sfc: Clean up waits for flash/EEPROM operations
[linux-2.6/verdex.git] / drivers / net / sfc / falcon.c
blob5113085604877691b064c1f0d45380db78870044
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "gmii.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "boards.h"
30 #include "workarounds.h"
32 /* Falcon hardware control.
33 * Falcon is the internal codename for the SFC4000 controller that is
34 * present in SFE400X evaluation boards
37 /**
38 * struct falcon_nic_data - Falcon NIC state
39 * @next_buffer_table: First available buffer table id
40 * @pci_dev2: The secondary PCI device if present
41 * @i2c_data: Operations and state for I2C bit-bashing algorithm
43 struct falcon_nic_data {
44 unsigned next_buffer_table;
45 struct pci_dev *pci_dev2;
46 struct i2c_algo_bit_data i2c_data;
49 /**************************************************************************
51 * Configurable values
53 **************************************************************************
56 static int disable_dma_stats;
58 /* This is set to 16 for a good reason. In summary, if larger than
59 * 16, the descriptor cache holds more than a default socket
60 * buffer's worth of packets (for UDP we can only have at most one
61 * socket buffer's worth outstanding). This combined with the fact
62 * that we only get 1 TX event per descriptor cache means the NIC
63 * goes idle.
65 #define TX_DC_ENTRIES 16
66 #define TX_DC_ENTRIES_ORDER 0
67 #define TX_DC_BASE 0x130000
69 #define RX_DC_ENTRIES 64
70 #define RX_DC_ENTRIES_ORDER 2
71 #define RX_DC_BASE 0x100000
73 /* RX FIFO XOFF watermark
75 * When the amount of the RX FIFO increases used increases past this
76 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
77 * This also has an effect on RX/TX arbitration
79 static int rx_xoff_thresh_bytes = -1;
80 module_param(rx_xoff_thresh_bytes, int, 0644);
81 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
83 /* RX FIFO XON watermark
85 * When the amount of the RX FIFO used decreases below this
86 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
87 * This also has an effect on RX/TX arbitration
89 static int rx_xon_thresh_bytes = -1;
90 module_param(rx_xon_thresh_bytes, int, 0644);
91 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
93 /* TX descriptor ring size - min 512 max 4k */
94 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
95 #define FALCON_TXD_RING_SIZE 1024
96 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
98 /* RX descriptor ring size - min 512 max 4k */
99 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
100 #define FALCON_RXD_RING_SIZE 1024
101 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
103 /* Event queue size - max 32k */
104 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
105 #define FALCON_EVQ_SIZE 4096
106 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
108 /* Max number of internal errors. After this resets will not be performed */
109 #define FALCON_MAX_INT_ERRORS 4
111 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
113 #define FALCON_FLUSH_INTERVAL 10
114 #define FALCON_FLUSH_POLL_COUNT 100
116 /**************************************************************************
118 * Falcon constants
120 **************************************************************************
123 /* DMA address mask */
124 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
126 /* TX DMA length mask (13-bit) */
127 #define FALCON_TX_DMA_MASK (4096 - 1)
129 /* Size and alignment of special buffers (4KB) */
130 #define FALCON_BUF_SIZE 4096
132 /* Dummy SRAM size code */
133 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
135 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
136 #define PCI_EXP_DEVCAP_PWR_VAL_LBN 18
137 #define PCI_EXP_DEVCAP_PWR_SCL_LBN 26
138 #define PCI_EXP_DEVCTL_PAYLOAD_LBN 5
139 #define PCI_EXP_LNKSTA_LNK_WID 0x3f0
140 #define PCI_EXP_LNKSTA_LNK_WID_LBN 4
142 #define FALCON_IS_DUAL_FUNC(efx) \
143 (falcon_rev(efx) < FALCON_REV_B0)
145 /**************************************************************************
147 * Falcon hardware access
149 **************************************************************************/
151 /* Read the current event from the event queue */
152 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
153 unsigned int index)
155 return (((efx_qword_t *) (channel->eventq.addr)) + index);
158 /* See if an event is present
160 * We check both the high and low dword of the event for all ones. We
161 * wrote all ones when we cleared the event, and no valid event can
162 * have all ones in either its high or low dwords. This approach is
163 * robust against reordering.
165 * Note that using a single 64-bit comparison is incorrect; even
166 * though the CPU read will be atomic, the DMA write may not be.
168 static inline int falcon_event_present(efx_qword_t *event)
170 return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
171 EFX_DWORD_IS_ALL_ONES(event->dword[1])));
174 /**************************************************************************
176 * I2C bus - this is a bit-bashing interface using GPIO pins
177 * Note that it uses the output enables to tristate the outputs
178 * SDA is the data pin and SCL is the clock
180 **************************************************************************
182 static void falcon_setsda(void *data, int state)
184 struct efx_nic *efx = (struct efx_nic *)data;
185 efx_oword_t reg;
187 falcon_read(efx, &reg, GPIO_CTL_REG_KER);
188 EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
189 falcon_write(efx, &reg, GPIO_CTL_REG_KER);
192 static void falcon_setscl(void *data, int state)
194 struct efx_nic *efx = (struct efx_nic *)data;
195 efx_oword_t reg;
197 falcon_read(efx, &reg, GPIO_CTL_REG_KER);
198 EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
199 falcon_write(efx, &reg, GPIO_CTL_REG_KER);
202 static int falcon_getsda(void *data)
204 struct efx_nic *efx = (struct efx_nic *)data;
205 efx_oword_t reg;
207 falcon_read(efx, &reg, GPIO_CTL_REG_KER);
208 return EFX_OWORD_FIELD(reg, GPIO3_IN);
211 static int falcon_getscl(void *data)
213 struct efx_nic *efx = (struct efx_nic *)data;
214 efx_oword_t reg;
216 falcon_read(efx, &reg, GPIO_CTL_REG_KER);
217 return EFX_OWORD_FIELD(reg, GPIO0_IN);
220 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
221 .setsda = falcon_setsda,
222 .setscl = falcon_setscl,
223 .getsda = falcon_getsda,
224 .getscl = falcon_getscl,
225 .udelay = 5,
226 /* Wait up to 50 ms for slave to let us pull SCL high */
227 .timeout = DIV_ROUND_UP(HZ, 20),
230 /**************************************************************************
232 * Falcon special buffer handling
233 * Special buffers are used for event queues and the TX and RX
234 * descriptor rings.
236 *************************************************************************/
239 * Initialise a Falcon special buffer
241 * This will define a buffer (previously allocated via
242 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
243 * it to be used for event queues, descriptor rings etc.
245 static void
246 falcon_init_special_buffer(struct efx_nic *efx,
247 struct efx_special_buffer *buffer)
249 efx_qword_t buf_desc;
250 int index;
251 dma_addr_t dma_addr;
252 int i;
254 EFX_BUG_ON_PARANOID(!buffer->addr);
256 /* Write buffer descriptors to NIC */
257 for (i = 0; i < buffer->entries; i++) {
258 index = buffer->index + i;
259 dma_addr = buffer->dma_addr + (i * 4096);
260 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
261 index, (unsigned long long)dma_addr);
262 EFX_POPULATE_QWORD_4(buf_desc,
263 IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
264 BUF_ADR_REGION, 0,
265 BUF_ADR_FBUF, (dma_addr >> 12),
266 BUF_OWNER_ID_FBUF, 0);
267 falcon_write_sram(efx, &buf_desc, index);
271 /* Unmaps a buffer from Falcon and clears the buffer table entries */
272 static void
273 falcon_fini_special_buffer(struct efx_nic *efx,
274 struct efx_special_buffer *buffer)
276 efx_oword_t buf_tbl_upd;
277 unsigned int start = buffer->index;
278 unsigned int end = (buffer->index + buffer->entries - 1);
280 if (!buffer->entries)
281 return;
283 EFX_LOG(efx, "unmapping special buffers %d-%d\n",
284 buffer->index, buffer->index + buffer->entries - 1);
286 EFX_POPULATE_OWORD_4(buf_tbl_upd,
287 BUF_UPD_CMD, 0,
288 BUF_CLR_CMD, 1,
289 BUF_CLR_END_ID, end,
290 BUF_CLR_START_ID, start);
291 falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
295 * Allocate a new Falcon special buffer
297 * This allocates memory for a new buffer, clears it and allocates a
298 * new buffer ID range. It does not write into Falcon's buffer table.
300 * This call will allocate 4KB buffers, since Falcon can't use 8KB
301 * buffers for event queues and descriptor rings.
303 static int falcon_alloc_special_buffer(struct efx_nic *efx,
304 struct efx_special_buffer *buffer,
305 unsigned int len)
307 struct falcon_nic_data *nic_data = efx->nic_data;
309 len = ALIGN(len, FALCON_BUF_SIZE);
311 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
312 &buffer->dma_addr);
313 if (!buffer->addr)
314 return -ENOMEM;
315 buffer->len = len;
316 buffer->entries = len / FALCON_BUF_SIZE;
317 BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
319 /* All zeros is a potentially valid event so memset to 0xff */
320 memset(buffer->addr, 0xff, len);
322 /* Select new buffer ID */
323 buffer->index = nic_data->next_buffer_table;
324 nic_data->next_buffer_table += buffer->entries;
326 EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
327 "(virt %p phys %lx)\n", buffer->index,
328 buffer->index + buffer->entries - 1,
329 (unsigned long long)buffer->dma_addr, len,
330 buffer->addr, virt_to_phys(buffer->addr));
332 return 0;
335 static void falcon_free_special_buffer(struct efx_nic *efx,
336 struct efx_special_buffer *buffer)
338 if (!buffer->addr)
339 return;
341 EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
342 "(virt %p phys %lx)\n", buffer->index,
343 buffer->index + buffer->entries - 1,
344 (unsigned long long)buffer->dma_addr, buffer->len,
345 buffer->addr, virt_to_phys(buffer->addr));
347 pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
348 buffer->dma_addr);
349 buffer->addr = NULL;
350 buffer->entries = 0;
353 /**************************************************************************
355 * Falcon generic buffer handling
356 * These buffers are used for interrupt status and MAC stats
358 **************************************************************************/
360 static int falcon_alloc_buffer(struct efx_nic *efx,
361 struct efx_buffer *buffer, unsigned int len)
363 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
364 &buffer->dma_addr);
365 if (!buffer->addr)
366 return -ENOMEM;
367 buffer->len = len;
368 memset(buffer->addr, 0, len);
369 return 0;
372 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
374 if (buffer->addr) {
375 pci_free_consistent(efx->pci_dev, buffer->len,
376 buffer->addr, buffer->dma_addr);
377 buffer->addr = NULL;
381 /**************************************************************************
383 * Falcon TX path
385 **************************************************************************/
387 /* Returns a pointer to the specified transmit descriptor in the TX
388 * descriptor queue belonging to the specified channel.
