloc_tty_struct();
1319 if (!tty)
1320 goto fail_no_mem;
1321 initialize_tty_struct(tty, driver, idx);
1323 retval = tty_driver_install_tty(driver, tty);
1324 if (retval < 0) {
1325 free_tty_struct(tty);
1326 module_put(driver->owner);
1327 return ERR_PTR(retval);
1331 * Structures all installed ... call the ldisc open routines.
1332 * If we fail here just call release_tty to clean up. No need
1333 * to decrement the use counts, as release_tty doesn't care.
1336 retval = tty_ldisc_setup(tty, tty->link);
1337 if (retval)
1338 goto release_mem_out;
1339 return tty;
1341 fail_no_mem:
1342 module_put(driver->owner);
1343 return ERR_PTR(-ENOMEM);
1345 /* call the tty release_tty routine to clean out this slot */
1346 release_mem_out:
1347 if (printk_ratelimit())
1348 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1349 "clearing slot %d\n", idx);
1350 release_tty(tty, idx);
1351 return ERR_PTR(retval);
1354 void tty_free_termios(struct tty_struct *tty)
1356 struct ktermios *tp;
1357 int idx = tty->index;
1358 /* Kill this flag and push into drivers for locking etc */
1359 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1360 /* FIXME: Locking on ->termios array */
1361 tp = tty->termios;
1362 tty->driver->termios[idx] = NULL;
1363 kfree(tp);
1366 EXPORT_SYMBOL(tty_free_termios);
1368 void tty_shutdown(struct tty_struct *tty)
1370 tty_driver_remove_tty(tty->driver, tty);
1371 tty_free_termios(tty);
1373 EXPORT_SYMBOL(tty_shutdown);
1376 * release_one_tty - release tty structure memory
1377 * @kref: kref of tty we are obliterating
1379 * Releases memory associated with a tty structure, and clears out the
1380 * driver table slots. This function is called when a device is no longer
1381 * in use. It also gets called when setup of a device fails.
1383 * Locking:
1384 * tty_mutex - sometimes only
1385 * takes the file list lock internally when working on the list
1386 * of ttys that the driver keeps.
1388 static void release_one_tty(struct kref *kref)
1390 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1391 struct tty_driver *driver = tty->driver;
1393 if (tty->ops->shutdown)
1394 tty->ops->shutdown(tty);
1395 else
1396 tty_shutdown(tty);
1397 tty->magic = 0;
1398 tty_driver_kref_put(driver);
1399 module_put(driver->owner);
1401 file_list_lock();
1402 list_del_init(&tty->tty_files);
1403 file_list_unlock();
1405 free_tty_struct(tty);
1409 * tty_kref_put - release a tty kref
1410 * @tty: tty device
1412 * Release a reference to a tty device and if need be let the kref
1413 * layer destruct the object for us
1416 void tty_kref_put(struct tty_struct *tty)
1418 if (tty)
1419 kref_put(&tty->kref, release_one_tty);
1421 EXPORT_SYMBOL(tty_kref_put);
1424 * release_tty - release tty structure memory
1426 * Release both @tty and a possible linked partner (think pty pair),
1427 * and decrement the refcount of the backing module.
1429 * Locking:
1430 * tty_mutex - sometimes only
1431 * takes the file list lock internally when working on the list
1432 * of ttys that the driver keeps.
1433 * FIXME: should we require tty_mutex is held here ??
1436 static void release_tty(struct tty_struct *tty, int idx)
1438 /* This should always be true but check for the moment */
1439 WARN_ON(tty->index != idx);
1441 if (tty->link)
1442 tty_kref_put(tty->link);
1443 tty_kref_put(tty);
1447 * Even releasing the tty structures is a tricky business.. We have
1448 * to be very careful that the structures are all released at the
1449 * same time, as interrupts might otherwise get the wrong pointers.
1451 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1452 * lead to double frees or releasing memory still in use.
1454 void tty_release_dev(struct file *filp)
1456 struct tty_struct *tty, *o_tty;
1457 int pty_master, tty_closing, o_tty_closing, do_sleep;
1458 int devpts;
1459 int idx;
1460 char buf[64];
1461 struct inode *inode;
1463 inode = filp->f_path.dentry->d_inode;
1464 tty = (struct tty_struct *)filp->private_data;
1465 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1466 return;
1468 check_tty_count(tty, "tty_release_dev");
1470 tty_fasync(-1, filp, 0);
1472 idx = tty->index;
1473 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1474 tty->driver->subtype == PTY_TYPE_MASTER);
1475 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1476 o_tty = tty->link;
1478 #ifdef TTY_PARANOIA_CHECK
1479 if (idx < 0 || idx >= tty->driver->num) {
1480 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1481 "free (%s)\n", tty->name);
1482 return;
1484 if (!devpts) {
1485 if (tty != tty->driver->ttys[idx]) {
1486 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1487 "for (%s)\n", idx, tty->name);
1488 return;
1490 if (tty->termios != tty->driver->termios[idx]) {
1491 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1492 "for (%s)\n",
1493 idx, tty->name);
1494 return;
1497 #endif
1499 #ifdef TTY_DEBUG_HANGUP
1500 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1501 tty_name(tty, buf), tty->count);
1502 #endif
1504 #ifdef TTY_PARANOIA_CHECK
1505 if (tty->driver->other &&
1506 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1507 if (o_tty != tty->driver->other->ttys[idx]) {
1508 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1509 "not o_tty for (%s)\n",
1510 idx, tty->name);
1511 return;
1513 if (o_tty->termios != tty->driver->other->termios[idx]) {
1514 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1515 "not o_termios for (%s)\n",
1516 idx, tty->name);
1517 return;
1519 if (o_tty->link != tty) {
1520 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1521 return;
1524 #endif
1525 if (tty->ops->close)
1526 tty->ops->close(tty, filp);
1529 * Sanity check: if tty->count is going to zero, there shouldn't be
1530 * any waiters on tty->read_wait or tty->write_wait. We test the
1531 * wait queues and kick everyone out _before_ actually starting to
1532 * close. This ensures that we won't block while releasing the tty
1533 * structure.
1535 * The test for the o_tty closing is necessary, since the master and
1536 * slave sides may close in any order. If the slave side closes out
1537 * first, its count will be one, since the master side holds an open.
