2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.408"
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <net/net_namespace.h>
76 #include <net/protocol.h>
77 #include <net/route.h>
80 #include <net/ip_fib.h>
81 #include "fib_lookup.h"
83 #define MAX_STAT_DEPTH 32
85 #define KEYLENGTH (8*sizeof(t_key))
87 typedef unsigned int t_key
;
91 #define NODE_TYPE_MASK 0x1UL
92 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94 #define IS_TNODE(n) (!(n->parent & T_LEAF))
95 #define IS_LEAF(n) (n->parent & T_LEAF)
103 unsigned long parent
;
105 struct hlist_head list
;
110 struct hlist_node hlist
;
113 struct list_head falh
;
117 unsigned long parent
;
119 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
121 unsigned int full_children
; /* KEYLENGTH bits needed */
122 unsigned int empty_children
; /* KEYLENGTH bits needed */
125 struct work_struct work
;
127 struct node
*child
[0];
130 #ifdef CONFIG_IP_FIB_TRIE_STATS
131 struct trie_use_stats
{
133 unsigned int backtrack
;
134 unsigned int semantic_match_passed
;
135 unsigned int semantic_match_miss
;
136 unsigned int null_node_hit
;
137 unsigned int resize_node_skipped
;
142 unsigned int totdepth
;
143 unsigned int maxdepth
;
146 unsigned int nullpointers
;
147 unsigned int prefixes
;
148 unsigned int nodesizes
[MAX_STAT_DEPTH
];
153 #ifdef CONFIG_IP_FIB_TRIE_STATS
154 struct trie_use_stats stats
;
158 static void put_child(struct trie
*t
, struct tnode
*tn
, int i
, struct node
*n
);
159 static void tnode_put_child_reorg(struct tnode
*tn
, int i
, struct node
*n
,
161 static struct node
*resize(struct trie
*t
, struct tnode
*tn
);
162 static struct tnode
*inflate(struct trie
*t
, struct tnode
*tn
);
163 static struct tnode
*halve(struct trie
*t
, struct tnode
*tn
);
165 static struct kmem_cache
*fn_alias_kmem __read_mostly
;
166 static struct kmem_cache
*trie_leaf_kmem __read_mostly
;
168 static inline struct tnode
*node_parent(struct node
*node
)
170 return (struct tnode
*)(node
->parent
& ~NODE_TYPE_MASK
);
173 static inline struct tnode
*node_parent_rcu(struct node
*node
)
175 struct tnode
*ret
= node_parent(node
);
177 return rcu_dereference(ret
);
180 /* Same as rcu_assign_pointer
181 * but that macro() assumes that value is a pointer.
183 static inline void node_set_parent(struct node
*node
, struct tnode
*ptr
)
186 node
->parent
= (unsigned long)ptr
| NODE_TYPE(node
);
189 static inline struct node
*tnode_get_child(struct tnode
*tn
, unsigned int i
)
191 BUG_ON(i
>= 1U << tn
->bits
);
196 static inline struct node
*tnode_get_child_rcu(struct tnode
*tn
, unsigned int i
)
198 struct node
*ret
= tnode_get_child(tn
, i
);
200 return rcu_dereference(ret
);
203 static inline int tnode_child_length(const struct tnode
*tn
)
205 return 1 << tn
->bits
;
208 static inline t_key
mask_pfx(t_key k
, unsigned short l
)
210 return (l
== 0) ? 0 : k
>> (KEYLENGTH
-l
) << (KEYLENGTH
-l
);
213 static inline t_key
tkey_extract_bits(t_key a
, int offset
, int bits
)
215 if (offset
< KEYLENGTH
)
216 return ((t_key
)(a
<< offset
)) >> (KEYLENGTH
- bits
);
221 static inline int tkey_equals(t_key a
, t_key b
)
226 static inline int tkey_sub_equals(t_key a
, int offset
, int bits
, t_key b
)
228 if (bits
== 0 || offset
>= KEYLENGTH
)
230 bits
= bits
> KEYLENGTH
? KEYLENGTH
: bits
;
231 return ((a
^ b
) << offset
) >> (KEYLENGTH
- bits
) == 0;
234 static inline int tkey_mismatch(t_key a
, int offset
, t_key b
)
241 while ((diff
<< i
) >> (KEYLENGTH
-1) == 0)
247 To understand this stuff, an understanding of keys and all their bits is
248 necessary. Every node in the trie has a key associated with it, but not
249 all of the bits in that key are significant.
251 Consider a node 'n' and its parent 'tp'.
253 If n is a leaf, every bit in its key is significant. Its presence is
254 necessitated by path compression, since during a tree traversal (when
255 searching for a leaf - unless we are doing an insertion) we will completely
256 ignore all skipped bits we encounter. Thus we need to verify, at the end of
257 a potentially successful search, that we have indeed been walking the
260 Note that we can never "miss" the correct key in the tree if present by
261 following the wrong path. Path compression ensures that segments of the key
262 that are the same for all keys with a given prefix are skipped, but the
263 skipped part *is* identical for each node in the subtrie below the skipped
264 bit! trie_insert() in this implementation takes care of that - note the
265 call to tkey_sub_equals() in trie_insert().
267 if n is an internal node - a 'tnode' here, the various parts of its key
268 have many different meanings.
271 _________________________________________________________________
272 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
273 -----------------------------------------------------------------
274 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
276 _________________________________________________________________
277 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
278 -----------------------------------------------------------------
279 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
286 First, let's just ignore the bits that come before the parent tp, that is
287 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
288 not use them for anything.
290 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
291 index into the parent's child array. That is, they will be used to find
292 'n' among tp's children.
294 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
297 All the bits we have seen so far are significant to the node n. The rest
298 of the bits are really not needed or indeed known in n->key.
300 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
301 n's child array, and will of course be different for each child.
304 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
309 static inline void check_tnode(const struct tnode
*tn
)
311 WARN_ON(tn
&& tn
->pos
+tn
->bits
> 32);
314 static const int halve_threshold
= 25;
315 static const int inflate_threshold
= 50;
316 static const int halve_threshold_root
= 8;
317 static const int inflate_threshold_root
= 15;
320 static void __alias_free_mem(struct rcu_head
*head
)
322 struct fib_alias
*fa
= container_of(head
, struct fib_alias
, rcu
);
323 kmem_cache_free(fn_alias_kmem
, fa
);
326 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
328 call_rcu(&fa
->rcu
, __alias_free_mem
);
331 static void __leaf_free_rcu(struct rcu_head
*head
)
333 struct leaf
*l
= container_of(head
, struct leaf
, rcu
);
334 kmem_cache_free(trie_leaf_kmem
, l
);
337 static inline void free_leaf(struct leaf
*l
)
339 call_rcu_bh(&l
->rcu
, __leaf_free_rcu
);
342 static void __leaf_info_free_rcu(struct rcu_head
*head
)
344 kfree(container_of(head
, struct leaf_info
, rcu
));
347 static inline void free_leaf_info(struct leaf_info
*leaf
)
349 call_rcu(&leaf
->rcu
, __leaf_info_free_rcu
);
352 static struct tnode
*tnode_alloc(size_t size
)
354 if (size
<= PAGE_SIZE
)
355 return kzalloc(size
, GFP_KERNEL
);
357 return __vmalloc(size
, GFP_KERNEL
| __GFP_ZERO
, PAGE_KERNEL
);
360 static void __tnode_vfree(struct work_struct
*arg
)
362 struct tnode
*tn
= container_of(arg
, struct tnode
, work
);
366 static void __tnode_free_rcu(struct rcu_head
*head
)
368 struct tnode
*tn
= container_of(head
, struct tnode
, rcu
);
369 size_t size
= sizeof(struct tnode
) +
370 (sizeof(struct node
*) << tn
->bits
);
372 if (size
<= PAGE_SIZE
)
375 INIT_WORK(&tn
->work
, __tnode_vfree
);
376 schedule_work(&tn
->work
);
380 static inline void tnode_free(struct tnode
*tn
)
383 free_leaf((struct leaf
*) tn
);
385 call_rcu(&tn
->rcu
, __tnode_free_rcu
);
388 static struct leaf
*leaf_new(void)
390 struct leaf
*l
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
393 INIT_HLIST_HEAD(&l
->list
);
398 static struct leaf_info
*leaf_info_new(int plen
)
400 struct leaf_info
*li
= kmalloc(sizeof(struct leaf_info
), GFP_KERNEL
);
403 INIT_LIST_HEAD(&li
->falh
);
408 static struct tnode
*tnode_new(t_key key
, int pos
, int bits
)
410 size_t sz
= sizeof(struct tnode
) + (sizeof(struct node
*) << bits
);
411 struct tnode
*tn
= tnode_alloc(sz
);
414 tn
->parent
= T_TNODE
;
418 tn
->full_children
= 0;
419 tn
->empty_children
= 1<<bits
;
422 pr_debug("AT %p s=%u %lu\n", tn
, (unsigned int) sizeof(struct tnode
),
423 (unsigned long) (sizeof(struct node
) << bits
));
428 * Check whether a tnode 'n' is "full", i.e. it is an internal node
429 * and no bits are skipped. See discussion in dyntree paper p. 6
432 static inline int tnode_full(const struct tnode
*tn
, const struct node
*n
)
434 if (n
== NULL
|| IS_LEAF(n
))
437 return ((struct tnode
*) n
)->pos
== tn
->pos
+ tn
->bits
;
440 static inline void put_child(struct trie
*t
, struct tnode
*tn
, int i
,
443 tnode_put_child_reorg(tn
, i
, n
, -1);
447 * Add a child at position i overwriting the old value.