390 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
391 unsigned int index)
393 return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
396 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
397 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
399 unsigned write_ptr;
400 efx_dword_t reg;
402 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
403 EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
404 falcon_writel_page(tx_queue->efx, &reg,
405 TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
409 /* For each entry inserted into the software descriptor ring, create a
410 * descriptor in the hardware TX descriptor ring (in host memory), and
411 * write a doorbell.
413 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
416 struct efx_tx_buffer *buffer;
417 efx_qword_t *txd;
418 unsigned write_ptr;
420 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
422 do {
423 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
424 buffer = &tx_queue->buffer[write_ptr];
425 txd = falcon_tx_desc(tx_queue, write_ptr);
426 ++tx_queue->write_count;
428 /* Create TX descriptor ring entry */
429 EFX_POPULATE_QWORD_5(*txd,
430 TX_KER_PORT, 0,
431 TX_KER_CONT, buffer->continuation,
432 TX_KER_BYTE_CNT, buffer->len,
433 TX_KER_BUF_REGION, 0,
434 TX_KER_BUF_ADR, buffer->dma_addr);
435 } while (tx_queue->write_count != tx_queue->insert_count);
437 wmb(); /* Ensure descriptors are written before they are fetched */
438 falcon_notify_tx_desc(tx_queue);
441 /* Allocate hardware resources for a TX queue */
442 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
444 struct efx_nic *efx = tx_queue->efx;
445 return falcon_alloc_special_buffer(efx, &tx_queue->txd,
446 FALCON_TXD_RING_SIZE *
447 sizeof(efx_qword_t));
450 void falcon_init_tx(struct efx_tx_queue *tx_queue)
452 efx_oword_t tx_desc_ptr;
453 struct efx_nic *efx = tx_queue->efx;
455 tx_queue->flushed = false;
457 /* Pin TX descriptor ring */
458 falcon_init_special_buffer(efx, &tx_queue->txd);
460 /* Push TX descriptor ring to card */
461 EFX_POPULATE_OWORD_10(tx_desc_ptr,
462 TX_DESCQ_EN, 1,
463 TX_ISCSI_DDIG_EN, 0,
464 TX_ISCSI_HDIG_EN, 0,
465 TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
466 TX_DESCQ_EVQ_ID, tx_queue->channel->channel,
467 TX_DESCQ_OWNER_ID, 0,
468 TX_DESCQ_LABEL, tx_queue->queue,
469 TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
470 TX_DESCQ_TYPE, 0,
471 TX_NON_IP_DROP_DIS_B0, 1);
473 if (falcon_rev(efx) >= FALCON_REV_B0) {
474 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
475 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
476 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
479 falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
480 tx_queue->queue);
482 if (falcon_rev(efx) < FALCON_REV_B0) {
483 efx_oword_t reg;
485 /* Only 128 bits in this register */
486 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
488 falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
489 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
490 clear_bit_le(tx_queue->queue, (void *)&reg);
491 else
492 set_bit_le(tx_queue->queue, (void *)&reg);
493 falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
497 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
499 struct efx_nic *efx = tx_queue->efx;
500 efx_oword_t tx_flush_descq;
502 /* Post a flush command */
503 EFX_POPULATE_OWORD_2(tx_flush_descq,
504 TX_FLUSH_DESCQ_CMD, 1,
505 TX_FLUSH_DESCQ, tx_queue->queue);
506 falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
509 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
511 struct efx_nic *efx = tx_queue->efx;
512 efx_oword_t tx_desc_ptr;
514 /* The queue should have been flushed */
515 WARN_ON(!tx_queue->flushed);
517 /* Remove TX descriptor ring from card */
518 EFX_ZERO_OWORD(tx_desc_ptr);
519 falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
520 tx_queue->queue);
522 /* Unpin TX descriptor ring */
523 falcon_fini_special_buffer(efx, &tx_queue->txd);
526 /* Free buffers backing TX queue */
527 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
529 falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
532 /**************************************************************************
534 * Falcon RX path
536 **************************************************************************/
538 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
539 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
540 unsigned int index)
542 return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
545 /* This creates an entry in the RX descriptor queue */
546 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
547 unsigned index)
549 struct efx_rx_buffer *rx_buf;
550 efx_qword_t *rxd;
552 rxd = falcon_rx_desc(rx_queue, index);
553 rx_buf = efx_rx_buffer(rx_queue, index);
554 EFX_POPULATE_QWORD_3(*rxd,
555 RX_KER_BUF_SIZE,
556 rx_buf->len -
557 rx_queue->efx->type->rx_buffer_padding,
558 RX_KER_BUF_REGION, 0,
559 RX_KER_BUF_ADR, rx_buf->dma_addr);
562 /* This writes to the RX_DESC_WPTR register for the specified receive
563 * descriptor ring.
565 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
567 efx_dword_t reg;
568 unsigned write_ptr;
570 while (rx_queue->notified_count != rx_queue->added_count) {
571 falcon_build_rx_desc(rx_queue,
572 rx_queue->notified_count &
573 FALCON_RXD_RING_MASK);
574 ++rx_queue->notified_count;
577 wmb();
578 write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
579 EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
580 falcon_writel_page(rx_queue->efx, &reg,
581 RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
584 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
586 struct efx_nic *efx = rx_queue->efx;
587 return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
588 FALCON_RXD_RING_SIZE *
589 sizeof(efx_qword_t));
592 void falcon_init_rx(struct efx_rx_queue *rx_queue)
594 efx_oword_t rx_desc_ptr;
595 struct efx_nic *efx = rx_queue->efx;
596 bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
597 bool iscsi_digest_en = is_b0;
599 EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
600 rx_queue->queue, rx_queue->rxd.index,
601 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
603 rx_queue->flushed = false;
605 /* Pin RX descriptor ring */
606 falcon_init_special_buffer(efx, &rx_queue->rxd);
608 /* Push RX descriptor ring to card */
609 EFX_POPULATE_OWORD_10(rx_desc_ptr,
610 RX_ISCSI_DDIG_EN, iscsi_digest_en,
611 RX_ISCSI_HDIG_EN, iscsi_digest_en,
612 RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
613 RX_DESCQ_EVQ_ID, rx_queue->channel->channel,
614 RX_DESCQ_OWNER_ID, 0,
615 RX_DESCQ_LABEL, rx_queue->queue,
616 RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
617 RX_DESCQ_TYPE, 0 /* kernel queue */ ,
618 /* For >=B0 this is scatter so disable */
619 RX_DESCQ_JUMBO, !is_b0,
620 RX_DESCQ_EN, 1);
621 falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
622 rx_queue->queue);
625 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
627 struct efx_nic *efx = rx_queue->efx;
628 efx_oword_t rx_flush_descq;
630 /* Post a flush command */
631 EFX_POPULATE_OWORD_2(rx_flush_descq,
632 RX_FLUSH_DESCQ_CMD, 1,
633 RX_FLUSH_DESCQ, rx_queue->queue);
634 falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
637 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
639 efx_oword_t rx_desc_ptr;
640 struct efx_nic *efx = rx_queue->efx;
642 /* The queue should already have been flushed */
643 WARN_ON(!rx_queue->flushed);
645 /* Remove RX descriptor ring from card */
646 EFX_ZERO_OWORD(rx_desc_ptr);
647 falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
648 rx_queue->queue);
650 /* Unpin RX descriptor ring */
651 falcon_fini_special_buffer(efx, &rx_queue->rxd);
654 /* Free buffers backing RX queue */
655 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
657 falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
660 /**************************************************************************
662 * Falcon event queue processing
663 * Event queues are processed by per-channel tasklets.
665 **************************************************************************/
667 /* Update a channel's event queue's read pointer (RPTR) register
669 * This writes the EVQ_RPTR_REG register for the specified channel's
670 * event queue.
672 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
673 * whereas channel->eventq_read_ptr contains the index of the "next to
674 * read" event.
676 void falcon_eventq_read_ack(struct efx_channel *channel)
678 efx_dword_t reg;
679 struct efx_nic *efx = channel->efx;
681 EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
682 falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
683 channel->channel);
686 /* Use HW to insert a SW defined event */
687 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
689 efx_oword_t drv_ev_reg;
691 EFX_POPULATE_OWORD_2(drv_ev_reg,
692 DRV_EV_QID, channel->channel,
693 DRV_EV_DATA,
694 EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
695 falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
698 /* Handle a transmit completion event
700 * Falcon batches TX completion events; the message we receive is of
701 * the form "complete all TX events up to this index".
703 static void falcon_handle_tx_event(struct efx_channel *channel,
704 efx_qword_t *event)
706 unsigned int tx_ev_desc_ptr;
707 unsigned int tx_ev_q_label;
708 struct efx_tx_queue *tx_queue;
709 struct efx_nic *efx = channel->efx;
711 if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
712 /* Transmit completion */
713 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
714 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
715 tx_queue = &efx->tx_queue[tx_ev_q_label];
716 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
717 } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
718 /* Rewrite the FIFO write pointer */
719 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
720 tx_queue = &efx->tx_queue[tx_ev_q_label];
722 if (efx_dev_registered(efx))
723 netif_tx_lock(efx->net_dev);
724 falcon_notify_tx_desc(tx_queue);
725 if (efx_dev_registered(efx))
726 netif_tx_unlock(efx->net_dev);
727 } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
728 EFX_WORKAROUND_10727(efx)) {
729 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
730 } else {
731 EFX_ERR(efx, "channel %d unexpected TX event "
732 EFX_QWORD_FMT"\n", channel->channel,
733 EFX_QWORD_VAL(*event));
737 /* Detect errors included in the rx_evt_pkt_ok bit. */
738 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
739 const efx_qword_t *event,
740 bool *rx_ev_pkt_ok,
741 bool *discard)
743 struct efx_nic *efx = rx_queue->efx;
744 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
745 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
746 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
747 bool rx_ev_other_err, rx_ev_pause_frm;
748 bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
749 unsigned rx_ev_pkt_type;
751 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
752 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
753 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
754 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
755 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
756 RX_EV_BUF_OWNER_ID_ERR);
757 rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
758 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
759 RX_EV_IP_HDR_CHKSUM_ERR);
760 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
761 RX_EV_TCP_UDP_CHKSUM_ERR);
762 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
763 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
764 rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
765 0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
766 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
768 /* Every error apart from tobe_disc and pause_frm */
769 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
770 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
771 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
773 /* Count errors that are not in MAC stats. */
774 if (rx_ev_frm_trunc)
775 ++rx_queue->channel->n_rx_frm_trunc;
776 else if (rx_ev_tobe_disc)
777 ++rx_queue->channel->n_rx_tobe_disc;
778 else if (rx_ev_ip_hdr_chksum_err)
779 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
780 else if (rx_ev_tcp_udp_chksum_err)
781 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
782 if (rx_ev_ip_frag_err)
783 ++rx_queue->channel->n_rx_ip_frag_err;
785 /* The frame must be discarded if any of these are true. */
786 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
787 rx_ev_tobe_disc | rx_ev_pause_frm);
789 /* TOBE_DISC is expected on unicast mismatches; don't print out an
790 * error message. FRM_TRUNC indicates RXDP dropped the packet due
791 * to a FIFO overflow.