1538 * Thus this test wouldn't be triggered at the time the slave closes,
1539 * so we do it now.
1541 * Note that it's possible for the tty to be opened again while we're
1542 * flushing out waiters. By recalculating the closing flags before
1543 * each iteration we avoid any problems.
1545 while (1) {
1546 /* Guard against races with tty->count changes elsewhere and
1547 opens on /dev/tty */
1549 mutex_lock(&tty_mutex);
1550 tty_closing = tty->count <= 1;
1551 o_tty_closing = o_tty &&
1552 (o_tty->count <= (pty_master ? 1 : 0));
1553 do_sleep = 0;
1555 if (tty_closing) {
1556 if (waitqueue_active(&tty->read_wait)) {
1557 wake_up_poll(&tty->read_wait, POLLIN);
1558 do_sleep++;
1560 if (waitqueue_active(&tty->write_wait)) {
1561 wake_up_poll(&tty->write_wait, POLLOUT);
1562 do_sleep++;
1565 if (o_tty_closing) {
1566 if (waitqueue_active(&o_tty->read_wait)) {
1567 wake_up_poll(&o_tty->read_wait, POLLIN);
1568 do_sleep++;
1570 if (waitqueue_active(&o_tty->write_wait)) {
1571 wake_up_poll(&o_tty->write_wait, POLLOUT);
1572 do_sleep++;
1575 if (!do_sleep)
1576 break;
1578 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1579 "active!\n", tty_name(tty, buf));
1580 mutex_unlock(&tty_mutex);
1581 schedule();
1585 * The closing flags are now consistent with the open counts on
1586 * both sides, and we've completed the last operation that could
1587 * block, so it's safe to proceed with closing.
1589 if (pty_master) {
1590 if (--o_tty->count < 0) {
1591 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1592 "(%d) for %s\n",
1593 o_tty->count, tty_name(o_tty, buf));
1594 o_tty->count = 0;
1597 if (--tty->count < 0) {
1598 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1599 tty->count, tty_name(tty, buf));
1600 tty->count = 0;
1604 * We've decremented tty->count, so we need to remove this file
1605 * descriptor off the tty->tty_files list; this serves two
1606 * purposes:
1607 * - check_tty_count sees the correct number of file descriptors
1608 * associated with this tty.
1609 * - do_tty_hangup no longer sees this file descriptor as
1610 * something that needs to be handled for hangups.
1612 file_kill(filp);
1613 filp->private_data = NULL;
1616 * Perform some housekeeping before deciding whether to return.
1618 * Set the TTY_CLOSING flag if this was the last open. In the
1619 * case of a pty we may have to wait around for the other side
1620 * to close, and TTY_CLOSING makes sure we can't be reopened.
1622 if (tty_closing)
1623 set_bit(TTY_CLOSING, &tty->flags);
1624 if (o_tty_closing)
1625 set_bit(TTY_CLOSING, &o_tty->flags);
1628 * If _either_ side is closing, make sure there aren't any
1629 * processes that still think tty or o_tty is their controlling
1630 * tty.
1632 if (tty_closing || o_tty_closing) {
1633 read_lock(&tasklist_lock);
1634 session_clear_tty(tty->session);
1635 if (o_tty)
1636 session_clear_tty(o_tty->session);
1637 read_unlock(&tasklist_lock);
1640 mutex_unlock(&tty_mutex);
1642 /* check whether both sides are closing ... */
1643 if (!tty_closing || (o_tty && !o_tty_closing))
1644 return;
1646 #ifdef TTY_DEBUG_HANGUP
1647 printk(KERN_DEBUG "freeing tty structure...");
1648 #endif
1650 * Ask the line discipline code to release its structures
1652 tty_ldisc_release(tty, o_tty);
1654 * The release_tty function takes care of the details of clearing
1655 * the slots and preserving the termios structure.
1657 release_tty(tty, idx);
1659 /* Make this pty number available for reallocation */
1660 if (devpts)
1661 devpts_kill_index(inode, idx);
1665 * __tty_open - open a tty device
1666 * @inode: inode of device file
1667 * @filp: file pointer to tty
1669 * tty_open and tty_release keep up the tty count that contains the
1670 * number of opens done on a tty. We cannot use the inode-count, as
1671 * different inodes might point to the same tty.
1673 * Open-counting is needed for pty masters, as well as for keeping
1674 * track of serial lines: DTR is dropped when the last close happens.
1675 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1677 * The termios state of a pty is reset on first open so that
1678 * settings don't persist across reuse.
1680 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1681 * tty->count should protect the rest.