448 * Update the value of full_children and empty_children.
451 static void tnode_put_child_reorg(struct tnode
*tn
, int i
, struct node
*n
,
454 struct node
*chi
= tn
->child
[i
];
457 BUG_ON(i
>= 1<<tn
->bits
);
459 /* update emptyChildren */
460 if (n
== NULL
&& chi
!= NULL
)
461 tn
->empty_children
++;
462 else if (n
!= NULL
&& chi
== NULL
)
463 tn
->empty_children
--;
465 /* update fullChildren */
467 wasfull
= tnode_full(tn
, chi
);
469 isfull
= tnode_full(tn
, n
);
470 if (wasfull
&& !isfull
)
472 else if (!wasfull
&& isfull
)
476 node_set_parent(n
, tn
);
478 rcu_assign_pointer(tn
->child
[i
], n
);
481 static struct node
*resize(struct trie
*t
, struct tnode
*tn
)
485 struct tnode
*old_tn
;
486 int inflate_threshold_use
;
487 int halve_threshold_use
;
493 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
494 tn
, inflate_threshold
, halve_threshold
);
497 if (tn
->empty_children
== tnode_child_length(tn
)) {
502 if (tn
->empty_children
== tnode_child_length(tn
) - 1)
503 for (i
= 0; i
< tnode_child_length(tn
); i
++) {
510 /* compress one level */
511 node_set_parent(n
, NULL
);
516 * Double as long as the resulting node has a number of
517 * nonempty nodes that are above the threshold.
521 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
522 * the Helsinki University of Technology and Matti Tikkanen of Nokia
523 * Telecommunications, page 6:
524 * "A node is doubled if the ratio of non-empty children to all
525 * children in the *doubled* node is at least 'high'."
527 * 'high' in this instance is the variable 'inflate_threshold'. It
528 * is expressed as a percentage, so we multiply it with
529 * tnode_child_length() and instead of multiplying by 2 (since the
530 * child array will be doubled by inflate()) and multiplying
531 * the left-hand side by 100 (to handle the percentage thing) we
532 * multiply the left-hand side by 50.
534 * The left-hand side may look a bit weird: tnode_child_length(tn)
535 * - tn->empty_children is of course the number of non-null children
536 * in the current node. tn->full_children is the number of "full"
537 * children, that is non-null tnodes with a skip value of 0.
538 * All of those will be doubled in the resulting inflated tnode, so
539 * we just count them one extra time here.
541 * A clearer way to write this would be:
543 * to_be_doubled = tn->full_children;
544 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
547 * new_child_length = tnode_child_length(tn) * 2;
549 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
551 * if (new_fill_factor >= inflate_threshold)
553 * ...and so on, tho it would mess up the while () loop.
556 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
560 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
561 * inflate_threshold * new_child_length
563 * expand not_to_be_doubled and to_be_doubled, and shorten:
564 * 100 * (tnode_child_length(tn) - tn->empty_children +
565 * tn->full_children) >= inflate_threshold * new_child_length
567 * expand new_child_length:
568 * 100 * (tnode_child_length(tn) - tn->empty_children +
569 * tn->full_children) >=
570 * inflate_threshold * tnode_child_length(tn) * 2
573 * 50 * (tn->full_children + tnode_child_length(tn) -
574 * tn->empty_children) >= inflate_threshold *
575 * tnode_child_length(tn)
581 /* Keep root node larger */
584 inflate_threshold_use
= inflate_threshold_root
;
586 inflate_threshold_use
= inflate_threshold
;
590 while ((tn
->full_children
> 0 && max_resize
-- &&
591 50 * (tn
->full_children
+ tnode_child_length(tn
)
592 - tn
->empty_children
)
593 >= inflate_threshold_use
* tnode_child_length(tn
))) {
600 #ifdef CONFIG_IP_FIB_TRIE_STATS
601 t
->stats
.resize_node_skipped
++;
607 if (max_resize
< 0) {
609 pr_warning("Fix inflate_threshold_root."
610 " Now=%d size=%d bits\n",
611 inflate_threshold_root
, tn
->bits
);
613 pr_warning("Fix inflate_threshold."
614 " Now=%d size=%d bits\n",
615 inflate_threshold
, tn
->bits
);
621 * Halve as long as the number of empty children in this
622 * node is above threshold.
626 /* Keep root node larger */
629 halve_threshold_use
= halve_threshold_root
;
631 halve_threshold_use
= halve_threshold
;
635 while (tn
->bits
> 1 && max_resize
-- &&
636 100 * (tnode_child_length(tn
) - tn
->empty_children
) <
637 halve_threshold_use
* tnode_child_length(tn
)) {
643 #ifdef CONFIG_IP_FIB_TRIE_STATS
644 t
->stats
.resize_node_skipped
++;
650 if (max_resize
< 0) {
652 pr_warning("Fix halve_threshold_root."
653 " Now=%d size=%d bits\n",
654 halve_threshold_root
, tn
->bits
);
656 pr_warning("Fix halve_threshold."
657 " Now=%d size=%d bits\n",
658 halve_threshold
, tn
->bits
);
661 /* Only one child remains */
662 if (tn
->empty_children
== tnode_child_length(tn
) - 1)
663 for (i
= 0; i
< tnode_child_length(tn
); i
++) {
670 /* compress one level */
672 node_set_parent(n
, NULL
);
677 return (struct node
*) tn
;
680 static struct tnode
*inflate(struct trie
*t
, struct tnode
*tn
)
682 struct tnode
*oldtnode
= tn
;
683 int olen
= tnode_child_length(tn
);
686 pr_debug("In inflate\n");
688 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
, oldtnode
->bits
+ 1);
691 return ERR_PTR(-ENOMEM
);
694 * Preallocate and store tnodes before the actual work so we
695 * don't get into an inconsistent state if memory allocation
696 * fails. In case of failure we return the oldnode and inflate
697 * of tnode is ignored.