793 #ifdef EFX_ENABLE_DEBUG
794 if (rx_ev_other_err) {
795 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
796 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
797 rx_queue->queue, EFX_QWORD_VAL(*event),
798 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
799 rx_ev_ip_hdr_chksum_err ?
800 " [IP_HDR_CHKSUM_ERR]" : "",
801 rx_ev_tcp_udp_chksum_err ?
802 " [TCP_UDP_CHKSUM_ERR]" : "",
803 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
804 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
805 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
806 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
807 rx_ev_pause_frm ? " [PAUSE]" : "");
809 #endif
811 if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
812 efx->phy_type == PHY_TYPE_10XPRESS))
813 tenxpress_crc_err(efx);
816 /* Handle receive events that are not in-order. */
817 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
818 unsigned index)
820 struct efx_nic *efx = rx_queue->efx;
821 unsigned expected, dropped;
823 expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
824 dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
825 FALCON_RXD_RING_MASK);
826 EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
827 dropped, index, expected);
829 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
830 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
833 /* Handle a packet received event
835 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
836 * wrong destination address
837 * Also "is multicast" and "matches multicast filter" flags can be used to
838 * discard non-matching multicast packets.
840 static void falcon_handle_rx_event(struct efx_channel *channel,
841 const efx_qword_t *event)
843 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
844 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
845 unsigned expected_ptr;
846 bool rx_ev_pkt_ok, discard = false, checksummed;
847 struct efx_rx_queue *rx_queue;
848 struct efx_nic *efx = channel->efx;
850 /* Basic packet information */
851 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
852 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
853 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
854 WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
855 WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
856 WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel);
858 rx_queue = &efx->rx_queue[channel->channel];
860 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
861 expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
862 if (unlikely(rx_ev_desc_ptr != expected_ptr))
863 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
865 if (likely(rx_ev_pkt_ok)) {
866 /* If packet is marked as OK and packet type is TCP/IPv4 or
867 * UDP/IPv4, then we can rely on the hardware checksum.
869 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
870 } else {
871 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
872 &discard);
873 checksummed = false;
876 /* Detect multicast packets that didn't match the filter */
877 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
878 if (rx_ev_mcast_pkt) {
879 unsigned int rx_ev_mcast_hash_match =
880 EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
882 if (unlikely(!rx_ev_mcast_hash_match))
883 discard = true;
886 /* Handle received packet */
887 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
888 checksummed, discard);
891 /* Global events are basically PHY events */
892 static void falcon_handle_global_event(struct efx_channel *channel,
893 efx_qword_t *event)
895 struct efx_nic *efx = channel->efx;
896 bool is_phy_event = false, handled = false;
898 /* Check for interrupt on either port. Some boards have a
899 * single PHY wired to the interrupt line for port 1. */
900 if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
901 EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
902 EFX_QWORD_FIELD(*event, XG_PHY_INTR))
903 is_phy_event = true;
905 if ((falcon_rev(efx) >= FALCON_REV_B0) &&
906 EFX_QWORD_FIELD(*event, XG_MNT_INTR_B0))
907 is_phy_event = true;
909 if (is_phy_event) {
910 efx->phy_op->clear_interrupt(efx);
911 queue_work(efx->workqueue, &efx->reconfigure_work);
912 handled = true;
915 if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
916 EFX_ERR(efx, "channel %d seen global RX_RESET "
917 "event. Resetting.\n", channel->channel);
919 atomic_inc(&efx->rx_reset);
920 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
921 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
922 handled = true;
925 if (!handled)
926 EFX_ERR(efx, "channel %d unknown global event "
927 EFX_QWORD_FMT "\n", channel->channel,
928 EFX_QWORD_VAL(*event));
931 static void falcon_handle_driver_event(struct efx_channel *channel,
932 efx_qword_t *event)
934 struct efx_nic *efx = channel->efx;
935 unsigned int ev_sub_code;
936 unsigned int ev_sub_data;
938 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
939 ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
941 switch (ev_sub_code) {
942 case TX_DESCQ_FLS_DONE_EV_DECODE:
943 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
944 channel->channel, ev_sub_data);
945 break;
946 case RX_DESCQ_FLS_DONE_EV_DECODE:
947 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
948 channel->channel, ev_sub_data);
949 break;
950 case EVQ_INIT_DONE_EV_DECODE:
951 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
952 channel->channel, ev_sub_data);
953 break;
954 case SRM_UPD_DONE_EV_DECODE:
955 EFX_TRACE(efx, "channel %d SRAM update done\n",
956 channel->channel);
957 break;
958 case WAKE_UP_EV_DECODE:
959 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
960 channel->channel, ev_sub_data);
961 break;
962 case TIMER_EV_DECODE:
963 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
964 channel->channel, ev_sub_data);
965 break;
966 case RX_RECOVERY_EV_DECODE:
967 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
968 "Resetting.\n", channel->channel);
969 atomic_inc(&efx->rx_reset);
970 efx_schedule_reset(efx,
971 EFX_WORKAROUND_6555(efx) ?
972 RESET_TYPE_RX_RECOVERY :
973 RESET_TYPE_DISABLE);
974 break;
975 case RX_DSC_ERROR_EV_DECODE:
976 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
977 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
978 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
979 break;
980 case TX_DSC_ERROR_EV_DECODE:
981 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
982 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
983 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
984 break;
985 default:
986 EFX_TRACE(efx, "channel %d unknown driver event code %d "
987 "data %04x\n", channel->channel, ev_sub_code,
988 ev_sub_data);
989 break;
993 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
995 unsigned int read_ptr;
996 efx_qword_t event, *p_event;
997 int ev_code;
998 int rx_packets = 0;
1000 read_ptr = channel->eventq_read_ptr;
1002 do {
1003 p_event = falcon_event(channel, read_ptr);
1004 event = *p_event;
1006 if (!falcon_event_present(&event))
1007 /* End of events */
1008 break;
1010 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1011 channel->channel, EFX_QWORD_VAL(event));
1013 /* Clear this event by marking it all ones */
1014 EFX_SET_QWORD(*p_event);
1016 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1018 switch (ev_code) {
1019 case RX_IP_EV_DECODE:
1020 falcon_handle_rx_event(channel, &event);
1021 ++rx_packets;
1022 break;
1023 case TX_IP_EV_DECODE:
1024 falcon_handle_tx_event(channel, &event);
1025 break;
1026 case DRV_GEN_EV_DECODE:
1027 channel->eventq_magic
1028 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1029 EFX_LOG(channel->efx, "channel %d received generated "
1030 "event "EFX_QWORD_FMT"\n", channel->channel,
1031 EFX_QWORD_VAL(event));
1032 break;
1033 case GLOBAL_EV_DECODE:
1034 falcon_handle_global_event(channel, &event);
1035 break;
1036 case DRIVER_EV_DECODE:
1037 falcon_handle_driver_event(channel, &event);
1038 break;
1039 default:
1040 EFX_ERR(channel->efx, "channel %d unknown event type %d"
1041 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1042 ev_code, EFX_QWORD_VAL(event));
1045 /* Increment read pointer */
1046 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1048 } while (rx_packets < rx_quota);
1050 channel->eventq_read_ptr = read_ptr;
1051 return rx_packets;
1054 void falcon_set_int_moderation(struct efx_channel *channel)
1056 efx_dword_t timer_cmd;
1057 struct efx_nic *efx = channel->efx;
1059 /* Set timer register */
1060 if (channel->irq_moderation) {
1061 /* Round to resolution supported by hardware. The value we
1062 * program is based at 0. So actual interrupt moderation
1063 * achieved is ((x + 1) * res).
