drivers/net: Kill now superfluous ->last_rx stores.
[linux-2.6/verdex.git] / drivers / net / e1000 / e1000_main.c
blob78a4250e004f8e2ba92be2f81ec3d0defbb87c7b
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.20-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static struct pci_device_id e1000_pci_tbl[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
142 int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145 int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152 struct sk_buff *skb);
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
160 #ifdef CONFIG_PM
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174 "Maximum size of packet that is copied to a new buffer on receive");
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177 pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
181 static struct pci_error_handlers e1000_err_handler = {
182 .error_detected = e1000_io_error_detected,
183 .slot_reset = e1000_io_slot_reset,
184 .resume = e1000_io_resume,
187 static struct pci_driver e1000_driver = {
188 .name = e1000_driver_name,
189 .id_table = e1000_pci_tbl,
190 .probe = e1000_probe,
191 .remove = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193 /* Power Managment Hooks */
194 .suspend = e1000_suspend,
195 .resume = e1000_resume,
196 #endif
197 .shutdown = e1000_shutdown,
198 .err_handler = &e1000_err_handler
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
211 * e1000_init_module - Driver Registration Routine
213 * e1000_init_module is the first routine called when the driver is
214 * loaded. All it does is register with the PCI subsystem.
217 static int __init e1000_init_module(void)
219 int ret;
220 printk(KERN_INFO "%s - version %s\n",
221 e1000_driver_string, e1000_driver_version);
223 printk(KERN_INFO "%s\n", e1000_copyright);
225 ret = pci_register_driver(&e1000_driver);
226 if (copybreak != COPYBREAK_DEFAULT) {
227 if (copybreak == 0)
228 printk(KERN_INFO "e1000: copybreak disabled\n");
229 else
230 printk(KERN_INFO "e1000: copybreak enabled for "
231 "packets <= %u bytes\n", copybreak);
233 return ret;
236 module_init(e1000_init_module);
239 * e1000_exit_module - Driver Exit Cleanup Routine
241 * e1000_exit_module is called just before the driver is removed
242 * from memory.
245 static void __exit e1000_exit_module(void)
247 pci_unregister_driver(&e1000_driver);
250 module_exit(e1000_exit_module);
252 static int e1000_request_irq(struct e1000_adapter *adapter)
254 struct e1000_hw *hw = &adapter->hw;
255 struct net_device *netdev = adapter->netdev;
256 irq_handler_t handler = e1000_intr;
257 int irq_flags = IRQF_SHARED;
258 int err;
260 if (hw->mac_type >= e1000_82571) {
261 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262 if (adapter->have_msi) {
263 handler = e1000_intr_msi;
264 irq_flags = 0;
268 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269 netdev);
270 if (err) {
271 if (adapter->have_msi)
272 pci_disable_msi(adapter->pdev);
273 DPRINTK(PROBE, ERR,
274 "Unable to allocate interrupt Error: %d\n", err);
277 return err;
280 static void e1000_free_irq(struct e1000_adapter *adapter)
282 struct net_device *netdev = adapter->netdev;
284 free_irq(adapter->pdev->irq, netdev);
286 if (adapter->have_msi)
287 pci_disable_msi(adapter->pdev);
291 * e1000_irq_disable - Mask off interrupt generation on the NIC
292 * @adapter: board private structure
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
297 struct e1000_hw *hw = &adapter->hw;
299 ew32(IMC, ~0);
300 E1000_WRITE_FLUSH();
301 synchronize_irq(adapter->pdev->irq);
305 * e1000_irq_enable - Enable default interrupt generation settings
306 * @adapter: board private structure
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
311 struct e1000_hw *hw = &adapter->hw;
313 ew32(IMS, IMS_ENABLE_MASK);
314 E1000_WRITE_FLUSH();
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
319 struct e1000_hw *hw = &adapter->hw;
320 struct net_device *netdev = adapter->netdev;
321 u16 vid = hw->mng_cookie.vlan_id;
322 u16 old_vid = adapter->mng_vlan_id;
323 if (adapter->vlgrp) {
324 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325 if (hw->mng_cookie.status &
326 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327 e1000_vlan_rx_add_vid(netdev, vid);
328 adapter->mng_vlan_id = vid;
329 } else
330 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
332 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333 (vid != old_vid) &&
334 !vlan_group_get_device(adapter->vlgrp, old_vid))
335 e1000_vlan_rx_kill_vid(netdev, old_vid);
336 } else
337 adapter->mng_vlan_id = vid;
342 * e1000_release_hw_control - release control of the h/w to f/w
343 * @adapter: address of board private structure
345 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346 * For ASF and Pass Through versions of f/w this means that the
347 * driver is no longer loaded. For AMT version (only with 82573) i
348 * of the f/w this means that the network i/f is closed.
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
354 u32 ctrl_ext;
355 u32 swsm;
356 struct e1000_hw *hw = &adapter->hw;
358 /* Let firmware taken over control of h/w */
359 switch (hw->mac_type) {
360 case e1000_82573:
361 swsm = er32(SWSM);
362 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363 break;
364 case e1000_82571:
365 case e1000_82572:
366 case e1000_80003es2lan:
367 case e1000_ich8lan:
368 ctrl_ext = er32(CTRL_EXT);
369 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370 break;
371 default:
372 break;
377 * e1000_get_hw_control - get control of the h/w from f/w
378 * @adapter: address of board private structure
380 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381 * For ASF and Pass Through versions of f/w this means that
382 * the driver is loaded. For AMT version (only with 82573)
383 * of the f/w this means that the network i/f is open.
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
389 u32 ctrl_ext;
390 u32 swsm;
391 struct e1000_hw *hw = &adapter->hw;
393 /* Let firmware know the driver has taken over */
394 switch (hw->mac_type) {
395 case e1000_82573:
396 swsm = er32(SWSM);
397 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398 break;
399 case e1000_82571:
400 case e1000_82572:
401 case e1000_80003es2lan:
402 case e1000_ich8lan:
403 ctrl_ext = er32(CTRL_EXT);
404 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405 break;
406 default:
407 break;
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
413 struct e1000_hw *hw = &adapter->hw;
415 if (adapter->en_mng_pt) {
416 u32 manc = er32(MANC);
418 /* disable hardware interception of ARP */
419 manc &= ~(E1000_MANC_ARP_EN);
421 /* enable receiving management packets to the host */
422 /* this will probably generate destination unreachable messages
423 * from the host OS, but the packets will be handled on SMBUS */
424 if (hw->has_manc2h) {
425 u32 manc2h = er32(MANC2H);
427 manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430 manc2h |= E1000_MNG2HOST_PORT_623;
431 manc2h |= E1000_MNG2HOST_PORT_664;
432 ew32(MANC2H, manc2h);
435 ew32(MANC, manc);
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
441 struct e1000_hw *hw = &adapter->hw;
443 if (adapter->en_mng_pt) {
444 u32 manc = er32(MANC);
446 /* re-enable hardware interception of ARP */
447 manc |= E1000_MANC_ARP_EN;
449 if (hw->has_manc2h)
450 manc &= ~E1000_MANC_EN_MNG2HOST;
452 /* don't explicitly have to mess with MANC2H since
453 * MANC has an enable disable that gates MANC2H */
455 ew32(MANC, manc);
460 * e1000_configure - configure the hardware for RX and TX
461 * @adapter = private board structure
463 static void e1000_configure(struct e1000_adapter *adapter)
465 struct net_device *netdev = adapter->netdev;
466 int i;
468 e1000_set_rx_mode(netdev);
470 e1000_restore_vlan(adapter);
471 e1000_init_manageability(adapter);
473 e1000_configure_tx(adapter);
474 e1000_setup_rctl(adapter);
475 e1000_configure_rx(adapter);
476 /* call E1000_DESC_UNUSED which always leaves
477 * at least 1 descriptor unused to make sure
478 * next_to_use != next_to_clean */
479 for (i = 0; i < adapter->num_rx_queues; i++) {
480 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481 adapter->alloc_rx_buf(adapter, ring,
482 E1000_DESC_UNUSED(ring));
485 adapter->tx_queue_len = netdev->tx_queue_len;
488 int e1000_up(struct e1000_adapter *adapter)
490 struct e1000_hw *hw = &adapter->hw;
492 /* hardware has been reset, we need to reload some things */
493 e1000_configure(adapter);
495 clear_bit(__E1000_DOWN, &adapter->flags);
497 napi_enable(&adapter->napi);
499 e1000_irq_enable(adapter);
501 /* fire a link change interrupt to start the watchdog */
502 ew32(ICS, E1000_ICS_LSC);
503 return 0;
507 * e1000_power_up_phy - restore link in case the phy was powered down
508 * @adapter: address of board private structure
510 * The phy may be powered down to save power and turn off link when the
511 * driver is unloaded and wake on lan is not enabled (among others)
512 * *** this routine MUST be followed by a call to e1000_reset ***
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
518 struct e1000_hw *hw = &adapter->hw;
519 u16 mii_reg = 0;
521 /* Just clear the power down bit to wake the phy back up */
522 if (hw->media_type == e1000_media_type_copper) {
523 /* according to the manual, the phy will retain its
524 * settings across a power-down/up cycle */
525 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526 mii_reg &= ~MII_CR_POWER_DOWN;
527 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
533 struct e1000_hw *hw = &adapter->hw;
535 /* Power down the PHY so no link is implied when interface is down *
536 * The PHY cannot be powered down if any of the following is true *
537 * (a) WoL is enabled
538 * (b) AMT is active
539 * (c) SoL/IDER session is active */
540 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541 hw->media_type == e1000_media_type_copper) {
542 u16 mii_reg = 0;
544 switch (hw->mac_type) {
545 case e1000_82540:
546 case e1000_82545:
547 case e1000_82545_rev_3:
548 case e1000_82546:
549 case e1000_82546_rev_3:
550 case e1000_82541:
551 case e1000_82541_rev_2:
552 case e1000_82547:
553 case e1000_82547_rev_2:
554 if (er32(MANC) & E1000_MANC_SMBUS_EN)
555 goto out;
556 break;
557 case e1000_82571:
558 case e1000_82572:
559 case e1000_82573:
560 case e1000_80003es2lan:
561 case e1000_ich8lan:
562 if (e1000_check_mng_mode(hw) ||
563 e1000_check_phy_reset_block(hw))
564 goto out;
565 break;
566 default:
567 goto out;
569 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570 mii_reg |= MII_CR_POWER_DOWN;
571 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572 mdelay(1);
574 out:
575 return;
578 void e1000_down(struct e1000_adapter *adapter)
580 struct net_device *netdev = adapter->netdev;
582 /* signal that we're down so the interrupt handler does not
583 * reschedule our watchdog timer */
584 set_bit(__E1000_DOWN, &adapter->flags);
586 napi_disable(&adapter->napi);
588 e1000_irq_disable(adapter);
590 del_timer_sync(&adapter->tx_fifo_stall_timer);
591 del_timer_sync(&adapter->watchdog_timer);
592 del_timer_sync(&adapter->phy_info_timer);
594 netdev->tx_queue_len = adapter->tx_queue_len;
595 adapter->link_speed = 0;
596 adapter->link_duplex = 0;
597 netif_carrier_off(netdev);
598 netif_stop_queue(netdev);
600 e1000_reset(adapter);
601 e1000_clean_all_tx_rings(adapter);
602 e1000_clean_all_rx_rings(adapter);
605 void e1000_reinit_locked(struct e1000_adapter *adapter)
607 WARN_ON(in_interrupt());
608 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609 msleep(1);
610 e1000_down(adapter);
611 e1000_up(adapter);
612 clear_bit(__E1000_RESETTING, &adapter->flags);
615 void e1000_reset(struct e1000_adapter *adapter)
617 struct e1000_hw *hw = &adapter->hw;
618 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619 u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620 bool legacy_pba_adjust = false;
622 /* Repartition Pba for greater than 9k mtu
623 * To take effect CTRL.RST is required.
626 switch (hw->mac_type) {
627 case e1000_82542_rev2_0:
628 case e1000_82542_rev2_1:
629 case e1000_82543:
630 case e1000_82544:
631 case e1000_82540:
632 case e1000_82541:
633 case e1000_82541_rev_2:
634 legacy_pba_adjust = true;
635 pba = E1000_PBA_48K;
636 break;
637 case e1000_82545:
638 case e1000_82545_rev_3:
639 case e1000_82546:
640 case e1000_82546_rev_3:
641 pba = E1000_PBA_48K;
642 break;
643 case e1000_82547:
644 case e1000_82547_rev_2:
645 legacy_pba_adjust = true;
646 pba = E1000_PBA_30K;
647 break;
648 case e1000_82571:
649 case e1000_82572:
650 case e1000_80003es2lan:
651 pba = E1000_PBA_38K;
652 break;
653 case e1000_82573:
654 pba = E1000_PBA_20K;
655 break;
656 case e1000_ich8lan:
657 pba = E1000_PBA_8K;
658 case e1000_undefined:
659 case e1000_num_macs:
660 break;
663 if (legacy_pba_adjust) {
664 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665 pba -= 8; /* allocate more FIFO for Tx */
667 if (hw->mac_type == e1000_82547) {
668 adapter->tx_fifo_head = 0;
669 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670 adapter->tx_fifo_size =
671 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672 atomic_set(&adapter->tx_fifo_stall, 0);
674 } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675 /* adjust PBA for jumbo frames */
676 ew32(PBA, pba);
678 /* To maintain wire speed transmits, the Tx FIFO should be
679 * large enough to accomodate two full transmit packets,
680 * rounded up to the next 1KB and expressed in KB. Likewise,
681 * the Rx FIFO should be large enough to accomodate at least
682 * one full receive packet and is similarly rounded up and
683 * expressed in KB. */
684 pba = er32(PBA);
685 /* upper 16 bits has Tx packet buffer allocation size in KB */
686 tx_space = pba >> 16;
687 /* lower 16 bits has Rx packet buffer allocation size in KB */
688 pba &= 0xffff;
689 /* don't include ethernet FCS because hardware appends/strips */
690 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
691 VLAN_TAG_SIZE;
692 min_tx_space = min_rx_space;
693 min_tx_space *= 2;
694 min_tx_space = ALIGN(min_tx_space, 1024);
695 min_tx_space >>= 10;
696 min_rx_space = ALIGN(min_rx_space, 1024);
697 min_rx_space >>= 10;
699 /* If current Tx allocation is less than the min Tx FIFO size,
700 * and the min Tx FIFO size is less than the current Rx FIFO
701 * allocation, take space away from current Rx allocation */
702 if (tx_space < min_tx_space &&
703 ((min_tx_space - tx_space) < pba)) {
704 pba = pba - (min_tx_space - tx_space);
706 /* PCI/PCIx hardware has PBA alignment constraints */
707 switch (hw->mac_type) {
708 case e1000_82545 ... e1000_82546_rev_3:
709 pba &= ~(E1000_PBA_8K - 1);
710 break;
711 default:
712 break;
715 /* if short on rx space, rx wins and must trump tx
716 * adjustment or use Early Receive if available */
717 if (pba < min_rx_space) {
718 switch (hw->mac_type) {
719 case e1000_82573:
720 /* ERT enabled in e1000_configure_rx */
721 break;
722 default:
723 pba = min_rx_space;
724 break;
730 ew32(PBA, pba);
732 /* flow control settings */
733 /* Set the FC high water mark to 90% of the FIFO size.