700 for (i
= 0; i
< olen
; i
++) {
703 inode
= (struct tnode
*) tnode_get_child(oldtnode
, i
);
706 inode
->pos
== oldtnode
->pos
+ oldtnode
->bits
&&
708 struct tnode
*left
, *right
;
709 t_key m
= ~0U << (KEYLENGTH
- 1) >> inode
->pos
;
711 left
= tnode_new(inode
->key
&(~m
), inode
->pos
+ 1,
716 right
= tnode_new(inode
->key
|m
, inode
->pos
+ 1,
724 put_child(t
, tn
, 2*i
, (struct node
*) left
);
725 put_child(t
, tn
, 2*i
+1, (struct node
*) right
);
729 for (i
= 0; i
< olen
; i
++) {
731 struct node
*node
= tnode_get_child(oldtnode
, i
);
732 struct tnode
*left
, *right
;
739 /* A leaf or an internal node with skipped bits */
741 if (IS_LEAF(node
) || ((struct tnode
*) node
)->pos
>
742 tn
->pos
+ tn
->bits
- 1) {
743 if (tkey_extract_bits(node
->key
,
744 oldtnode
->pos
+ oldtnode
->bits
,
746 put_child(t
, tn
, 2*i
, node
);
748 put_child(t
, tn
, 2*i
+1, node
);
752 /* An internal node with two children */
753 inode
= (struct tnode
*) node
;
755 if (inode
->bits
== 1) {
756 put_child(t
, tn
, 2*i
, inode
->child
[0]);
757 put_child(t
, tn
, 2*i
+1, inode
->child
[1]);
763 /* An internal node with more than two children */
765 /* We will replace this node 'inode' with two new
766 * ones, 'left' and 'right', each with half of the
767 * original children. The two new nodes will have
768 * a position one bit further down the key and this
769 * means that the "significant" part of their keys
770 * (see the discussion near the top of this file)
771 * will differ by one bit, which will be "0" in
772 * left's key and "1" in right's key. Since we are
773 * moving the key position by one step, the bit that
774 * we are moving away from - the bit at position
775 * (inode->pos) - is the one that will differ between
776 * left and right. So... we synthesize that bit in the
778 * The mask 'm' below will be a single "one" bit at
779 * the position (inode->pos)
782 /* Use the old key, but set the new significant
786 left
= (struct tnode
*) tnode_get_child(tn
, 2*i
);
787 put_child(t
, tn
, 2*i
, NULL
);
791 right
= (struct tnode
*) tnode_get_child(tn
, 2*i
+1);
792 put_child(t
, tn
, 2*i
+1, NULL
);
796 size
= tnode_child_length(left
);
797 for (j
= 0; j
< size
; j
++) {
798 put_child(t
, left
, j
, inode
->child
[j
]);
799 put_child(t
, right
, j
, inode
->child
[j
+ size
]);
801 put_child(t
, tn
, 2*i
, resize(t
, left
));
802 put_child(t
, tn
, 2*i
+1, resize(t
, right
));
806 tnode_free(oldtnode
);
810 int size
= tnode_child_length(tn
);
813 for (j
= 0; j
< size
; j
++)
815 tnode_free((struct tnode
*)tn
->child
[j
]);
819 return ERR_PTR(-ENOMEM
);
823 static struct tnode
*halve(struct trie
*t
, struct tnode
*tn
)
825 struct tnode
*oldtnode
= tn
;
826 struct node
*left
, *right
;
828 int olen
= tnode_child_length(tn
);
830 pr_debug("In halve\n");
832 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
, oldtnode
->bits
- 1);
835 return ERR_PTR(-ENOMEM
);
838 * Preallocate and store tnodes before the actual work so we
839 * don't get into an inconsistent state if memory allocation
840 * fails. In case of failure we return the oldnode and halve
841 * of tnode is ignored.
844 for (i
= 0; i
< olen
; i
+= 2) {
845 left
= tnode_get_child(oldtnode
, i
);
846 right
= tnode_get_child(oldtnode
, i
+1);
848 /* Two nonempty children */
852 newn
= tnode_new(left
->key
, tn
->pos
+ tn
->bits
, 1);
857 put_child(t
, tn
, i
/2, (struct node
*)newn
);
862 for (i
= 0; i
< olen
; i
+= 2) {
863 struct tnode
*newBinNode
;
865 left
= tnode_get_child(oldtnode
, i
);
866 right
= tnode_get_child(oldtnode
, i
+1);
868 /* At least one of the children is empty */
870 if (right
== NULL
) /* Both are empty */
872 put_child(t
, tn
, i
/2, right
);
877 put_child(t
, tn
, i
/2, left
);
881 /* Two nonempty children */
882 newBinNode
= (struct tnode
*) tnode_get_child(tn
, i
/2);
883 put_child(t
, tn
, i
/2, NULL
);
884 put_child(t
, newBinNode
, 0, left
);
885 put_child(t
, newBinNode
, 1, right
);
886 put_child(t
, tn
, i
/2, resize(t
, newBinNode
));
888 tnode_free(oldtnode
);
892 int size
= tnode_child_length(tn
);
895 for (j
= 0; j
< size
; j
++)
897 tnode_free((struct tnode
*)tn
->child
[j
]);
901 return ERR_PTR(-ENOMEM
);
905 /* readside must use rcu_read_lock currently dump routines
906 via get_fa_head and dump */
908 static struct leaf_info
*find_leaf_info(struct leaf
*l
, int plen
)
910 struct hlist_head
*head
= &l
->list
;
911 struct hlist_node
*node
;
912 struct leaf_info
*li
;
914 hlist_for_each_entry_rcu(li
, node
, head
, hlist
)
915 if (li
->plen
== plen
)
921 static inline struct list_head
*get_fa_head(struct leaf
*l
, int plen
)
923 struct leaf_info
*li
= find_leaf_info(l
, plen
);
931 static void insert_leaf_info(struct hlist_head
*head
, struct leaf_info
*new)
933 struct leaf_info
*li
= NULL
, *last
= NULL
;
934 struct hlist_node
*node
;
936 if (hlist_empty(head
)) {
937 hlist_add_head_rcu(&new->hlist
, head
);
939 hlist_for_each_entry(li
, node
, head
, hlist
) {
940 if (new->plen
> li
->plen
)
946 hlist_add_after_rcu(&last
->hlist
, &new->hlist
);
948 hlist_add_before_rcu(&new->hlist
, &li
->hlist
);
952 /* rcu_read_lock needs to be hold by caller from readside */
955 fib_find_node(struct trie
*t
, u32 key
)
962 n
= rcu_dereference(t
->trie
);
964 while (n
!= NULL
&& NODE_TYPE(n
) == T_TNODE
) {
965 tn
= (struct tnode
*) n
;
969 if (tkey_sub_equals(tn
->key
, pos
, tn
->pos
-pos
, key
)) {
970 pos
= tn
->pos
+ tn
->bits
;
971 n
= tnode_get_child_rcu(tn
,
972 tkey_extract_bits(key
,
978 /* Case we have found a leaf. Compare prefixes */
980 if (n
!= NULL
&& IS_LEAF(n
) && tkey_equals(key
, n
->key
))
981 return (struct leaf
*)n
;
986 static struct node
*trie_rebalance(struct trie
*t
, struct tnode
*tn
)
995 while (tn
!= NULL
&& (tp
= node_parent((struct node
*)tn
)) != NULL
) {
996 cindex
= tkey_extract_bits(key
, tp
->pos
, tp
->bits
);
997 wasfull
= tnode_full(tp
, tnode_get_child(tp
, cindex
));
998 tn
= (struct tnode
*) resize(t
, (struct tnode
*)tn
);
1000 tnode_put_child_reorg((struct tnode
*)tp
, cindex
,
1001 (struct node
*)tn
, wasfull
);
1003 tp
= node_parent((struct node
*) tn
);
1009 /* Handle last (top) tnode */
1011 tn
= (struct tnode
*)resize(t
, (struct tnode
*)tn
);
1014 return (struct node
*)tn
;
1017 /* only used from updater-side */
1019 static struct list_head
*fib_insert_node(struct trie
*t
, u32 key
, int plen
)
1022 struct tnode
*tp
= NULL
, *tn
= NULL
;
1026 struct list_head
*fa_head
= NULL
;
1027 struct leaf_info
*li
;
1033 /* If we point to NULL, stop. Either the tree is empty and we should
1034 * just put a new leaf in if, or we have reached an empty child slot,
1035 * and we should just put our new leaf in that.