1682 * ->siglock protects ->signal/->sighand
1685 static int __tty_open(struct inode *inode, struct file *filp)
1687 struct tty_struct *tty = NULL;
1688 int noctty, retval;
1689 struct tty_driver *driver;
1690 int index;
1691 dev_t device = inode->i_rdev;
1692 unsigned saved_flags = filp->f_flags;
1694 nonseekable_open(inode, filp);
1696 retry_open:
1697 noctty = filp->f_flags & O_NOCTTY;
1698 index = -1;
1699 retval = 0;
1701 mutex_lock(&tty_mutex);
1703 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1704 tty = get_current_tty();
1705 if (!tty) {
1706 mutex_unlock(&tty_mutex);
1707 return -ENXIO;
1709 driver = tty_driver_kref_get(tty->driver);
1710 index = tty->index;
1711 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1712 /* noctty = 1; */
1713 /* FIXME: Should we take a driver reference ? */
1714 tty_kref_put(tty);
1715 goto got_driver;
1717 #ifdef CONFIG_VT
1718 if (device == MKDEV(TTY_MAJOR, 0)) {
1719 extern struct tty_driver *console_driver;
1720 driver = tty_driver_kref_get(console_driver);
1721 index = fg_console;
1722 noctty = 1;
1723 goto got_driver;
1725 #endif
1726 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1727 struct tty_driver *console_driver = console_device(&index);
1728 if (console_driver) {
1729 driver = tty_driver_kref_get(console_driver);
1730 if (driver) {
1731 /* Don't let /dev/console block */
1732 filp->f_flags |= O_NONBLOCK;
1733 noctty = 1;
1734 goto got_driver;
1737 mutex_unlock(&tty_mutex);
1738 return -ENODEV;
1741 driver = get_tty_driver(device, &index);
1742 if (!driver) {
1743 mutex_unlock(&tty_mutex);
1744 return -ENODEV;
1746 got_driver:
1747 if (!tty) {
1748 /* check whether we're reopening an existing tty */
1749 tty = tty_driver_lookup_tty(driver, inode, index);
1751 if (IS_ERR(tty)) {
1752 mutex_unlock(&tty_mutex);
1753 return PTR_ERR(tty);
1757 if (tty) {
1758 retval = tty_reopen(tty);
1759 if (retval)
1760 tty = ERR_PTR(retval);
1761 } else
1762 tty = tty_init_dev(driver, index, 0);
1764 mutex_unlock(&tty_mutex);
1765 tty_driver_kref_put(driver);
1766 if (IS_ERR(tty))
1767 return PTR_ERR(tty);
1769 filp->private_data = tty;
1770 file_move(filp, &tty->tty_files);
1771 check_tty_count(tty, "tty_open");
1772 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1773 tty->driver->subtype == PTY_TYPE_MASTER)
1774 noctty = 1;
1775 #ifdef TTY_DEBUG_HANGUP
1776 printk(KERN_DEBUG "opening %s...", tty->name);
1777 #endif
1778 if (!retval) {
1779 if (tty->ops->open)
1780 retval = tty->ops->open(tty, filp);
1781 else
1782 retval = -ENODEV;
1784 filp->f_flags = saved_flags;
1786 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1787 !capable(CAP_SYS_ADMIN))
1788 retval = -EBUSY;
1790 if (retval) {
1791 #ifdef TTY_DEBUG_HANGUP
1792 printk(KERN_DEBUG "error %d in opening %s...", retval,
1793 tty->name);
1794 #endif
1795 tty_release_dev(filp);
1796 if (retval != -ERESTARTSYS)
1797 return retval;
1798 if (signal_pending(current))
1799 return retval;
1800 schedule();
1802 * Need to reset f_op in case a hangup happened.
1804 if (filp->f_op == &hung_up_tty_fops)
1805 filp->f_op = &tty_fops;
1806 goto retry_open;
1809 mutex_lock(&tty_mutex);
1810 spin_lock_irq(&current->sighand->siglock);
1811 if (!noctty &&
1812 current->signal->leader &&
1813 !current->signal->tty &&
1814 tty->session == NULL)
1815 __proc_set_tty(current, tty);
1816 spin_unlock_irq(&current->sighand->siglock);
1817 mutex_unlock(&tty_mutex);
1818 return 0;
1821 /* BKL pushdown: scary code avoidance wrapper */
1822 static int tty_open(struct inode *inode, struct file *filp)
1824 int ret;
1826 lock_kernel();
1827 ret = __tty_open(inode, filp);
1828 unlock_kernel();
1829 return ret;
1836 * tty_release - vfs callback for close
1837 * @inode: inode of tty
1838 * @filp: file pointer for handle to tty
1840 * Called the last time each file handle is closed that references
1841 * this tty. There may however be several such references.
1843 * Locking:
1844 * Takes bkl. See tty_release_dev
1847 static int tty_release(struct inode *inode, struct file *filp)
1849 lock_kernel();
1850 tty_release_dev(filp);
1851 unlock_kernel();
1852 return 0;
1856 * tty_poll - check tty status
1857 * @filp: file being polled
1858 * @wait: poll wait structures to update
1860 * Call the line discipline polling method to obtain the poll
1861 * status of the device.
1863 * Locking: locks called line discipline but ldisc poll method
1864 * may be re-entered freely by other callers.
1867 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1869 struct tty_struct *tty;
1870 struct tty_ldisc *ld;
1871 int ret = 0;
1873 tty = (struct tty_struct *)filp->private_data;
1874 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1875 return 0;
1877 ld = tty_ldisc_ref_wait(tty);
1878 if (ld->ops->poll)
1879 ret = (ld->ops->poll)(tty, filp, wait);
1880 tty_ldisc_deref(ld);
1881 return ret;
1884 static int tty_fasync(int fd, struct file *filp, int on)
1886 struct tty_struct *tty;
1887 unsigned long flags;
1888 int retval = 0;
1890 lock_kernel();
1891 tty = (struct tty_struct *)filp->private_data;
1892 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1893 goto out;
1895 retval = fasync_helper(fd, filp, on, &tty->fasync);
1896 if (retval <= 0)
1897 goto out;
1899 if (on) {
1900 enum pid_type type;
1901 struct pid *pid;
1902 if (!waitqueue_active(&tty->read_wait))
1903 tty->minimum_to_wake = 1;
1904 spin_lock_irqsave(&tty->ctrl_lock, flags);
1905 if (tty->pgrp) {
1906 pid = tty->pgrp;
1907 type = PIDTYPE_PGID;
1908 } else {
1909 pid = task_pid(current);
1910 type = PIDTYPE_PID;
1912 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1913 retval = __f_setown(filp, pid, type, 0);
1914 if (retval)
1915 goto out;
1916 } else {
1917 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1918 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1920 retval = 0;
1921 out:
1922 unlock_kernel();
1923 return retval;
1927 * tiocsti - fake input character
1928 * @tty: tty to fake input into
1929 * @p: pointer to character
1931 * Fake input to a tty device. Does the necessary locking and
1932 * input management.
1934 * FIXME: does not honour flow control ??
1936 * Locking:
1937 * Called functions take tty_ldisc_lock
1938 * current->signal->tty check is safe without locks
1940 * FIXME: may race normal receive processing
1943 static int tiocsti(struct tty_struct *tty, char __user *p)
1945 char ch, mbz = 0;
1946 struct tty_ldisc *ld;
1948 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1949 return -EPERM;
1950 if (get_user(ch, p))
1951 return -EFAULT;
1952 tty_audit_tiocsti(tty, ch);
1953 ld = tty_ldisc_ref_wait(tty);
1954 ld->ops->receive_buf(tty, &ch, &mbz, 1);
1955 tty_ldisc_deref(ld);
1956 return 0;
1960 * tiocgwinsz - implement window query ioctl
1961 * @tty; tty
1962 * @arg: user buffer for result
1964 * Copies the kernel idea of the window size into the user buffer.
1966 * Locking: tty->termios_mutex is taken to ensure the winsize data
1967 * is consistent.