734 * Required to clear last 3 LSB */
735 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736 /* We can't use 90% on small FIFOs because the remainder
737 * would be less than 1 full frame. In this case, we size
738 * it to allow at least a full frame above the high water
739 * mark. */
740 if (pba < E1000_PBA_16K)
741 fc_high_water_mark = (pba * 1024) - 1600;
743 hw->fc_high_water = fc_high_water_mark;
744 hw->fc_low_water = fc_high_water_mark - 8;
745 if (hw->mac_type == e1000_80003es2lan)
746 hw->fc_pause_time = 0xFFFF;
747 else
748 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
749 hw->fc_send_xon = 1;
750 hw->fc = hw->original_fc;
752 /* Allow time for pending master requests to run */
753 e1000_reset_hw(hw);
754 if (hw->mac_type >= e1000_82544)
755 ew32(WUC, 0);
757 if (e1000_init_hw(hw))
758 DPRINTK(PROBE, ERR, "Hardware Error\n");
759 e1000_update_mng_vlan(adapter);
761 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762 if (hw->mac_type >= e1000_82544 &&
763 hw->mac_type <= e1000_82547_rev_2 &&
764 hw->autoneg == 1 &&
765 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766 u32 ctrl = er32(CTRL);
767 /* clear phy power management bit if we are in gig only mode,
768 * which if enabled will attempt negotiation to 100Mb, which
769 * can cause a loss of link at power off or driver unload */
770 ctrl &= ~E1000_CTRL_SWDPIN3;
771 ew32(CTRL, ctrl);
774 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
777 e1000_reset_adaptive(hw);
778 e1000_phy_get_info(hw, &adapter->phy_info);
780 if (!adapter->smart_power_down &&
781 (hw->mac_type == e1000_82571 ||
782 hw->mac_type == e1000_82572)) {
783 u16 phy_data = 0;
784 /* speed up time to link by disabling smart power down, ignore
785 * the return value of this function because there is nothing
786 * different we would do if it failed */
787 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
788 &phy_data);
789 phy_data &= ~IGP02E1000_PM_SPD;
790 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791 phy_data);
794 e1000_release_manageability(adapter);
798 * Dump the eeprom for users having checksum issues
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
802 struct net_device *netdev = adapter->netdev;
803 struct ethtool_eeprom eeprom;
804 const struct ethtool_ops *ops = netdev->ethtool_ops;
805 u8 *data;
806 int i;
807 u16 csum_old, csum_new = 0;
809 eeprom.len = ops->get_eeprom_len(netdev);
810 eeprom.offset = 0;
812 data = kmalloc(eeprom.len, GFP_KERNEL);
813 if (!data) {
814 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
815 " data\n");
816 return;
819 ops->get_eeprom(netdev, &eeprom, data);
821 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824 csum_new += data[i] + (data[i + 1] << 8);
825 csum_new = EEPROM_SUM - csum_new;
827 printk(KERN_ERR "/*********************/\n");
828 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
831 printk(KERN_ERR "Offset Values\n");
832 printk(KERN_ERR "======== ======\n");
833 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
835 printk(KERN_ERR "Include this output when contacting your support "
836 "provider.\n");
837 printk(KERN_ERR "This is not a software error! Something bad "
838 "happened to your hardware or\n");
839 printk(KERN_ERR "EEPROM image. Ignoring this "
840 "problem could result in further problems,\n");
841 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843 "which is invalid\n");
844 printk(KERN_ERR "and requires you to set the proper MAC "
845 "address manually before continuing\n");
846 printk(KERN_ERR "to enable this network device.\n");
847 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848 "to your hardware vendor\n");
849 printk(KERN_ERR "or Intel Customer Support.\n");
850 printk(KERN_ERR "/*********************/\n");
852 kfree(data);
856 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857 * @pdev: PCI device information struct
859 * Return true if an adapter needs ioport resources
861 static int e1000_is_need_ioport(struct pci_dev *pdev)
863 switch (pdev->device) {
864 case E1000_DEV_ID_82540EM:
865 case E1000_DEV_ID_82540EM_LOM:
866 case E1000_DEV_ID_82540EP:
867 case E1000_DEV_ID_82540EP_LOM:
868 case E1000_DEV_ID_82540EP_LP:
869 case E1000_DEV_ID_82541EI:
870 case E1000_DEV_ID_82541EI_MOBILE:
871 case E1000_DEV_ID_82541ER:
872 case E1000_DEV_ID_82541ER_LOM:
873 case E1000_DEV_ID_82541GI:
874 case E1000_DEV_ID_82541GI_LF:
875 case E1000_DEV_ID_82541GI_MOBILE:
876 case E1000_DEV_ID_82544EI_COPPER:
877 case E1000_DEV_ID_82544EI_FIBER:
878 case E1000_DEV_ID_82544GC_COPPER:
879 case E1000_DEV_ID_82544GC_LOM:
880 case E1000_DEV_ID_82545EM_COPPER:
881 case E1000_DEV_ID_82545EM_FIBER:
882 case E1000_DEV_ID_82546EB_COPPER:
883 case E1000_DEV_ID_82546EB_FIBER:
884 case E1000_DEV_ID_82546EB_QUAD_COPPER:
885 return true;
886 default:
887 return false;
892 * e1000_probe - Device Initialization Routine
893 * @pdev: PCI device information struct
894 * @ent: entry in e1000_pci_tbl
896 * Returns 0 on success, negative on failure
898 * e1000_probe initializes an adapter identified by a pci_dev structure.
899 * The OS initialization, configuring of the adapter private structure,
900 * and a hardware reset occur.
902 static int __devinit e1000_probe(struct pci_dev *pdev,
903 const struct pci_device_id *ent)
905 struct net_device *netdev;
906 struct e1000_adapter *adapter;
907 struct e1000_hw *hw;
909 static int cards_found = 0;
910 static int global_quad_port_a = 0; /* global ksp3 port a indication */
911 int i, err, pci_using_dac;
912 u16 eeprom_data = 0;
913 u16 eeprom_apme_mask = E1000_EEPROM_APME;
914 int bars, need_ioport;
916 /* do not allocate ioport bars when not needed */
917 need_ioport = e1000_is_need_ioport(pdev);
918 if (need_ioport) {
919 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
920 err = pci_enable_device(pdev);
921 } else {
922 bars = pci_select_bars(pdev, IORESOURCE_MEM);
923 err = pci_enable_device(pdev);
925 if (err)
926 return err;
928 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
929 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
930 pci_using_dac = 1;
931 } else {
932 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
933 if (err) {
934 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
935 if (err) {
936 E1000_ERR("No usable DMA configuration, "
937 "aborting\n");
938 goto err_dma;
941 pci_using_dac = 0;
944 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
945 if (err)
946 goto err_pci_reg;
948 pci_set_master(pdev);
950 err = -ENOMEM;
951 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
952 if (!netdev)
953 goto err_alloc_etherdev;
955 SET_NETDEV_DEV(netdev, &pdev->dev);
957 pci_set_drvdata(pdev, netdev);
958 adapter = netdev_priv(netdev);
959 adapter->netdev = netdev;
960 adapter->pdev = pdev;
961 adapter->msg_enable = (1 << debug) - 1;
962 adapter->bars = bars;
963 adapter->need_ioport = need_ioport;
965 hw = &adapter->hw;
966 hw->back = adapter;
968 err = -EIO;
969 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
970 if (!hw->hw_addr)
971 goto err_ioremap;
973 if (adapter->need_ioport) {
974 for (i = BAR_1; i <= BAR_5; i++) {
975 if (pci_resource_len(pdev, i) == 0)
976 continue;
977 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
978 hw->io_base = pci_resource_start(pdev, i);
979 break;
984 netdev->open = &e1000_open;
985 netdev->stop = &e1000_close;
986 netdev->hard_start_xmit = &e1000_xmit_frame;
987 netdev->get_stats = &e1000_get_stats;
988 netdev->set_rx_mode = &e1000_set_rx_mode;
989 netdev->set_mac_address = &e1000_set_mac;
990 netdev->change_mtu = &e1000_change_mtu;
991 netdev->do_ioctl = &e1000_ioctl;
992 e1000_set_ethtool_ops(netdev);
993 netdev->tx_timeout = &e1000_tx_timeout;
994 netdev->watchdog_timeo = 5 * HZ;
995 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
996 netdev->vlan_rx_register = e1000_vlan_rx_register;
997 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
998 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
999 #ifdef CONFIG_NET_POLL_CONTROLLER
1000 netdev->poll_controller = e1000_netpoll;
1001 #endif
1002 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1004 adapter->bd_number = cards_found;
1006 /* setup the private structure */
1008 err = e1000_sw_init(adapter);
1009 if (err)
1010 goto err_sw_init;
1012 err = -EIO;
1013 /* Flash BAR mapping must happen after e1000_sw_init
1014 * because it depends on mac_type */
1015 if ((hw->mac_type == e1000_ich8lan) &&
1016 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1017 hw->flash_address = pci_ioremap_bar(pdev, 1);
1018 if (!hw->flash_address)
1019 goto err_flashmap;
1022 if (e1000_check_phy_reset_block(hw))
1023 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1025 if (hw->mac_type >= e1000_82543) {
1026 netdev->features = NETIF_F_SG |
1027 NETIF_F_HW_CSUM |
1028 NETIF_F_HW_VLAN_TX |
1029 NETIF_F_HW_VLAN_RX |
1030 NETIF_F_HW_VLAN_FILTER;
1031 if (hw->mac_type == e1000_ich8lan)
1032 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1035 if ((hw->mac_type >= e1000_82544) &&
1036 (hw->mac_type != e1000_82547))
1037 netdev->features |= NETIF_F_TSO;
1039 if (hw->mac_type > e1000_82547_rev_2)
1040 netdev->features |= NETIF_F_TSO6;
1041 if (pci_using_dac)
1042 netdev->features |= NETIF_F_HIGHDMA;
1044 netdev->features |= NETIF_F_LLTX;
1046 netdev->vlan_features |= NETIF_F_TSO;
1047 netdev->vlan_features |= NETIF_F_TSO6;
1048 netdev->vlan_features |= NETIF_F_HW_CSUM;
1049 netdev->vlan_features |= NETIF_F_SG;
1051 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1053 /* initialize eeprom parameters */
1054 if (e1000_init_eeprom_params(hw)) {
1055 E1000_ERR("EEPROM initialization failed\n");
1056 goto err_eeprom;
1059 /* before reading the EEPROM, reset the controller to
1060 * put the device in a known good starting state */
1062 e1000_reset_hw(hw);
1064 /* make sure the EEPROM is good */
1065 if (e1000_validate_eeprom_checksum(hw) < 0) {
1066 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1067 e1000_dump_eeprom(adapter);
1069 * set MAC address to all zeroes to invalidate and temporary
1070 * disable this device for the user. This blocks regular
1071 * traffic while still permitting ethtool ioctls from reaching
1072 * the hardware as well as allowing the user to run the
1073 * interface after manually setting a hw addr using
1074 * `ip set address`
1076 memset(hw->mac_addr, 0, netdev->addr_len);
1077 } else {
1078 /* copy the MAC address out of the EEPROM */
1079 if (e1000_read_mac_addr(hw))
1080 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1082 /* don't block initalization here due to bad MAC address */
1083 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1084 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1086 if (!is_valid_ether_addr(netdev->perm_addr))
1087 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1089 e1000_get_bus_info(hw);
1091 init_timer(&adapter->tx_fifo_stall_timer);
1092 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1093 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1095 init_timer(&adapter->watchdog_timer);
1096 adapter->watchdog_timer.function = &e1000_watchdog;
1097 adapter->watchdog_timer.data = (unsigned long) adapter;
1099 init_timer(&adapter->phy_info_timer);
1100 adapter->phy_info_timer.function = &e1000_update_phy_info;
1101 adapter->phy_info_timer.data = (unsigned long)adapter;
1103 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1105 e1000_check_options(adapter);
1107 /* Initial Wake on LAN setting
1108 * If APM wake is enabled in the EEPROM,
1109 * enable the ACPI Magic Packet filter
1112 switch (hw->mac_type) {
1113 case e1000_82542_rev2_0:
1114 case e1000_82542_rev2_1:
1115 case e1000_82543:
1116 break;
1117 case e1000_82544:
1118 e1000_read_eeprom(hw,
1119 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1120 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1121 break;
1122 case e1000_ich8lan:
1123 e1000_read_eeprom(hw,
1124 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1125 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1126 break;
1127 case e1000_82546:
1128 case e1000_82546_rev_3:
1129 case e1000_82571:
1130 case e1000_80003es2lan:
1131 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1132 e1000_read_eeprom(hw,
1133 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1134 break;
1136 /* Fall Through */
1137 default:
1138 e1000_read_eeprom(hw,
1139 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1140 break;
1142 if (eeprom_data & eeprom_apme_mask)
1143 adapter->eeprom_wol |= E1000_WUFC_MAG;
1145 /* now that we have the eeprom settings, apply the special cases
1146 * where the eeprom may be wrong or the board simply won't support
1147 * wake on lan on a particular port */
1148 switch (pdev->device) {
1149 case E1000_DEV_ID_82546GB_PCIE:
1150 adapter->eeprom_wol = 0;
1151 break;
1152 case E1000_DEV_ID_82546EB_FIBER:
1153 case E1000_DEV_ID_82546GB_FIBER:
1154 case E1000_DEV_ID_82571EB_FIBER:
1155 /* Wake events only supported on port A for dual fiber
1156 * regardless of eeprom setting */
1157 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1158 adapter->eeprom_wol = 0;
1159 break;
1160 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1161 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1162 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1163 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1164 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1165 /* if quad port adapter, disable WoL on all but port A */
1166 if (global_quad_port_a != 0)
1167 adapter->eeprom_wol = 0;
1168 else
1169 adapter->quad_port_a = 1;
1170 /* Reset for multiple quad port adapters */
1171 if (++global_quad_port_a == 4)
1172 global_quad_port_a = 0;
1173 break;
1176 /* initialize the wol settings based on the eeprom settings */
1177 adapter->wol = adapter->eeprom_wol;
1179 /* print bus type/speed/width info */
1180 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1181 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1182 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1183 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1184 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1185 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1186 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1187 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1188 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1189 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1190 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1191 "32-bit"));
1193 printk("%pM\n", netdev->dev_addr);
1195 if (hw->bus_type == e1000_bus_type_pci_express) {
1196 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1197 "longer be supported by this driver in the future.\n",
1198 pdev->vendor, pdev->device);
1199 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1200 "driver instead.\n");
1203 /* reset the hardware with the new settings */
1204 e1000_reset(adapter);
1206 /* If the controller is 82573 and f/w is AMT, do not set
1207 * DRV_LOAD until the interface is up. For all other cases,
1208 * let the f/w know that the h/w is now under the control
1209 * of the driver. */
1210 if (hw->mac_type != e1000_82573 ||
1211 !e1000_check_mng_mode(hw))
1212 e1000_get_hw_control(adapter);
1214 /* tell the stack to leave us alone until e1000_open() is called */
1215 netif_carrier_off(netdev);
1216 netif_stop_queue(netdev);
1218 strcpy(netdev->name, "eth%d");
1219 err = register_netdev(netdev);
1220 if (err)
1221 goto err_register;
1223 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1225 cards_found++;
1226 return 0;
1228 err_register:
1229 e1000_release_hw_control(adapter);
1230 err_eeprom:
1231 if (!e1000_check_phy_reset_block(hw))
1232 e1000_phy_hw_reset(hw);
1234 if (hw->flash_address)
1235 iounmap(hw->flash_address);
1236 err_flashmap:
1237 for (i = 0; i < adapter->num_rx_queues; i++)
1238 dev_put(&adapter->polling_netdev[i]);
1240 kfree(adapter->tx_ring);
1241 kfree(adapter->rx_ring);
1242 kfree(adapter->polling_netdev);
1243 err_sw_init:
1244 iounmap(hw->hw_addr);
1245 err_ioremap:
1246 free_netdev(netdev);
1247 err_alloc_etherdev:
1248 pci_release_selected_regions(pdev, bars);
1249 err_pci_reg:
1250 err_dma:
1251 pci_disable_device(pdev);
1252 return err;
1256 * e1000_remove - Device Removal Routine
1257 * @pdev: PCI device information struct
1259 * e1000_remove is called by the PCI subsystem to alert the driver
1260 * that it should release a PCI device. The could be caused by a
1261 * Hot-Plug event, or because the driver is going to be removed from
1262 * memory.
1265 static void __devexit e1000_remove(struct pci_dev *pdev)
1267 struct net_device *netdev = pci_get_drvdata(pdev);
1268 struct e1000_adapter *adapter = netdev_priv(netdev);
1269 struct e1000_hw *hw = &adapter->hw;
1270 int i;
1272 cancel_work_sync(&adapter->reset_task);
1274 e1000_release_manageability(adapter);
1276 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1277 * would have already happened in close and is redundant. */
1278 e1000_release_hw_control(adapter);
1280 for (i = 0; i < adapter->num_rx_queues; i++)
1281 dev_put(&adapter->polling_netdev[i]);
1283 unregister_netdev(netdev);
1285 if (!e1000_check_phy_reset_block(hw))
1286 e1000_phy_hw_reset(hw);
1288 kfree(adapter->tx_ring);
1289 kfree(adapter->rx_ring);
1290 kfree(adapter->polling_netdev);
1292 iounmap(hw->hw_addr);
1293 if (hw->flash_address)
1294 iounmap(hw->flash_address);
1295 pci_release_selected_regions(pdev, adapter->bars);
1297 free_netdev(netdev);
1299 pci_disable_device(pdev);
1303 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1304 * @adapter: board private structure to initialize
1306 * e1000_sw_init initializes the Adapter private data structure.
1307 * Fields are initialized based on PCI device information and
1308 * OS network device settings (MTU size).
1311 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1313 struct e1000_hw *hw = &adapter->hw;
1314 struct net_device *netdev = adapter->netdev;
1315 struct pci_dev *pdev = adapter->pdev;
1316 int i;
1318 /* PCI config space info */
1320 hw->vendor_id = pdev->vendor;
1321 hw->device_id = pdev->device;
1322 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1323 hw->subsystem_id = pdev->subsystem_device;
1324 hw->revision_id = pdev->revision;
1326 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1328 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1329 hw->max_frame_size = netdev->mtu +
1330 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1331 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1333 /* identify the MAC */
1335 if (e1000_set_mac_type(hw)) {
1336 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1337 return -EIO;
1340 switch (hw->mac_type) {
1341 default:
1342 break;
1343 case e1000_82541:
1344 case e1000_82547:
1345 case e1000_82541_rev_2:
1346 case e1000_82547_rev_2:
1347 hw->phy_init_script = 1;
1348 break;
1351 e1000_set_media_type(hw);
1353 hw->wait_autoneg_complete = false;
1354 hw->tbi_compatibility_en = true;
1355 hw->adaptive_ifs = true;
1357 /* Copper options */
1359 if (hw->media_type == e1000_media_type_copper) {
1360 hw->mdix = AUTO_ALL_MODES;
1361 hw->disable_polarity_correction = false;
1362 hw->master_slave = E1000_MASTER_SLAVE;
1365 adapter->num_tx_queues = 1;
1366 adapter->num_rx_queues = 1;
1368 if (e1000_alloc_queues(adapter)) {
1369 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1370 return -ENOMEM;
1373 for (i = 0; i < adapter->num_rx_queues; i++) {
1374 adapter->polling_netdev[i].priv = adapter;
1375 dev_hold(&adapter->polling_netdev[i]);
1376 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1378 spin_lock_init(&adapter->tx_queue_lock);
1380 /* Explicitly disable IRQ since the NIC can be in any state. */
1381 e1000_irq_disable(adapter);
1383 spin_lock_init(&adapter->stats_lock);
1385 set_bit(__E1000_DOWN, &adapter->flags);
1387 return 0;
1391 * e1000_alloc_queues - Allocate memory for all rings
1392 * @adapter: board private structure to initialize
1394 * We allocate one ring per queue at run-time since we don't know the
1395 * number of queues at compile-time. The polling_netdev array is
1396 * intended for Multiqueue, but should work fine with a single queue.
