sched: add credits for RT balancing improvements
[linux-2.6/verdex.git] / kernel / sched.c
blob55c521780f93069072c947fe2e06b3c8c637e320
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
69 #include <asm/tlb.h>
70 #include <asm/irq_regs.h>
73 * Scheduler clock - returns current time in nanosec units.
74 * This is default implementation.
75 * Architectures and sub-architectures can override this.
77 unsigned long long __attribute__((weak)) sched_clock(void)
79 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
116 #ifdef CONFIG_SMP
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
130 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135 #endif
137 static inline int rt_policy(int policy)
139 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
140 return 1;
141 return 0;
144 static inline int task_has_rt_policy(struct task_struct *p)
146 return rt_policy(p->policy);
150 * This is the priority-queue data structure of the RT scheduling class:
152 struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
157 #ifdef CONFIG_FAIR_GROUP_SCHED
159 #include <linux/cgroup.h>
161 struct cfs_rq;
163 /* task group related information */
164 struct task_group {
165 #ifdef CONFIG_FAIR_CGROUP_SCHED
166 struct cgroup_subsys_state css;
167 #endif
168 /* schedulable entities of this group on each cpu */
169 struct sched_entity **se;
170 /* runqueue "owned" by this group on each cpu */
171 struct cfs_rq **cfs_rq;
174 * shares assigned to a task group governs how much of cpu bandwidth
175 * is allocated to the group. The more shares a group has, the more is
176 * the cpu bandwidth allocated to it.
178 * For ex, lets say that there are three task groups, A, B and C which
179 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
180 * cpu bandwidth allocated by the scheduler to task groups A, B and C
181 * should be:
183 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
184 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
185 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
187 * The weight assigned to a task group's schedulable entities on every
188 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
189 * group's shares. For ex: lets say that task group A has been
190 * assigned shares of 1000 and there are two CPUs in a system. Then,
192 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
194 * Note: It's not necessary that each of a task's group schedulable
195 * entity have the same weight on all CPUs. If the group
196 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
197 * better distribution of weight could be:
199 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
200 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
202 * rebalance_shares() is responsible for distributing the shares of a
203 * task groups like this among the group's schedulable entities across
204 * cpus.
207 unsigned long shares;
209 struct rcu_head rcu;
212 /* Default task group's sched entity on each cpu */
213 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
214 /* Default task group's cfs_rq on each cpu */
215 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
217 static struct sched_entity *init_sched_entity_p[NR_CPUS];
218 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
220 /* task_group_mutex serializes add/remove of task groups and also changes to
221 * a task group's cpu shares.
223 static DEFINE_MUTEX(task_group_mutex);
225 /* doms_cur_mutex serializes access to doms_cur[] array */
226 static DEFINE_MUTEX(doms_cur_mutex);
228 #ifdef CONFIG_SMP
229 /* kernel thread that runs rebalance_shares() periodically */
230 static struct task_struct *lb_monitor_task;
231 static int load_balance_monitor(void *unused);
232 #endif
234 static void set_se_shares(struct sched_entity *se, unsigned long shares);
236 /* Default task group.
237 * Every task in system belong to this group at bootup.
239 struct task_group init_task_group = {
240 .se = init_sched_entity_p,
241 .cfs_rq = init_cfs_rq_p,
244 #ifdef CONFIG_FAIR_USER_SCHED
245 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
246 #else
247 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
248 #endif
250 #define MIN_GROUP_SHARES 2
252 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
254 /* return group to which a task belongs */
255 static inline struct task_group *task_group(struct task_struct *p)
257 struct task_group *tg;
259 #ifdef CONFIG_FAIR_USER_SCHED
260 tg = p->user->tg;
261 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
262 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
263 struct task_group, css);
264 #else
265 tg = &init_task_group;
266 #endif
267 return tg;
270 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
271 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
273 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
274 p->se.parent = task_group(p)->se[cpu];
277 static inline void lock_task_group_list(void)
279 mutex_lock(&task_group_mutex);
282 static inline void unlock_task_group_list(void)
284 mutex_unlock(&task_group_mutex);
287 static inline void lock_doms_cur(void)
289 mutex_lock(&doms_cur_mutex);
292 static inline void unlock_doms_cur(void)
294 mutex_unlock(&doms_cur_mutex);
297 #else
299 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
300 static inline void lock_task_group_list(void) { }
301 static inline void unlock_task_group_list(void) { }
302 static inline void lock_doms_cur(void) { }
303 static inline void unlock_doms_cur(void) { }
305 #endif /* CONFIG_FAIR_GROUP_SCHED */
307 /* CFS-related fields in a runqueue */
308 struct cfs_rq {
309 struct load_weight load;
310 unsigned long nr_running;
312 u64 exec_clock;
313 u64 min_vruntime;
315 struct rb_root tasks_timeline;
316 struct rb_node *rb_leftmost;
317 struct rb_node *rb_load_balance_curr;
318 /* 'curr' points to currently running entity on this cfs_rq.