1036 * If we point to a T_TNODE, check if it matches our key. Note that
1037 * a T_TNODE might be skipping any number of bits - its 'pos' need
1038 * not be the parent's 'pos'+'bits'!
1040 * If it does match the current key, get pos/bits from it, extract
1041 * the index from our key, push the T_TNODE and walk the tree.
1043 * If it doesn't, we have to replace it with a new T_TNODE.
1045 * If we point to a T_LEAF, it might or might not have the same key
1046 * as we do. If it does, just change the value, update the T_LEAF's
1047 * value, and return it.
1048 * If it doesn't, we need to replace it with a T_TNODE.
1051 while (n
!= NULL
&& NODE_TYPE(n
) == T_TNODE
) {
1052 tn
= (struct tnode
*) n
;
1056 if (tkey_sub_equals(tn
->key
, pos
, tn
->pos
-pos
, key
)) {
1058 pos
= tn
->pos
+ tn
->bits
;
1059 n
= tnode_get_child(tn
,
1060 tkey_extract_bits(key
,
1064 BUG_ON(n
&& node_parent(n
) != tn
);
1070 * n ----> NULL, LEAF or TNODE
1072 * tp is n's (parent) ----> NULL or TNODE
1075 BUG_ON(tp
&& IS_LEAF(tp
));
1077 /* Case 1: n is a leaf. Compare prefixes */
1079 if (n
!= NULL
&& IS_LEAF(n
) && tkey_equals(key
, n
->key
)) {
1080 l
= (struct leaf
*) n
;
1081 li
= leaf_info_new(plen
);
1086 fa_head
= &li
->falh
;
1087 insert_leaf_info(&l
->list
, li
);
1096 li
= leaf_info_new(plen
);
1103 fa_head
= &li
->falh
;
1104 insert_leaf_info(&l
->list
, li
);
1106 if (t
->trie
&& n
== NULL
) {
1107 /* Case 2: n is NULL, and will just insert a new leaf */
1109 node_set_parent((struct node
*)l
, tp
);
1111 cindex
= tkey_extract_bits(key
, tp
->pos
, tp
->bits
);
1112 put_child(t
, (struct tnode
*)tp
, cindex
, (struct node
*)l
);
1114 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1116 * Add a new tnode here
1117 * first tnode need some special handling
1121 pos
= tp
->pos
+tp
->bits
;
1126 newpos
= tkey_mismatch(key
, pos
, n
->key
);
1127 tn
= tnode_new(n
->key
, newpos
, 1);
1130 tn
= tnode_new(key
, newpos
, 1); /* First tnode */
1139 node_set_parent((struct node
*)tn
, tp
);
1141 missbit
= tkey_extract_bits(key
, newpos
, 1);
1142 put_child(t
, tn
, missbit
, (struct node
*)l
);
1143 put_child(t
, tn
, 1-missbit
, n
);
1146 cindex
= tkey_extract_bits(key
, tp
->pos
, tp
->bits
);
1147 put_child(t
, (struct tnode
*)tp
, cindex
,
1150 rcu_assign_pointer(t
->trie
, (struct node
*)tn
);
1155 if (tp
&& tp
->pos
+ tp
->bits
> 32)
1156 pr_warning("fib_trie"
1157 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1158 tp
, tp
->pos
, tp
->bits
, key
, plen
);
1160 /* Rebalance the trie */
1162 rcu_assign_pointer(t
->trie
, trie_rebalance(t
, tp
));
1168 * Caller must hold RTNL.
1170 static int fn_trie_insert(struct fib_table
*tb
, struct fib_config
*cfg
)
1172 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1173 struct fib_alias
*fa
, *new_fa
;
1174 struct list_head
*fa_head
= NULL
;
1175 struct fib_info
*fi
;
1176 int plen
= cfg
->fc_dst_len
;
1177 u8 tos
= cfg
->fc_tos
;
1185 key
= ntohl(cfg
->fc_dst
);
1187 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1189 mask
= ntohl(inet_make_mask(plen
));
1196 fi
= fib_create_info(cfg
);
1202 l
= fib_find_node(t
, key
);
1206 fa_head
= get_fa_head(l
, plen
);
1207 fa
= fib_find_alias(fa_head
, tos
, fi
->fib_priority
);
1210 /* Now fa, if non-NULL, points to the first fib alias
1211 * with the same keys [prefix,tos,priority], if such key already
1212 * exists or to the node before which we will insert new one.
1214 * If fa is NULL, we will need to allocate a new one and
1215 * insert to the head of f.
1217 * If f is NULL, no fib node matched the destination key
1218 * and we need to allocate a new one of those as well.
1221 if (fa
&& fa
->fa_tos
== tos
&&
1222 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1223 struct fib_alias
*fa_first
, *fa_match
;
1226 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1230 * 1. Find exact match for type, scope, fib_info to avoid
1232 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1236 fa
= list_entry(fa
->fa_list
.prev
, struct fib_alias
, fa_list
);
1237 list_for_each_entry_continue(fa
, fa_head
, fa_list
) {
1238 if (fa
->fa_tos
!= tos
)
1240 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1242 if (fa
->fa_type
== cfg
->fc_type
&&
1243 fa
->fa_scope
== cfg
->fc_scope
&&
1244 fa
->fa_info
== fi
) {
1250 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1251 struct fib_info
*fi_drop
;
1261 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1265 fi_drop
= fa
->fa_info
;
1266 new_fa
->fa_tos
= fa
->fa_tos
;
1267 new_fa
->fa_info
= fi
;
1268 new_fa
->fa_type
= cfg
->fc_type
;
1269 new_fa
->fa_scope
= cfg
->fc_scope
;
1270 state
= fa
->fa_state
;
1271 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1273 list_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1274 alias_free_mem_rcu(fa
);
1276 fib_release_info(fi_drop
);
1277 if (state
& FA_S_ACCESSED
)
1278 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
, -1);
1279 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1280 tb
->tb_id
, &cfg
->fc_nlinfo
, NLM_F_REPLACE
);
1284 /* Error if we find a perfect match which
1285 * uses the same scope, type, and nexthop
1291 if (!(cfg
->fc_nlflags
& NLM_F_APPEND
))
1295 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1299 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1303 new_fa
->fa_info
= fi
;
1304 new_fa
->fa_tos
= tos
;
1305 new_fa
->fa_type
= cfg
->fc_type
;
1306 new_fa
->fa_scope
= cfg
->fc_scope
;
1307 new_fa
->fa_state
= 0;
1309 * Insert new entry to the list.