1399 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1401 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1402 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1403 if (!adapter->tx_ring)
1404 return -ENOMEM;
1406 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1407 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1408 if (!adapter->rx_ring) {
1409 kfree(adapter->tx_ring);
1410 return -ENOMEM;
1413 adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1414 sizeof(struct net_device),
1415 GFP_KERNEL);
1416 if (!adapter->polling_netdev) {
1417 kfree(adapter->tx_ring);
1418 kfree(adapter->rx_ring);
1419 return -ENOMEM;
1422 return E1000_SUCCESS;
1426 * e1000_open - Called when a network interface is made active
1427 * @netdev: network interface device structure
1429 * Returns 0 on success, negative value on failure
1431 * The open entry point is called when a network interface is made
1432 * active by the system (IFF_UP). At this point all resources needed
1433 * for transmit and receive operations are allocated, the interrupt
1434 * handler is registered with the OS, the watchdog timer is started,
1435 * and the stack is notified that the interface is ready.
1438 static int e1000_open(struct net_device *netdev)
1440 struct e1000_adapter *adapter = netdev_priv(netdev);
1441 struct e1000_hw *hw = &adapter->hw;
1442 int err;
1444 /* disallow open during test */
1445 if (test_bit(__E1000_TESTING, &adapter->flags))
1446 return -EBUSY;
1448 /* allocate transmit descriptors */
1449 err = e1000_setup_all_tx_resources(adapter);
1450 if (err)
1451 goto err_setup_tx;
1453 /* allocate receive descriptors */
1454 err = e1000_setup_all_rx_resources(adapter);
1455 if (err)
1456 goto err_setup_rx;
1458 e1000_power_up_phy(adapter);
1460 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1461 if ((hw->mng_cookie.status &
1462 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1463 e1000_update_mng_vlan(adapter);
1466 /* If AMT is enabled, let the firmware know that the network
1467 * interface is now open */
1468 if (hw->mac_type == e1000_82573 &&
1469 e1000_check_mng_mode(hw))
1470 e1000_get_hw_control(adapter);
1472 /* before we allocate an interrupt, we must be ready to handle it.
1473 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1474 * as soon as we call pci_request_irq, so we have to setup our
1475 * clean_rx handler before we do so. */
1476 e1000_configure(adapter);
1478 err = e1000_request_irq(adapter);
1479 if (err)
1480 goto err_req_irq;
1482 /* From here on the code is the same as e1000_up() */
1483 clear_bit(__E1000_DOWN, &adapter->flags);
1485 napi_enable(&adapter->napi);
1487 e1000_irq_enable(adapter);
1489 netif_start_queue(netdev);
1491 /* fire a link status change interrupt to start the watchdog */
1492 ew32(ICS, E1000_ICS_LSC);
1494 return E1000_SUCCESS;
1496 err_req_irq:
1497 e1000_release_hw_control(adapter);
1498 e1000_power_down_phy(adapter);
1499 e1000_free_all_rx_resources(adapter);
1500 err_setup_rx:
1501 e1000_free_all_tx_resources(adapter);
1502 err_setup_tx:
1503 e1000_reset(adapter);
1505 return err;
1509 * e1000_close - Disables a network interface
1510 * @netdev: network interface device structure
1512 * Returns 0, this is not allowed to fail
1514 * The close entry point is called when an interface is de-activated
1515 * by the OS. The hardware is still under the drivers control, but
1516 * needs to be disabled. A global MAC reset is issued to stop the
1517 * hardware, and all transmit and receive resources are freed.
1520 static int e1000_close(struct net_device *netdev)
1522 struct e1000_adapter *adapter = netdev_priv(netdev);
1523 struct e1000_hw *hw = &adapter->hw;
1525 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1526 e1000_down(adapter);
1527 e1000_power_down_phy(adapter);
1528 e1000_free_irq(adapter);
1530 e1000_free_all_tx_resources(adapter);
1531 e1000_free_all_rx_resources(adapter);
1533 /* kill manageability vlan ID if supported, but not if a vlan with
1534 * the same ID is registered on the host OS (let 8021q kill it) */
1535 if ((hw->mng_cookie.status &
1536 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1537 !(adapter->vlgrp &&
1538 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1539 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1542 /* If AMT is enabled, let the firmware know that the network
1543 * interface is now closed */
1544 if (hw->mac_type == e1000_82573 &&
1545 e1000_check_mng_mode(hw))
1546 e1000_release_hw_control(adapter);
1548 return 0;
1552 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1553 * @adapter: address of board private structure
1554 * @start: address of beginning of memory
1555 * @len: length of memory
1557 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1558 unsigned long len)
1560 struct e1000_hw *hw = &adapter->hw;
1561 unsigned long begin = (unsigned long)start;
1562 unsigned long end = begin + len;
1564 /* First rev 82545 and 82546 need to not allow any memory
1565 * write location to cross 64k boundary due to errata 23 */
1566 if (hw->mac_type == e1000_82545 ||
1567 hw->mac_type == e1000_82546) {
1568 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1571 return true;
1575 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1576 * @adapter: board private structure
1577 * @txdr: tx descriptor ring (for a specific queue) to setup
1579 * Return 0 on success, negative on failure
1582 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1583 struct e1000_tx_ring *txdr)
1585 struct pci_dev *pdev = adapter->pdev;
1586 int size;
1588 size = sizeof(struct e1000_buffer) * txdr->count;
1589 txdr->buffer_info = vmalloc(size);
1590 if (!txdr->buffer_info) {
1591 DPRINTK(PROBE, ERR,
1592 "Unable to allocate memory for the transmit descriptor ring\n");
1593 return -ENOMEM;
1595 memset(txdr->buffer_info, 0, size);
1597 /* round up to nearest 4K */
1599 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1600 txdr->size = ALIGN(txdr->size, 4096);
1602 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1603 if (!txdr->desc) {
1604 setup_tx_desc_die:
1605 vfree(txdr->buffer_info);
1606 DPRINTK(PROBE, ERR,
1607 "Unable to allocate memory for the transmit descriptor ring\n");
1608 return -ENOMEM;
1611 /* Fix for errata 23, can't cross 64kB boundary */
1612 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1613 void *olddesc = txdr->desc;
1614 dma_addr_t olddma = txdr->dma;
1615 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1616 "at %p\n", txdr->size, txdr->desc);
1617 /* Try again, without freeing the previous */
1618 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1619 /* Failed allocation, critical failure */
1620 if (!txdr->desc) {
1621 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1622 goto setup_tx_desc_die;
1625 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1626 /* give up */
1627 pci_free_consistent(pdev, txdr->size, txdr->desc,
1628 txdr->dma);
1629 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1630 DPRINTK(PROBE, ERR,
1631 "Unable to allocate aligned memory "
1632 "for the transmit descriptor ring\n");
1633 vfree(txdr->buffer_info);
1634 return -ENOMEM;
1635 } else {
1636 /* Free old allocation, new allocation was successful */
1637 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1640 memset(txdr->desc, 0, txdr->size);
1642 txdr->next_to_use = 0;
1643 txdr->next_to_clean = 0;
1644 spin_lock_init(&txdr->tx_lock);
1646 return 0;
1650 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1651 * (Descriptors) for all queues
1652 * @adapter: board private structure
1654 * Return 0 on success, negative on failure
1657 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1659 int i, err = 0;
1661 for (i = 0; i < adapter->num_tx_queues; i++) {
1662 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1663 if (err) {
1664 DPRINTK(PROBE, ERR,
1665 "Allocation for Tx Queue %u failed\n", i);
1666 for (i-- ; i >= 0; i--)
1667 e1000_free_tx_resources(adapter,
1668 &adapter->tx_ring[i]);
1669 break;
1673 return err;
1677 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1678 * @adapter: board private structure
1680 * Configure the Tx unit of the MAC after a reset.
1683 static void e1000_configure_tx(struct e1000_adapter *adapter)
1685 u64 tdba;
1686 struct e1000_hw *hw = &adapter->hw;
1687 u32 tdlen, tctl, tipg, tarc;
1688 u32 ipgr1, ipgr2;
1690 /* Setup the HW Tx Head and Tail descriptor pointers */
1692 switch (adapter->num_tx_queues) {
1693 case 1:
1694 default:
1695 tdba = adapter->tx_ring[0].dma;
1696 tdlen = adapter->tx_ring[0].count *
1697 sizeof(struct e1000_tx_desc);
1698 ew32(TDLEN, tdlen);
1699 ew32(TDBAH, (tdba >> 32));
1700 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1701 ew32(TDT, 0);
1702 ew32(TDH, 0);
1703 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1704 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1705 break;
1708 /* Set the default values for the Tx Inter Packet Gap timer */
1709 if (hw->mac_type <= e1000_82547_rev_2 &&
1710 (hw->media_type == e1000_media_type_fiber ||
1711 hw->media_type == e1000_media_type_internal_serdes))
1712 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1713 else
1714 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1716 switch (hw->mac_type) {
1717 case e1000_82542_rev2_0:
1718 case e1000_82542_rev2_1:
1719 tipg = DEFAULT_82542_TIPG_IPGT;
1720 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1721 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1722 break;
1723 case e1000_80003es2lan:
1724 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1725 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1726 break;
1727 default:
1728 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1729 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1730 break;
1732 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1733 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1734 ew32(TIPG, tipg);
1736 /* Set the Tx Interrupt Delay register */
1738 ew32(TIDV, adapter->tx_int_delay);
1739 if (hw->mac_type >= e1000_82540)
1740 ew32(TADV, adapter->tx_abs_int_delay);
1742 /* Program the Transmit Control Register */
1744 tctl = er32(TCTL);
1745 tctl &= ~E1000_TCTL_CT;
1746 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1747 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1749 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1750 tarc = er32(TARC0);
1751 /* set the speed mode bit, we'll clear it if we're not at
1752 * gigabit link later */
1753 tarc |= (1 << 21);
1754 ew32(TARC0, tarc);
1755 } else if (hw->mac_type == e1000_80003es2lan) {
1756 tarc = er32(TARC0);
1757 tarc |= 1;
1758 ew32(TARC0, tarc);
1759 tarc = er32(TARC1);
1760 tarc |= 1;
1761 ew32(TARC1, tarc);
1764 e1000_config_collision_dist(hw);
1766 /* Setup Transmit Descriptor Settings for eop descriptor */
1767 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1769 /* only set IDE if we are delaying interrupts using the timers */
1770 if (adapter->tx_int_delay)
1771 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1773 if (hw->mac_type < e1000_82543)
1774 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1775 else
1776 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1778 /* Cache if we're 82544 running in PCI-X because we'll
1779 * need this to apply a workaround later in the send path. */
1780 if (hw->mac_type == e1000_82544 &&
1781 hw->bus_type == e1000_bus_type_pcix)
1782 adapter->pcix_82544 = 1;
1784 ew32(TCTL, tctl);
1789 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1790 * @adapter: board private structure
1791 * @rxdr: rx descriptor ring (for a specific queue) to setup
1793 * Returns 0 on success, negative on failure
1796 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1797 struct e1000_rx_ring *rxdr)
1799 struct e1000_hw *hw = &adapter->hw;
1800 struct pci_dev *pdev = adapter->pdev;
1801 int size, desc_len;
1803 size = sizeof(struct e1000_buffer) * rxdr->count;
1804 rxdr->buffer_info = vmalloc(size);
1805 if (!rxdr->buffer_info) {
1806 DPRINTK(PROBE, ERR,
1807 "Unable to allocate memory for the receive descriptor ring\n");
1808 return -ENOMEM;
1810 memset(rxdr->buffer_info, 0, size);
1812 if (hw->mac_type <= e1000_82547_rev_2)
1813 desc_len = sizeof(struct e1000_rx_desc);
1814 else
1815 desc_len = sizeof(union e1000_rx_desc_packet_split);
1817 /* Round up to nearest 4K */
1819 rxdr->size = rxdr->count * desc_len;
1820 rxdr->size = ALIGN(rxdr->size, 4096);
1822 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1824 if (!rxdr->desc) {
1825 DPRINTK(PROBE, ERR,
1826 "Unable to allocate memory for the receive descriptor ring\n");
1827 setup_rx_desc_die:
1828 vfree(rxdr->buffer_info);
1829 return -ENOMEM;
1832 /* Fix for errata 23, can't cross 64kB boundary */
1833 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1834 void *olddesc = rxdr->desc;
1835 dma_addr_t olddma = rxdr->dma;
1836 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1837 "at %p\n", rxdr->size, rxdr->desc);
1838 /* Try again, without freeing the previous */
1839 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1840 /* Failed allocation, critical failure */
1841 if (!rxdr->desc) {
1842 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1843 DPRINTK(PROBE, ERR,
1844 "Unable to allocate memory "
1845 "for the receive descriptor ring\n");
1846 goto setup_rx_desc_die;
1849 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1850 /* give up */
1851 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1852 rxdr->dma);
1853 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1854 DPRINTK(PROBE, ERR,
1855 "Unable to allocate aligned memory "
1856 "for the receive descriptor ring\n");
1857 goto setup_rx_desc_die;
1858 } else {
1859 /* Free old allocation, new allocation was successful */
1860 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1863 memset(rxdr->desc, 0, rxdr->size);
1865 rxdr->next_to_clean = 0;
1866 rxdr->next_to_use = 0;
1868 return 0;
1872 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1873 * (Descriptors) for all queues
1874 * @adapter: board private structure
1876 * Return 0 on success, negative on failure
1879 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1881 int i, err = 0;
1883 for (i = 0; i < adapter->num_rx_queues; i++) {
1884 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1885 if (err) {
1886 DPRINTK(PROBE, ERR,
1887 "Allocation for Rx Queue %u failed\n", i);
1888 for (i-- ; i >= 0; i--)
1889 e1000_free_rx_resources(adapter,
1890 &adapter->rx_ring[i]);
1891 break;
1895 return err;
1899 * e1000_setup_rctl - configure the receive control registers
1900 * @adapter: Board private structure
1902 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1903 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1904 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1906 struct e1000_hw *hw = &adapter->hw;
1907 u32 rctl;
1909 rctl = er32(RCTL);
1911 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1913 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1914 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1915 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1917 if (hw->tbi_compatibility_on == 1)
1918 rctl |= E1000_RCTL_SBP;
1919 else
1920 rctl &= ~E1000_RCTL_SBP;
1922 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1923 rctl &= ~E1000_RCTL_LPE;
1924 else
1925 rctl |= E1000_RCTL_LPE;
1927 /* Setup buffer sizes */
1928 rctl &= ~E1000_RCTL_SZ_4096;
1929 rctl |= E1000_RCTL_BSEX;
1930 switch (adapter->rx_buffer_len) {
1931 case E1000_RXBUFFER_256:
1932 rctl |= E1000_RCTL_SZ_256;
1933 rctl &= ~E1000_RCTL_BSEX;
1934 break;
1935 case E1000_RXBUFFER_512:
1936 rctl |= E1000_RCTL_SZ_512;
1937 rctl &= ~E1000_RCTL_BSEX;
1938 break;
1939 case E1000_RXBUFFER_1024:
1940 rctl |= E1000_RCTL_SZ_1024;
1941 rctl &= ~E1000_RCTL_BSEX;
1942 break;
1943 case E1000_RXBUFFER_2048:
1944 default:
1945 rctl |= E1000_RCTL_SZ_2048;
1946 rctl &= ~E1000_RCTL_BSEX;
1947 break;
1948 case E1000_RXBUFFER_4096:
1949 rctl |= E1000_RCTL_SZ_4096;
1950 break;
1951 case E1000_RXBUFFER_8192:
1952 rctl |= E1000_RCTL_SZ_8192;
1953 break;
1954 case E1000_RXBUFFER_16384:
1955 rctl |= E1000_RCTL_SZ_16384;
1956 break;
1959 ew32(RCTL, rctl);
1963 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1964 * @adapter: board private structure
1966 * Configure the Rx unit of the MAC after a reset.