319 * It is set to NULL otherwise (i.e when none are currently running).
321 struct sched_entity *curr;
323 unsigned long nr_spread_over;
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
329 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
330 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
331 * (like users, containers etc.)
333 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
334 * list is used during load balance.
336 struct list_head leaf_cfs_rq_list;
337 struct task_group *tg; /* group that "owns" this runqueue */
338 #endif
341 /* Real-Time classes' related field in a runqueue: */
342 struct rt_rq {
343 struct rt_prio_array active;
344 int rt_load_balance_idx;
345 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
346 unsigned long rt_nr_running;
347 unsigned long rt_nr_migratory;
348 /* highest queued rt task prio */
349 int highest_prio;
350 int overloaded;
353 #ifdef CONFIG_SMP
356 * We add the notion of a root-domain which will be used to define per-domain
357 * variables. Each exclusive cpuset essentially defines an island domain by
358 * fully partitioning the member cpus from any other cpuset. Whenever a new
359 * exclusive cpuset is created, we also create and attach a new root-domain
360 * object.
362 * By default the system creates a single root-domain with all cpus as
363 * members (mimicking the global state we have today).
365 struct root_domain {
366 atomic_t refcount;
367 cpumask_t span;
368 cpumask_t online;
371 * The "RT overload" flag: it gets set if a CPU has more than
372 * one runnable RT task.
374 cpumask_t rto_mask;
375 atomic_t rto_count;
378 static struct root_domain def_root_domain;
380 #endif
383 * This is the main, per-CPU runqueue data structure.
385 * Locking rule: those places that want to lock multiple runqueues
386 * (such as the load balancing or the thread migration code), lock
387 * acquire operations must be ordered by ascending &runqueue.
389 struct rq {
390 /* runqueue lock: */
391 spinlock_t lock;
394 * nr_running and cpu_load should be in the same cacheline because
395 * remote CPUs use both these fields when doing load calculation.
397 unsigned long nr_running;
398 #define CPU_LOAD_IDX_MAX 5
399 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
400 unsigned char idle_at_tick;
401 #ifdef CONFIG_NO_HZ
402 unsigned char in_nohz_recently;
403 #endif
404 /* capture load from *all* tasks on this cpu: */
405 struct load_weight load;
406 unsigned long nr_load_updates;
407 u64 nr_switches;
409 struct cfs_rq cfs;
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 /* list of leaf cfs_rq on this cpu: */
412 struct list_head leaf_cfs_rq_list;
413 #endif
414 struct rt_rq rt;
417 * This is part of a global counter where only the total sum
418 * over all CPUs matters. A task can increase this counter on
419 * one CPU and if it got migrated afterwards it may decrease
420 * it on another CPU. Always updated under the runqueue lock:
422 unsigned long nr_uninterruptible;
424 struct task_struct *curr, *idle;
425 unsigned long next_balance;
426 struct mm_struct *prev_mm;
428 u64 clock, prev_clock_raw;
429 s64 clock_max_delta;
431 unsigned int clock_warps, clock_overflows;
432 u64 idle_clock;
433 unsigned int clock_deep_idle_events;
434 u64 tick_timestamp;
436 atomic_t nr_iowait;
438 #ifdef CONFIG_SMP
439 struct root_domain *rd;
440 struct sched_domain *sd;
442 /* For active balancing */
443 int active_balance;
444 int push_cpu;
445 /* cpu of this runqueue: */
446 int cpu;
448 struct task_struct *migration_thread;
449 struct list_head migration_queue;
450 #endif
452 #ifdef CONFIG_SCHEDSTATS
453 /* latency stats */
454 struct sched_info rq_sched_info;
456 /* sys_sched_yield() stats */
457 unsigned int yld_exp_empty;
458 unsigned int yld_act_empty;
459 unsigned int yld_both_empty;
460 unsigned int yld_count;
462 /* schedule() stats */
463 unsigned int sched_switch;
464 unsigned int sched_count;
465 unsigned int sched_goidle;
467 /* try_to_wake_up() stats */
468 unsigned int ttwu_count;
469 unsigned int ttwu_local;
471 /* BKL stats */
472 unsigned int bkl_count;
473 #endif
474 struct lock_class_key rq_lock_key;
477 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
479 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
481 rq->curr->sched_class->check_preempt_curr(rq, p);
484 static inline int cpu_of(struct rq *rq)
486 #ifdef CONFIG_SMP
487 return rq->cpu;
488 #else
489 return 0;
490 #endif