1970 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
1972 int err;
1974 mutex_lock(&tty->termios_mutex);
1975 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
1976 mutex_unlock(&tty->termios_mutex);
1978 return err ? -EFAULT: 0;
1982 * tty_do_resize - resize event
1983 * @tty: tty being resized
1984 * @rows: rows (character)
1985 * @cols: cols (character)
1987 * Update the termios variables and send the neccessary signals to
1988 * peform a terminal resize correctly
1991 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
1993 struct pid *pgrp;
1994 unsigned long flags;
1996 /* Lock the tty */
1997 mutex_lock(&tty->termios_mutex);
1998 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
1999 goto done;
2000 /* Get the PID values and reference them so we can
2001 avoid holding the tty ctrl lock while sending signals */
2002 spin_lock_irqsave(&tty->ctrl_lock, flags);
2003 pgrp = get_pid(tty->pgrp);
2004 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2006 if (pgrp)
2007 kill_pgrp(pgrp, SIGWINCH, 1);
2008 put_pid(pgrp);
2010 tty->winsize = *ws;
2011 done:
2012 mutex_unlock(&tty->termios_mutex);
2013 return 0;
2017 * tiocswinsz - implement window size set ioctl
2018 * @tty; tty side of tty
2019 * @arg: user buffer for result
2021 * Copies the user idea of the window size to the kernel. Traditionally
2022 * this is just advisory information but for the Linux console it
2023 * actually has driver level meaning and triggers a VC resize.
2025 * Locking:
2026 * Driver dependant. The default do_resize method takes the
2027 * tty termios mutex and ctrl_lock. The console takes its own lock
2028 * then calls into the default method.
2031 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2033 struct winsize tmp_ws;
2034 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2035 return -EFAULT;
2037 if (tty->ops->resize)
2038 return tty->ops->resize(tty, &tmp_ws);
2039 else
2040 return tty_do_resize(tty, &tmp_ws);
2044 * tioccons - allow admin to move logical console
2045 * @file: the file to become console
2047 * Allow the adminstrator to move the redirected console device
2049 * Locking: uses redirect_lock to guard the redirect information
2052 static int tioccons(struct file *file)
2054 if (!capable(CAP_SYS_ADMIN))
2055 return -EPERM;
2056 if (file->f_op->write == redirected_tty_write) {
2057 struct file *f;
2058 spin_lock(&redirect_lock);
2059 f = redirect;
2060 redirect = NULL;
2061 spin_unlock(&redirect_lock);
2062 if (f)
2063 fput(f);
2064 return 0;
2066 spin_lock(&redirect_lock);
2067 if (redirect) {
2068 spin_unlock(&redirect_lock);
2069 return -EBUSY;
2071 get_file(file);
2072 redirect = file;
2073 spin_unlock(&redirect_lock);
2074 return 0;
2078 * fionbio - non blocking ioctl
2079 * @file: file to set blocking value
2080 * @p: user parameter
2082 * Historical tty interfaces had a blocking control ioctl before
2083 * the generic functionality existed. This piece of history is preserved
2084 * in the expected tty API of posix OS's.
2086 * Locking: none, the open fle handle ensures it won't go away.
2089 static int fionbio(struct file *file, int __user *p)
2091 int nonblock;
2093 if (get_user(nonblock, p))
2094 return -EFAULT;
2096 spin_lock(&file->f_lock);
2097 if (nonblock)
2098 file->f_flags |= O_NONBLOCK;
2099 else
2100 file->f_flags &= ~O_NONBLOCK;
2101 spin_unlock(&file->f_lock);
2102 return 0;
2106 * tiocsctty - set controlling tty
2107 * @tty: tty structure
2108 * @arg: user argument
2110 * This ioctl is used to manage job control. It permits a session
2111 * leader to set this tty as the controlling tty for the session.
2113 * Locking:
2114 * Takes tty_mutex() to protect tty instance
2115 * Takes tasklist_lock internally to walk sessions
2116 * Takes ->siglock() when updating signal->tty
2119 static int tiocsctty(struct tty_struct *tty, int arg)
2121 int ret = 0;
2122 if (current->signal->leader && (task_session(current) == tty->session))
2123 return ret;
2125 mutex_lock(&tty_mutex);
2127 * The process must be a session leader and
2128 * not have a controlling tty already.
2130 if (!current->signal->leader || current->signal->tty) {
2131 ret = -EPERM;
2132 goto unlock;
2135 if (tty->session) {
2137 * This tty is already the controlling
2138 * tty for another session group!
2140 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2142 * Steal it away
2144 read_lock(&tasklist_lock);
2145 session_clear_tty(tty->session);
2146 read_unlock(&tasklist_lock);
2147 } else {
2148 ret = -EPERM;
2149 goto unlock;
2152 proc_set_tty(current, tty);
2153 unlock:
2154 mutex_unlock(&tty_mutex);
2155 return ret;
2159 * tty_get_pgrp - return a ref counted pgrp pid
2160 * @tty: tty to read
2162 * Returns a refcounted instance of the pid struct for the process
2163 * group controlling the tty.
2166 struct pid *tty_get_pgrp(struct tty_struct *tty)
2168 unsigned long flags;
2169 struct pid *pgrp;
2171 spin_lock_irqsave(&tty->ctrl_lock, flags);
2172 pgrp = get_pid(tty->pgrp);
2173 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2175 return pgrp;
2177 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2180 * tiocgpgrp - get process group
2181 * @tty: tty passed by user
2182 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2183 * @p: returned pid
2185 * Obtain the process group of the tty. If there is no process group
2186 * return an error.
2188 * Locking: none. Reference to current->signal->tty is safe.
2191 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2193 struct pid *pid;
2194 int ret;
2196 * (tty == real_tty) is a cheap way of
2197 * testing if the tty is NOT a master pty.
2199 if (tty == real_tty && current->signal->tty != real_tty)
2200 return -ENOTTY;
2201 pid = tty_get_pgrp(real_tty);
2202 ret = put_user(pid_vnr(pid), p);
2203 put_pid(pid);
2204 return ret;
2208 * tiocspgrp - attempt to set process group
2209 * @tty: tty passed by user
2210 * @real_tty: tty side device matching tty passed by user
2211 * @p: pid pointer
2213 * Set the process group of the tty to the session passed. Only
2214 * permitted where the tty session is our session.