1313 fa_head
= fib_insert_node(t
, key
, plen
);
1314 if (unlikely(!fa_head
)) {
1316 goto out_free_new_fa
;
1320 list_add_tail_rcu(&new_fa
->fa_list
,
1321 (fa
? &fa
->fa_list
: fa_head
));
1323 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
, -1);
1324 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, tb
->tb_id
,
1325 &cfg
->fc_nlinfo
, 0);
1330 kmem_cache_free(fn_alias_kmem
, new_fa
);
1332 fib_release_info(fi
);
1337 /* should be called with rcu_read_lock */
1338 static int check_leaf(struct trie
*t
, struct leaf
*l
,
1339 t_key key
, const struct flowi
*flp
,
1340 struct fib_result
*res
)
1342 struct leaf_info
*li
;
1343 struct hlist_head
*hhead
= &l
->list
;
1344 struct hlist_node
*node
;
1346 hlist_for_each_entry_rcu(li
, node
, hhead
, hlist
) {
1348 int plen
= li
->plen
;
1349 __be32 mask
= inet_make_mask(plen
);
1351 if (l
->key
!= (key
& ntohl(mask
)))
1354 err
= fib_semantic_match(&li
->falh
, flp
, res
,
1355 htonl(l
->key
), mask
, plen
);
1357 #ifdef CONFIG_IP_FIB_TRIE_STATS
1359 t
->stats
.semantic_match_passed
++;
1361 t
->stats
.semantic_match_miss
++;
1370 static int fn_trie_lookup(struct fib_table
*tb
, const struct flowi
*flp
,
1371 struct fib_result
*res
)
1373 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1378 t_key key
= ntohl(flp
->fl4_dst
);
1381 int current_prefix_length
= KEYLENGTH
;
1383 t_key node_prefix
, key_prefix
, pref_mismatch
;
1388 n
= rcu_dereference(t
->trie
);
1392 #ifdef CONFIG_IP_FIB_TRIE_STATS
1398 ret
= check_leaf(t
, (struct leaf
*)n
, key
, flp
, res
);
1402 pn
= (struct tnode
*) n
;
1410 cindex
= tkey_extract_bits(mask_pfx(key
, current_prefix_length
),
1413 n
= tnode_get_child(pn
, cindex
);
1416 #ifdef CONFIG_IP_FIB_TRIE_STATS
1417 t
->stats
.null_node_hit
++;
1423 ret
= check_leaf(t
, (struct leaf
*)n
, key
, flp
, res
);
1429 cn
= (struct tnode
*)n
;
1432 * It's a tnode, and we can do some extra checks here if we
1433 * like, to avoid descending into a dead-end branch.
1434 * This tnode is in the parent's child array at index
1435 * key[p_pos..p_pos+p_bits] but potentially with some bits
1436 * chopped off, so in reality the index may be just a
1437 * subprefix, padded with zero at the end.
1438 * We can also take a look at any skipped bits in this
1439 * tnode - everything up to p_pos is supposed to be ok,
1440 * and the non-chopped bits of the index (se previous
1441 * paragraph) are also guaranteed ok, but the rest is
1442 * considered unknown.
1444 * The skipped bits are key[pos+bits..cn->pos].
1447 /* If current_prefix_length < pos+bits, we are already doing
1448 * actual prefix matching, which means everything from
1449 * pos+(bits-chopped_off) onward must be zero along some
1450 * branch of this subtree - otherwise there is *no* valid
1451 * prefix present. Here we can only check the skipped
1452 * bits. Remember, since we have already indexed into the
1453 * parent's child array, we know that the bits we chopped of
1457 /* NOTA BENE: Checking only skipped bits
1458 for the new node here */
1460 if (current_prefix_length
< pos
+bits
) {
1461 if (tkey_extract_bits(cn
->key
, current_prefix_length
,
1462 cn
->pos
- current_prefix_length
)
1468 * If chopped_off=0, the index is fully validated and we
1469 * only need to look at the skipped bits for this, the new,
1470 * tnode. What we actually want to do is to find out if
1471 * these skipped bits match our key perfectly, or if we will
1472 * have to count on finding a matching prefix further down,
1473 * because if we do, we would like to have some way of
1474 * verifying the existence of such a prefix at this point.
1477 /* The only thing we can do at this point is to verify that
1478 * any such matching prefix can indeed be a prefix to our
1479 * key, and if the bits in the node we are inspecting that
1480 * do not match our key are not ZERO, this cannot be true.
1481 * Thus, find out where there is a mismatch (before cn->pos)
1482 * and verify that all the mismatching bits are zero in the
1487 * Note: We aren't very concerned about the piece of
1488 * the key that precede pn->pos+pn->bits, since these
1489 * have already been checked. The bits after cn->pos
1490 * aren't checked since these are by definition
1491 * "unknown" at this point. Thus, what we want to see
1492 * is if we are about to enter the "prefix matching"
1493 * state, and in that case verify that the skipped
1494 * bits that will prevail throughout this subtree are
1495 * zero, as they have to be if we are to find a
1499 node_prefix
= mask_pfx(cn
->key
, cn
->pos
);
1500 key_prefix
= mask_pfx(key
, cn
->pos
);
1501 pref_mismatch
= key_prefix
^node_prefix
;
1505 * In short: If skipped bits in this node do not match
1506 * the search key, enter the "prefix matching"
1509 if (pref_mismatch
) {
1510 while (!(pref_mismatch
& (1<<(KEYLENGTH
-1)))) {
1512 pref_mismatch
= pref_mismatch
<< 1;
1514 key_prefix
= tkey_extract_bits(cn
->key
, mp
, cn
->pos
-mp
);
1516 if (key_prefix
!= 0)
1519 if (current_prefix_length
>= cn
->pos
)
1520 current_prefix_length
= mp
;
1523 pn
= (struct tnode
*)n
; /* Descend */
1530 /* As zero don't change the child key (cindex) */
1531 while ((chopped_off
<= pn
->bits
)
1532 && !(cindex
& (1<<(chopped_off
-1))))
1535 /* Decrease current_... with bits chopped off */
1536 if (current_prefix_length
> pn
->pos
+ pn
->bits
- chopped_off
)
1537 current_prefix_length
= pn
->pos
+ pn
->bits
1541 * Either we do the actual chop off according or if we have
1542 * chopped off all bits in this tnode walk up to our parent.
1545 if (chopped_off
<= pn
->bits
) {
1546 cindex
&= ~(1 << (chopped_off
-1));
1548 struct tnode
*parent
= node_parent((struct node
*) pn
);
1552 /* Get Child's index */
1553 cindex
= tkey_extract_bits(pn
->key
, parent
->pos
, parent
->bits
);
1557 #ifdef CONFIG_IP_FIB_TRIE_STATS
1558 t
->stats
.backtrack
++;
1571 * Remove the leaf and return parent.
1573 static void trie_leaf_remove(struct trie
*t
, struct leaf
*l
)
1575 struct tnode
*tp
= node_parent((struct node
*) l
);
1577 pr_debug("entering trie_leaf_remove(%p)\n", l
);
1580 t_key cindex
= tkey_extract_bits(l
->key
, tp
->pos
, tp
->bits
);
1581 put_child(t
, (struct tnode
*)tp
, cindex
, NULL
);
1582 rcu_assign_pointer(t
->trie
, trie_rebalance(t
, tp
));
1584 rcu_assign_pointer(t
->trie
, NULL
);
1590 * Caller must hold RTNL.
1592 static int fn_trie_delete(struct fib_table
*tb
, struct fib_config
*cfg
)
1594 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1596 int plen
= cfg
->fc_dst_len
;
1597 u8 tos
= cfg
->fc_tos
;
1598 struct fib_alias
*fa
, *fa_to_delete
;
1599 struct list_head
*fa_head
;
1601 struct leaf_info
*li
;
1606 key
= ntohl(cfg
->fc_dst
);
1607 mask
= ntohl(inet_make_mask(plen
));
1613 l
= fib_find_node(t
, key
);
1618 fa_head
= get_fa_head(l
, plen
);
1619 fa
= fib_find_alias(fa_head
, tos
, 0);
1624 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1626 fa_to_delete
= NULL
;
1627 fa
= list_entry(fa
->fa_list
.prev
, struct fib_alias
, fa_list
);
1628 list_for_each_entry_continue(fa
, fa_head
, fa_list
) {
1629 struct fib_info
*fi
= fa
->fa_info
;
1631 if (fa
->fa_tos
!= tos
)
1634 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1635 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1636 fa
->fa_scope
== cfg
->fc_scope
) &&
1637 (!cfg
->fc_protocol
||
1638 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1639 fib_nh_match(cfg
, fi
) == 0) {
1649 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa
, plen
, tb
->tb_id
,
1650 &cfg
->fc_nlinfo
, 0);
1652 l
= fib_find_node(t
, key
);
1653 li
= find_leaf_info(l
, plen
);
1655 list_del_rcu(&fa
->fa_list
);
1657 if (list_empty(fa_head
)) {
1658 hlist_del_rcu(&li
->hlist
);
1662 if (hlist_empty(&l
->list
))
1663 trie_leaf_remove(t
, l
);
1665 if (fa
->fa_state
& FA_S_ACCESSED
)
1666 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
, -1);
1668 fib_release_info(fa
->fa_info
);
1669 alias_free_mem_rcu(fa
);
1673 static int trie_flush_list(struct list_head
*head
)
1675 struct fib_alias
*fa
, *fa_node
;
1678 list_for_each_entry_safe(fa
, fa_node
, head
, fa_list
) {
1679 struct fib_info
*fi
= fa
->fa_info
;
1681 if (fi
&& (fi
->fib_flags
& RTNH_F_DEAD
)) {
1682 list_del_rcu(&fa
->fa_list
);
1683 fib_release_info(fa
->fa_info
);
1684 alias_free_mem_rcu(fa
);
1691 static int trie_flush_leaf(struct leaf
*l
)
1694 struct hlist_head
*lih
= &l
->list
;
1695 struct hlist_node
*node
, *tmp
;
1696 struct leaf_info
*li
= NULL
;
1698 hlist_for_each_entry_safe(li
, node
, tmp
, lih
, hlist
) {
1699 found
+= trie_flush_list(&li
->falh
);
1701 if (list_empty(&li
->falh
)) {
1702 hlist_del_rcu(&li
->hlist
);
1710 * Scan for the next right leaf starting at node p->child[idx]
1711 * Since we have back pointer, no recursion necessary.