1969 static void e1000_configure_rx(struct e1000_adapter *adapter)
1971 u64 rdba;
1972 struct e1000_hw *hw = &adapter->hw;
1973 u32 rdlen, rctl, rxcsum, ctrl_ext;
1975 rdlen = adapter->rx_ring[0].count *
1976 sizeof(struct e1000_rx_desc);
1977 adapter->clean_rx = e1000_clean_rx_irq;
1978 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1980 /* disable receives while setting up the descriptors */
1981 rctl = er32(RCTL);
1982 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1984 /* set the Receive Delay Timer Register */
1985 ew32(RDTR, adapter->rx_int_delay);
1987 if (hw->mac_type >= e1000_82540) {
1988 ew32(RADV, adapter->rx_abs_int_delay);
1989 if (adapter->itr_setting != 0)
1990 ew32(ITR, 1000000000 / (adapter->itr * 256));
1993 if (hw->mac_type >= e1000_82571) {
1994 ctrl_ext = er32(CTRL_EXT);
1995 /* Reset delay timers after every interrupt */
1996 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1997 /* Auto-Mask interrupts upon ICR access */
1998 ctrl_ext |= E1000_CTRL_EXT_IAME;
1999 ew32(IAM, 0xffffffff);
2000 ew32(CTRL_EXT, ctrl_ext);
2001 E1000_WRITE_FLUSH();
2004 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2005 * the Base and Length of the Rx Descriptor Ring */
2006 switch (adapter->num_rx_queues) {
2007 case 1:
2008 default:
2009 rdba = adapter->rx_ring[0].dma;
2010 ew32(RDLEN, rdlen);
2011 ew32(RDBAH, (rdba >> 32));
2012 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2013 ew32(RDT, 0);
2014 ew32(RDH, 0);
2015 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2016 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2017 break;
2020 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2021 if (hw->mac_type >= e1000_82543) {
2022 rxcsum = er32(RXCSUM);
2023 if (adapter->rx_csum)
2024 rxcsum |= E1000_RXCSUM_TUOFL;
2025 else
2026 /* don't need to clear IPPCSE as it defaults to 0 */
2027 rxcsum &= ~E1000_RXCSUM_TUOFL;
2028 ew32(RXCSUM, rxcsum);
2031 /* Enable Receives */
2032 ew32(RCTL, rctl);
2036 * e1000_free_tx_resources - Free Tx Resources per Queue
2037 * @adapter: board private structure
2038 * @tx_ring: Tx descriptor ring for a specific queue
2040 * Free all transmit software resources
2043 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2044 struct e1000_tx_ring *tx_ring)
2046 struct pci_dev *pdev = adapter->pdev;
2048 e1000_clean_tx_ring(adapter, tx_ring);
2050 vfree(tx_ring->buffer_info);
2051 tx_ring->buffer_info = NULL;
2053 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2055 tx_ring->desc = NULL;
2059 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2060 * @adapter: board private structure
2062 * Free all transmit software resources
2065 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2067 int i;
2069 for (i = 0; i < adapter->num_tx_queues; i++)
2070 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2073 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2074 struct e1000_buffer *buffer_info)
2076 if (buffer_info->dma) {
2077 pci_unmap_page(adapter->pdev,
2078 buffer_info->dma,
2079 buffer_info->length,
2080 PCI_DMA_TODEVICE);
2081 buffer_info->dma = 0;
2083 if (buffer_info->skb) {
2084 dev_kfree_skb_any(buffer_info->skb);
2085 buffer_info->skb = NULL;
2087 /* buffer_info must be completely set up in the transmit path */
2091 * e1000_clean_tx_ring - Free Tx Buffers
2092 * @adapter: board private structure
2093 * @tx_ring: ring to be cleaned
2096 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2097 struct e1000_tx_ring *tx_ring)
2099 struct e1000_hw *hw = &adapter->hw;
2100 struct e1000_buffer *buffer_info;
2101 unsigned long size;
2102 unsigned int i;
2104 /* Free all the Tx ring sk_buffs */
2106 for (i = 0; i < tx_ring->count; i++) {
2107 buffer_info = &tx_ring->buffer_info[i];
2108 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2111 size = sizeof(struct e1000_buffer) * tx_ring->count;
2112 memset(tx_ring->buffer_info, 0, size);
2114 /* Zero out the descriptor ring */
2116 memset(tx_ring->desc, 0, tx_ring->size);
2118 tx_ring->next_to_use = 0;
2119 tx_ring->next_to_clean = 0;
2120 tx_ring->last_tx_tso = 0;
2122 writel(0, hw->hw_addr + tx_ring->tdh);
2123 writel(0, hw->hw_addr + tx_ring->tdt);
2127 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2128 * @adapter: board private structure
2131 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2133 int i;
2135 for (i = 0; i < adapter->num_tx_queues; i++)
2136 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2140 * e1000_free_rx_resources - Free Rx Resources
2141 * @adapter: board private structure
2142 * @rx_ring: ring to clean the resources from
2144 * Free all receive software resources
2147 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2148 struct e1000_rx_ring *rx_ring)
2150 struct pci_dev *pdev = adapter->pdev;
2152 e1000_clean_rx_ring(adapter, rx_ring);
2154 vfree(rx_ring->buffer_info);
2155 rx_ring->buffer_info = NULL;
2157 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2159 rx_ring->desc = NULL;
2163 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2164 * @adapter: board private structure
2166 * Free all receive software resources
2169 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2171 int i;
2173 for (i = 0; i < adapter->num_rx_queues; i++)
2174 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2178 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2179 * @adapter: board private structure
2180 * @rx_ring: ring to free buffers from
2183 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2184 struct e1000_rx_ring *rx_ring)
2186 struct e1000_hw *hw = &adapter->hw;
2187 struct e1000_buffer *buffer_info;
2188 struct pci_dev *pdev = adapter->pdev;
2189 unsigned long size;
2190 unsigned int i;
2192 /* Free all the Rx ring sk_buffs */
2193 for (i = 0; i < rx_ring->count; i++) {
2194 buffer_info = &rx_ring->buffer_info[i];
2195 if (buffer_info->skb) {
2196 pci_unmap_single(pdev,
2197 buffer_info->dma,
2198 buffer_info->length,
2199 PCI_DMA_FROMDEVICE);
2201 dev_kfree_skb(buffer_info->skb);
2202 buffer_info->skb = NULL;
2206 size = sizeof(struct e1000_buffer) * rx_ring->count;
2207 memset(rx_ring->buffer_info, 0, size);
2209 /* Zero out the descriptor ring */
2211 memset(rx_ring->desc, 0, rx_ring->size);
2213 rx_ring->next_to_clean = 0;
2214 rx_ring->next_to_use = 0;
2216 writel(0, hw->hw_addr + rx_ring->rdh);
2217 writel(0, hw->hw_addr + rx_ring->rdt);
2221 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2222 * @adapter: board private structure
2225 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2227 int i;
2229 for (i = 0; i < adapter->num_rx_queues; i++)
2230 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2233 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2234 * and memory write and invalidate disabled for certain operations
2236 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2238 struct e1000_hw *hw = &adapter->hw;
2239 struct net_device *netdev = adapter->netdev;
2240 u32 rctl;
2242 e1000_pci_clear_mwi(hw);
2244 rctl = er32(RCTL);
2245 rctl |= E1000_RCTL_RST;
2246 ew32(RCTL, rctl);
2247 E1000_WRITE_FLUSH();
2248 mdelay(5);
2250 if (netif_running(netdev))
2251 e1000_clean_all_rx_rings(adapter);
2254 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2256 struct e1000_hw *hw = &adapter->hw;
2257 struct net_device *netdev = adapter->netdev;
2258 u32 rctl;
2260 rctl = er32(RCTL);
2261 rctl &= ~E1000_RCTL_RST;
2262 ew32(RCTL, rctl);
2263 E1000_WRITE_FLUSH();
2264 mdelay(5);
2266 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2267 e1000_pci_set_mwi(hw);
2269 if (netif_running(netdev)) {
2270 /* No need to loop, because 82542 supports only 1 queue */
2271 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2272 e1000_configure_rx(adapter);
2273 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2278 * e1000_set_mac - Change the Ethernet Address of the NIC
2279 * @netdev: network interface device structure
2280 * @p: pointer to an address structure
2282 * Returns 0 on success, negative on failure
2285 static int e1000_set_mac(struct net_device *netdev, void *p)
2287 struct e1000_adapter *adapter = netdev_priv(netdev);
2288 struct e1000_hw *hw = &adapter->hw;
2289 struct sockaddr *addr = p;
2291 if (!is_valid_ether_addr(addr->sa_data))
2292 return -EADDRNOTAVAIL;
2294 /* 82542 2.0 needs to be in reset to write receive address registers */
2296 if (hw->mac_type == e1000_82542_rev2_0)
2297 e1000_enter_82542_rst(adapter);
2299 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2300 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2302 e1000_rar_set(hw, hw->mac_addr, 0);
2304 /* With 82571 controllers, LAA may be overwritten (with the default)
2305 * due to controller reset from the other port. */
2306 if (hw->mac_type == e1000_82571) {
2307 /* activate the work around */
2308 hw->laa_is_present = 1;
2310 /* Hold a copy of the LAA in RAR[14] This is done so that
2311 * between the time RAR[0] gets clobbered and the time it
2312 * gets fixed (in e1000_watchdog), the actual LAA is in one
2313 * of the RARs and no incoming packets directed to this port
2314 * are dropped. Eventaully the LAA will be in RAR[0] and
2315 * RAR[14] */
2316 e1000_rar_set(hw, hw->mac_addr,
2317 E1000_RAR_ENTRIES - 1);
2320 if (hw->mac_type == e1000_82542_rev2_0)
2321 e1000_leave_82542_rst(adapter);
2323 return 0;
2327 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2328 * @netdev: network interface device structure
2330 * The set_rx_mode entry point is called whenever the unicast or multicast
2331 * address lists or the network interface flags are updated. This routine is
2332 * responsible for configuring the hardware for proper unicast, multicast,
2333 * promiscuous mode, and all-multi behavior.
2336 static void e1000_set_rx_mode(struct net_device *netdev)
2338 struct e1000_adapter *adapter = netdev_priv(netdev);
2339 struct e1000_hw *hw = &adapter->hw;
2340 struct dev_addr_list *uc_ptr;
2341 struct dev_addr_list *mc_ptr;
2342 u32 rctl;
2343 u32 hash_value;
2344 int i, rar_entries = E1000_RAR_ENTRIES;
2345 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2346 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2347 E1000_NUM_MTA_REGISTERS;
2349 if (hw->mac_type == e1000_ich8lan)
2350 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2352 /* reserve RAR[14] for LAA over-write work-around */
2353 if (hw->mac_type == e1000_82571)
2354 rar_entries--;
2356 /* Check for Promiscuous and All Multicast modes */
2358 rctl = er32(RCTL);
2360 if (netdev->flags & IFF_PROMISC) {
2361 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2362 rctl &= ~E1000_RCTL_VFE;
2363 } else {
2364 if (netdev->flags & IFF_ALLMULTI) {
2365 rctl |= E1000_RCTL_MPE;
2366 } else {
2367 rctl &= ~E1000_RCTL_MPE;
2369 if (adapter->hw.mac_type != e1000_ich8lan)
2370 rctl |= E1000_RCTL_VFE;
2373 uc_ptr = NULL;
2374 if (netdev->uc_count > rar_entries - 1) {
2375 rctl |= E1000_RCTL_UPE;
2376 } else if (!(netdev->flags & IFF_PROMISC)) {
2377 rctl &= ~E1000_RCTL_UPE;
2378 uc_ptr = netdev->uc_list;
2381 ew32(RCTL, rctl);
2383 /* 82542 2.0 needs to be in reset to write receive address registers */
2385 if (hw->mac_type == e1000_82542_rev2_0)
2386 e1000_enter_82542_rst(adapter);
2388 /* load the first 14 addresses into the exact filters 1-14. Unicast
2389 * addresses take precedence to avoid disabling unicast filtering
2390 * when possible.
2392 * RAR 0 is used for the station MAC adddress
2393 * if there are not 14 addresses, go ahead and clear the filters
2394 * -- with 82571 controllers only 0-13 entries are filled here
2396 mc_ptr = netdev->mc_list;
2398 for (i = 1; i < rar_entries; i++) {
2399 if (uc_ptr) {
2400 e1000_rar_set(hw, uc_ptr->da_addr, i);
2401 uc_ptr = uc_ptr->next;
2402 } else if (mc_ptr) {
2403 e1000_rar_set(hw, mc_ptr->da_addr, i);
2404 mc_ptr = mc_ptr->next;
2405 } else {
2406 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2407 E1000_WRITE_FLUSH();
2408 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2409 E1000_WRITE_FLUSH();
2412 WARN_ON(uc_ptr != NULL);
2414 /* clear the old settings from the multicast hash table */
2416 for (i = 0; i < mta_reg_count; i++) {
2417 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2418 E1000_WRITE_FLUSH();
2421 /* load any remaining addresses into the hash table */
2423 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2424 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2425 e1000_mta_set(hw, hash_value);
2428 if (hw->mac_type == e1000_82542_rev2_0)
2429 e1000_leave_82542_rst(adapter);
2432 /* Need to wait a few seconds after link up to get diagnostic information from
2433 * the phy */
2435 static void e1000_update_phy_info(unsigned long data)
2437 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2438 struct e1000_hw *hw = &adapter->hw;
2439 e1000_phy_get_info(hw, &adapter->phy_info);
2443 * e1000_82547_tx_fifo_stall - Timer Call-back
2444 * @data: pointer to adapter cast into an unsigned long
2447 static void e1000_82547_tx_fifo_stall(unsigned long data)
2449 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2450 struct e1000_hw *hw = &adapter->hw;
2451 struct net_device *netdev = adapter->netdev;
2452 u32 tctl;
2454 if (atomic_read(&adapter->tx_fifo_stall)) {
2455 if ((er32(TDT) == er32(TDH)) &&
2456 (er32(TDFT) == er32(TDFH)) &&
2457 (er32(TDFTS) == er32(TDFHS))) {
2458 tctl = er32(TCTL);
2459 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2460 ew32(TDFT, adapter->tx_head_addr);
2461 ew32(TDFH, adapter->tx_head_addr);
2462 ew32(TDFTS, adapter->tx_head_addr);
2463 ew32(TDFHS, adapter->tx_head_addr);
2464 ew32(TCTL, tctl);
2465 E1000_WRITE_FLUSH();
2467 adapter->tx_fifo_head = 0;
2468 atomic_set(&adapter->tx_fifo_stall, 0);
2469 netif_wake_queue(netdev);
2470 } else {
2471 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2477 * e1000_watchdog - Timer Call-back
2478 * @data: pointer to adapter cast into an unsigned long
2480 static void e1000_watchdog(unsigned long data)
2482 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2483 struct e1000_hw *hw = &adapter->hw;
2484 struct net_device *netdev = adapter->netdev;
2485 struct e1000_tx_ring *txdr = adapter->tx_ring;
2486 u32 link, tctl;
2487 s32 ret_val;
2489 ret_val = e1000_check_for_link(hw);
2490 if ((ret_val == E1000_ERR_PHY) &&
2491 (hw->phy_type == e1000_phy_igp_3) &&
2492 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2493 /* See e1000_kumeran_lock_loss_workaround() */
2494 DPRINTK(LINK, INFO,
2495 "Gigabit has been disabled, downgrading speed\n");
2498 if (hw->mac_type == e1000_82573) {
2499 e1000_enable_tx_pkt_filtering(hw);
2500 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2501 e1000_update_mng_vlan(adapter);
2504 if ((hw->media_type == e1000_media_type_internal_serdes) &&
2505 !(er32(TXCW) & E1000_TXCW_ANE))
2506 link = !hw->serdes_link_down;
2507 else
2508 link = er32(STATUS) & E1000_STATUS_LU;
2510 if (link) {
2511 if (!netif_carrier_ok(netdev)) {
2512 u32 ctrl;
2513 bool txb2b = true;
2514 e1000_get_speed_and_duplex(hw,
2515 &adapter->link_speed,
2516 &adapter->link_duplex);
2518 ctrl = er32(CTRL);
2519 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2520 "Flow Control: %s\n",
2521 adapter->link_speed,
2522 adapter->link_duplex == FULL_DUPLEX ?
2523 "Full Duplex" : "Half Duplex",
2524 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2525 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2526 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2527 E1000_CTRL_TFCE) ? "TX" : "None" )));
2529 /* tweak tx_queue_len according to speed/duplex
2530 * and adjust the timeout factor */
2531 netdev->tx_queue_len = adapter->tx_queue_len;
2532 adapter->tx_timeout_factor = 1;
2533 switch (adapter->link_speed) {
2534 case SPEED_10:
2535 txb2b = false;
2536 netdev->tx_queue_len = 10;
2537 adapter->tx_timeout_factor = 8;
2538 break;
2539 case SPEED_100:
2540 txb2b = false;
2541 netdev->tx_queue_len = 100;
2542 /* maybe add some timeout factor ? */
2543 break;
2546 if ((hw->mac_type == e1000_82571 ||
2547 hw->mac_type == e1000_82572) &&
2548 !txb2b) {
2549 u32 tarc0;
2550 tarc0 = er32(TARC0);
2551 tarc0 &= ~(1 << 21);
2552 ew32(TARC0, tarc0);
2555 /* disable TSO for pcie and 10/100 speeds, to avoid
2556 * some hardware issues */
2557 if (!adapter->tso_force &&
2558 hw->bus_type == e1000_bus_type_pci_express){
2559 switch (adapter->link_speed) {
2560 case SPEED_10:
2561 case SPEED_100:
2562 DPRINTK(PROBE,INFO,
2563 "10/100 speed: disabling TSO\n");
2564 netdev->features &= ~NETIF_F_TSO;
2565 netdev->features &= ~NETIF_F_TSO6;
2566 break;
2567 case SPEED_1000:
2568 netdev->features |= NETIF_F_TSO;
2569 netdev->features |= NETIF_F_TSO6;
2570 break;
2571 default:
2572 /* oops */
2573 break;
2577 /* enable transmits in the hardware, need to do this
2578 * after setting TARC0 */
2579 tctl = er32(TCTL);
2580 tctl |= E1000_TCTL_EN;
2581 ew32(TCTL, tctl);
2583 netif_carrier_on(netdev);
2584 netif_wake_queue(netdev);
2585 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2586 adapter->smartspeed = 0;
2587 } else {
2588 /* make sure the receive unit is started */
2589 if (hw->rx_needs_kicking) {
2590 u32 rctl = er32(RCTL);
2591 ew32(RCTL, rctl | E1000_RCTL_EN);
2594 } else {
2595 if (netif_carrier_ok(netdev)) {
2596 adapter->link_speed = 0;
2597 adapter->link_duplex = 0;
2598 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2599 netif_carrier_off(netdev);
2600 netif_stop_queue(netdev);
2601 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2603 /* 80003ES2LAN workaround--
2604 * For packet buffer work-around on link down event;
2605 * disable receives in the ISR and
2606 * reset device here in the watchdog
2608 if (hw->mac_type == e1000_80003es2lan)
2609 /* reset device */
2610 schedule_work(&adapter->reset_task);
2613 e1000_smartspeed(adapter);
2616 e1000_update_stats(adapter);
2618 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2619 adapter->tpt_old = adapter->stats.tpt;
2620 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2621 adapter->colc_old = adapter->stats.colc;
2623 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2624 adapter->gorcl_old = adapter->stats.gorcl;
2625 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2626 adapter->gotcl_old = adapter->stats.gotcl;
2628 e1000_update_adaptive(hw);
2630 if (!netif_carrier_ok(netdev)) {
2631 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2632 /* We've lost link, so the controller stops DMA,
2633 * but we've got queued Tx work that's never going
2634 * to get done, so reset controller to flush Tx.