2216 * Locking: RCU, ctrl lock
2219 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2221 struct pid *pgrp;
2222 pid_t pgrp_nr;
2223 int retval = tty_check_change(real_tty);
2224 unsigned long flags;
2226 if (retval == -EIO)
2227 return -ENOTTY;
2228 if (retval)
2229 return retval;
2230 if (!current->signal->tty ||
2231 (current->signal->tty != real_tty) ||
2232 (real_tty->session != task_session(current)))
2233 return -ENOTTY;
2234 if (get_user(pgrp_nr, p))
2235 return -EFAULT;
2236 if (pgrp_nr < 0)
2237 return -EINVAL;
2238 rcu_read_lock();
2239 pgrp = find_vpid(pgrp_nr);
2240 retval = -ESRCH;
2241 if (!pgrp)
2242 goto out_unlock;
2243 retval = -EPERM;
2244 if (session_of_pgrp(pgrp) != task_session(current))
2245 goto out_unlock;
2246 retval = 0;
2247 spin_lock_irqsave(&tty->ctrl_lock, flags);
2248 put_pid(real_tty->pgrp);
2249 real_tty->pgrp = get_pid(pgrp);
2250 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2251 out_unlock:
2252 rcu_read_unlock();
2253 return retval;
2257 * tiocgsid - get session id
2258 * @tty: tty passed by user
2259 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2260 * @p: pointer to returned session id
2262 * Obtain the session id of the tty. If there is no session
2263 * return an error.
2265 * Locking: none. Reference to current->signal->tty is safe.
2268 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2271 * (tty == real_tty) is a cheap way of
2272 * testing if the tty is NOT a master pty.
2274 if (tty == real_tty && current->signal->tty != real_tty)
2275 return -ENOTTY;
2276 if (!real_tty->session)
2277 return -ENOTTY;
2278 return put_user(pid_vnr(real_tty->session), p);
2282 * tiocsetd - set line discipline
2283 * @tty: tty device
2284 * @p: pointer to user data
2286 * Set the line discipline according to user request.
2288 * Locking: see tty_set_ldisc, this function is just a helper
2291 static int tiocsetd(struct tty_struct *tty, int __user *p)
2293 int ldisc;
2294 int ret;
2296 if (get_user(ldisc, p))
2297 return -EFAULT;
2299 lock_kernel();
2300 ret = tty_set_ldisc(tty, ldisc);
2301 unlock_kernel();
2303 return ret;
2307 * send_break - performed time break
2308 * @tty: device to break on
2309 * @duration: timeout in mS
2311 * Perform a timed break on hardware that lacks its own driver level
2312 * timed break functionality.
2314 * Locking:
2315 * atomic_write_lock serializes
2319 static int send_break(struct tty_struct *tty, unsigned int duration)
2321 int retval;
2323 if (tty->ops->break_ctl == NULL)
2324 return 0;
2326 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2327 retval = tty->ops->break_ctl(tty, duration);
2328 else {
2329 /* Do the work ourselves */
2330 if (tty_write_lock(tty, 0) < 0)
2331 return -EINTR;
2332 retval = tty->ops->break_ctl(tty, -1);
2333 if (retval)
2334 goto out;
2335 if (!signal_pending(current))
2336 msleep_interruptible(duration);
2337 retval = tty->ops->break_ctl(tty, 0);
2338 out:
2339 tty_write_unlock(tty);
2340 if (signal_pending(current))
2341 retval = -EINTR;
2343 return retval;
2347 * tty_tiocmget - get modem status
2348 * @tty: tty device
2349 * @file: user file pointer
2350 * @p: pointer to result
2352 * Obtain the modem status bits from the tty driver if the feature
2353 * is supported. Return -EINVAL if it is not available.
2355 * Locking: none (up to the driver)
2358 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2360 int retval = -EINVAL;
2362 if (tty->ops->tiocmget) {
2363 retval = tty->ops->tiocmget(tty, file);
2365 if (retval >= 0)
2366 retval = put_user(retval, p);
2368 return retval;
2372 * tty_tiocmset - set modem status
2373 * @tty: tty device
2374 * @file: user file pointer
2375 * @cmd: command - clear bits, set bits or set all
2376 * @p: pointer to desired bits
2378 * Set the modem status bits from the tty driver if the feature
2379 * is supported. Return -EINVAL if it is not available.
2381 * Locking: none (up to the driver)
2384 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2385 unsigned __user *p)
2387 int retval;
2388 unsigned int set, clear, val;
2390 if (tty->ops->tiocmset == NULL)
2391 return -EINVAL;
2393 retval = get_user(val, p);
2394 if (retval)
2395 return retval;
2396 set = clear = 0;
2397 switch (cmd) {
2398 case TIOCMBIS:
2399 set = val;
2400 break;
2401 case TIOCMBIC:
2402 clear = val;
2403 break;
2404 case TIOCMSET:
2405 set = val;
2406 clear = ~val;
2407 break;
2409 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2410 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2411 return tty->ops->tiocmset(tty, file, set, clear);
2414 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2416 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2417 tty->driver->subtype == PTY_TYPE_MASTER)
2418 tty = tty->link;
2419 return tty;
2421 EXPORT_SYMBOL(tty_pair_get_tty);
2423 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2425 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2426 tty->driver->subtype == PTY_TYPE_MASTER)
2427 return tty;
2428 return tty->link;
2430 EXPORT_SYMBOL(tty_pair_get_pty);
2433 * Split this up, as gcc can choke on it otherwise..
2435 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2437 struct tty_struct *tty, *real_tty;
2438 void __user *p = (void __user *)arg;
2439 int retval;
2440 struct tty_ldisc *ld;
2441 struct inode *inode = file->f_dentry->d_inode;
2443 tty = (struct tty_struct *)file->private_data;
2444 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2445 return -EINVAL;
2447 real_tty = tty_pair_get_tty(tty);
2450 * Factor out some common prep work
2452 switch (cmd) {
2453 case TIOCSETD:
2454 case TIOCSBRK:
2455 case TIOCCBRK:
2456 case TCSBRK:
2457 case TCSBRKP:
2458 retval = tty_check_change(tty);
2459 if (retval)
2460 return retval;
2461 if (cmd != TIOCCBRK) {
2462 tty_wait_until_sent(tty, 0);
2463 if (signal_pending(current))
2464 return -EINTR;
2466 break;
2470 * Now do the stuff.