1713 static struct leaf
*leaf_walk_rcu(struct tnode
*p
, struct node
*c
)
1719 idx
= tkey_extract_bits(c
->key
, p
->pos
, p
->bits
) + 1;
1723 while (idx
< 1u << p
->bits
) {
1724 c
= tnode_get_child_rcu(p
, idx
++);
1729 prefetch(p
->child
[idx
]);
1730 return (struct leaf
*) c
;
1733 /* Rescan start scanning in new node */
1734 p
= (struct tnode
*) c
;
1738 /* Node empty, walk back up to parent */
1739 c
= (struct node
*) p
;
1740 } while ( (p
= node_parent_rcu(c
)) != NULL
);
1742 return NULL
; /* Root of trie */
1745 static struct leaf
*trie_firstleaf(struct trie
*t
)
1747 struct tnode
*n
= (struct tnode
*) rcu_dereference(t
->trie
);
1752 if (IS_LEAF(n
)) /* trie is just a leaf */
1753 return (struct leaf
*) n
;
1755 return leaf_walk_rcu(n
, NULL
);
1758 static struct leaf
*trie_nextleaf(struct leaf
*l
)
1760 struct node
*c
= (struct node
*) l
;
1761 struct tnode
*p
= node_parent(c
);
1764 return NULL
; /* trie with just one leaf */
1766 return leaf_walk_rcu(p
, c
);
1769 static struct leaf
*trie_leafindex(struct trie
*t
, int index
)
1771 struct leaf
*l
= trie_firstleaf(t
);
1773 while (l
&& index
-- > 0)
1774 l
= trie_nextleaf(l
);
1781 * Caller must hold RTNL.
1783 static int fn_trie_flush(struct fib_table
*tb
)
1785 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1786 struct leaf
*l
, *ll
= NULL
;
1789 for (l
= trie_firstleaf(t
); l
; l
= trie_nextleaf(l
)) {
1790 found
+= trie_flush_leaf(l
);
1792 if (ll
&& hlist_empty(&ll
->list
))
1793 trie_leaf_remove(t
, ll
);
1797 if (ll
&& hlist_empty(&ll
->list
))
1798 trie_leaf_remove(t
, ll
);
1800 pr_debug("trie_flush found=%d\n", found
);
1804 static void fn_trie_select_default(struct fib_table
*tb
,
1805 const struct flowi
*flp
,
1806 struct fib_result
*res
)
1808 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1809 int order
, last_idx
;
1810 struct fib_info
*fi
= NULL
;
1811 struct fib_info
*last_resort
;
1812 struct fib_alias
*fa
= NULL
;
1813 struct list_head
*fa_head
;
1822 l
= fib_find_node(t
, 0);
1826 fa_head
= get_fa_head(l
, 0);
1830 if (list_empty(fa_head
))
1833 list_for_each_entry_rcu(fa
, fa_head
, fa_list
) {
1834 struct fib_info
*next_fi
= fa
->fa_info
;
1836 if (fa
->fa_scope
!= res
->scope
||
1837 fa
->fa_type
!= RTN_UNICAST
)
1840 if (next_fi
->fib_priority
> res
->fi
->fib_priority
)
1842 if (!next_fi
->fib_nh
[0].nh_gw
||
1843 next_fi
->fib_nh
[0].nh_scope
!= RT_SCOPE_LINK
)
1845 fa
->fa_state
|= FA_S_ACCESSED
;
1848 if (next_fi
!= res
->fi
)
1850 } else if (!fib_detect_death(fi
, order
, &last_resort
,
1851 &last_idx
, tb
->tb_default
)) {
1852 fib_result_assign(res
, fi
);
1853 tb
->tb_default
= order
;
1859 if (order
<= 0 || fi
== NULL
) {
1860 tb
->tb_default
= -1;
1864 if (!fib_detect_death(fi
, order
, &last_resort
, &last_idx
,
1866 fib_result_assign(res
, fi
);
1867 tb
->tb_default
= order
;
1871 fib_result_assign(res
, last_resort
);
1872 tb
->tb_default
= last_idx
;
1877 static int fn_trie_dump_fa(t_key key
, int plen
, struct list_head
*fah
,
1878 struct fib_table
*tb
,
1879 struct sk_buff
*skb
, struct netlink_callback
*cb
)
1882 struct fib_alias
*fa
;
1883 __be32 xkey
= htonl(key
);
1888 /* rcu_read_lock is hold by caller */
1890 list_for_each_entry_rcu(fa
, fah
, fa_list
) {
1896 if (fib_dump_info(skb
, NETLINK_CB(cb
->skb
).pid
,
1905 fa
->fa_info
, NLM_F_MULTI
) < 0) {
1915 static int fn_trie_dump_leaf(struct leaf
*l
, struct fib_table
*tb
,
1916 struct sk_buff
*skb
, struct netlink_callback
*cb
)
1918 struct leaf_info
*li
;
1919 struct hlist_node
*node
;
1925 /* rcu_read_lock is hold by caller */
1926 hlist_for_each_entry_rcu(li
, node
, &l
->list
, hlist
) {
1935 if (list_empty(&li
->falh
))
1938 if (fn_trie_dump_fa(l
->key
, li
->plen
, &li
->falh
, tb
, skb
, cb
) < 0) {
1949 static int fn_trie_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
1950 struct netlink_callback
*cb
)
1953 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1954 t_key key
= cb
->args
[2];
1955 int count
= cb
->args
[3];
1958 /* Dump starting at last key.
1959 * Note: 0.0.0.0/0 (ie default) is first key.