2635 * (Do the reset outside of interrupt context). */
2636 adapter->tx_timeout_count++;
2637 schedule_work(&adapter->reset_task);
2641 /* Cause software interrupt to ensure rx ring is cleaned */
2642 ew32(ICS, E1000_ICS_RXDMT0);
2644 /* Force detection of hung controller every watchdog period */
2645 adapter->detect_tx_hung = true;
2647 /* With 82571 controllers, LAA may be overwritten due to controller
2648 * reset from the other port. Set the appropriate LAA in RAR[0] */
2649 if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2650 e1000_rar_set(hw, hw->mac_addr, 0);
2652 /* Reset the timer */
2653 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2656 enum latency_range {
2657 lowest_latency = 0,
2658 low_latency = 1,
2659 bulk_latency = 2,
2660 latency_invalid = 255
2664 * e1000_update_itr - update the dynamic ITR value based on statistics
2665 * Stores a new ITR value based on packets and byte
2666 * counts during the last interrupt. The advantage of per interrupt
2667 * computation is faster updates and more accurate ITR for the current
2668 * traffic pattern. Constants in this function were computed
2669 * based on theoretical maximum wire speed and thresholds were set based
2670 * on testing data as well as attempting to minimize response time
2671 * while increasing bulk throughput.
2672 * this functionality is controlled by the InterruptThrottleRate module
2673 * parameter (see e1000_param.c)
2674 * @adapter: pointer to adapter
2675 * @itr_setting: current adapter->itr
2676 * @packets: the number of packets during this measurement interval
2677 * @bytes: the number of bytes during this measurement interval
2679 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2680 u16 itr_setting, int packets, int bytes)
2682 unsigned int retval = itr_setting;
2683 struct e1000_hw *hw = &adapter->hw;
2685 if (unlikely(hw->mac_type < e1000_82540))
2686 goto update_itr_done;
2688 if (packets == 0)
2689 goto update_itr_done;
2691 switch (itr_setting) {
2692 case lowest_latency:
2693 /* jumbo frames get bulk treatment*/
2694 if (bytes/packets > 8000)
2695 retval = bulk_latency;
2696 else if ((packets < 5) && (bytes > 512))
2697 retval = low_latency;
2698 break;
2699 case low_latency: /* 50 usec aka 20000 ints/s */
2700 if (bytes > 10000) {
2701 /* jumbo frames need bulk latency setting */
2702 if (bytes/packets > 8000)
2703 retval = bulk_latency;
2704 else if ((packets < 10) || ((bytes/packets) > 1200))
2705 retval = bulk_latency;
2706 else if ((packets > 35))
2707 retval = lowest_latency;
2708 } else if (bytes/packets > 2000)
2709 retval = bulk_latency;
2710 else if (packets <= 2 && bytes < 512)
2711 retval = lowest_latency;
2712 break;
2713 case bulk_latency: /* 250 usec aka 4000 ints/s */
2714 if (bytes > 25000) {
2715 if (packets > 35)
2716 retval = low_latency;
2717 } else if (bytes < 6000) {
2718 retval = low_latency;
2720 break;
2723 update_itr_done:
2724 return retval;
2727 static void e1000_set_itr(struct e1000_adapter *adapter)
2729 struct e1000_hw *hw = &adapter->hw;
2730 u16 current_itr;
2731 u32 new_itr = adapter->itr;
2733 if (unlikely(hw->mac_type < e1000_82540))
2734 return;
2736 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2737 if (unlikely(adapter->link_speed != SPEED_1000)) {
2738 current_itr = 0;
2739 new_itr = 4000;
2740 goto set_itr_now;
2743 adapter->tx_itr = e1000_update_itr(adapter,
2744 adapter->tx_itr,
2745 adapter->total_tx_packets,
2746 adapter->total_tx_bytes);
2747 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2748 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2749 adapter->tx_itr = low_latency;
2751 adapter->rx_itr = e1000_update_itr(adapter,
2752 adapter->rx_itr,
2753 adapter->total_rx_packets,
2754 adapter->total_rx_bytes);
2755 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2756 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2757 adapter->rx_itr = low_latency;
2759 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2761 switch (current_itr) {
2762 /* counts and packets in update_itr are dependent on these numbers */
2763 case lowest_latency:
2764 new_itr = 70000;
2765 break;
2766 case low_latency:
2767 new_itr = 20000; /* aka hwitr = ~200 */
2768 break;
2769 case bulk_latency:
2770 new_itr = 4000;
2771 break;
2772 default:
2773 break;
2776 set_itr_now:
2777 if (new_itr != adapter->itr) {
2778 /* this attempts to bias the interrupt rate towards Bulk
2779 * by adding intermediate steps when interrupt rate is
2780 * increasing */
2781 new_itr = new_itr > adapter->itr ?
2782 min(adapter->itr + (new_itr >> 2), new_itr) :
2783 new_itr;
2784 adapter->itr = new_itr;
2785 ew32(ITR, 1000000000 / (new_itr * 256));
2788 return;
2791 #define E1000_TX_FLAGS_CSUM 0x00000001
2792 #define E1000_TX_FLAGS_VLAN 0x00000002
2793 #define E1000_TX_FLAGS_TSO 0x00000004
2794 #define E1000_TX_FLAGS_IPV4 0x00000008
2795 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2796 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2798 static int e1000_tso(struct e1000_adapter *adapter,
2799 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2801 struct e1000_context_desc *context_desc;
2802 struct e1000_buffer *buffer_info;
2803 unsigned int i;
2804 u32 cmd_length = 0;
2805 u16 ipcse = 0, tucse, mss;
2806 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2807 int err;
2809 if (skb_is_gso(skb)) {
2810 if (skb_header_cloned(skb)) {
2811 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2812 if (err)
2813 return err;
2816 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2817 mss = skb_shinfo(skb)->gso_size;
2818 if (skb->protocol == htons(ETH_P_IP)) {
2819 struct iphdr *iph = ip_hdr(skb);
2820 iph->tot_len = 0;
2821 iph->check = 0;
2822 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2823 iph->daddr, 0,
2824 IPPROTO_TCP,
2826 cmd_length = E1000_TXD_CMD_IP;
2827 ipcse = skb_transport_offset(skb) - 1;
2828 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2829 ipv6_hdr(skb)->payload_len = 0;
2830 tcp_hdr(skb)->check =
2831 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2832 &ipv6_hdr(skb)->daddr,
2833 0, IPPROTO_TCP, 0);
2834 ipcse = 0;
2836 ipcss = skb_network_offset(skb);
2837 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2838 tucss = skb_transport_offset(skb);
2839 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2840 tucse = 0;
2842 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2843 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2845 i = tx_ring->next_to_use;
2846 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2847 buffer_info = &tx_ring->buffer_info[i];
2849 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2850 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2851 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2852 context_desc->upper_setup.tcp_fields.tucss = tucss;
2853 context_desc->upper_setup.tcp_fields.tucso = tucso;
2854 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2855 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2856 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2857 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2859 buffer_info->time_stamp = jiffies;
2860 buffer_info->next_to_watch = i;
2862 if (++i == tx_ring->count) i = 0;
2863 tx_ring->next_to_use = i;
2865 return true;
2867 return false;
2870 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2871 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2873 struct e1000_context_desc *context_desc;
2874 struct e1000_buffer *buffer_info;
2875 unsigned int i;
2876 u8 css;
2877 u32 cmd_len = E1000_TXD_CMD_DEXT;
2879 if (skb->ip_summed != CHECKSUM_PARTIAL)
2880 return false;
2882 switch (skb->protocol) {
2883 case __constant_htons(ETH_P_IP):
2884 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2885 cmd_len |= E1000_TXD_CMD_TCP;
2886 break;
2887 case __constant_htons(ETH_P_IPV6):
2888 /* XXX not handling all IPV6 headers */
2889 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2890 cmd_len |= E1000_TXD_CMD_TCP;
2891 break;
2892 default:
2893 if (unlikely(net_ratelimit()))
2894 DPRINTK(DRV, WARNING,
2895 "checksum_partial proto=%x!\n", skb->protocol);
2896 break;
2899 css = skb_transport_offset(skb);
2901 i = tx_ring->next_to_use;
2902 buffer_info = &tx_ring->buffer_info[i];
2903 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2905 context_desc->lower_setup.ip_config = 0;
2906 context_desc->upper_setup.tcp_fields.tucss = css;
2907 context_desc->upper_setup.tcp_fields.tucso =
2908 css + skb->csum_offset;
2909 context_desc->upper_setup.tcp_fields.tucse = 0;
2910 context_desc->tcp_seg_setup.data = 0;
2911 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2913 buffer_info->time_stamp = jiffies;
2914 buffer_info->next_to_watch = i;
2916 if (unlikely(++i == tx_ring->count)) i = 0;
2917 tx_ring->next_to_use = i;
2919 return true;
2922 #define E1000_MAX_TXD_PWR 12
2923 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2925 static int e1000_tx_map(struct e1000_adapter *adapter,
2926 struct e1000_tx_ring *tx_ring,
2927 struct sk_buff *skb, unsigned int first,
2928 unsigned int max_per_txd, unsigned int nr_frags,
2929 unsigned int mss)
2931 struct e1000_hw *hw = &adapter->hw;
2932 struct e1000_buffer *buffer_info;
2933 unsigned int len = skb->len;
2934 unsigned int offset = 0, size, count = 0, i;
2935 unsigned int f;
2936 len -= skb->data_len;
2938 i = tx_ring->next_to_use;
2940 while (len) {
2941 buffer_info = &tx_ring->buffer_info[i];
2942 size = min(len, max_per_txd);
2943 /* Workaround for Controller erratum --
2944 * descriptor for non-tso packet in a linear SKB that follows a
2945 * tso gets written back prematurely before the data is fully
2946 * DMA'd to the controller */
2947 if (!skb->data_len && tx_ring->last_tx_tso &&
2948 !skb_is_gso(skb)) {
2949 tx_ring->last_tx_tso = 0;
2950 size -= 4;
2953 /* Workaround for premature desc write-backs
2954 * in TSO mode. Append 4-byte sentinel desc */
2955 if (unlikely(mss && !nr_frags && size == len && size > 8))
2956 size -= 4;
2957 /* work-around for errata 10 and it applies
2958 * to all controllers in PCI-X mode
2959 * The fix is to make sure that the first descriptor of a
2960 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2962 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2963 (size > 2015) && count == 0))
2964 size = 2015;
2966 /* Workaround for potential 82544 hang in PCI-X. Avoid
2967 * terminating buffers within evenly-aligned dwords. */
2968 if (unlikely(adapter->pcix_82544 &&
2969 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2970 size > 4))
2971 size -= 4;
2973 buffer_info->length = size;
2974 buffer_info->dma =
2975 pci_map_single(adapter->pdev,
2976 skb->data + offset,
2977 size,
2978 PCI_DMA_TODEVICE);
2979 buffer_info->time_stamp = jiffies;
2980 buffer_info->next_to_watch = i;
2982 len -= size;
2983 offset += size;
2984 count++;
2985 if (unlikely(++i == tx_ring->count)) i = 0;
2988 for (f = 0; f < nr_frags; f++) {
2989 struct skb_frag_struct *frag;
2991 frag = &skb_shinfo(skb)->frags[f];
2992 len = frag->size;
2993 offset = frag->page_offset;
2995 while (len) {
2996 buffer_info = &tx_ring->buffer_info[i];
2997 size = min(len, max_per_txd);
2998 /* Workaround for premature desc write-backs
2999 * in TSO mode. Append 4-byte sentinel desc */
3000 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3001 size -= 4;
3002 /* Workaround for potential 82544 hang in PCI-X.
3003 * Avoid terminating buffers within evenly-aligned
3004 * dwords. */
3005 if (unlikely(adapter->pcix_82544 &&
3006 !((unsigned long)(frag->page+offset+size-1) & 4) &&
3007 size > 4))
3008 size -= 4;
3010 buffer_info->length = size;
3011 buffer_info->dma =
3012 pci_map_page(adapter->pdev,
3013 frag->page,
3014 offset,
3015 size,
3016 PCI_DMA_TODEVICE);
3017 buffer_info->time_stamp = jiffies;
3018 buffer_info->next_to_watch = i;
3020 len -= size;
3021 offset += size;
3022 count++;
3023 if (unlikely(++i == tx_ring->count)) i = 0;
3027 i = (i == 0) ? tx_ring->count - 1 : i - 1;
3028 tx_ring->buffer_info[i].skb = skb;
3029 tx_ring->buffer_info[first].next_to_watch = i;
3031 return count;
3034 static void e1000_tx_queue(struct e1000_adapter *adapter,
3035 struct e1000_tx_ring *tx_ring, int tx_flags,
3036 int count)
3038 struct e1000_hw *hw = &adapter->hw;
3039 struct e1000_tx_desc *tx_desc = NULL;
3040 struct e1000_buffer *buffer_info;
3041 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3042 unsigned int i;
3044 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3045 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3046 E1000_TXD_CMD_TSE;
3047 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3049 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3050 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3053 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3054 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3055 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3058 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3059 txd_lower |= E1000_TXD_CMD_VLE;
3060 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3063 i = tx_ring->next_to_use;
3065 while (count--) {
3066 buffer_info = &tx_ring->buffer_info[i];
3067 tx_desc = E1000_TX_DESC(*tx_ring, i);
3068 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3069 tx_desc->lower.data =
3070 cpu_to_le32(txd_lower | buffer_info->length);
3071 tx_desc->upper.data = cpu_to_le32(txd_upper);
3072 if (unlikely(++i == tx_ring->count)) i = 0;
3075 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3077 /* Force memory writes to complete before letting h/w
3078 * know there are new descriptors to fetch. (Only
3079 * applicable for weak-ordered memory model archs,
3080 * such as IA-64). */
3081 wmb();
3083 tx_ring->next_to_use = i;
3084 writel(i, hw->hw_addr + tx_ring->tdt);
3085 /* we need this if more than one processor can write to our tail
3086 * at a time, it syncronizes IO on IA64/Altix systems */
3087 mmiowb();
3091 * 82547 workaround to avoid controller hang in half-duplex environment.
3092 * The workaround is to avoid queuing a large packet that would span
3093 * the internal Tx FIFO ring boundary by notifying the stack to resend
3094 * the packet at a later time. This gives the Tx FIFO an opportunity to
3095 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3096 * to the beginning of the Tx FIFO.