2472 switch (cmd) {
2473 case TIOCSTI:
2474 return tiocsti(tty, p);
2475 case TIOCGWINSZ:
2476 return tiocgwinsz(real_tty, p);
2477 case TIOCSWINSZ:
2478 return tiocswinsz(real_tty, p);
2479 case TIOCCONS:
2480 return real_tty != tty ? -EINVAL : tioccons(file);
2481 case FIONBIO:
2482 return fionbio(file, p);
2483 case TIOCEXCL:
2484 set_bit(TTY_EXCLUSIVE, &tty->flags);
2485 return 0;
2486 case TIOCNXCL:
2487 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2488 return 0;
2489 case TIOCNOTTY:
2490 if (current->signal->tty != tty)
2491 return -ENOTTY;
2492 no_tty();
2493 return 0;
2494 case TIOCSCTTY:
2495 return tiocsctty(tty, arg);
2496 case TIOCGPGRP:
2497 return tiocgpgrp(tty, real_tty, p);
2498 case TIOCSPGRP:
2499 return tiocspgrp(tty, real_tty, p);
2500 case TIOCGSID:
2501 return tiocgsid(tty, real_tty, p);
2502 case TIOCGETD:
2503 return put_user(tty->ldisc->ops->num, (int __user *)p);
2504 case TIOCSETD:
2505 return tiocsetd(tty, p);
2507 * Break handling
2509 case TIOCSBRK: /* Turn break on, unconditionally */
2510 if (tty->ops->break_ctl)
2511 return tty->ops->break_ctl(tty, -1);
2512 return 0;
2513 case TIOCCBRK: /* Turn break off, unconditionally */
2514 if (tty->ops->break_ctl)
2515 return tty->ops->break_ctl(tty, 0);
2516 return 0;
2517 case TCSBRK: /* SVID version: non-zero arg --> no break */
2518 /* non-zero arg means wait for all output data
2519 * to be sent (performed above) but don't send break.
2520 * This is used by the tcdrain() termios function.
2522 if (!arg)
2523 return send_break(tty, 250);
2524 return 0;
2525 case TCSBRKP: /* support for POSIX tcsendbreak() */
2526 return send_break(tty, arg ? arg*100 : 250);
2528 case TIOCMGET:
2529 return tty_tiocmget(tty, file, p);
2530 case TIOCMSET:
2531 case TIOCMBIC:
2532 case TIOCMBIS:
2533 return tty_tiocmset(tty, file, cmd, p);
2534 case TCFLSH:
2535 switch (arg) {
2536 case TCIFLUSH:
2537 case TCIOFLUSH:
2538 /* flush tty buffer and allow ldisc to process ioctl */
2539 tty_buffer_flush(tty);
2540 break;
2542 break;
2544 if (tty->ops->ioctl) {
2545 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2546 if (retval != -ENOIOCTLCMD)
2547 return retval;
2549 ld = tty_ldisc_ref_wait(tty);
2550 retval = -EINVAL;
2551 if (ld->ops->ioctl) {
2552 retval = ld->ops->ioctl(tty, file, cmd, arg);
2553 if (retval == -ENOIOCTLCMD)
2554 retval = -EINVAL;
2556 tty_ldisc_deref(ld);
2557 return retval;
2560 #ifdef CONFIG_COMPAT
2561 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2562 unsigned long arg)
2564 struct inode *inode = file->f_dentry->d_inode;
2565 struct tty_struct *tty = file->private_data;
2566 struct tty_ldisc *ld;
2567 int retval = -ENOIOCTLCMD;
2569 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2570 return -EINVAL;
2572 if (tty->ops->compat_ioctl) {
2573 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2574 if (retval != -ENOIOCTLCMD)
2575 return retval;
2578 ld = tty_ldisc_ref_wait(tty);
2579 if (ld->ops->compat_ioctl)
2580 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2581 tty_ldisc_deref(ld);
2583 return retval;
2585 #endif
2588 * This implements the "Secure Attention Key" --- the idea is to
2589 * prevent trojan horses by killing all processes associated with this
2590 * tty when the user hits the "Secure Attention Key". Required for
2591 * super-paranoid applications --- see the Orange Book for more details.
2593 * This code could be nicer; ideally it should send a HUP, wait a few
2594 * seconds, then send a INT, and then a KILL signal. But you then
2595 * have to coordinate with the init process, since all processes associated
2596 * with the current tty must be dead before the new getty is allowed
2597 * to spawn.
2599 * Now, if it would be correct ;-/ The current code has a nasty hole -
2600 * it doesn't catch files in flight. We may send the descriptor to ourselves
2601 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2603 * Nasty bug: do_SAK is being called in interrupt context. This can
2604 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2606 void __do_SAK(struct tty_struct *tty)
2608 #ifdef TTY_SOFT_SAK
2609 tty_hangup(tty);
2610 #else
2611 struct task_struct *g, *p;
2612 struct pid *session;
2613 int i;
2614 struct file *filp;
2615 struct fdtable *fdt;
2617 if (!tty)
2618 return;
2619 session = tty->session;
2621 tty_ldisc_flush(tty);
2623 tty_driver_flush_buffer(tty);
2625 read_lock(&tasklist_lock);
2626 /* Kill the entire session */
2627 do_each_pid_task(session, PIDTYPE_SID, p) {
2628 printk(KERN_NOTICE "SAK: killed process %d"
2629 " (%s): task_session(p)==tty->session\n",
2630 task_pid_nr(p), p->comm);
2631 send_sig(SIGKILL, p, 1);
2632 } while_each_pid_task(session, PIDTYPE_SID, p);
2633 /* Now kill any processes that happen to have the
2634 * tty open.
2636 do_each_thread(g, p) {
2637 if (p->signal->tty == tty) {
2638 printk(KERN_NOTICE "SAK: killed process %d"
2639 " (%s): task_session(p)==tty->session\n",
2640 task_pid_nr(p), p->comm);
2641 send_sig(SIGKILL, p, 1);
2642 continue;
2644 task_lock(p);
2645 if (p->files) {
2647 * We don't take a ref to the file, so we must
2648 * hold ->file_lock instead.