1962 l
= trie_firstleaf(t
);
1964 /* Normally, continue from last key, but if that is missing
1965 * fallback to using slow rescan
1967 l
= fib_find_node(t
, key
);
1969 l
= trie_leafindex(t
, count
);
1973 cb
->args
[2] = l
->key
;
1974 if (fn_trie_dump_leaf(l
, tb
, skb
, cb
) < 0) {
1975 cb
->args
[3] = count
;
1981 l
= trie_nextleaf(l
);
1982 memset(&cb
->args
[4], 0,
1983 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
1985 cb
->args
[3] = count
;
1991 void __init
fib_hash_init(void)
1993 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
1994 sizeof(struct fib_alias
),
1995 0, SLAB_PANIC
, NULL
);
1997 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
1998 max(sizeof(struct leaf
),
1999 sizeof(struct leaf_info
)),
2000 0, SLAB_PANIC
, NULL
);
2004 /* Fix more generic FIB names for init later */
2005 struct fib_table
*fib_hash_table(u32 id
)
2007 struct fib_table
*tb
;
2010 tb
= kmalloc(sizeof(struct fib_table
) + sizeof(struct trie
),
2016 tb
->tb_default
= -1;
2017 tb
->tb_lookup
= fn_trie_lookup
;
2018 tb
->tb_insert
= fn_trie_insert
;
2019 tb
->tb_delete
= fn_trie_delete
;
2020 tb
->tb_flush
= fn_trie_flush
;
2021 tb
->tb_select_default
= fn_trie_select_default
;
2022 tb
->tb_dump
= fn_trie_dump
;
2024 t
= (struct trie
*) tb
->tb_data
;
2025 memset(t
, 0, sizeof(*t
));
2027 if (id
== RT_TABLE_LOCAL
)
2028 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION
);
2033 #ifdef CONFIG_PROC_FS
2034 /* Depth first Trie walk iterator */
2035 struct fib_trie_iter
{
2036 struct seq_net_private p
;
2037 struct fib_table
*tb
;
2038 struct tnode
*tnode
;
2043 static struct node
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2045 struct tnode
*tn
= iter
->tnode
;
2046 unsigned cindex
= iter
->index
;
2049 /* A single entry routing table */
2053 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2054 iter
->tnode
, iter
->index
, iter
->depth
);
2056 while (cindex
< (1<<tn
->bits
)) {
2057 struct node
*n
= tnode_get_child_rcu(tn
, cindex
);
2062 iter
->index
= cindex
+ 1;
2064 /* push down one level */
2065 iter
->tnode
= (struct tnode
*) n
;
2075 /* Current node exhausted, pop back up */
2076 p
= node_parent_rcu((struct node
*)tn
);
2078 cindex
= tkey_extract_bits(tn
->key
, p
->pos
, p
->bits
)+1;
2088 static struct node
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2096 n
= rcu_dereference(t
->trie
);
2101 iter
->tnode
= (struct tnode
*) n
;
2113 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2116 struct fib_trie_iter iter
;
2118 memset(s
, 0, sizeof(*s
));
2121 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2123 struct leaf
*l
= (struct leaf
*)n
;
2124 struct leaf_info
*li
;
2125 struct hlist_node
*tmp
;
2128 s
->totdepth
+= iter
.depth
;
2129 if (iter
.depth
> s
->maxdepth
)
2130 s
->maxdepth
= iter
.depth
;
2132 hlist_for_each_entry_rcu(li
, tmp
, &l
->list
, hlist
)
2135 const struct tnode
*tn
= (const struct tnode
*) n
;
2139 if (tn
->bits
< MAX_STAT_DEPTH
)
2140 s
->nodesizes
[tn
->bits
]++;
2142 for (i
= 0; i
< (1<<tn
->bits
); i
++)
2151 * This outputs /proc/net/fib_triestats
2153 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2155 unsigned i
, max
, pointers
, bytes
, avdepth
;
2158 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2162 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2163 avdepth
/ 100, avdepth
% 100);
2164 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2166 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2167 bytes
= sizeof(struct leaf
) * stat
->leaves
;
2169 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2170 bytes
+= sizeof(struct leaf_info
) * stat
->prefixes
;
2172 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2173 bytes
+= sizeof(struct tnode
) * stat
->tnodes
;
2175 max
= MAX_STAT_DEPTH
;
2176 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2180 for (i
= 1; i
<= max
; i
++)
2181 if (stat
->nodesizes
[i
] != 0) {
2182 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2183 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2185 seq_putc(seq
, '\n');
2186 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2188 bytes
+= sizeof(struct node
*) * pointers
;
2189 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2190 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2193 #ifdef CONFIG_IP_FIB_TRIE_STATS
2194 static void trie_show_usage(struct seq_file
*seq
,
2195 const struct trie_use_stats
*stats
)
2197 seq_printf(seq
, "\nCounters:\n---------\n");
2198 seq_printf(seq
, "gets = %u\n", stats
->gets
);
2199 seq_printf(seq
, "backtracks = %u\n", stats
->backtrack
);
2200 seq_printf(seq
, "semantic match passed = %u\n",
2201 stats
->semantic_match_passed
);
2202 seq_printf(seq
, "semantic match miss = %u\n",
2203 stats
->semantic_match_miss
);
2204 seq_printf(seq
, "null node hit= %u\n", stats
->null_node_hit
);
2205 seq_printf(seq
, "skipped node resize = %u\n\n",
2206 stats
->resize_node_skipped
);
2208 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2210 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2212 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2213 seq_puts(seq
, "Local:\n");
2214 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2215 seq_puts(seq
, "Main:\n");
2217 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2221 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2223 struct net
*net
= (struct net
*)seq
->private;
2227 "Basic info: size of leaf:"
2228 " %Zd bytes, size of tnode: %Zd bytes.\n",
2229 sizeof(struct leaf
), sizeof(struct tnode
));
2231 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2232 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2233 struct hlist_node
*node
;
2234 struct fib_table
*tb
;
2236 hlist_for_each_entry_rcu(tb
, node
, head
, tb_hlist
) {
2237 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2238 struct trie_stat stat
;
2243 fib_table_print(seq
, tb
);
2245 trie_collect_stats(t
, &stat
);
2246 trie_show_stats(seq
, &stat
);
2247 #ifdef CONFIG_IP_FIB_TRIE_STATS
2248 trie_show_usage(seq
, &t
->stats
);
2256 static int fib_triestat_seq_open(struct inode
*inode
, struct file
*file
)
2258 return single_open_net(inode
, file
, fib_triestat_seq_show
);
2261 static const struct file_operations fib_triestat_fops
= {
2262 .owner
= THIS_MODULE
,
2263 .open
= fib_triestat_seq_open
,
2265 .llseek
= seq_lseek
,
2266 .release
= single_release_net
,
2269 static struct node
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2271 struct fib_trie_iter
*iter
= seq
->private;
2272 struct net
*net
= seq_file_net(seq
);
2276 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2277 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2278 struct hlist_node
*node
;
2279 struct fib_table
*tb
;
2281 hlist_for_each_entry_rcu(tb
, node
, head
, tb_hlist
) {
2284 for (n
= fib_trie_get_first(iter
,
2285 (struct trie
*) tb
->tb_data
);
2286 n
; n
= fib_trie_get_next(iter
))
2297 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2301 return fib_trie_get_idx(seq
, *pos
);
2304 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2306 struct fib_trie_iter
*iter
= seq
->private;
2307 struct net
*net
= seq_file_net(seq
);
2308 struct fib_table
*tb
= iter
->tb
;
2309 struct hlist_node
*tb_node
;
2314 /* next node in same table */
2315 n
= fib_trie_get_next(iter