3099 #define E1000_FIFO_HDR 0x10
3100 #define E1000_82547_PAD_LEN 0x3E0
3102 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3103 struct sk_buff *skb)
3105 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3106 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3108 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3110 if (adapter->link_duplex != HALF_DUPLEX)
3111 goto no_fifo_stall_required;
3113 if (atomic_read(&adapter->tx_fifo_stall))
3114 return 1;
3116 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3117 atomic_set(&adapter->tx_fifo_stall, 1);
3118 return 1;
3121 no_fifo_stall_required:
3122 adapter->tx_fifo_head += skb_fifo_len;
3123 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3124 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3125 return 0;
3128 #define MINIMUM_DHCP_PACKET_SIZE 282
3129 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3130 struct sk_buff *skb)
3132 struct e1000_hw *hw = &adapter->hw;
3133 u16 length, offset;
3134 if (vlan_tx_tag_present(skb)) {
3135 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3136 ( hw->mng_cookie.status &
3137 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3138 return 0;
3140 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3141 struct ethhdr *eth = (struct ethhdr *)skb->data;
3142 if ((htons(ETH_P_IP) == eth->h_proto)) {
3143 const struct iphdr *ip =
3144 (struct iphdr *)((u8 *)skb->data+14);
3145 if (IPPROTO_UDP == ip->protocol) {
3146 struct udphdr *udp =
3147 (struct udphdr *)((u8 *)ip +
3148 (ip->ihl << 2));
3149 if (ntohs(udp->dest) == 67) {
3150 offset = (u8 *)udp + 8 - skb->data;
3151 length = skb->len - offset;
3153 return e1000_mng_write_dhcp_info(hw,
3154 (u8 *)udp + 8,
3155 length);
3160 return 0;
3163 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3165 struct e1000_adapter *adapter = netdev_priv(netdev);
3166 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3168 netif_stop_queue(netdev);
3169 /* Herbert's original patch had:
3170 * smp_mb__after_netif_stop_queue();
3171 * but since that doesn't exist yet, just open code it. */
3172 smp_mb();
3174 /* We need to check again in a case another CPU has just
3175 * made room available. */
3176 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3177 return -EBUSY;
3179 /* A reprieve! */
3180 netif_start_queue(netdev);
3181 ++adapter->restart_queue;
3182 return 0;
3185 static int e1000_maybe_stop_tx(struct net_device *netdev,
3186 struct e1000_tx_ring *tx_ring, int size)
3188 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3189 return 0;
3190 return __e1000_maybe_stop_tx(netdev, size);
3193 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3194 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3196 struct e1000_adapter *adapter = netdev_priv(netdev);
3197 struct e1000_hw *hw = &adapter->hw;
3198 struct e1000_tx_ring *tx_ring;
3199 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3200 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3201 unsigned int tx_flags = 0;
3202 unsigned int len = skb->len - skb->data_len;
3203 unsigned long flags;
3204 unsigned int nr_frags;
3205 unsigned int mss;
3206 int count = 0;
3207 int tso;
3208 unsigned int f;
3210 /* This goes back to the question of how to logically map a tx queue
3211 * to a flow. Right now, performance is impacted slightly negatively
3212 * if using multiple tx queues. If the stack breaks away from a
3213 * single qdisc implementation, we can look at this again. */
3214 tx_ring = adapter->tx_ring;
3216 if (unlikely(skb->len <= 0)) {
3217 dev_kfree_skb_any(skb);
3218 return NETDEV_TX_OK;
3221 /* 82571 and newer doesn't need the workaround that limited descriptor
3222 * length to 4kB */
3223 if (hw->mac_type >= e1000_82571)
3224 max_per_txd = 8192;
3226 mss = skb_shinfo(skb)->gso_size;
3227 /* The controller does a simple calculation to
3228 * make sure there is enough room in the FIFO before
3229 * initiating the DMA for each buffer. The calc is:
3230 * 4 = ceil(buffer len/mss). To make sure we don't
3231 * overrun the FIFO, adjust the max buffer len if mss
3232 * drops. */
3233 if (mss) {
3234 u8 hdr_len;
3235 max_per_txd = min(mss << 2, max_per_txd);
3236 max_txd_pwr = fls(max_per_txd) - 1;
3238 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3239 * points to just header, pull a few bytes of payload from
3240 * frags into skb->data */
3241 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3242 if (skb->data_len && hdr_len == len) {
3243 switch (hw->mac_type) {
3244 unsigned int pull_size;
3245 case e1000_82544:
3246 /* Make sure we have room to chop off 4 bytes,
3247 * and that the end alignment will work out to
3248 * this hardware's requirements
3249 * NOTE: this is a TSO only workaround
3250 * if end byte alignment not correct move us
3251 * into the next dword */
3252 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3253 break;
3254 /* fall through */
3255 case e1000_82571:
3256 case e1000_82572:
3257 case e1000_82573:
3258 case e1000_ich8lan:
3259 pull_size = min((unsigned int)4, skb->data_len);
3260 if (!__pskb_pull_tail(skb, pull_size)) {
3261 DPRINTK(DRV, ERR,
3262 "__pskb_pull_tail failed.\n");
3263 dev_kfree_skb_any(skb);
3264 return NETDEV_TX_OK;
3266 len = skb->len - skb->data_len;
3267 break;
3268 default:
3269 /* do nothing */
3270 break;
3275 /* reserve a descriptor for the offload context */
3276 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3277 count++;
3278 count++;
3280 /* Controller Erratum workaround */
3281 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3282 count++;
3284 count += TXD_USE_COUNT(len, max_txd_pwr);
3286 if (adapter->pcix_82544)
3287 count++;
3289 /* work-around for errata 10 and it applies to all controllers
3290 * in PCI-X mode, so add one more descriptor to the count
3292 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3293 (len > 2015)))
3294 count++;
3296 nr_frags = skb_shinfo(skb)->nr_frags;
3297 for (f = 0; f < nr_frags; f++)
3298 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3299 max_txd_pwr);
3300 if (adapter->pcix_82544)
3301 count += nr_frags;
3304 if (hw->tx_pkt_filtering &&
3305 (hw->mac_type == e1000_82573))
3306 e1000_transfer_dhcp_info(adapter, skb);
3308 if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3309 /* Collision - tell upper layer to requeue */
3310 return NETDEV_TX_LOCKED;
3312 /* need: count + 2 desc gap to keep tail from touching
3313 * head, otherwise try next time */
3314 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3315 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3316 return NETDEV_TX_BUSY;
3319 if (unlikely(hw->mac_type == e1000_82547)) {
3320 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3321 netif_stop_queue(netdev);
3322 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3323 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3324 return NETDEV_TX_BUSY;
3328 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3329 tx_flags |= E1000_TX_FLAGS_VLAN;
3330 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3333 first = tx_ring->next_to_use;
3335 tso = e1000_tso(adapter, tx_ring, skb);
3336 if (tso < 0) {
3337 dev_kfree_skb_any(skb);
3338 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3339 return NETDEV_TX_OK;
3342 if (likely(tso)) {
3343 tx_ring->last_tx_tso = 1;
3344 tx_flags |= E1000_TX_FLAGS_TSO;
3345 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3346 tx_flags |= E1000_TX_FLAGS_CSUM;
3348 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3349 * 82571 hardware supports TSO capabilities for IPv6 as well...
3350 * no longer assume, we must. */
3351 if (likely(skb->protocol == htons(ETH_P_IP)))
3352 tx_flags |= E1000_TX_FLAGS_IPV4;
3354 e1000_tx_queue(adapter, tx_ring, tx_flags,
3355 e1000_tx_map(adapter, tx_ring, skb, first,
3356 max_per_txd, nr_frags, mss));
3358 netdev->trans_start = jiffies;
3360 /* Make sure there is space in the ring for the next send. */
3361 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3363 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3364 return NETDEV_TX_OK;
3368 * e1000_tx_timeout - Respond to a Tx Hang
3369 * @netdev: network interface device structure
3372 static void e1000_tx_timeout(struct net_device *netdev)
3374 struct e1000_adapter *adapter = netdev_priv(netdev);
3376 /* Do the reset outside of interrupt context */
3377 adapter->tx_timeout_count++;
3378 schedule_work(&adapter->reset_task);
3381 static void e1000_reset_task(struct work_struct *work)
3383 struct e1000_adapter *adapter =
3384 container_of(work, struct e1000_adapter, reset_task);
3386 e1000_reinit_locked(adapter);
3390 * e1000_get_stats - Get System Network Statistics
3391 * @netdev: network interface device structure
3393 * Returns the address of the device statistics structure.
3394 * The statistics are actually updated from the timer callback.
3397 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3399 struct e1000_adapter *adapter = netdev_priv(netdev);
3401 /* only return the current stats */
3402 return &adapter->net_stats;
3406 * e1000_change_mtu - Change the Maximum Transfer Unit
3407 * @netdev: network interface device structure
3408 * @new_mtu: new value for maximum frame size
3410 * Returns 0 on success, negative on failure
3413 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3415 struct e1000_adapter *adapter = netdev_priv(netdev);
3416 struct e1000_hw *hw = &adapter->hw;
3417 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3418 u16 eeprom_data = 0;
3420 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3421 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3422 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3423 return -EINVAL;
3426 /* Adapter-specific max frame size limits. */
3427 switch (hw->mac_type) {
3428 case e1000_undefined ... e1000_82542_rev2_1:
3429 case e1000_ich8lan:
3430 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3431 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3432 return -EINVAL;
3434 break;
3435 case e1000_82573:
3436 /* Jumbo Frames not supported if:
3437 * - this is not an 82573L device
3438 * - ASPM is enabled in any way (0x1A bits 3:2) */
3439 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3440 &eeprom_data);
3441 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3442 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3443 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3444 DPRINTK(PROBE, ERR,
3445 "Jumbo Frames not supported.\n");
3446 return -EINVAL;
3448 break;
3450 /* ERT will be enabled later to enable wire speed receives */
3452 /* fall through to get support */
3453 case e1000_82571:
3454 case e1000_82572:
3455 case e1000_80003es2lan:
3456 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3457 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3458 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3459 return -EINVAL;
3461 break;
3462 default:
3463 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3464 break;
3467 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3468 * means we reserve 2 more, this pushes us to allocate from the next
3469 * larger slab size
3470 * i.e. RXBUFFER_2048 --> size-4096 slab */
3472 if (max_frame <= E1000_RXBUFFER_256)
3473 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3474 else if (max_frame <= E1000_RXBUFFER_512)
3475 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3476 else if (max_frame <= E1000_RXBUFFER_1024)
3477 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3478 else if (max_frame <= E1000_RXBUFFER_2048)
3479 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3480 else if (max_frame <= E1000_RXBUFFER_4096)
3481 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3482 else if (max_frame <= E1000_RXBUFFER_8192)
3483 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3484 else if (max_frame <= E1000_RXBUFFER_16384)
3485 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3487 /* adjust allocation if LPE protects us, and we aren't using SBP */
3488 if (!hw->tbi_compatibility_on &&
3489 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3490 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3491 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3493 netdev->mtu = new_mtu;
3494 hw->max_frame_size = max_frame;
3496 if (netif_running(netdev))
3497 e1000_reinit_locked(adapter);
3499 return 0;
3503 * e1000_update_stats - Update the board statistics counters
3504 * @adapter: board private structure
3507 void e1000_update_stats(struct e1000_adapter *adapter)
3509 struct e1000_hw *hw = &adapter->hw;
3510 struct pci_dev *pdev = adapter->pdev;
3511 unsigned long flags;
3512 u16 phy_tmp;
3514 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3517 * Prevent stats update while adapter is being reset, or if the pci
3518 * connection is down.
3520 if (adapter->link_speed == 0)
3521 return;
3522 if (pci_channel_offline(pdev))
3523 return;
3525 spin_lock_irqsave(&adapter->stats_lock, flags);
3527 /* these counters are modified from e1000_tbi_adjust_stats,
3528 * called from the interrupt context, so they must only
3529 * be written while holding adapter->stats_lock
3532 adapter->stats.crcerrs += er32(CRCERRS);
3533 adapter->stats.gprc += er32(GPRC);
3534 adapter->stats.gorcl += er32(GORCL);
3535 adapter->stats.gorch += er32(GORCH);
3536 adapter->stats.bprc += er32(BPRC);
3537 adapter->stats.mprc += er32(MPRC);
3538 adapter->stats.roc += er32(ROC);
3540 if (hw->mac_type != e1000_ich8lan) {
3541 adapter->stats.prc64 += er32(PRC64);
3542 adapter->stats.prc127 += er32(PRC127);
3543 adapter->stats.prc255 += er32(PRC255);
3544 adapter->stats.prc511 += er32(PRC511);
3545 adapter->stats.prc1023 += er32(PRC1023);
3546 adapter->stats.prc1522 += er32(PRC1522);
3549 adapter->stats.symerrs += er32(SYMERRS);
3550 adapter->stats.mpc += er32(MPC);
3551 adapter->stats.scc += er32(SCC);
3552 adapter->stats.ecol += er32(ECOL);
3553 adapter->stats.mcc += er32(MCC);
3554 adapter->stats.latecol += er32(LATECOL);
3555 adapter->stats.dc += er32(DC);
3556 adapter->stats.sec += er32(SEC);
3557 adapter->stats.rlec += er32(RLEC);
3558 adapter->stats.xonrxc += er32(XONRXC);
3559 adapter->stats.xontxc += er32(XONTXC);
3560 adapter->stats.xoffrxc += er32(XOFFRXC);
3561 adapter->stats.xofftxc += er32(XOFFTXC);
3562 adapter->stats.fcruc += er32(FCRUC);
3563 adapter->stats.gptc += er32(GPTC);
3564 adapter->stats.gotcl += er32(GOTCL);
3565 adapter->stats.gotch += er32(GOTCH);
3566 adapter->stats.rnbc += er32(RNBC);
3567 adapter->stats.ruc += er32(RUC);
3568 adapter->stats.rfc += er32(RFC);
3569 adapter->stats.rjc += er32(RJC);
3570 adapter->stats.torl += er32(TORL);
3571 adapter->stats.torh += er32(TORH);
3572 adapter->stats.totl += er32(TOTL);
3573 adapter->stats.toth += er32(TOTH);
3574 adapter->stats.tpr += er32(TPR);
3576 if (hw->mac_type != e1000_ich8lan) {
3577 adapter->stats.ptc64 += er32(PTC64);
3578 adapter->stats.ptc127 += er32(PTC127);
3579 adapter->stats.ptc255 += er32(PTC255);
3580 adapter->stats.ptc511 += er32(PTC511);
3581 adapter->stats.ptc1023 += er32(PTC1023);
3582 adapter->stats.ptc1522 += er32(PTC1522);
3585 adapter->stats.mptc += er32(MPTC);
3586 adapter->stats.bptc += er32(BPTC);
3588 /* used for adaptive IFS */
3590 hw->tx_packet_delta = er32(TPT);
3591 adapter->stats.tpt += hw->tx_packet_delta;
3592 hw->collision_delta = er32(COLC);
3593 adapter->stats.colc += hw->collision_delta;
3595 if (hw->mac_type >= e1000_82543) {
3596 adapter->stats.algnerrc += er32(ALGNERRC);
3597 adapter->stats.rxerrc += er32(RXERRC);
3598 adapter->stats.tncrs += er32(TNCRS);
3599 adapter->stats.cexterr += er32(CEXTERR);
3600 adapter->stats.tsctc += er32(TSCTC);
3601 adapter->stats.tsctfc += er32(TSCTFC);
3603 if (hw->mac_type > e1000_82547_rev_2) {
3604 adapter->stats.iac += er32(IAC);
3605 adapter->stats.icrxoc += er32(ICRXOC);
3607 if (hw->mac_type != e1000_ich8lan) {
3608 adapter->stats.icrxptc += er32(ICRXPTC);
3609 adapter->stats.icrxatc += er32(ICRXATC);
3610 adapter->stats.ictxptc += er32(ICTXPTC);
3611 adapter->stats.ictxatc += er32(ICTXATC);
3612 adapter->stats.ictxqec += er32(ICTXQEC);
3613 adapter->stats.ictxqmtc += er32(ICTXQMTC);
3614 adapter->stats.icrxdmtc += er32(ICRXDMTC);
3618 /* Fill out the OS statistics structure */
3619 adapter->net_stats.multicast = adapter->stats.mprc;
3620 adapter->net_stats.collisions = adapter->stats.colc;
3622 /* Rx Errors */
3624 /* RLEC on some newer hardware can be incorrect so build
3625 * our own version based on RUC and ROC */
3626 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3627 adapter->stats.crcerrs + adapter->stats.algnerrc +
3628 adapter->stats.ruc + adapter->stats.roc +
3629 adapter->stats.cexterr;
3630 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3631 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3632 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3633 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3634 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3636 /* Tx Errors */
3637 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3638 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3639 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3640 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3641 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3642 if (hw->bad_tx_carr_stats_fd &&
3643 adapter->link_duplex == FULL_DUPLEX) {
3644 adapter->net_stats.tx_carrier_errors = 0;
3645 adapter->stats.tncrs = 0;
3648 /* Tx Dropped needs to be maintained elsewhere */
3650 /* Phy Stats */
3651 if (hw->media_type == e1000_media_type_copper) {
3652 if ((adapter->link_speed == SPEED_1000) &&
3653 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3654 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3655 adapter->phy_stats.idle_errors += phy_tmp;
3658 if ((hw->mac_type <= e1000_82546) &&
3659 (hw->phy_type == e1000_phy_m88) &&
3660 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3661 adapter->phy_stats.receive_errors += phy_tmp;
3664 /* Management Stats */
3665 if (hw->has_smbus) {
3666 adapter->stats.mgptc += er32(MGTPTC);
3667 adapter->stats.mgprc += er32(MGTPRC);
3668 adapter->stats.mgpdc += er32(MGTPDC);
3671 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3675 * e1000_intr_msi - Interrupt Handler
3676 * @irq: interrupt number
3677 * @data: pointer to a network interface device structure
3680 static irqreturn_t e1000_intr_msi(int irq, void *data)
3682 struct net_device *netdev = data;
3683 struct e1000_adapter *adapter = netdev_priv(netdev);
3684 struct e1000_hw *hw = &adapter->hw;
3685 u32 icr = er32(ICR);
3687 /* in NAPI mode read ICR disables interrupts using IAM */
3689 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3690 hw->get_link_status = 1;
3691 /* 80003ES2LAN workaround-- For packet buffer work-around on
3692 * link down event; disable receives here in the ISR and reset
3693 * adapter in watchdog */
3694 if (netif_carrier_ok(netdev) &&
3695 (hw->mac_type == e1000_80003es2lan)) {
3696 /* disable receives */
3697 u32 rctl = er32(RCTL);
3698 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3700 /* guard against interrupt when we're going down */
3701 if (!test_bit(__E1000_DOWN, &adapter->flags))
3702 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3705 if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3706 adapter->total_tx_bytes = 0;
3707 adapter->total_tx_packets = 0;
3708 adapter->total_rx_bytes = 0;
3709 adapter->total_rx_packets = 0;
3710 __netif_rx_schedule(netdev, &adapter->napi);
3711 } else
3712 e1000_irq_enable(adapter);
3714 return IRQ_HANDLED;
3718 * e1000_intr - Interrupt Handler
3719 * @irq: interrupt number
3720 * @data: pointer to a network interface device structure
3723 static irqreturn_t e1000_intr(int irq, void *data)
3725 struct net_device *netdev = data;
3726 struct e1000_adapter *adapter = netdev_priv(netdev);
3727 struct e1000_hw *hw = &adapter->hw;
3728 u32 rctl, icr = er32(ICR);
3730 if (unlikely(!icr))
3731 return IRQ_NONE; /* Not our interrupt */
3733 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3734 * not set, then the adapter didn't send an interrupt */
3735 if (unlikely(hw->mac_type >= e1000_82571 &&
3736 !(icr & E1000_ICR_INT_ASSERTED)))
3737 return IRQ_NONE;
3739 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3740 * need for the IMC write */
3742 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3743 hw->get_link_status = 1;
3744 /* 80003ES2LAN workaround--
3745 * For packet buffer work-around on link down event;
3746 * disable receives here in the ISR and
3747 * reset adapter in watchdog
3749 if (netif_carrier_ok(netdev) &&
3750 (hw->mac_type == e1000_80003es2lan)) {
3751 /* disable receives */
3752 rctl = er32(RCTL);
3753 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3755 /* guard against interrupt when we're going down */
3756 if (!test_bit(__E1000_DOWN, &adapter->flags))
3757 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3760 if (unlikely(hw->mac_type < e1000_82571)) {
3761 /* disable interrupts, without the synchronize_irq bit */
3762 ew32(IMC, ~0);
3763 E1000_WRITE_FLUSH();
3765 if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3766 adapter->total_tx_bytes = 0;
3767 adapter->total_tx_packets = 0;
3768 adapter->total_rx_bytes = 0;
3769 adapter->total_rx_packets = 0;
3770 __netif_rx_schedule(netdev, &adapter->napi);
3771 } else
3772 /* this really should not happen! if it does it is basically a
3773 * bug, but not a hard error, so enable ints and continue */
3774 e1000_irq_enable(adapter);
3776 return IRQ_HANDLED;
3780 * e1000_clean - NAPI Rx polling callback
3781 * @adapter: board private structure
3783 static int e1000_clean(struct napi_struct *napi, int budget)
3785 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3786 struct net_device *poll_dev = adapter->netdev;
3787 int tx_cleaned = 0, work_done = 0;
3789 /* Must NOT use netdev_priv macro here. */
3790 adapter = poll_dev->priv;
3792 /* e1000_clean is called per-cpu. This lock protects
3793 * tx_ring[0] from being cleaned by multiple cpus
3794 * simultaneously. A failure obtaining the lock means
3795 * tx_ring[0] is currently being cleaned anyway. */
3796 if (spin_trylock(&adapter->tx_queue_lock)) {
3797 tx_cleaned = e1000_clean_tx_irq(adapter,
3798 &adapter->tx_ring[0]);
3799 spin_unlock(&adapter->tx_queue_lock);
3802 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3803 &work_done, budget);
3805 if (tx_cleaned)
3806 work_done = budget;
3808 /* If budget not fully consumed, exit the polling mode */
3809 if (work_done < budget) {
3810 if (likely(adapter->itr_setting & 3))
3811 e1000_set_itr(adapter);
3812 netif_rx_complete(poll_dev, napi);
3813 e1000_irq_enable(adapter);
3816 return work_done;
3820 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3821 * @adapter: board private structure
3823 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3824 struct e1000_tx_ring *tx_ring)
3826 struct e1000_hw *hw = &adapter->hw;
3827 struct net_device *netdev = adapter->netdev;
3828 struct e1000_tx_desc *tx_desc, *eop_desc;
3829 struct e1000_buffer *buffer_info;
3830 unsigned int i, eop;
3831 unsigned int count = 0;
3832 bool cleaned = false;
3833 unsigned int total_tx_bytes=0, total_tx_packets=0;
3835 i = tx_ring->next_to_clean;
3836 eop = tx_ring->buffer_info[i].next_to_watch;
3837 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3839 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3840 for (cleaned = false; !cleaned; ) {
3841 tx_desc = E1000_TX_DESC(*tx_ring, i);
3842 buffer_info = &tx_ring->buffer_info[i];
3843 cleaned = (i == eop);
3845 if (cleaned) {
3846 struct sk_buff *skb = buffer_info->skb;
3847 unsigned int segs, bytecount;
3848 segs = skb_shinfo(skb)->gso_segs ?: 1;
3849 /* multiply data chunks by size of headers */
3850 bytecount = ((segs - 1) * skb_headlen(skb)) +
3851 skb->len;
3852 total_tx_packets += segs;
3853 total_tx_bytes += bytecount;
3855 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3856 tx_desc->upper.data = 0;
3858 if (unlikely(++i == tx_ring->count)) i = 0;
3861 eop = tx_ring->buffer_info[i].next_to_watch;
3862 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3863 #define E1000_TX_WEIGHT 64
3864 /* weight of a sort for tx, to avoid endless transmit cleanup */
3865 if (count++ == E1000_TX_WEIGHT)
3866 break;
3869 tx_ring->next_to_clean = i;
3871 #define TX_WAKE_THRESHOLD 32
3872 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3873 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3874 /* Make sure that anybody stopping the queue after this
3875 * sees the new next_to_clean.