494 * Update the per-runqueue clock, as finegrained as the platform can give
495 * us, but without assuming monotonicity, etc.:
497 static void __update_rq_clock(struct rq *rq)
499 u64 prev_raw = rq->prev_clock_raw;
500 u64 now = sched_clock();
501 s64 delta = now - prev_raw;
502 u64 clock = rq->clock;
504 #ifdef CONFIG_SCHED_DEBUG
505 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
506 #endif
508 * Protect against sched_clock() occasionally going backwards:
510 if (unlikely(delta < 0)) {
511 clock++;
512 rq->clock_warps++;
513 } else {
515 * Catch too large forward jumps too:
517 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
518 if (clock < rq->tick_timestamp + TICK_NSEC)
519 clock = rq->tick_timestamp + TICK_NSEC;
520 else
521 clock++;
522 rq->clock_overflows++;
523 } else {
524 if (unlikely(delta > rq->clock_max_delta))
525 rq->clock_max_delta = delta;
526 clock += delta;
530 rq->prev_clock_raw = now;
531 rq->clock = clock;
534 static void update_rq_clock(struct rq *rq)
536 if (likely(smp_processor_id() == cpu_of(rq)))
537 __update_rq_clock(rq);
541 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
542 * See detach_destroy_domains: synchronize_sched for details.
544 * The domain tree of any CPU may only be accessed from within
545 * preempt-disabled sections.
547 #define for_each_domain(cpu, __sd) \
548 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
550 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
551 #define this_rq() (&__get_cpu_var(runqueues))
552 #define task_rq(p) cpu_rq(task_cpu(p))
553 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
556 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
558 #ifdef CONFIG_SCHED_DEBUG
559 # define const_debug __read_mostly
560 #else
561 # define const_debug static const
562 #endif
565 * Debugging: various feature bits
567 enum {
568 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
569 SCHED_FEAT_WAKEUP_PREEMPT = 2,
570 SCHED_FEAT_START_DEBIT = 4,
571 SCHED_FEAT_TREE_AVG = 8,
572 SCHED_FEAT_APPROX_AVG = 16,
575 const_debug unsigned int sysctl_sched_features =
576 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
577 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
578 SCHED_FEAT_START_DEBIT * 1 |
579 SCHED_FEAT_TREE_AVG * 0 |
580 SCHED_FEAT_APPROX_AVG * 0;
582 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
585 * Number of tasks to iterate in a single balance run.
586 * Limited because this is done with IRQs disabled.
588 const_debug unsigned int sysctl_sched_nr_migrate = 32;
591 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
592 * clock constructed from sched_clock():
594 unsigned long long cpu_clock(int cpu)
596 unsigned long long now;
597 unsigned long flags;
598 struct rq *rq;
600 local_irq_save(flags);
601 rq = cpu_rq(cpu);
603 * Only call sched_clock() if the scheduler has already been
604 * initialized (some code might call cpu_clock() very early):
606 if (rq->idle)
607 update_rq_clock(rq);
608 now = rq->clock;
609 local_irq_restore(flags);
611 return now;
613 EXPORT_SYMBOL_GPL(cpu_clock);
615 #ifndef prepare_arch_switch
616 # define prepare_arch_switch(next) do { } while (0)
617 #endif
618 #ifndef finish_arch_switch
619 # define finish_arch_switch(prev) do { } while (0)
620 #endif
622 static inline int task_current(struct rq *rq, struct task_struct *p)
624 return rq->curr == p;
627 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
628 static inline int task_running(struct rq *rq, struct task_struct *p)
630 return task_current(rq, p);
633 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
637 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
639 #ifdef CONFIG_DEBUG_SPINLOCK
640 /* this is a valid case when another task releases the spinlock */
641 rq->lock.owner = current;
642 #endif
644 * If we are tracking spinlock dependencies then we have to
645 * fix up the runqueue lock - which gets 'carried over' from
646 * prev into current:
648 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
650 spin_unlock_irq(&rq->lock);
653 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
654 static inline int task_running(struct rq *rq, struct task_struct *p)
656 #ifdef CONFIG_SMP
657 return p->oncpu;
658 #else
659 return task_current(rq, p);
660 #endif
663 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
665 #ifdef CONFIG_SMP
667 * We can optimise this out completely for !SMP, because the
668 * SMP rebalancing from interrupt is the only thing that cares
669 * here.