1065 unsigned int res = 5;
1066 channel->irq_moderation -= (channel->irq_moderation % res);
1067 if (channel->irq_moderation < res)
1068 channel->irq_moderation = res;
1069 EFX_POPULATE_DWORD_2(timer_cmd,
1070 TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1071 TIMER_VAL,
1072 (channel->irq_moderation / res) - 1);
1073 } else {
1074 EFX_POPULATE_DWORD_2(timer_cmd,
1075 TIMER_MODE, TIMER_MODE_DIS,
1076 TIMER_VAL, 0);
1078 falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1079 channel->channel);
1083 /* Allocate buffer table entries for event queue */
1084 int falcon_probe_eventq(struct efx_channel *channel)
1086 struct efx_nic *efx = channel->efx;
1087 unsigned int evq_size;
1089 evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1090 return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1093 void falcon_init_eventq(struct efx_channel *channel)
1095 efx_oword_t evq_ptr;
1096 struct efx_nic *efx = channel->efx;
1098 EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1099 channel->channel, channel->eventq.index,
1100 channel->eventq.index + channel->eventq.entries - 1);
1102 /* Pin event queue buffer */
1103 falcon_init_special_buffer(efx, &channel->eventq);
1105 /* Fill event queue with all ones (i.e. empty events) */
1106 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1108 /* Push event queue to card */
1109 EFX_POPULATE_OWORD_3(evq_ptr,
1110 EVQ_EN, 1,
1111 EVQ_SIZE, FALCON_EVQ_ORDER,
1112 EVQ_BUF_BASE_ID, channel->eventq.index);
1113 falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1114 channel->channel);
1116 falcon_set_int_moderation(channel);
1119 void falcon_fini_eventq(struct efx_channel *channel)
1121 efx_oword_t eventq_ptr;
1122 struct efx_nic *efx = channel->efx;
1124 /* Remove event queue from card */
1125 EFX_ZERO_OWORD(eventq_ptr);
1126 falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1127 channel->channel);
1129 /* Unpin event queue */
1130 falcon_fini_special_buffer(efx, &channel->eventq);
1133 /* Free buffers backing event queue */
1134 void falcon_remove_eventq(struct efx_channel *channel)
1136 falcon_free_special_buffer(channel->efx, &channel->eventq);
1140 /* Generates a test event on the event queue. A subsequent call to
1141 * process_eventq() should pick up the event and place the value of
1142 * "magic" into channel->eventq_magic;
1144 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1146 efx_qword_t test_event;
1148 EFX_POPULATE_QWORD_2(test_event,
1149 EV_CODE, DRV_GEN_EV_DECODE,
1150 EVQ_MAGIC, magic);
1151 falcon_generate_event(channel, &test_event);
1154 /**************************************************************************
1156 * Flush handling
1158 **************************************************************************/
1161 static void falcon_poll_flush_events(struct efx_nic *efx)
1163 struct efx_channel *channel = &efx->channel[0];
1164 struct efx_tx_queue *tx_queue;
1165 struct efx_rx_queue *rx_queue;
1166 unsigned int read_ptr, i;
1168 read_ptr = channel->eventq_read_ptr;
1169 for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
1170 efx_qword_t *event = falcon_event(channel, read_ptr);
1171 int ev_code, ev_sub_code, ev_queue;
1172 bool ev_failed;
1173 if (!falcon_event_present(event))
1174 break;
1176 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
1177 if (ev_code != DRIVER_EV_DECODE)
1178 continue;
1180 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1181 switch (ev_sub_code) {
1182 case TX_DESCQ_FLS_DONE_EV_DECODE:
1183 ev_queue = EFX_QWORD_FIELD(*event,
1184 DRIVER_EV_TX_DESCQ_ID);
1185 if (ev_queue < EFX_TX_QUEUE_COUNT) {
1186 tx_queue = efx->tx_queue + ev_queue;
1187 tx_queue->flushed = true;
1189 break;
1190 case RX_DESCQ_FLS_DONE_EV_DECODE:
1191 ev_queue = EFX_QWORD_FIELD(*event,
1192 DRIVER_EV_RX_DESCQ_ID);
1193 ev_failed = EFX_QWORD_FIELD(*event,
1194 DRIVER_EV_RX_FLUSH_FAIL);
1195 if (ev_queue < efx->n_rx_queues) {
1196 rx_queue = efx->rx_queue + ev_queue;
1198 /* retry the rx flush */
1199 if (ev_failed)
1200 falcon_flush_rx_queue(rx_queue);
1201 else
1202 rx_queue->flushed = true;
1204 break;
1207 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1211 /* Handle tx and rx flushes at the same time, since they run in
1212 * parallel in the hardware and there's no reason for us to
1213 * serialise them */
1214 int falcon_flush_queues(struct efx_nic *efx)
1216 struct efx_rx_queue *rx_queue;
1217 struct efx_tx_queue *tx_queue;
1218 int i;
1219 bool outstanding;
1221 /* Issue flush requests */
1222 efx_for_each_tx_queue(tx_queue, efx) {
1223 tx_queue->flushed = false;
1224 falcon_flush_tx_queue(tx_queue);
1226 efx_for_each_rx_queue(rx_queue, efx) {
1227 rx_queue->flushed = false;
1228 falcon_flush_rx_queue(rx_queue);
1231 /* Poll the evq looking for flush completions. Since we're not pushing
1232 * any more rx or tx descriptors at this point, we're in no danger of
1233 * overflowing the evq whilst we wait */
1234 for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1235 msleep(FALCON_FLUSH_INTERVAL);
1236 falcon_poll_flush_events(efx);
1238 /* Check if every queue has been succesfully flushed */
1239 outstanding = false;
1240 efx_for_each_tx_queue(tx_queue, efx)
1241 outstanding |= !tx_queue->flushed;
1242 efx_for_each_rx_queue(rx_queue, efx)
1243 outstanding |= !rx_queue->flushed;
1244 if (!outstanding)
1245 return 0;
1248 /* Mark the queues as all flushed. We're going to return failure
1249 * leading to a reset, or fake up success anyway. "flushed" now
1250 * indicates that we tried to flush. */
1251 efx_for_each_tx_queue(tx_queue, efx) {
1252 if (!tx_queue->flushed)
1253 EFX_ERR(efx, "tx queue %d flush command timed out\n",
1254 tx_queue->queue);
1255 tx_queue->flushed = true;
1257 efx_for_each_rx_queue(rx_queue, efx) {
1258 if (!rx_queue->flushed)
1259 EFX_ERR(efx, "rx queue %d flush command timed out\n",
1260 rx_queue->queue);
1261 rx_queue->flushed = true;
1264 if (EFX_WORKAROUND_7803(efx))
1265 return 0;
1267 return -ETIMEDOUT;
1270 /**************************************************************************
1272 * Falcon hardware interrupts
1273 * The hardware interrupt handler does very little work; all the event
1274 * queue processing is carried out by per-channel tasklets.
1276 **************************************************************************/
1278 /* Enable/disable/generate Falcon interrupts */
1279 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1280 int force)
1282 efx_oword_t int_en_reg_ker;
1284 EFX_POPULATE_OWORD_2(int_en_reg_ker,
1285 KER_INT_KER, force,
1286 DRV_INT_EN_KER, enabled);
1287 falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1290 void falcon_enable_interrupts(struct efx_nic *efx)
1292 efx_oword_t int_adr_reg_ker;
1293 struct efx_channel *channel;
1295 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1296 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1298 /* Program address */
1299 EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1300 NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1301 INT_ADR_KER, efx->irq_status.dma_addr);
1302 falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1304 /* Enable interrupts */
1305 falcon_interrupts(efx, 1, 0);
1307 /* Force processing of all the channels to get the EVQ RPTRs up to
1308 date */
1309 efx_for_each_channel(channel, efx)
1310 efx_schedule_channel(channel);
1313 void falcon_disable_interrupts(struct efx_nic *efx)
1315 /* Disable interrupts */
1316 falcon_interrupts(efx, 0, 0);
1319 /* Generate a Falcon test interrupt
1320 * Interrupt must already have been enabled, otherwise nasty things
1321 * may happen.
1323 void falcon_generate_interrupt(struct efx_nic *efx)
1325 falcon_interrupts(efx, 1, 1);
1328 /* Acknowledge a legacy interrupt from Falcon
1330 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1332 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1333 * BIU. Interrupt acknowledge is read sensitive so must write instead
1334 * (then read to ensure the BIU collector is flushed)
1336 * NB most hardware supports MSI interrupts
1338 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1340 efx_dword_t reg;
1342 EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1343 falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1344 falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1347 /* Process a fatal interrupt
1348 * Disable bus mastering ASAP and schedule a reset
1350 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1352 struct falcon_nic_data *nic_data = efx->nic_data;
1353 efx_oword_t *int_ker = efx->irq_status.addr;
1354 efx_oword_t fatal_intr;
1355 int error, mem_perr;
1356 static int n_int_errors;
1358 falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1359 error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1361 EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1362 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1363 EFX_OWORD_VAL(fatal_intr),
1364 error ? "disabling bus mastering" : "no recognised error");
1365 if (error == 0)
1366 goto out;
1368 /* If this is a memory parity error dump which blocks are offending */
1369 mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1370 if (mem_perr) {
1371 efx_oword_t reg;
1372 falcon_read(efx, &reg, MEM_STAT_REG_KER);
1373 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1374 EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1377 /* Disable both devices */
1378 pci_disable_device(efx->pci_dev);
1379 if (FALCON_IS_DUAL_FUNC(efx))
1380 pci_disable_device(nic_data->pci_dev2);
1381 falcon_disable_interrupts(efx);
1383 if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
1384 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1385 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1386 } else {
1387 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1388 "NIC will be disabled\n");
1389 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1391 out:
1392 return IRQ_HANDLED;
1395 /* Handle a legacy interrupt from Falcon
1396 * Acknowledges the interrupt and schedule event queue processing.
1398 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1400 struct efx_nic *efx = dev_id;
1401 efx_oword_t *int_ker = efx->irq_status.addr;
1402 struct efx_channel *channel;
1403 efx_dword_t reg;
1404 u32 queues;
1405 int syserr;
1407 /* Read the ISR which also ACKs the interrupts */
1408 falcon_readl(efx, &reg, INT_ISR0_B0);
1409 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1411 /* Check to see if we have a serious error condition */
1412 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1413 if (unlikely(syserr))
1414 return falcon_fatal_interrupt(efx);
1416 if (queues == 0)
1417 return IRQ_NONE;
1419 efx->last_irq_cpu = raw_smp_processor_id();
1420 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1421 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1423 /* Schedule processing of any interrupting queues */
1424 channel = &efx->channel[0];
1425 while (queues) {
1426 if (queues & 0x01)
1427 efx_schedule_channel(channel);
1428 channel++;
1429 queues >>= 1;
1432 return IRQ_HANDLED;
1436 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1438 struct efx_nic *efx = dev_id;
1439 efx_oword_t *int_ker = efx->irq_status.addr;
1440 struct efx_channel *channel;
1441 int syserr;
1442 int queues;
1444 /* Check to see if this is our interrupt. If it isn't, we
1445 * exit without having touched the hardware.
1447 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1448 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1449 raw_smp_processor_id());
1450 return IRQ_NONE;
1452 efx->last_irq_cpu = raw_smp_processor_id();
1453 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1454 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1456 /* Check to see if we have a serious error condition */
1457 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1458 if (unlikely(syserr))
1459 return falcon_fatal_interrupt(efx);
1461 /* Determine interrupting queues, clear interrupt status
1462 * register and acknowledge the device interrupt.
1464 BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1465 queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1466 EFX_ZERO_OWORD(*int_ker);
1467 wmb(); /* Ensure the vector is cleared before interrupt ack */
1468 falcon_irq_ack_a1(efx);
1470 /* Schedule processing of any interrupting queues */
1471 channel = &efx->channel[0];
1472 while (queues) {
1473 if (queues & 0x01)
1474 efx_schedule_channel(channel);
1475 channel++;
1476 queues >>= 1;
1479 return IRQ_HANDLED;
1482 /* Handle an MSI interrupt from Falcon
1484 * Handle an MSI hardware interrupt. This routine schedules event
1485 * queue processing. No interrupt acknowledgement cycle is necessary.
1486 * Also, we never need to check that the interrupt is for us, since
1487 * MSI interrupts cannot be shared.
1489 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1491 struct efx_channel *channel = dev_id;
1492 struct efx_nic *efx = channel->efx;
1493 efx_oword_t *int_ker = efx->irq_status.addr;
1494 int syserr;
1496 efx->last_irq_cpu = raw_smp_processor_id();
1497 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1498 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1500 /* Check to see if we have a serious error condition */
1501 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1502 if (unlikely(syserr))
1503 return falcon_fatal_interrupt(efx);
1505 /* Schedule processing of the channel */
1506 efx_schedule_channel(channel);
1508 return IRQ_HANDLED;
1512 /* Setup RSS indirection table.
1513 * This maps from the hash value of the packet to RXQ
1515 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1517 int i = 0;
1518 unsigned long offset;
1519 efx_dword_t dword;
1521 if (falcon_rev(efx) < FALCON_REV_B0)
1522 return;
1524 for (offset = RX_RSS_INDIR_TBL_B0;
1525 offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1526 offset += 0x10) {
1527 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1528 i % efx->n_rx_queues);
1529 falcon_writel(efx, &dword, offset);
1530 i++;
1534 /* Hook interrupt handler(s)
1535 * Try MSI and then legacy interrupts.