3877 smp_mb();
3878 if (netif_queue_stopped(netdev)) {
3879 netif_wake_queue(netdev);
3880 ++adapter->restart_queue;
3884 if (adapter->detect_tx_hung) {
3885 /* Detect a transmit hang in hardware, this serializes the
3886 * check with the clearing of time_stamp and movement of i */
3887 adapter->detect_tx_hung = false;
3888 if (tx_ring->buffer_info[eop].dma &&
3889 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3890 (adapter->tx_timeout_factor * HZ))
3891 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3893 /* detected Tx unit hang */
3894 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3895 " Tx Queue <%lu>\n"
3896 " TDH <%x>\n"
3897 " TDT <%x>\n"
3898 " next_to_use <%x>\n"
3899 " next_to_clean <%x>\n"
3900 "buffer_info[next_to_clean]\n"
3901 " time_stamp <%lx>\n"
3902 " next_to_watch <%x>\n"
3903 " jiffies <%lx>\n"
3904 " next_to_watch.status <%x>\n",
3905 (unsigned long)((tx_ring - adapter->tx_ring) /
3906 sizeof(struct e1000_tx_ring)),
3907 readl(hw->hw_addr + tx_ring->tdh),
3908 readl(hw->hw_addr + tx_ring->tdt),
3909 tx_ring->next_to_use,
3910 tx_ring->next_to_clean,
3911 tx_ring->buffer_info[eop].time_stamp,
3912 eop,
3913 jiffies,
3914 eop_desc->upper.fields.status);
3915 netif_stop_queue(netdev);
3918 adapter->total_tx_bytes += total_tx_bytes;
3919 adapter->total_tx_packets += total_tx_packets;
3920 adapter->net_stats.tx_bytes += total_tx_bytes;
3921 adapter->net_stats.tx_packets += total_tx_packets;
3922 return cleaned;
3926 * e1000_rx_checksum - Receive Checksum Offload for 82543
3927 * @adapter: board private structure
3928 * @status_err: receive descriptor status and error fields
3929 * @csum: receive descriptor csum field
3930 * @sk_buff: socket buffer with received data
3933 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3934 u32 csum, struct sk_buff *skb)
3936 struct e1000_hw *hw = &adapter->hw;
3937 u16 status = (u16)status_err;
3938 u8 errors = (u8)(status_err >> 24);
3939 skb->ip_summed = CHECKSUM_NONE;
3941 /* 82543 or newer only */
3942 if (unlikely(hw->mac_type < e1000_82543)) return;
3943 /* Ignore Checksum bit is set */
3944 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3945 /* TCP/UDP checksum error bit is set */
3946 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3947 /* let the stack verify checksum errors */
3948 adapter->hw_csum_err++;
3949 return;
3951 /* TCP/UDP Checksum has not been calculated */
3952 if (hw->mac_type <= e1000_82547_rev_2) {
3953 if (!(status & E1000_RXD_STAT_TCPCS))
3954 return;
3955 } else {
3956 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3957 return;
3959 /* It must be a TCP or UDP packet with a valid checksum */
3960 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3961 /* TCP checksum is good */
3962 skb->ip_summed = CHECKSUM_UNNECESSARY;
3963 } else if (hw->mac_type > e1000_82547_rev_2) {
3964 /* IP fragment with UDP payload */
3965 /* Hardware complements the payload checksum, so we undo it
3966 * and then put the value in host order for further stack use.
3968 __sum16 sum = (__force __sum16)htons(csum);
3969 skb->csum = csum_unfold(~sum);
3970 skb->ip_summed = CHECKSUM_COMPLETE;
3972 adapter->hw_csum_good++;
3976 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3977 * @adapter: board private structure
3979 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3980 struct e1000_rx_ring *rx_ring,
3981 int *work_done, int work_to_do)
3983 struct e1000_hw *hw = &adapter->hw;
3984 struct net_device *netdev = adapter->netdev;
3985 struct pci_dev *pdev = adapter->pdev;
3986 struct e1000_rx_desc *rx_desc, *next_rxd;
3987 struct e1000_buffer *buffer_info, *next_buffer;
3988 unsigned long flags;
3989 u32 length;
3990 u8 last_byte;
3991 unsigned int i;
3992 int cleaned_count = 0;
3993 bool cleaned = false;
3994 unsigned int total_rx_bytes=0, total_rx_packets=0;
3996 i = rx_ring->next_to_clean;
3997 rx_desc = E1000_RX_DESC(*rx_ring, i);
3998 buffer_info = &rx_ring->buffer_info[i];
4000 while (rx_desc->status & E1000_RXD_STAT_DD) {
4001 struct sk_buff *skb;
4002 u8 status;
4004 if (*work_done >= work_to_do)
4005 break;
4006 (*work_done)++;
4008 status = rx_desc->status;
4009 skb = buffer_info->skb;
4010 buffer_info->skb = NULL;
4012 prefetch(skb->data - NET_IP_ALIGN);
4014 if (++i == rx_ring->count) i = 0;
4015 next_rxd = E1000_RX_DESC(*rx_ring, i);
4016 prefetch(next_rxd);
4018 next_buffer = &rx_ring->buffer_info[i];
4020 cleaned = true;
4021 cleaned_count++;
4022 pci_unmap_single(pdev,
4023 buffer_info->dma,
4024 buffer_info->length,
4025 PCI_DMA_FROMDEVICE);
4027 length = le16_to_cpu(rx_desc->length);
4029 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4030 /* All receives must fit into a single buffer */
4031 E1000_DBG("%s: Receive packet consumed multiple"
4032 " buffers\n", netdev->name);
4033 /* recycle */
4034 buffer_info->skb = skb;
4035 goto next_desc;
4038 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4039 last_byte = *(skb->data + length - 1);
4040 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4041 last_byte)) {
4042 spin_lock_irqsave(&adapter->stats_lock, flags);
4043 e1000_tbi_adjust_stats(hw, &adapter->stats,
4044 length, skb->data);
4045 spin_unlock_irqrestore(&adapter->stats_lock,
4046 flags);
4047 length--;
4048 } else {
4049 /* recycle */
4050 buffer_info->skb = skb;
4051 goto next_desc;
4055 /* adjust length to remove Ethernet CRC, this must be
4056 * done after the TBI_ACCEPT workaround above */
4057 length -= 4;
4059 /* probably a little skewed due to removing CRC */
4060 total_rx_bytes += length;
4061 total_rx_packets++;
4063 /* code added for copybreak, this should improve
4064 * performance for small packets with large amounts
4065 * of reassembly being done in the stack */
4066 if (length < copybreak) {
4067 struct sk_buff *new_skb =
4068 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4069 if (new_skb) {
4070 skb_reserve(new_skb, NET_IP_ALIGN);
4071 skb_copy_to_linear_data_offset(new_skb,
4072 -NET_IP_ALIGN,
4073 (skb->data -
4074 NET_IP_ALIGN),
4075 (length +
4076 NET_IP_ALIGN));
4077 /* save the skb in buffer_info as good */
4078 buffer_info->skb = skb;
4079 skb = new_skb;
4081 /* else just continue with the old one */
4083 /* end copybreak code */
4084 skb_put(skb, length);
4086 /* Receive Checksum Offload */
4087 e1000_rx_checksum(adapter,
4088 (u32)(status) |
4089 ((u32)(rx_desc->errors) << 24),
4090 le16_to_cpu(rx_desc->csum), skb);
4092 skb->protocol = eth_type_trans(skb, netdev);
4094 if (unlikely(adapter->vlgrp &&
4095 (status & E1000_RXD_STAT_VP))) {
4096 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4097 le16_to_cpu(rx_desc->special));
4098 } else {
4099 netif_receive_skb(skb);
4102 next_desc:
4103 rx_desc->status = 0;
4105 /* return some buffers to hardware, one at a time is too slow */
4106 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4107 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4108 cleaned_count = 0;
4111 /* use prefetched values */
4112 rx_desc = next_rxd;
4113 buffer_info = next_buffer;
4115 rx_ring->next_to_clean = i;
4117 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4118 if (cleaned_count)
4119 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4121 adapter->total_rx_packets += total_rx_packets;
4122 adapter->total_rx_bytes += total_rx_bytes;
4123 adapter->net_stats.rx_bytes += total_rx_bytes;
4124 adapter->net_stats.rx_packets += total_rx_packets;
4125 return cleaned;
4129 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4130 * @adapter: address of board private structure
4133 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4134 struct e1000_rx_ring *rx_ring,
4135 int cleaned_count)
4137 struct e1000_hw *hw = &adapter->hw;
4138 struct net_device *netdev = adapter->netdev;
4139 struct pci_dev *pdev = adapter->pdev;
4140 struct e1000_rx_desc *rx_desc;
4141 struct e1000_buffer *buffer_info;
4142 struct sk_buff *skb;
4143 unsigned int i;
4144 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4146 i = rx_ring->next_to_use;
4147 buffer_info = &rx_ring->buffer_info[i];
4149 while (cleaned_count--) {
4150 skb = buffer_info->skb;
4151 if (skb) {
4152 skb_trim(skb, 0);
4153 goto map_skb;
4156 skb = netdev_alloc_skb(netdev, bufsz);
4157 if (unlikely(!skb)) {
4158 /* Better luck next round */
4159 adapter->alloc_rx_buff_failed++;
4160 break;
4163 /* Fix for errata 23, can't cross 64kB boundary */
4164 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4165 struct sk_buff *oldskb = skb;
4166 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4167 "at %p\n", bufsz, skb->data);
4168 /* Try again, without freeing the previous */
4169 skb = netdev_alloc_skb(netdev, bufsz);
4170 /* Failed allocation, critical failure */
4171 if (!skb) {
4172 dev_kfree_skb(oldskb);
4173 break;
4176 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4177 /* give up */
4178 dev_kfree_skb(skb);
4179 dev_kfree_skb(oldskb);
4180 break; /* while !buffer_info->skb */
4183 /* Use new allocation */
4184 dev_kfree_skb(oldskb);
4186 /* Make buffer alignment 2 beyond a 16 byte boundary
4187 * this will result in a 16 byte aligned IP header after
4188 * the 14 byte MAC header is removed
4190 skb_reserve(skb, NET_IP_ALIGN);
4192 buffer_info->skb = skb;
4193 buffer_info->length = adapter->rx_buffer_len;
4194 map_skb:
4195 buffer_info->dma = pci_map_single(pdev,
4196 skb->data,
4197 adapter->rx_buffer_len,
4198 PCI_DMA_FROMDEVICE);
4200 /* Fix for errata 23, can't cross 64kB boundary */
4201 if (!e1000_check_64k_bound(adapter,
4202 (void *)(unsigned long)buffer_info->dma,
4203 adapter->rx_buffer_len)) {
4204 DPRINTK(RX_ERR, ERR,
4205 "dma align check failed: %u bytes at %p\n",
4206 adapter->rx_buffer_len,
4207 (void *)(unsigned long)buffer_info->dma);
4208 dev_kfree_skb(skb);
4209 buffer_info->skb = NULL;
4211 pci_unmap_single(pdev, buffer_info->dma,
4212 adapter->rx_buffer_len,
4213 PCI_DMA_FROMDEVICE);
4215 break; /* while !buffer_info->skb */
4217 rx_desc = E1000_RX_DESC(*rx_ring, i);
4218 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4220 if (unlikely(++i == rx_ring->count))
4221 i = 0;
4222 buffer_info = &rx_ring->buffer_info[i];
4225 if (likely(rx_ring->next_to_use != i)) {
4226 rx_ring->next_to_use = i;
4227 if (unlikely(i-- == 0))
4228 i = (rx_ring->count - 1);
4230 /* Force memory writes to complete before letting h/w
4231 * know there are new descriptors to fetch. (Only
4232 * applicable for weak-ordered memory model archs,
4233 * such as IA-64). */
4234 wmb();
4235 writel(i, hw->hw_addr + rx_ring->rdt);
4240 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4241 * @adapter:
4244 static void e1000_smartspeed(struct e1000_adapter *adapter)
4246 struct e1000_hw *hw = &adapter->hw;
4247 u16 phy_status;
4248 u16 phy_ctrl;
4250 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4251 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4252 return;
4254 if (adapter->smartspeed == 0) {
4255 /* If Master/Slave config fault is asserted twice,
4256 * we assume back-to-back */
4257 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4258 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4259 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4260 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4261 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4262 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4263 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4264 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4265 phy_ctrl);
4266 adapter->smartspeed++;
4267 if (!e1000_phy_setup_autoneg(hw) &&
4268 !e1000_read_phy_reg(hw, PHY_CTRL,
4269 &phy_ctrl)) {
4270 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4271 MII_CR_RESTART_AUTO_NEG);
4272 e1000_write_phy_reg(hw, PHY_CTRL,
4273 phy_ctrl);
4276 return;
4277 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4278 /* If still no link, perhaps using 2/3 pair cable */
4279 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4280 phy_ctrl |= CR_1000T_MS_ENABLE;
4281 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4282 if (!e1000_phy_setup_autoneg(hw) &&
4283 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4284 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4285 MII_CR_RESTART_AUTO_NEG);
4286 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4289 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4290 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4291 adapter->smartspeed = 0;
4295 * e1000_ioctl -
4296 * @netdev:
4297 * @ifreq:
4298 * @cmd:
4301 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4303 switch (cmd) {
4304 case SIOCGMIIPHY:
4305 case SIOCGMIIREG:
4306 case SIOCSMIIREG:
4307 return e1000_mii_ioctl(netdev, ifr, cmd);
4308 default:
4309 return -EOPNOTSUPP;
4314 * e1000_mii_ioctl -
4315 * @netdev:
4316 * @ifreq:
4317 * @cmd:
4320 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4321 int cmd)
4323 struct e1000_adapter *adapter = netdev_priv(netdev);
4324 struct e1000_hw *hw = &adapter->hw;
4325 struct mii_ioctl_data *data = if_mii(ifr);
4326 int retval;
4327 u16 mii_reg;
4328 u16 spddplx;
4329 unsigned long flags;
4331 if (hw->media_type != e1000_media_type_copper)
4332 return -EOPNOTSUPP;
4334 switch (cmd) {
4335 case SIOCGMIIPHY:
4336 data->phy_id = hw->phy_addr;
4337 break;
4338 case SIOCGMIIREG:
4339 if (!capable(CAP_NET_ADMIN))
4340 return -EPERM;
4341 spin_lock_irqsave(&adapter->stats_lock, flags);
4342 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4343 &data->val_out)) {
4344 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4345 return -EIO;
4347 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4348 break;