2650 spin_lock(&p->files->file_lock);
2651 fdt = files_fdtable(p->files);
2652 for (i = 0; i < fdt->max_fds; i++) {
2653 filp = fcheck_files(p->files, i);
2654 if (!filp)
2655 continue;
2656 if (filp->f_op->read == tty_read &&
2657 filp->private_data == tty) {
2658 printk(KERN_NOTICE "SAK: killed process %d"
2659 " (%s): fd#%d opened to the tty\n",
2660 task_pid_nr(p), p->comm, i);
2661 force_sig(SIGKILL, p);
2662 break;
2665 spin_unlock(&p->files->file_lock);
2667 task_unlock(p);
2668 } while_each_thread(g, p);
2669 read_unlock(&tasklist_lock);
2670 #endif
2673 static void do_SAK_work(struct work_struct *work)
2675 struct tty_struct *tty =
2676 container_of(work, struct tty_struct, SAK_work);
2677 __do_SAK(tty);
2681 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2682 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2683 * the values which we write to it will be identical to the values which it
2684 * already has. --akpm
2686 void do_SAK(struct tty_struct *tty)
2688 if (!tty)
2689 return;
2690 schedule_work(&tty->SAK_work);
2693 EXPORT_SYMBOL(do_SAK);
2696 * initialize_tty_struct
2697 * @tty: tty to initialize
2699 * This subroutine initializes a tty structure that has been newly
2700 * allocated.
2702 * Locking: none - tty in question must not be exposed at this point
2705 void initialize_tty_struct(struct tty_struct *tty,
2706 struct tty_driver *driver, int idx)
2708 memset(tty, 0, sizeof(struct tty_struct));
2709 kref_init(&tty->kref);
2710 tty->magic = TTY_MAGIC;
2711 tty_ldisc_init(tty);
2712 tty->session = NULL;
2713 tty->pgrp = NULL;
2714 tty->overrun_time = jiffies;
2715 tty->buf.head = tty->buf.tail = NULL;
2716 tty_buffer_init(tty);
2717 mutex_init(&tty->termios_mutex);
2718 mutex_init(&tty->ldisc_mutex);
2719 init_waitqueue_head(&tty->write_wait);
2720 init_waitqueue_head(&tty->read_wait);
2721 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2722 mutex_init(&tty->atomic_read_lock);
2723 mutex_init(&tty->atomic_write_lock);
2724 mutex_init(&tty->output_lock);
2725 mutex_init(&tty->echo_lock);
2726 spin_lock_init(&tty->read_lock);
2727 spin_lock_init(&tty->ctrl_lock);
2728 INIT_LIST_HEAD(&tty->tty_files);
2729 INIT_WORK(&tty->SAK_work, do_SAK_work);
2731 tty->driver = driver;
2732 tty->ops = driver->ops;
2733 tty->index = idx;
2734 tty_line_name(driver, idx, tty->name);
2738 * tty_put_char - write one character to a tty
2739 * @tty: tty
2740 * @ch: character
2742 * Write one byte to the tty using the provided put_char method
2743 * if present. Returns the number of characters successfully output.
2745 * Note: the specific put_char operation in the driver layer may go
2746 * away soon. Don't call it directly, use this method
2749 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2751 if (tty->ops->put_char)
2752 return tty->ops->put_char(tty, ch);
2753 return tty->ops->write(tty, &ch, 1);
2755 EXPORT_SYMBOL_GPL(tty_put_char);
2757 struct class *tty_class;
2760 * tty_register_device - register a tty device
2761 * @driver: the tty driver that describes the tty device
2762 * @index: the index in the tty driver for this tty device
2763 * @device: a struct device that is associated with this tty device.
2764 * This field is optional, if there is no known struct device
2765 * for this tty device it can be set to NULL safely.
2767 * Returns a pointer to the struct device for this tty device
2768 * (or ERR_PTR(-EFOO) on error).
2770 * This call is required to be made to register an individual tty device
2771 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2772 * that bit is not set, this function should not be called by a tty
2773 * driver.
2775 * Locking: ??
2778 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2779 struct device *device)
2781 char name[64];
2782 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2784 if (index >= driver->num) {
2785 printk(KERN_ERR "Attempt to register invalid tty line number "
2786 " (%d).\n", index);
2787 return ERR_PTR(-EINVAL);
2790 if (driver->type == TTY_DRIVER_TYPE_PTY)
2791 pty_line_name(driver, index, name);
2792 else
2793 tty_line_name(driver, index, name);
2795 return device_create(tty_class, device, dev, NULL, name);
2797 EXPORT_SYMBOL(tty_register_device);
2800 * tty_unregister_device - unregister a tty device
2801 * @driver: the tty driver that describes the tty device
2802 * @index: the index in the tty driver for this tty device
2804 * If a tty device is registered with a call to tty_register_device() then
2805 * this function must be called when the tty device is gone.
2807 * Locking: ??
2810 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2812 device_destroy(tty_class,
2813 MKDEV(driver->major, driver->minor_start) + index);
2815 EXPORT_SYMBOL(tty_unregister_device);
2817 struct tty_driver *alloc_tty_driver(int lines)
2819 struct tty_driver *driver;
2821 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2822 if (driver) {
2823 kref_init(&driver->kref);
2824 driver->magic = TTY_DRIVER_MAGIC;
2825 driver->num = lines;
2826 /* later we'll move allocation of tables here */
2828 return driver;
2830 EXPORT_SYMBOL(alloc_tty_driver);
2832 static void destruct_tty_driver(struct kref *kref)
2834 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2835 int i;
2836 struct ktermios *tp;
2837 void *p;
2839 if (driver->flags & TTY_DRIVER_INSTALLED) {
2841 * Free the termios and termios_locked structures because
2842 * we don't want to get memory leaks when modular tty
2843 * drivers are removed from the kernel.
2845 for (i = 0; i < driver->num; i++) {
2846 tp = driver->termios[i];
2847 if (tp) {
2848 driver->termios[i] = NULL;
2849 kfree(tp);
2851 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2852 tty_unregister_device(driver, i);
2854 p = driver->ttys;
2855 proc_tty_unregister_driver(driver);
2856 driver->ttys = NULL;
2857 driver->termios = NULL;
2858 kfree(p);
2859 cdev_del(&driver->cdev);
2861 kfree(driver);
2864 void tty_driver_kref_put(struct tty_driver *driver)
2866 kref_put(&driver->kref, destruct_tty_driver);
2868 EXPORT_SYMBOL(tty_driver_kref_put);
2870 void tty_set_operations(struct tty_driver *driver,
2871 const struct tty_operations *op)
2873 driver->ops = op;
2875 EXPORT_SYMBOL(tty_set_operations);
2877 void put_tty_driver(struct tty_driver *d)
2879 tty_driver_kref_put(d);
2881 EXPORT_SYMBOL(put_tty_driver);
2884 * Called by a tty driver to register itself.