1537 int falcon_init_interrupt(struct efx_nic *efx)
1539 struct efx_channel *channel;
1540 int rc;
1542 if (!EFX_INT_MODE_USE_MSI(efx)) {
1543 irq_handler_t handler;
1544 if (falcon_rev(efx) >= FALCON_REV_B0)
1545 handler = falcon_legacy_interrupt_b0;
1546 else
1547 handler = falcon_legacy_interrupt_a1;
1549 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1550 efx->name, efx);
1551 if (rc) {
1552 EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1553 efx->pci_dev->irq);
1554 goto fail1;
1556 return 0;
1559 /* Hook MSI or MSI-X interrupt */
1560 efx_for_each_channel(channel, efx) {
1561 rc = request_irq(channel->irq, falcon_msi_interrupt,
1562 IRQF_PROBE_SHARED, /* Not shared */
1563 efx->name, channel);
1564 if (rc) {
1565 EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1566 goto fail2;
1570 return 0;
1572 fail2:
1573 efx_for_each_channel(channel, efx)
1574 free_irq(channel->irq, channel);
1575 fail1:
1576 return rc;
1579 void falcon_fini_interrupt(struct efx_nic *efx)
1581 struct efx_channel *channel;
1582 efx_oword_t reg;
1584 /* Disable MSI/MSI-X interrupts */
1585 efx_for_each_channel(channel, efx) {
1586 if (channel->irq)
1587 free_irq(channel->irq, channel);
1590 /* ACK legacy interrupt */
1591 if (falcon_rev(efx) >= FALCON_REV_B0)
1592 falcon_read(efx, &reg, INT_ISR0_B0);
1593 else
1594 falcon_irq_ack_a1(efx);
1596 /* Disable legacy interrupt */
1597 if (efx->legacy_irq)
1598 free_irq(efx->legacy_irq, efx);
1601 /**************************************************************************
1603 * EEPROM/flash
1605 **************************************************************************
1608 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1610 static int falcon_spi_poll(struct efx_nic *efx)
1612 efx_oword_t reg;
1613 falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1614 return EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1617 /* Wait for SPI command completion */
1618 static int falcon_spi_wait(struct efx_nic *efx)
1620 /* Most commands will finish quickly, so we start polling at
1621 * very short intervals. Sometimes the command may have to
1622 * wait for VPD or expansion ROM access outside of our
1623 * control, so we allow up to 100 ms. */
1624 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1625 int i;
1627 for (i = 0; i < 10; i++) {
1628 if (!falcon_spi_poll(efx))
1629 return 0;
1630 udelay(10);
1633 for (;;) {
1634 if (!falcon_spi_poll(efx))
1635 return 0;
1636 if (time_after_eq(jiffies, timeout)) {
1637 EFX_ERR(efx, "timed out waiting for SPI\n");
1638 return -ETIMEDOUT;
1640 schedule_timeout_uninterruptible(1);
1644 int falcon_spi_cmd(const struct efx_spi_device *spi,
1645 unsigned int command, int address,
1646 const void *in, void *out, size_t len)
1648 struct efx_nic *efx = spi->efx;
1649 bool addressed = (address >= 0);
1650 bool reading = (out != NULL);
1651 efx_oword_t reg;
1652 int rc;
1654 /* Input validation */
1655 if (len > FALCON_SPI_MAX_LEN)
1656 return -EINVAL;
1657 BUG_ON(!mutex_is_locked(&efx->spi_lock));
1659 /* Check that previous command is not still running */
1660 rc = falcon_spi_poll(efx);
1661 if (rc)
1662 return rc;
1664 /* Program address register, if we have an address */
1665 if (addressed) {
1666 EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1667 falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1670 /* Program data register, if we have data */
1671 if (in != NULL) {
1672 memcpy(&reg, in, len);
1673 falcon_write(efx, &reg, EE_SPI_HDATA_REG_KER);
1676 /* Issue read/write command */
1677 EFX_POPULATE_OWORD_7(reg,
1678 EE_SPI_HCMD_CMD_EN, 1,
1679 EE_SPI_HCMD_SF_SEL, spi->device_id,
1680 EE_SPI_HCMD_DABCNT, len,
1681 EE_SPI_HCMD_READ, reading,
1682 EE_SPI_HCMD_DUBCNT, 0,
1683 EE_SPI_HCMD_ADBCNT,
1684 (addressed ? spi->addr_len : 0),
1685 EE_SPI_HCMD_ENC, command);
1686 falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1688 /* Wait for read/write to complete */
1689 rc = falcon_spi_wait(efx);
1690 if (rc)
1691 return rc;
1693 /* Read data */
1694 if (out != NULL) {
1695 falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1696 memcpy(out, &reg, len);
1699 return 0;
1702 static size_t
1703 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1705 return min(FALCON_SPI_MAX_LEN,
1706 (spi->block_size - (start & (spi->block_size - 1))));
1709 static inline u8
1710 efx_spi_munge_command(const struct efx_spi_device *spi,
1711 const u8 command, const unsigned int address)
1713 return command | (((address >> 8) & spi->munge_address) << 3);
1716 /* Wait up to 10 ms for buffered write completion */
1717 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1719 struct efx_nic *efx = spi->efx;
1720 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1721 u8 status;
1722 int rc;
1724 for (;;) {
1725 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1726 &status, sizeof(status));
1727 if (rc)
1728 return rc;
1729 if (!(status & SPI_STATUS_NRDY))
1730 return 0;
1731 if (time_after_eq(jiffies, timeout)) {
1732 EFX_ERR(efx, "SPI write timeout on device %d"
1733 " last status=0x%02x\n",
1734 spi->device_id, status);
1735 return -ETIMEDOUT;
1737 schedule_timeout_uninterruptible(1);
1741 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1742 size_t len, size_t *retlen, u8 *buffer)
1744 size_t block_len, pos = 0;
1745 unsigned int command;
1746 int rc = 0;
1748 while (pos < len) {
1749 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1751 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1752 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1753 buffer + pos, block_len);
1754 if (rc)
1755 break;
1756 pos += block_len;
1758 /* Avoid locking up the system */
1759 cond_resched();
1760 if (signal_pending(current)) {
1761 rc = -EINTR;
1762 break;
1766 if (retlen)
1767 *retlen = pos;
1768 return rc;
1771 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1772 size_t len, size_t *retlen, const u8 *buffer)
1774 u8 verify_buffer[FALCON_SPI_MAX_LEN];
1775 size_t block_len, pos = 0;
1776 unsigned int command;
1777 int rc = 0;
1779 while (pos < len) {
1780 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1781 if (rc)
1782 break;
1784 block_len = min(len - pos,
1785 falcon_spi_write_limit(spi, start + pos));
1786 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1787 rc = falcon_spi_cmd(spi, command, start + pos,
1788 buffer + pos, NULL, block_len);
1789 if (rc)
1790 break;
1792 rc = falcon_spi_wait_write(spi);
1793 if (rc)
1794 break;
1796 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1797 rc = falcon_spi_cmd(spi, command, start + pos,
1798 NULL, verify_buffer, block_len);
1799 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1800 rc = -EIO;
1801 break;
1804 pos += block_len;
1806 /* Avoid locking up the system */
1807 cond_resched();
1808 if (signal_pending(current)) {
1809 rc = -EINTR;
1810 break;
1814 if (retlen)
1815 *retlen = pos;
1816 return rc;
1819 /**************************************************************************
1821 * MAC wrapper
1823 **************************************************************************
1825 void falcon_drain_tx_fifo(struct efx_nic *efx)
1827 efx_oword_t temp;
1828 int count;
1830 if ((falcon_rev(efx) < FALCON_REV_B0) ||
1831 (efx->loopback_mode != LOOPBACK_NONE))
1832 return;
1834 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1835 /* There is no point in draining more than once */
1836 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1837 return;
1839 /* MAC stats will fail whilst the TX fifo is draining. Serialise
1840 * the drain sequence with the statistics fetch */
1841 spin_lock(&efx->stats_lock);
1843 EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1);
1844 falcon_write(efx, &temp, MAC0_CTRL_REG_KER);
1846 /* Reset the MAC and EM block. */
1847 falcon_read(efx, &temp, GLB_CTL_REG_KER);
1848 EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1);
1849 EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1);
1850 EFX_SET_OWORD_FIELD(temp, RST_EM, 1);
1851 falcon_write(efx, &temp, GLB_CTL_REG_KER);
1853 count = 0;
1854 while (1) {
1855 falcon_read(efx, &temp, GLB_CTL_REG_KER);
1856 if (!EFX_OWORD_FIELD(temp, RST_XGTX) &&
1857 !EFX_OWORD_FIELD(temp, RST_XGRX) &&
1858 !EFX_OWORD_FIELD(temp, RST_EM)) {
1859 EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1860 count);
1861 break;
1863 if (count > 20) {
1864 EFX_ERR(efx, "MAC reset failed\n");
1865 break;
1867 count++;
1868 udelay(10);
1871 spin_unlock(&efx->stats_lock);
1873 /* If we've reset the EM block and the link is up, then
1874 * we'll have to kick the XAUI link so the PHY can recover */
1875 if (efx->link_up && EFX_WORKAROUND_5147(efx))
1876 falcon_reset_xaui(efx);
1879 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1881 efx_oword_t temp;
1883 if (falcon_rev(efx) < FALCON_REV_B0)
1884 return;
1886 /* Isolate the MAC -> RX */
1887 falcon_read(efx, &temp, RX_CFG_REG_KER);
1888 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0);
1889 falcon_write(efx, &temp, RX_CFG_REG_KER);
1891 if (!efx->link_up)
1892 falcon_drain_tx_fifo(efx);
1895 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1897 efx_oword_t reg;
1898 int link_speed;
1899 bool tx_fc;
1901 if (efx->link_options & GM_LPA_10000)
1902 link_speed = 0x3;
1903 else if (efx->link_options & GM_LPA_1000)
1904 link_speed = 0x2;
1905 else if (efx->link_options & GM_LPA_100)
1906 link_speed = 0x1;
1907 else
1908 link_speed = 0x0;
1909 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1910 * as advertised. Disable to ensure packets are not
1911 * indefinitely held and TX queue can be flushed at any point
1912 * while the link is down. */
1913 EFX_POPULATE_OWORD_5(reg,
1914 MAC_XOFF_VAL, 0xffff /* max pause time */,
1915 MAC_BCAD_ACPT, 1,
1916 MAC_UC_PROM, efx->promiscuous,
1917 MAC_LINK_STATUS, 1, /* always set */
1918 MAC_SPEED, link_speed);
1919 /* On B0, MAC backpressure can be disabled and packets get
1920 * discarded. */
1921 if (falcon_rev(efx) >= FALCON_REV_B0) {
1922 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1923 !efx->link_up);
1926 falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1928 /* Restore the multicast hash registers. */
1929 falcon_set_multicast_hash(efx);
1931 /* Transmission of pause frames when RX crosses the threshold is
1932 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1933 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1934 tx_fc = !!(efx->flow_control & EFX_FC_TX);
1935 falcon_read(efx, &reg, RX_CFG_REG_KER);
1936 EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
1938 /* Unisolate the MAC -> RX */
1939 if (falcon_rev(efx) >= FALCON_REV_B0)
1940 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
1941 falcon_write(efx, &reg, RX_CFG_REG_KER);
1944 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
1946 efx_oword_t reg;
1947 u32 *dma_done;
1948 int i;
1950 if (disable_dma_stats)
1951 return 0;
1953 /* Statistics fetch will fail if the MAC is in TX drain */
1954 if (falcon_rev(efx) >= FALCON_REV_B0) {
1955 efx_oword_t temp;
1956 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1957 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1958 return 0;
1961 dma_done = (efx->stats_buffer.addr + done_offset);
1962 *dma_done = FALCON_STATS_NOT_DONE;
1963 wmb(); /* ensure done flag is clear */
1965 /* Initiate DMA transfer of stats */
1966 EFX_POPULATE_OWORD_2(reg,
1967 MAC_STAT_DMA_CMD, 1,
1968 MAC_STAT_DMA_ADR,
1969 efx->stats_buffer.dma_addr);
1970 falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
1972 /* Wait for transfer to complete */
1973 for (i = 0; i < 400; i++) {
1974 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
1975 rmb(); /* Ensure the stats are valid. */
1976 return 0;
1978 udelay(10);
1981 EFX_ERR(efx, "timed out waiting for statistics\n");
1982 return -ETIMEDOUT;
1985 /**************************************************************************
1987 * PHY access via GMII
1989 **************************************************************************
1992 /* Use the top bit of the MII PHY id to indicate the PHY type
1993 * (1G/10G), with the remaining bits as the actual PHY id.