);
2319 /* walk rest of this hash chain */
2320 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2321 while ( (tb_node
= rcu_dereference(tb
->tb_hlist
.next
)) ) {
2322 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2323 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2328 /* new hash chain */
2329 while (++h
< FIB_TABLE_HASHSZ
) {
2330 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2331 hlist_for_each_entry_rcu(tb
, tb_node
, head
, tb_hlist
) {
2332 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2344 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2350 static void seq_indent(struct seq_file
*seq
, int n
)
2352 while (n
-- > 0) seq_puts(seq
, " ");
2355 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2358 case RT_SCOPE_UNIVERSE
: return "universe";
2359 case RT_SCOPE_SITE
: return "site";
2360 case RT_SCOPE_LINK
: return "link";
2361 case RT_SCOPE_HOST
: return "host";
2362 case RT_SCOPE_NOWHERE
: return "nowhere";
2364 snprintf(buf
, len
, "scope=%d", s
);
2369 static const char *rtn_type_names
[__RTN_MAX
] = {
2370 [RTN_UNSPEC
] = "UNSPEC",
2371 [RTN_UNICAST
] = "UNICAST",
2372 [RTN_LOCAL
] = "LOCAL",
2373 [RTN_BROADCAST
] = "BROADCAST",
2374 [RTN_ANYCAST
] = "ANYCAST",
2375 [RTN_MULTICAST
] = "MULTICAST",
2376 [RTN_BLACKHOLE
] = "BLACKHOLE",
2377 [RTN_UNREACHABLE
] = "UNREACHABLE",
2378 [RTN_PROHIBIT
] = "PROHIBIT",
2379 [RTN_THROW
] = "THROW",
2381 [RTN_XRESOLVE
] = "XRESOLVE",
2384 static inline const char *rtn_type(char *buf
, size_t len
, unsigned t
)
2386 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2387 return rtn_type_names
[t
];
2388 snprintf(buf
, len
, "type %u", t
);
2392 /* Pretty print the trie */
2393 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2395 const struct fib_trie_iter
*iter
= seq
->private;
2398 if (!node_parent_rcu(n
))
2399 fib_table_print(seq
, iter
->tb
);
2402 struct tnode
*tn
= (struct tnode
*) n
;
2403 __be32 prf
= htonl(mask_pfx(tn
->key
, tn
->pos
));
2405 seq_indent(seq
, iter
->depth
-1);
2406 seq_printf(seq
, " +-- %pI4/%d %d %d %d\n",
2407 &prf
, tn
->pos
, tn
->bits
, tn
->full_children
,
2408 tn
->empty_children
);
2411 struct leaf
*l
= (struct leaf
*) n
;
2412 struct leaf_info
*li
;
2413 struct hlist_node
*node
;
2414 __be32 val
= htonl(l
->key
);
2416 seq_indent(seq
, iter
->depth
);
2417 seq_printf(seq
, " |-- %pI4\n", &val
);
2419 hlist_for_each_entry_rcu(li
, node
, &l
->list
, hlist
) {
2420 struct fib_alias
*fa
;
2422 list_for_each_entry_rcu(fa
, &li
->falh
, fa_list
) {
2423 char buf1
[32], buf2
[32];
2425 seq_indent(seq
, iter
->depth
+1);
2426 seq_printf(seq
, " /%d %s %s", li
->plen
,
2427 rtn_scope(buf1
, sizeof(buf1
),
2429 rtn_type(buf2
, sizeof(buf2
),
2432 seq_printf(seq
, " tos=%d", fa
->fa_tos
);
2433 seq_putc(seq
, '\n');
2441 static const struct seq_operations fib_trie_seq_ops
= {
2442 .start
= fib_trie_seq_start
,
2443 .next
= fib_trie_seq_next
,
2444 .stop
= fib_trie_seq_stop
,
2445 .show
= fib_trie_seq_show
,
2448 static int fib_trie_seq_open(struct inode
*inode
, struct file
*file
)
2450 return seq_open_net(inode
, file
, &fib_trie_seq_ops
,
2451 sizeof(struct fib_trie_iter
));
2454 static const struct file_operations fib_trie_fops
= {
2455 .owner
= THIS_MODULE
,
2456 .open
= fib_trie_seq_open
,
2458 .llseek
= seq_lseek
,
2459 .release
= seq_release_net
,
2462 struct fib_route_iter
{
2463 struct seq_net_private p
;
2464 struct trie
*main_trie
;
2469 static struct leaf
*fib_route_get_idx(struct fib_route_iter
*iter
, loff_t pos
)
2471 struct leaf
*l
= NULL
;
2472 struct trie
*t
= iter
->main_trie
;
2474 /* use cache location of last found key */
2475 if (iter
->pos
> 0 && pos
>= iter
->pos
&& (l
= fib_find_node(t
, iter
->key
)))
2479 l
= trie_firstleaf(t
);
2482 while (l
&& pos
-- > 0) {
2484 l
= trie_nextleaf(l
);
2488 iter
->key
= pos
; /* remember it */
2490 iter
->pos
= 0; /* forget it */
2495 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2498 struct fib_route_iter
*iter
= seq
->private;
2499 struct fib_table
*tb
;
2502 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2506 iter
->main_trie
= (struct trie
*) tb
->tb_data
;
2508 return SEQ_START_TOKEN
;
2510 return fib_route_get_idx(iter
, *pos
- 1);
2513 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2515 struct fib_route_iter
*iter
= seq
->private;
2519 if (v
== SEQ_START_TOKEN
) {
2521 l
= trie_firstleaf(iter
->main_trie
);
2524 l
= trie_nextleaf(l
);
2534 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2540 static unsigned fib_flag_trans(int type
, __be32 mask
, const struct fib_info
*fi
)
2542 static unsigned type2flags
[RTN_MAX
+ 1] = {
2543 [7] = RTF_REJECT
, [8] = RTF_REJECT
,
2545 unsigned flags
= type2flags
[type
];
2547 if (fi
&& fi
->fib_nh
->nh_gw
)
2548 flags
|= RTF_GATEWAY
;
2549 if (mask
== htonl(0xFFFFFFFF))
2556 * This outputs /proc/net/route.
2557 * The format of the file is not supposed to be changed
2558 * and needs to be same as fib_hash output to avoid breaking
2561 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2564 struct leaf_info
*li
;
2565 struct hlist_node
*node
;
2567 if (v
== SEQ_START_TOKEN
) {
2568 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2569 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2574 hlist_for_each_entry_rcu(li
, node
, &l
->list
, hlist
) {
2575 struct fib_alias
*fa
;
2576 __be32 mask
, prefix
;
2578 mask
= inet_make_mask(li
->plen
);
2579 prefix
= htonl(l
->key
);
2581 list_for_each_entry_rcu(fa
, &li
->falh
, fa_list
) {
2582 const struct fib_info
*fi
= fa
->fa_info
;
2583 unsigned flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2586 if (fa
->fa_type
== RTN_BROADCAST
2587 || fa
->fa_type
== RTN_MULTICAST
)
2592 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2593 "%d\t%08X\t%d\t%u\t%u%n",
2594 fi
->fib_dev
? fi
->fib_dev
->name
: "*",
2596 fi
->fib_nh
->nh_gw
, flags
, 0, 0,
2600 fi
->fib_advmss
+ 40 : 0),
2602 fi
->fib_rtt
>> 3, &len
);
2605 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2606 "%d\t%08X\t%d\t%u\t%u%n",
2607 prefix
, 0, flags
, 0, 0, 0,
2608 mask
, 0, 0, 0, &len
);
2610 seq_printf(seq
, "%*s\n", 127 - len
, "");
2617 static const struct seq_operations fib_route_seq_ops
= {
2618 .start
= fib_route_seq_start
,
2619 .next
= fib_route_seq_next
,
2620 .stop
= fib_route_seq_stop
,
2621 .show
= fib_route_seq_show
,
2624 static int fib_route_seq_open(struct inode
*inode
, struct file
*file
)
2626 return seq_open_net(inode
, file
, &fib_route_seq_ops
,
2627 sizeof(struct fib_route_iter
));
2630 static const struct file_operations fib_route_fops
= {
2631 .owner
= THIS_MODULE
,
2632 .open
= fib_route_seq_open
,
2634 .llseek
= seq_lseek
,
2635 .release
= seq_release_net
,
2638 int __net_init
fib_proc_init(struct net
*net
)
2640 if (!proc_net_fops_create(net
, "fib_trie", S_IRUGO
, &fib_trie_fops
))
2643 if (!proc_net_fops_create(net
, "fib_triestat", S_IRUGO
,
2644 &fib_triestat_fops
))
2647 if (!proc_net_fops_create(net
, "route", S_IRUGO
, &fib_route_fops
))
2653 proc_net_remove(net
, "fib_triestat");
2655 proc_net_remove(net
, "fib_trie");
2660 void __net_exit
fib_proc_exit(struct net
*net
)
2662 proc_net_remove(net
, "fib_trie");
2663 proc_net_remove(net
, "fib_triestat");
2664 proc_net_remove(net
, "route");
2667 #endif /* CONFIG_PROC_FS */