4349 case SIOCSMIIREG:
4350 if (!capable(CAP_NET_ADMIN))
4351 return -EPERM;
4352 if (data->reg_num & ~(0x1F))
4353 return -EFAULT;
4354 mii_reg = data->val_in;
4355 spin_lock_irqsave(&adapter->stats_lock, flags);
4356 if (e1000_write_phy_reg(hw, data->reg_num,
4357 mii_reg)) {
4358 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4359 return -EIO;
4361 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4362 if (hw->media_type == e1000_media_type_copper) {
4363 switch (data->reg_num) {
4364 case PHY_CTRL:
4365 if (mii_reg & MII_CR_POWER_DOWN)
4366 break;
4367 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4368 hw->autoneg = 1;
4369 hw->autoneg_advertised = 0x2F;
4370 } else {
4371 if (mii_reg & 0x40)
4372 spddplx = SPEED_1000;
4373 else if (mii_reg & 0x2000)
4374 spddplx = SPEED_100;
4375 else
4376 spddplx = SPEED_10;
4377 spddplx += (mii_reg & 0x100)
4378 ? DUPLEX_FULL :
4379 DUPLEX_HALF;
4380 retval = e1000_set_spd_dplx(adapter,
4381 spddplx);
4382 if (retval)
4383 return retval;
4385 if (netif_running(adapter->netdev))
4386 e1000_reinit_locked(adapter);
4387 else
4388 e1000_reset(adapter);
4389 break;
4390 case M88E1000_PHY_SPEC_CTRL:
4391 case M88E1000_EXT_PHY_SPEC_CTRL:
4392 if (e1000_phy_reset(hw))
4393 return -EIO;
4394 break;
4396 } else {
4397 switch (data->reg_num) {
4398 case PHY_CTRL:
4399 if (mii_reg & MII_CR_POWER_DOWN)
4400 break;
4401 if (netif_running(adapter->netdev))
4402 e1000_reinit_locked(adapter);
4403 else
4404 e1000_reset(adapter);
4405 break;
4408 break;
4409 default:
4410 return -EOPNOTSUPP;
4412 return E1000_SUCCESS;
4415 void e1000_pci_set_mwi(struct e1000_hw *hw)
4417 struct e1000_adapter *adapter = hw->back;
4418 int ret_val = pci_set_mwi(adapter->pdev);
4420 if (ret_val)
4421 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4424 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4426 struct e1000_adapter *adapter = hw->back;
4428 pci_clear_mwi(adapter->pdev);
4431 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4433 struct e1000_adapter *adapter = hw->back;
4434 return pcix_get_mmrbc(adapter->pdev);
4437 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4439 struct e1000_adapter *adapter = hw->back;
4440 pcix_set_mmrbc(adapter->pdev, mmrbc);
4443 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4445 struct e1000_adapter *adapter = hw->back;
4446 u16 cap_offset;
4448 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4449 if (!cap_offset)
4450 return -E1000_ERR_CONFIG;
4452 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4454 return E1000_SUCCESS;
4457 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4459 outl(value, port);
4462 static void e1000_vlan_rx_register(struct net_device *netdev,
4463 struct vlan_group *grp)
4465 struct e1000_adapter *adapter = netdev_priv(netdev);
4466 struct e1000_hw *hw = &adapter->hw;
4467 u32 ctrl, rctl;
4469 if (!test_bit(__E1000_DOWN, &adapter->flags))
4470 e1000_irq_disable(adapter);
4471 adapter->vlgrp = grp;
4473 if (grp) {
4474 /* enable VLAN tag insert/strip */
4475 ctrl = er32(CTRL);
4476 ctrl |= E1000_CTRL_VME;
4477 ew32(CTRL, ctrl);
4479 if (adapter->hw.mac_type != e1000_ich8lan) {
4480 /* enable VLAN receive filtering */
4481 rctl = er32(RCTL);
4482 rctl &= ~E1000_RCTL_CFIEN;
4483 ew32(RCTL, rctl);
4484 e1000_update_mng_vlan(adapter);
4486 } else {
4487 /* disable VLAN tag insert/strip */
4488 ctrl = er32(CTRL);
4489 ctrl &= ~E1000_CTRL_VME;
4490 ew32(CTRL, ctrl);
4492 if (adapter->hw.mac_type != e1000_ich8lan) {
4493 if (adapter->mng_vlan_id !=
4494 (u16)E1000_MNG_VLAN_NONE) {
4495 e1000_vlan_rx_kill_vid(netdev,
4496 adapter->mng_vlan_id);
4497 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4502 if (!test_bit(__E1000_DOWN, &adapter->flags))
4503 e1000_irq_enable(adapter);
4506 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4508 struct e1000_adapter *adapter = netdev_priv(netdev);
4509 struct e1000_hw *hw = &adapter->hw;
4510 u32 vfta, index;
4512 if ((hw->mng_cookie.status &
4513 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4514 (vid == adapter->mng_vlan_id))
4515 return;
4516 /* add VID to filter table */
4517 index = (vid >> 5) & 0x7F;
4518 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4519 vfta |= (1 << (vid & 0x1F));
4520 e1000_write_vfta(hw, index, vfta);
4523 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4525 struct e1000_adapter *adapter = netdev_priv(netdev);
4526 struct e1000_hw *hw = &adapter->hw;
4527 u32 vfta, index;
4529 if (!test_bit(__E1000_DOWN, &adapter->flags))
4530 e1000_irq_disable(adapter);
4531 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4532 if (!test_bit(__E1000_DOWN, &adapter->flags))
4533 e1000_irq_enable(adapter);
4535 if ((hw->mng_cookie.status &
4536 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4537 (vid == adapter->mng_vlan_id)) {
4538 /* release control to f/w */
4539 e1000_release_hw_control(adapter);
4540 return;
4543 /* remove VID from filter table */
4544 index = (vid >> 5) & 0x7F;
4545 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4546 vfta &= ~(1 << (vid & 0x1F));
4547 e1000_write_vfta(hw, index, vfta);
4550 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4552 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4554 if (adapter->vlgrp) {
4555 u16 vid;
4556 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4557 if (!vlan_group_get_device(adapter->vlgrp, vid))
4558 continue;
4559 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4564 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4566 struct e1000_hw *hw = &adapter->hw;
4568 hw->autoneg = 0;
4570 /* Fiber NICs only allow 1000 gbps Full duplex */
4571 if ((hw->media_type == e1000_media_type_fiber) &&
4572 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4573 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4574 return -EINVAL;
4577 switch (spddplx) {
4578 case SPEED_10 + DUPLEX_HALF:
4579 hw->forced_speed_duplex = e1000_10_half;
4580 break;
4581 case SPEED_10 + DUPLEX_FULL:
4582 hw->forced_speed_duplex = e1000_10_full;
4583 break;
4584 case SPEED_100 + DUPLEX_HALF:
4585 hw->forced_speed_duplex = e1000_100_half;
4586 break;
4587 case SPEED_100 + DUPLEX_FULL:
4588 hw->forced_speed_duplex = e1000_100_full;
4589 break;
4590 case SPEED_1000 + DUPLEX_FULL:
4591 hw->autoneg = 1;
4592 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4593 break;
4594 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4595 default:
4596 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4597 return -EINVAL;
4599 return 0;
4602 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4604 struct net_device *netdev = pci_get_drvdata(pdev);
4605 struct e1000_adapter *adapter = netdev_priv(netdev);
4606 struct e1000_hw *hw = &adapter->hw;
4607 u32 ctrl, ctrl_ext, rctl, status;
4608 u32 wufc = adapter->wol;
4609 #ifdef CONFIG_PM
4610 int retval = 0;
4611 #endif
4613 netif_device_detach(netdev);
4615 if (netif_running(netdev)) {
4616 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4617 e1000_down(adapter);
4620 #ifdef CONFIG_PM
4621 retval = pci_save_state(pdev);
4622 if (retval)
4623 return retval;
4624 #endif
4626 status = er32(STATUS);
4627 if (status & E1000_STATUS_LU)
4628 wufc &= ~E1000_WUFC_LNKC;
4630 if (wufc) {
4631 e1000_setup_rctl(adapter);
4632 e1000_set_rx_mode(netdev);
4634 /* turn on all-multi mode if wake on multicast is enabled */
4635 if (wufc & E1000_WUFC_MC) {
4636 rctl = er32(RCTL);
4637 rctl |= E1000_RCTL_MPE;
4638 ew32(RCTL, rctl);
4641 if (hw->mac_type >= e1000_82540) {
4642 ctrl = er32(CTRL);
4643 /* advertise wake from D3Cold */
4644 #define E1000_CTRL_ADVD3WUC 0x00100000
4645 /* phy power management enable */
4646 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4647 ctrl |= E1000_CTRL_ADVD3WUC |
4648 E1000_CTRL_EN_PHY_PWR_MGMT;
4649 ew32(CTRL, ctrl);
4652 if (hw->media_type == e1000_media_type_fiber ||
4653 hw->media_type == e1000_media_type_internal_serdes) {
4654 /* keep the laser running in D3 */
4655 ctrl_ext = er32(CTRL_EXT);
4656 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4657 ew32(CTRL_EXT, ctrl_ext);
4660 /* Allow time for pending master requests to run */
4661 e1000_disable_pciex_master(hw);
4663 ew32(WUC, E1000_WUC_PME_EN);
4664 ew32(WUFC, wufc);
4665 pci_enable_wake(pdev, PCI_D3hot, 1);
4666 pci_enable_wake(pdev, PCI_D3cold, 1);
4667 } else {
4668 ew32(WUC, 0);
4669 ew32(WUFC, 0);
4670 pci_enable_wake(pdev, PCI_D3hot, 0);
4671 pci_enable_wake(pdev, PCI_D3cold, 0);
4674 e1000_release_manageability(adapter);
4676 /* make sure adapter isn't asleep if manageability is enabled */
4677 if (adapter->en_mng_pt) {
4678 pci_enable_wake(pdev, PCI_D3hot, 1);
4679 pci_enable_wake(pdev, PCI_D3cold, 1);
4682 if (hw->phy_type == e1000_phy_igp_3)
4683 e1000_phy_powerdown_workaround(hw);
4685 if (netif_running(netdev))
4686 e1000_free_irq(adapter);
4688 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4689 * would have already happened in close and is redundant. */
4690 e1000_release_hw_control(adapter);
4692 pci_disable_device(pdev);
4694 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4696 return 0;
4699 #ifdef CONFIG_PM
4700 static int e1000_resume(struct pci_dev *pdev)
4702 struct net_device *netdev = pci_get_drvdata(pdev);
4703 struct e1000_adapter *adapter = netdev_priv(netdev);
4704 struct e1000_hw *hw = &adapter->hw;
4705 u32 err;
4707 pci_set_power_state(pdev, PCI_D0);
4708 pci_restore_state(pdev);
4710 if (adapter->need_ioport)
4711 err = pci_enable_device(pdev);
4712 else
4713 err = pci_enable_device_mem(pdev);
4714 if (err) {
4715 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4716 return err;
4718 pci_set_master(pdev);
4720 pci_enable_wake(pdev, PCI_D3hot, 0);
4721 pci_enable_wake(pdev, PCI_D3cold, 0);
4723 if (netif_running(netdev)) {
4724 err = e1000_request_irq(adapter);
4725 if (err)
4726 return err;
4729 e1000_power_up_phy(adapter);
4730 e1000_reset(adapter);
4731 ew32(WUS, ~0);
4733 e1000_init_manageability(adapter);
4735 if (netif_running(netdev))
4736 e1000_up(adapter);
4738 netif_device_attach(netdev);
4740 /* If the controller is 82573 and f/w is AMT, do not set
4741 * DRV_LOAD until the interface is up. For all other cases,
4742 * let the f/w know that the h/w is now under the control
4743 * of the driver. */
4744 if (hw->mac_type != e1000_82573 ||
4745 !e1000_check_mng_mode(hw))
4746 e1000_get_hw_control(adapter);
4748 return 0;
4750 #endif
4752 static void e1000_shutdown(struct pci_dev *pdev)
4754 e1000_suspend(pdev, PMSG_SUSPEND);
4757 #ifdef CONFIG_NET_POLL_CONTROLLER
4759 * Polling 'interrupt' - used by things like netconsole to send skbs
4760 * without having to re-enable interrupts. It's not called while
4761 * the interrupt routine is executing.
4763 static void e1000_netpoll(struct net_device *netdev)
4765 struct e1000_adapter *adapter = netdev_priv(netdev);
4767 disable_irq(adapter->pdev->irq);
4768 e1000_intr(adapter->pdev->irq, netdev);
4769 enable_irq(adapter->pdev->irq);
4771 #endif
4774 * e1000_io_error_detected - called when PCI error is detected
4775 * @pdev: Pointer to PCI device
4776 * @state: The current pci conneection state
4778 * This function is called after a PCI bus error affecting
4779 * this device has been detected.
4781 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4782 pci_channel_state_t state)
4784 struct net_device *netdev = pci_get_drvdata(pdev);
4785 struct e1000_adapter *adapter = netdev->priv;
4787 netif_device_detach(netdev);
4789 if (netif_running(netdev))
4790 e1000_down(adapter);
4791 pci_disable_device(pdev);
4793 /* Request a slot slot reset. */
4794 return PCI_ERS_RESULT_NEED_RESET;
4798 * e1000_io_slot_reset - called after the pci bus has been reset.
4799 * @pdev: Pointer to PCI device
4801 * Restart the card from scratch, as if from a cold-boot. Implementation
4802 * resembles the first-half of the e1000_resume routine.
4804 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4806 struct net_device *netdev = pci_get_drvdata(pdev);
4807 struct e1000_adapter *adapter = netdev->priv;
4808 struct e1000_hw *hw = &adapter->hw;
4809 int err;
4811 if (adapter->need_ioport)
4812 err = pci_enable_device(pdev);
4813 else
4814 err = pci_enable_device_mem(pdev);
4815 if (err) {
4816 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4817 return PCI_ERS_RESULT_DISCONNECT;
4819 pci_set_master(pdev);
4821 pci_enable_wake(pdev, PCI_D3hot, 0);
4822 pci_enable_wake(pdev, PCI_D3cold, 0);
4824 e1000_reset(adapter);
4825 ew32(WUS, ~0);
4827 return PCI_ERS_RESULT_RECOVERED;
4831 * e1000_io_resume - called when traffic can start flowing again.
4832 * @pdev: Pointer to PCI device
4834 * This callback is called when the error recovery driver tells us that
4835 * its OK to resume normal operation. Implementation resembles the
4836 * second-half of the e1000_resume routine.
4838 static void e1000_io_resume(struct pci_dev *pdev)
4840 struct net_device *netdev = pci_get_drvdata(pdev);
4841 struct e1000_adapter *adapter = netdev->priv;
4842 struct e1000_hw *hw = &adapter->hw;
4844 e1000_init_manageability(adapter);
4846 if (netif_running(netdev)) {
4847 if (e1000_up(adapter)) {
4848 printk("e1000: can't bring device back up after reset\n");
4849 return;
4853 netif_device_attach(netdev);
4855 /* If the controller is 82573 and f/w is AMT, do not set
4856 * DRV_LOAD until the interface is up. For all other cases,
4857 * let the f/w know that the h/w is now under the control
4858 * of the driver. */
4859 if (hw->mac_type != e1000_82573 ||
4860 !e1000_check_mng_mode(hw))
4861 e1000_get_hw_control(adapter);
4865 /* e1000_main.c */