1995 * This allows us to avoid leaking information from the mii_if_info
1996 * structure into other data structures.
1998 #define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR)
1999 #define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
2000 #define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1)
2001 #define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1)
2002 #define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1))
2005 /* Packing the clause 45 port and device fields into a single value */
2006 #define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
2007 #define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH
2008 #define MD_DEV_ADR_COMP_LBN 0
2009 #define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH
2012 /* Wait for GMII access to complete */
2013 static int falcon_gmii_wait(struct efx_nic *efx)
2015 efx_dword_t md_stat;
2016 int count;
2018 for (count = 0; count < 1000; count++) { /* wait upto 10ms */
2019 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
2020 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
2021 if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
2022 EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
2023 EFX_ERR(efx, "error from GMII access "
2024 EFX_DWORD_FMT"\n",
2025 EFX_DWORD_VAL(md_stat));
2026 return -EIO;
2028 return 0;
2030 udelay(10);
2032 EFX_ERR(efx, "timed out waiting for GMII\n");
2033 return -ETIMEDOUT;
2036 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
2037 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
2038 int addr, int value)
2040 struct efx_nic *efx = netdev_priv(net_dev);
2041 unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
2042 efx_oword_t reg;
2044 /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
2045 * chosen so that the only current user, Falcon, can take the
2046 * packed value and use them directly.
2047 * Fail to build if this assumption is broken.
2049 BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
2050 BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
2051 BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
2052 BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
2054 if (phy_id2 == PHY_ADDR_INVALID)
2055 return;
2057 /* See falcon_mdio_read for an explanation. */
2058 if (!(phy_id & FALCON_PHY_ID_10G)) {
2059 int mmd = ffs(efx->phy_op->mmds) - 1;
2060 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
2061 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
2062 & FALCON_PHY_ID_ID_MASK;
2065 EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
2066 addr, value);
2068 spin_lock_bh(&efx->phy_lock);
2070 /* Check MII not currently being accessed */
2071 if (falcon_gmii_wait(efx) != 0)
2072 goto out;
2074 /* Write the address/ID register */
2075 EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2076 falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2078 EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
2079 falcon_write(efx, &reg, MD_ID_REG_KER);
2081 /* Write data */
2082 EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2083 falcon_write(efx, &reg, MD_TXD_REG_KER);
2085 EFX_POPULATE_OWORD_2(reg,
2086 MD_WRC, 1,
2087 MD_GC, 0);
2088 falcon_write(efx, &reg, MD_CS_REG_KER);
2090 /* Wait for data to be written */
2091 if (falcon_gmii_wait(efx) != 0) {
2092 /* Abort the write operation */
2093 EFX_POPULATE_OWORD_2(reg,
2094 MD_WRC, 0,
2095 MD_GC, 1);
2096 falcon_write(efx, &reg, MD_CS_REG_KER);
2097 udelay(10);
2100 out:
2101 spin_unlock_bh(&efx->phy_lock);
2104 /* Reads a GMII register from a PHY connected to Falcon. If no value
2105 * could be read, -1 will be returned. */
2106 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2108 struct efx_nic *efx = netdev_priv(net_dev);
2109 unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2110 efx_oword_t reg;
2111 int value = -1;
2113 if (phy_addr == PHY_ADDR_INVALID)
2114 return -1;
2116 /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2117 * but the generic Linux code does not make any distinction or have
2118 * any state for this.
2119 * We spot the case where someone tried to talk 22 to a 45 PHY and
2120 * redirect the request to the lowest numbered MMD as a clause45
2121 * request. This is enough to allow simple queries like id and link
2122 * state to succeed. TODO: We may need to do more in future.
2124 if (!(phy_id & FALCON_PHY_ID_10G)) {
2125 int mmd = ffs(efx->phy_op->mmds) - 1;
2126 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2127 phy_addr = mdio_clause45_pack(phy_addr, mmd)
2128 & FALCON_PHY_ID_ID_MASK;
2131 spin_lock_bh(&efx->phy_lock);
2133 /* Check MII not currently being accessed */
2134 if (falcon_gmii_wait(efx) != 0)
2135 goto out;
2137 EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2138 falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2140 EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2141 falcon_write(efx, &reg, MD_ID_REG_KER);
2143 /* Request data to be read */
2144 EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2145 falcon_write(efx, &reg, MD_CS_REG_KER);
2147 /* Wait for data to become available */
2148 value = falcon_gmii_wait(efx);
2149 if (value == 0) {
2150 falcon_read(efx, &reg, MD_RXD_REG_KER);
2151 value = EFX_OWORD_FIELD(reg, MD_RXD);
2152 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2153 phy_id, addr, value);
2154 } else {
2155 /* Abort the read operation */
2156 EFX_POPULATE_OWORD_2(reg,
2157 MD_RIC, 0,
2158 MD_GC, 1);
2159 falcon_write(efx, &reg, MD_CS_REG_KER);
2161 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2162 "error %d\n", phy_id, addr, value);
2165 out:
2166 spin_unlock_bh(&efx->phy_lock);
2168 return value;
2171 static void falcon_init_mdio(struct mii_if_info *gmii)
2173 gmii->mdio_read = falcon_mdio_read;
2174 gmii->mdio_write = falcon_mdio_write;
2175 gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2176 gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2179 static int falcon_probe_phy(struct efx_nic *efx)
2181 switch (efx->phy_type) {
2182 case PHY_TYPE_10XPRESS:
2183 efx->phy_op = &falcon_tenxpress_phy_ops;
2184 break;
2185 case PHY_TYPE_XFP:
2186 efx->phy_op = &falcon_xfp_phy_ops;
2187 break;
2188 default:
2189 EFX_ERR(efx, "Unknown PHY type %d\n",
2190 efx->phy_type);
2191 return -1;
2194 efx->loopback_modes = LOOPBACKS_10G_INTERNAL | efx->phy_op->loopbacks;
2195 return 0;
2198 /* This call is responsible for hooking in the MAC and PHY operations */
2199 int falcon_probe_port(struct efx_nic *efx)
2201 int rc;
2203 /* Hook in PHY operations table */
2204 rc = falcon_probe_phy(efx);
2205 if (rc)
2206 return rc;
2208 /* Set up GMII structure for PHY */
2209 efx->mii.supports_gmii = true;
2210 falcon_init_mdio(&efx->mii);
2212 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2213 if (falcon_rev(efx) >= FALCON_REV_B0)
2214 efx->flow_control = EFX_FC_RX | EFX_FC_TX;
2215 else
2216 efx->flow_control = EFX_FC_RX;
2218 /* Allocate buffer for stats */
2219 rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2220 FALCON_MAC_STATS_SIZE);
2221 if (rc)
2222 return rc;
2223 EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2224 (unsigned long long)efx->stats_buffer.dma_addr,
2225 efx->stats_buffer.addr,
2226 virt_to_phys(efx->stats_buffer.addr));
2228 return 0;
2231 void falcon_remove_port(struct efx_nic *efx)
2233 falcon_free_buffer(efx, &efx->stats_buffer);
2236 /**************************************************************************
2238 * Multicast filtering
2240 **************************************************************************
2243 void falcon_set_multicast_hash(struct efx_nic *efx)
2245 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2247 /* Broadcast packets go through the multicast hash filter.
2248 * ether_crc_le() of the broadcast address is 0xbe2612ff
2249 * so we always add bit 0xff to the mask.