2886 int tty_register_driver(struct tty_driver *driver)
2888 int error;
2889 int i;
2890 dev_t dev;
2891 void **p = NULL;
2893 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2894 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2895 if (!p)
2896 return -ENOMEM;
2899 if (!driver->major) {
2900 error = alloc_chrdev_region(&dev, driver->minor_start,
2901 driver->num, driver->name);
2902 if (!error) {
2903 driver->major = MAJOR(dev);
2904 driver->minor_start = MINOR(dev);
2906 } else {
2907 dev = MKDEV(driver->major, driver->minor_start);
2908 error = register_chrdev_region(dev, driver->num, driver->name);
2910 if (error < 0) {
2911 kfree(p);
2912 return error;
2915 if (p) {
2916 driver->ttys = (struct tty_struct **)p;
2917 driver->termios = (struct ktermios **)(p + driver->num);
2918 } else {
2919 driver->ttys = NULL;
2920 driver->termios = NULL;
2923 cdev_init(&driver->cdev, &tty_fops);
2924 driver->cdev.owner = driver->owner;
2925 error = cdev_add(&driver->cdev, dev, driver->num);
2926 if (error) {
2927 unregister_chrdev_region(dev, driver->num);
2928 driver->ttys = NULL;
2929 driver->termios = NULL;
2930 kfree(p);
2931 return error;
2934 mutex_lock(&tty_mutex);
2935 list_add(&driver->tty_drivers, &tty_drivers);
2936 mutex_unlock(&tty_mutex);
2938 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2939 for (i = 0; i < driver->num; i++)
2940 tty_register_device(driver, i, NULL);
2942 proc_tty_register_driver(driver);
2943 driver->flags |= TTY_DRIVER_INSTALLED;
2944 return 0;
2947 EXPORT_SYMBOL(tty_register_driver);
2950 * Called by a tty driver to unregister itself.
2952 int tty_unregister_driver(struct tty_driver *driver)
2954 #if 0
2955 /* FIXME */
2956 if (driver->refcount)
2957 return -EBUSY;
2958 #endif
2959 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
2960 driver->num);
2961 mutex_lock(&tty_mutex);
2962 list_del(&driver->tty_drivers);
2963 mutex_unlock(&tty_mutex);
2964 return 0;
2967 EXPORT_SYMBOL(tty_unregister_driver);
2969 dev_t tty_devnum(struct tty_struct *tty)
2971 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
2973 EXPORT_SYMBOL(tty_devnum);
2975 void proc_clear_tty(struct task_struct *p)
2977 unsigned long flags;
2978 struct tty_struct *tty;
2979 spin_lock_irqsave(&p->sighand->siglock, flags);
2980 tty = p->signal->tty;
2981 p->signal->tty = NULL;
2982 spin_unlock_irqrestore(&p->sighand->siglock, flags);
2983 tty_kref_put(tty);
2986 /* Called under the sighand lock */
2988 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
2990 if (tty) {
2991 unsigned long flags;
2992 /* We should not have a session or pgrp to put here but.... */
2993 spin_lock_irqsave(&tty->ctrl_lock, flags);
2994 put_pid(tty->session);
2995 put_pid(tty->pgrp);
2996 tty->pgrp = get_pid(task_pgrp(tsk));
2997 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2998 tty->session = get_pid(task_session(tsk));
2999 if (tsk->signal->tty) {
3000 printk(KERN_DEBUG "tty not NULL!!\n");
3001 tty_kref_put(tsk->signal->tty);
3004 put_pid(tsk->signal->tty_old_pgrp);
3005 tsk->signal->tty = tty_kref_get(tty);
3006 tsk->signal->tty_old_pgrp = NULL;
3009 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3011 spin_lock_irq(&tsk->sighand->siglock);
3012 __proc_set_tty(tsk, tty);
3013 spin_unlock_irq(&tsk->sighand->siglock);
3016 struct tty_struct *get_current_tty(void)
3018 struct tty_struct *tty;
3019 unsigned long flags;
3021 spin_lock_irqsave(&current->sighand->siglock, flags);
3022 tty = tty_kref_get(current->signal->tty);
3023 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3024 return tty;
3026 EXPORT_SYMBOL_GPL(get_current_tty);
3028 void tty_default_fops(struct file_operations *fops)
3030 *fops = tty_fops;
3034 * Initialize the console device. This is called *early*, so
3035 * we can't necessarily depend on lots of kernel help here.
3036 * Just do some early initializations, and do the complex setup
3037 * later.
3039 void __init console_init(void)
3041 initcall_t *call;
3043 /* Setup the default TTY line discipline. */
3044 tty_ldisc_begin();
3047 * set up the console device so that later boot sequences can
3048 * inform about problems etc..
3050 call = __con_initcall_start;
3051 while (call < __con_initcall_end) {
3052 (*call)();
3053 call++;
3057 static int __init tty_class_init(void)
3059 tty_class = class_create(THIS_MODULE, "tty");
3060 if (IS_ERR(tty_class))
3061 return PTR_ERR(tty_class);
3062 return 0;
3065 postcore_initcall(tty_class_init);
3067 /* 3/2004 jmc: why do these devices exist? */
3069 static struct cdev tty_cdev, console_cdev;
3072 * Ok, now we can initialize the rest of the tty devices and can count
3073 * on memory allocations, interrupts etc..
3075 static int __init tty_init(void)
3077 cdev_init(&tty_cdev, &tty_fops);
3078 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3079 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3080 panic("Couldn't register /dev/tty driver\n");
3081 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3082 "tty");
3084 cdev_init(&console_cdev, &console_fops);
3085 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3086 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3087 panic("Couldn't register /dev/console driver\n");
3088 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3089 "console");
3091 #ifdef CONFIG_VT
3092 vty_init(&console_fops);
3093 #endif
3094 return 0;
3096 module_init(tty_init);