2251 set_bit_le(0xff, mc_hash->byte);
2253 falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2254 falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2258 /**************************************************************************
2260 * Falcon test code
2262 **************************************************************************/
2264 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2266 struct falcon_nvconfig *nvconfig;
2267 struct efx_spi_device *spi;
2268 void *region;
2269 int rc, magic_num, struct_ver;
2270 __le16 *word, *limit;
2271 u32 csum;
2273 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2274 if (!region)
2275 return -ENOMEM;
2276 nvconfig = region + NVCONFIG_OFFSET;
2278 spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2279 mutex_lock(&efx->spi_lock);
2280 rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2281 mutex_unlock(&efx->spi_lock);
2282 if (rc) {
2283 EFX_ERR(efx, "Failed to read %s\n",
2284 efx->spi_flash ? "flash" : "EEPROM");
2285 rc = -EIO;
2286 goto out;
2289 magic_num = le16_to_cpu(nvconfig->board_magic_num);
2290 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2292 rc = -EINVAL;
2293 if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) {
2294 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2295 goto out;
2297 if (struct_ver < 2) {
2298 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2299 goto out;
2300 } else if (struct_ver < 4) {
2301 word = &nvconfig->board_magic_num;
2302 limit = (__le16 *) (nvconfig + 1);
2303 } else {
2304 word = region;
2305 limit = region + FALCON_NVCONFIG_END;
2307 for (csum = 0; word < limit; ++word)
2308 csum += le16_to_cpu(*word);
2310 if (~csum & 0xffff) {
2311 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2312 goto out;
2315 rc = 0;
2316 if (nvconfig_out)
2317 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2319 out:
2320 kfree(region);
2321 return rc;
2324 /* Registers tested in the falcon register test */
2325 static struct {
2326 unsigned address;
2327 efx_oword_t mask;
2328 } efx_test_registers[] = {
2329 { ADR_REGION_REG_KER,
2330 EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2331 { RX_CFG_REG_KER,
2332 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2333 { TX_CFG_REG_KER,
2334 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2335 { TX_CFG2_REG_KER,
2336 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2337 { MAC0_CTRL_REG_KER,
2338 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2339 { SRM_TX_DC_CFG_REG_KER,
2340 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2341 { RX_DC_CFG_REG_KER,
2342 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2343 { RX_DC_PF_WM_REG_KER,
2344 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2345 { DP_CTRL_REG,
2346 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2347 { XM_GLB_CFG_REG,
2348 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2349 { XM_TX_CFG_REG,
2350 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2351 { XM_RX_CFG_REG,
2352 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2353 { XM_RX_PARAM_REG,
2354 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2355 { XM_FC_REG,
2356 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2357 { XM_ADR_LO_REG,
2358 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2359 { XX_SD_CTL_REG,
2360 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2363 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2364 const efx_oword_t *mask)
2366 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2367 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2370 int falcon_test_registers(struct efx_nic *efx)
2372 unsigned address = 0, i, j;
2373 efx_oword_t mask, imask, original, reg, buf;
2375 /* Falcon should be in loopback to isolate the XMAC from the PHY */
2376 WARN_ON(!LOOPBACK_INTERNAL(efx));
2378 for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2379 address = efx_test_registers[i].address;
2380 mask = imask = efx_test_registers[i].mask;
2381 EFX_INVERT_OWORD(imask);
2383 falcon_read(efx, &original, address);
2385 /* bit sweep on and off */
2386 for (j = 0; j < 128; j++) {
2387 if (!EFX_EXTRACT_OWORD32(mask, j, j))
2388 continue;
2390 /* Test this testable bit can be set in isolation */
2391 EFX_AND_OWORD(reg, original, mask);
2392 EFX_SET_OWORD32(reg, j, j, 1);
2394 falcon_write(efx, &reg, address);
2395 falcon_read(efx, &buf, address);
2397 if (efx_masked_compare_oword(&reg, &buf, &mask))
2398 goto fail;
2400 /* Test this testable bit can be cleared in isolation */
2401 EFX_OR_OWORD(reg, original, mask);
2402 EFX_SET_OWORD32(reg, j, j, 0);
2404 falcon_write(efx, &reg, address);
2405 falcon_read(efx, &buf, address);
2407 if (efx_masked_compare_oword(&reg, &buf, &mask))
2408 goto fail;
2411 falcon_write(efx, &original, address);
2414 return 0;
2416 fail:
2417 EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2418 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2419 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2420 return -EIO;
2423 /**************************************************************************
2425 * Device reset
2427 **************************************************************************
2430 /* Resets NIC to known state. This routine must be called in process
2431 * context and is allowed to sleep. */
2432 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2434 struct falcon_nic_data *nic_data = efx->nic_data;
2435 efx_oword_t glb_ctl_reg_ker;
2436 int rc;
2438 EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2440 /* Initiate device reset */
2441 if (method == RESET_TYPE_WORLD) {
2442 rc = pci_save_state(efx->pci_dev);
2443 if (rc) {
2444 EFX_ERR(efx, "failed to backup PCI state of primary "
2445 "function prior to hardware reset\n");
2446 goto fail1;
2448 if (FALCON_IS_DUAL_FUNC(efx)) {
2449 rc = pci_save_state(nic_data->pci_dev2);
2450 if (rc) {
2451 EFX_ERR(efx, "failed to backup PCI state of "
2452 "secondary function prior to "
2453 "hardware reset\n");
2454 goto fail2;
2458 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2459 EXT_PHY_RST_DUR, 0x7,
2460 SWRST, 1);
2461 } else {
2462 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2463 EXCLUDE_FROM_RESET : 0);
2465 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2466 EXT_PHY_RST_CTL, reset_phy,
2467 PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2468 PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2469 PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2470 EE_RST_CTL, EXCLUDE_FROM_RESET,
2471 EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2472 SWRST, 1);
2474 falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2476 EFX_LOG(efx, "waiting for hardware reset\n");
2477 schedule_timeout_uninterruptible(HZ / 20);
2479 /* Restore PCI configuration if needed */
2480 if (method == RESET_TYPE_WORLD) {
2481 if (FALCON_IS_DUAL_FUNC(efx)) {
2482 rc = pci_restore_state(nic_data->pci_dev2);
2483 if (rc) {
2484 EFX_ERR(efx, "failed to restore PCI config for "
2485 "the secondary function\n");
2486 goto fail3;
2489 rc = pci_restore_state(efx->pci_dev);
2490 if (rc) {
2491 EFX_ERR(efx, "failed to restore PCI config for the "
2492 "primary function\n");
2493 goto fail4;
2495 EFX_LOG(efx, "successfully restored PCI config\n");
2498 /* Assert that reset complete */
2499 falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2500 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2501 rc = -ETIMEDOUT;
2502 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2503 goto fail5;
2505 EFX_LOG(efx, "hardware reset complete\n");
2507 return 0;
2509 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2510 fail2:
2511 fail3:
2512 pci_restore_state(efx->pci_dev);
2513 fail1:
2514 fail4:
2515 fail5:
2516 return rc;
2519 /* Zeroes out the SRAM contents. This routine must be called in
2520 * process context and is allowed to sleep.
2522 static int falcon_reset_sram(struct efx_nic *efx)
2524 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2525 int count;
2527 /* Set the SRAM wake/sleep GPIO appropriately. */
2528 falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2529 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2530 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2531 falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2533 /* Initiate SRAM reset */
2534 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2535 SRAM_OOB_BT_INIT_EN, 1,
2536 SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2537 falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2539 /* Wait for SRAM reset to complete */
2540 count = 0;
2541 do {
2542 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2544 /* SRAM reset is slow; expect around 16ms */
2545 schedule_timeout_uninterruptible(HZ / 50);
2547 /* Check for reset complete */
2548 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2549 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2550 EFX_LOG(efx, "SRAM reset complete\n");
2552 return 0;
2554 } while (++count < 20); /* wait upto 0.4 sec */
2556 EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2557 return -ETIMEDOUT;
2560 static int falcon_spi_device_init(struct efx_nic *efx,
2561 struct efx_spi_device **spi_device_ret,
2562 unsigned int device_id, u32 device_type)
2564 struct efx_spi_device *spi_device;
2566 if (device_type != 0) {
2567 spi_device = kmalloc(sizeof(*spi_device), GFP_KERNEL);
2568 if (!spi_device)
2569 return -ENOMEM;
2570 spi_device->device_id = device_id;
2571 spi_device->size =
2572 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2573 spi_device->addr_len =
2574 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2575 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2576 spi_device->addr_len == 1);
2577 spi_device->erase_command =
2578 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2579 spi_device->erase_size =
2580 1 << SPI_DEV_TYPE_FIELD(device_type,
2581 SPI_DEV_TYPE_ERASE_SIZE);
2582 spi_device->block_size =
2583 1 << SPI_DEV_TYPE_FIELD(device_type,
2584 SPI_DEV_TYPE_BLOCK_SIZE);
2586 spi_device->efx = efx;
2587 } else {
2588 spi_device = NULL;
2591 kfree(*spi_device_ret);
2592 *spi_device_ret = spi_device;
2593 return 0;
2597 static void falcon_remove_spi_devices(struct efx_nic *efx)
2599 kfree(efx->spi_eeprom);
2600 efx->spi_eeprom = NULL;
2601 kfree(efx->spi_flash);
2602 efx->spi_flash = NULL;
2605 /* Extract non-volatile configuration */
2606 static int falcon_probe_nvconfig(struct efx_nic *efx)
2608 struct falcon_nvconfig *nvconfig;
2609 int board_rev;
2610 int rc;
2612 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2613 if (!nvconfig)
2614 return -ENOMEM;
2616 rc = falcon_read_nvram(efx, nvconfig);
2617 if (rc == -EINVAL) {
2618 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2619 efx->phy_type = PHY_TYPE_NONE;
2620 efx->mii.phy_id = PHY_ADDR_INVALID;
2621 board_rev = 0;
2622 rc = 0;
2623 } else if (rc) {
2624 goto fail1;
2625 } else {
2626 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2627 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2629 efx->phy_type = v2->port0_phy_type;
2630 efx->mii.phy_id = v2->port0_phy_addr;
2631 board_rev = le16_to_cpu(v2->board_revision);
2633 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2634 __le32 fl = v3->spi_device_type[EE_SPI_FLASH];
2635 __le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
2636 rc = falcon_spi_device_init(efx, &efx->spi_flash,
2637 EE_SPI_FLASH,
2638 le32_to_cpu(fl));
2639 if (rc)
2640 goto fail2;
2641 rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
2642 EE_SPI_EEPROM,
2643 le32_to_cpu(ee));
2644 if (rc)
2645 goto fail2;
2649 /* Read the MAC addresses */
2650 memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2652 EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2654 efx_set_board_info(efx, board_rev);
2656 kfree(nvconfig);
2657 return 0;
2659 fail2:
2660 falcon_remove_spi_devices(efx);
2661 fail1:
2662 kfree(nvconfig);
2663 return rc;
2666 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2667 * count, port speed). Set workaround and feature flags accordingly.
2669 static int falcon_probe_nic_variant(struct efx_nic *efx)
2671 efx_oword_t altera_build;
2673 falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2674 if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2675 EFX_ERR(efx, "Falcon FPGA not supported\n");
2676 return -ENODEV;
2679 switch (falcon_rev(efx)) {
2680 case FALCON_REV_A0:
2681 case 0xff:
2682 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2683 return -ENODEV;
2685 case FALCON_REV_A1:{
2686 efx_oword_t nic_stat;
2688 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2690 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2691 EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2692 return -ENODEV;
2694 if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) {
2695 EFX_ERR(efx, "1G mode not supported\n");
2696 return -ENODEV;
2698 break;
2701 case FALCON_REV_B0:
2702 break;
2704 default:
2705 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2706 return -ENODEV;
2709 return 0;
2712 /* Probe all SPI devices on the NIC */
2713 static void falcon_probe_spi_devices(struct efx_nic *efx)
2715 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2716 bool has_flash, has_eeprom, boot_is_external;
2718 falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
2719 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2720 falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2722 has_flash = EFX_OWORD_FIELD(nic_stat, SF_PRST);
2723 has_eeprom = EFX_OWORD_FIELD(nic_stat, EE_PRST);
2724 boot_is_external = EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE);
2726 if (has_flash) {
2727 /* Default flash SPI device: Atmel AT25F1024
2728 * 128 KB, 24-bit address, 32 KB erase block,
2729 * 256 B write block
2731 u32 flash_device_type =
2732 (17 << SPI_DEV_TYPE_SIZE_LBN)
2733 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
2734 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
2735 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
2736 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN);
2738 falcon_spi_device_init(efx, &efx->spi_flash,
2739 EE_SPI_FLASH, flash_device_type);
2741 if (!boot_is_external) {
2742 /* Disable VPD and set clock dividers to safe
2743 * values for initial programming.
2745 EFX_LOG(efx, "Booted from internal ASIC settings;"
2746 " setting SPI config\n");
2747 EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
2748 /* 125 MHz / 7 ~= 20 MHz */
2749 EE_SF_CLOCK_DIV, 7,
2750 /* 125 MHz / 63 ~= 2 MHz */
2751 EE_EE_CLOCK_DIV, 63);
2752 falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2756 if (has_eeprom) {
2757 u32 eeprom_device_type;
2759 /* If it has no flash, it must have a large EEPROM
2760 * for chip config; otherwise check whether 9-bit
2761 * addressing is used for VPD configuration
2763 if (has_flash &&
2764 (!boot_is_external ||
2765 EFX_OWORD_FIELD(ee_vpd_cfg, EE_VPD_EN_AD9_MODE))) {
2766 /* Default SPI device: Atmel AT25040 or similar
2767 * 512 B, 9-bit address, 8 B write block
2769 eeprom_device_type =
2770 (9 << SPI_DEV_TYPE_SIZE_LBN)
2771 | (1 << SPI_DEV_TYPE_ADDR_LEN_LBN)
2772 | (3 << SPI_DEV_TYPE_BLOCK_SIZE_LBN);
2773 } else {
2774 /* "Large" SPI device: Atmel AT25640 or similar
2775 * 8 KB, 16-bit address, 32 B write block
2777 eeprom_device_type =
2778 (13 << SPI_DEV_TYPE_SIZE_LBN)
2779 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
2780 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN);
2783 falcon_spi_device_init(efx, &efx->spi_eeprom,
2784 EE_SPI_EEPROM, eeprom_device_type);
2787 EFX_LOG(efx, "flash is %s, EEPROM is %s\n",
2788 (has_flash ? "present" : "absent"),
2789 (has_eeprom ? "present" : "absent"));
2792 int falcon_probe_nic(struct efx_nic *efx)
2794 struct falcon_nic_data *nic_data;
2795 int rc;
2797 /* Allocate storage for hardware specific data */
2798 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2799 if (!nic_data)
2800 return -ENOMEM;
2801 efx->nic_data = nic_data;
2803 /* Determine number of ports etc. */
2804 rc = falcon_probe_nic_variant(efx);
2805 if (rc)
2806 goto fail1;
2808 /* Probe secondary function if expected */
2809 if (FALCON_IS_DUAL_FUNC(efx)) {
2810 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2812 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2813 dev))) {
2814 if (dev->bus == efx->pci_dev->bus &&
2815 dev->devfn == efx->pci_dev->devfn + 1) {
2816 nic_data->pci_dev2 = dev;
2817 break;
2820 if (!nic_data->pci_dev2) {
2821 EFX_ERR(efx, "failed to find secondary function\n");
2822 rc = -ENODEV;
2823 goto fail2;
2827 /* Now we can reset the NIC */
2828 rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2829 if (rc) {
2830 EFX_ERR(efx, "failed to reset NIC\n");
2831 goto fail3;
2834 /* Allocate memory for INT_KER */
2835 rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2836 if (rc)
2837 goto fail4;
2838 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2840 EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2841 (unsigned long long)efx->irq_status.dma_addr,
2842 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2844 falcon_probe_spi_devices(efx);
2846 /* Read in the non-volatile configuration */
2847 rc = falcon_probe_nvconfig(efx);
2848 if (rc)
2849 goto fail5;
2851 /* Initialise I2C adapter */
2852 efx->i2c_adap.owner = THIS_MODULE;
2853 nic_data->i2c_data = falcon_i2c_bit_operations;
2854 nic_data->i2c_data.data = efx;
2855 efx->i2c_adap.algo_data = &nic_data->i2c_data;
2856 efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2857 strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2858 rc = i2c_bit_add_bus(&efx->i2c_adap);
2859 if (rc)
2860 goto fail5;
2862 return 0;
2864 fail5:
2865 falcon_remove_spi_devices(efx);
2866 falcon_free_buffer(efx, &efx->irq_status);
2867 fail4:
2868 fail3:
2869 if (nic_data->pci_dev2) {
2870 pci_dev_put(nic_data->pci_dev2);
2871 nic_data->pci_dev2 = NULL;
2873 fail2:
2874 fail1:
2875 kfree(efx->nic_data);
2876 return rc;
2879 /* This call performs hardware-specific global initialisation, such as
2880 * defining the descriptor cache sizes and number of RSS channels.
2881 * It does not set up any buffers, descriptor rings or event queues.
2883 int falcon_init_nic(struct efx_nic *efx)
2885 efx_oword_t temp;
2886 unsigned thresh;
2887 int rc;
2889 /* Use on-chip SRAM */
2890 falcon_read(efx, &temp, NIC_STAT_REG);
2891 EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2892 falcon_write(efx, &temp, NIC_STAT_REG);
2894 /* Set buffer table mode */
2895 EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
2896 falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
2898 rc = falcon_reset_sram(efx);
2899 if (rc)
2900 return rc;
2902 /* Set positions of descriptor caches in SRAM. */
2903 EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2904 falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
2905 EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2906 falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
2908 /* Set TX descriptor cache size. */
2909 BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
2910 EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2911 falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
2913 /* Set RX descriptor cache size. Set low watermark to size-8, as
2914 * this allows most efficient prefetching.
2916 BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
2917 EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2918 falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
2919 EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2920 falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
2922 /* Clear the parity enables on the TX data fifos as
2923 * they produce false parity errors because of timing issues
2925 if (EFX_WORKAROUND_5129(efx)) {
2926 falcon_read(efx, &temp, SPARE_REG_KER);
2927 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
2928 falcon_write(efx, &temp, SPARE_REG_KER);
2931 /* Enable all the genuinely fatal interrupts. (They are still
2932 * masked by the overall interrupt mask, controlled by
2933 * falcon_interrupts()).
2935 * Note: All other fatal interrupts are enabled
2937 EFX_POPULATE_OWORD_3(temp,
2938 ILL_ADR_INT_KER_EN, 1,
2939 RBUF_OWN_INT_KER_EN, 1,
2940 TBUF_OWN_INT_KER_EN, 1);
2941 EFX_INVERT_OWORD(temp);
2942 falcon_write(efx, &temp, FATAL_INTR_REG_KER);
2944 if (EFX_WORKAROUND_7244(efx)) {
2945 falcon_read(efx, &temp, RX_FILTER_CTL_REG);
2946 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
2947 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
2948 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
2949 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
2950 falcon_write(efx, &temp, RX_FILTER_CTL_REG);
2953 falcon_setup_rss_indir_table(efx);
2955 /* Setup RX. Wait for descriptor is broken and must
2956 * be disabled. RXDP recovery shouldn't be needed, but is.
2958 falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
2959 EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
2960 EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
2961 if (EFX_WORKAROUND_5583(efx))
2962 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
2963 falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
2965 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
2966 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
2968 falcon_read(efx, &temp, TX_CFG2_REG_KER);
2969 EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
2970 EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
2971 EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
2972 EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
2973 EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
2974 /* Enable SW_EV to inherit in char driver - assume harmless here */
2975 EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
2976 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
2977 EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
2978 /* Squash TX of packets of 16 bytes or less */
2979 if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
2980 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
2981 falcon_write(efx, &temp, TX_CFG2_REG_KER);
2983 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2984 * descriptors (which is bad).
2986 falcon_read(efx, &temp, TX_CFG_REG_KER);
2987 EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
2988 falcon_write(efx, &temp, TX_CFG_REG_KER);
2990 /* RX config */
2991 falcon_read(efx, &temp, RX_CFG_REG_KER);
2992 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
2993 if (EFX_WORKAROUND_7575(efx))
2994 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
2995 (3 * 4096) / 32);
2996 if (falcon_rev(efx) >= FALCON_REV_B0)
2997 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
2999 /* RX FIFO flow control thresholds */
3000 thresh = ((rx_xon_thresh_bytes >= 0) ?
3001 rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
3002 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
3003 thresh = ((rx_xoff_thresh_bytes >= 0) ?
3004 rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
3005 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
3006 /* RX control FIFO thresholds [32 entries] */
3007 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
3008 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
3009 falcon_write(efx, &temp, RX_CFG_REG_KER);
3011 /* Set destination of both TX and RX Flush events */
3012 if (falcon_rev(efx) >= FALCON_REV_B0) {
3013 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
3014 falcon_write(efx, &temp, DP_CTRL_REG);
3017 return 0;
3020 void falcon_remove_nic(struct efx_nic *efx)
3022 struct falcon_nic_data *nic_data = efx->nic_data;
3023 int rc;
3025 rc = i2c_del_adapter(&efx->i2c_adap);
3026 BUG_ON(rc);
3028 falcon_remove_spi_devices(efx);
3029 falcon_free_buffer(efx, &efx->irq_status);
3031 falcon_reset_hw(efx, RESET_TYPE_ALL);
3033 /* Release the second function after the reset */
3034 if (nic_data->pci_dev2) {
3035 pci_dev_put(nic_data->pci_dev2);
3036 nic_data->pci_dev2 = NULL;
3039 /* Tear down the private nic state */
3040 kfree(efx->nic_data);
3041 efx->nic_data = NULL;
3044 void falcon_update_nic_stats(struct efx_nic *efx)
3046 efx_oword_t cnt;
3048 falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
3049 efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
3052 /**************************************************************************
3054 * Revision-dependent attributes used by efx.c
3056 **************************************************************************
3059 struct efx_nic_type falcon_a_nic_type = {
3060 .mem_bar = 2,
3061 .mem_map_size = 0x20000,
3062 .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
3063 .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
3064 .buf_tbl_base = BUF_TBL_KER_A1,
3065 .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
3066 .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
3067 .txd_ring_mask = FALCON_TXD_RING_MASK,
3068 .rxd_ring_mask = FALCON_RXD_RING_MASK,
3069 .evq_size = FALCON_EVQ_SIZE,
3070 .max_dma_mask = FALCON_DMA_MASK,
3071 .tx_dma_mask = FALCON_TX_DMA_MASK,
3072 .bug5391_mask = 0xf,
3073 .rx_xoff_thresh = 2048,
3074 .rx_xon_thresh = 512,
3075 .rx_buffer_padding = 0x24,
3076 .max_interrupt_mode = EFX_INT_MODE_MSI,
3077 .phys_addr_channels = 4,
3080 struct efx_nic_type falcon_b_nic_type = {
3081 .mem_bar = 2,
3082 /* Map everything up to and including the RSS indirection
3083 * table. Don't map MSI-X table, MSI-X PBA since Linux
3084 * requires that they not be mapped. */
3085 .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
3086 .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
3087 .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
3088 .buf_tbl_base = BUF_TBL_KER_B0,
3089 .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
3090 .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
3091 .txd_ring_mask = FALCON_TXD_RING_MASK,
3092 .rxd_ring_mask = FALCON_RXD_RING_MASK,
3093 .evq_size = FALCON_EVQ_SIZE,
3094 .max_dma_mask = FALCON_DMA_MASK,
3095 .tx_dma_mask = FALCON_TX_DMA_MASK,
3096 .bug5391_mask = 0,
3097 .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
3098 .rx_xon_thresh = 27648, /* ~3*max MTU */
3099 .rx_buffer_padding = 0,
3100 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3101 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3102 * interrupt handler only supports 32
3103 * channels */