671 next->oncpu = 1;
672 #endif
673 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
674 spin_unlock_irq(&rq->lock);
675 #else
676 spin_unlock(&rq->lock);
677 #endif
680 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
682 #ifdef CONFIG_SMP
684 * After ->oncpu is cleared, the task can be moved to a different CPU.
685 * We must ensure this doesn't happen until the switch is completely
686 * finished.
688 smp_wmb();
689 prev->oncpu = 0;
690 #endif
691 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
692 local_irq_enable();
693 #endif
695 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
698 * __task_rq_lock - lock the runqueue a given task resides on.
699 * Must be called interrupts disabled.
701 static inline struct rq *__task_rq_lock(struct task_struct *p)
702 __acquires(rq->lock)
704 for (;;) {
705 struct rq *rq = task_rq(p);
706 spin_lock(&rq->lock);
707 if (likely(rq == task_rq(p)))
708 return rq;
709 spin_unlock(&rq->lock);
714 * task_rq_lock - lock the runqueue a given task resides on and disable
715 * interrupts. Note the ordering: we can safely lookup the task_rq without
716 * explicitly disabling preemption.
718 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
719 __acquires(rq->lock)
721 struct rq *rq;
723 for (;;) {
724 local_irq_save(*flags);
725 rq = task_rq(p);
726 spin_lock(&rq->lock);
727 if (likely(rq == task_rq(p)))
728 return rq;
729 spin_unlock_irqrestore(&rq->lock, *flags);
733 static void __task_rq_unlock(struct rq *rq)
734 __releases(rq->lock)
736 spin_unlock(&rq->lock);
739 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
740 __releases(rq->lock)
742 spin_unlock_irqrestore(&rq->lock, *flags);
746 * this_rq_lock - lock this runqueue and disable interrupts.
748 static struct rq *this_rq_lock(void)
749 __acquires(rq->lock)
751 struct rq *rq;
753 local_irq_disable();
754 rq = this_rq();
755 spin_lock(&rq->lock);
757 return rq;
761 * We are going deep-idle (irqs are disabled):
763 void sched_clock_idle_sleep_event(void)
765 struct rq *rq = cpu_rq(smp_processor_id());
767 spin_lock(&rq->lock);
768 __update_rq_clock(rq);
769 spin_unlock(&rq->lock);
770 rq->clock_deep_idle_events++;
772 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
775 * We just idled delta nanoseconds (called with irqs disabled):
777 void sched_clock_idle_wakeup_event(u64 delta_ns)
779 struct rq *rq = cpu_rq(smp_processor_id());
780 u64 now = sched_clock();
782 touch_softlockup_watchdog();
783 rq->idle_clock += delta_ns;
785 * Override the previous timestamp and ignore all
786 * sched_clock() deltas that occured while we idled,
787 * and use the PM-provided delta_ns to advance the
788 * rq clock:
790 spin_lock(&rq->lock);
791 rq->prev_clock_raw = now;
792 rq->clock += delta_ns;
793 spin_unlock(&rq->lock);
795 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
798 * resched_task - mark a task 'to be rescheduled now'.
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
802 * the target CPU.
804 #ifdef CONFIG_SMP
806 #ifndef tsk_is_polling
807 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
808 #endif
810 static void resched_task(struct task_struct *p)
812 int cpu;
814 assert_spin_locked(&task_rq(p)->lock);
816 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
817 return;
819 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
821 cpu = task_cpu(p);
822 if (cpu == smp_processor_id())
823 return;
825 /* NEED_RESCHED must be visible before we test polling */
826 smp_mb();
827 if (!tsk_is_polling(p))
828 smp_send_reschedule(cpu);
831 static void resched_cpu(int cpu)
833 struct rq *rq = cpu_rq(cpu);
834 unsigned long flags;
836 if (!spin_trylock_irqsave(&rq->lock, flags))
837 return;
838 resched_task(cpu_curr(cpu));
839 spin_unlock_irqrestore(&rq->lock, flags);
841 #else
842 static inline void resched_task(struct task_struct *p)
844 assert_spin_locked(&task_rq(p)->lock);
845 set_tsk_need_resched(p);
847 #endif
849 #if BITS_PER_LONG == 32
850 # define WMULT_CONST (~0UL)
851 #else
852 # define WMULT_CONST (1UL << 32)
853 #endif
855 #define WMULT_SHIFT 32
858 * Shift right and round:
860 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
862 static unsigned long
863 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
864 struct load_weight *lw)
866 u64 tmp;
868 if (unlikely(!lw->inv_weight))
869 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
871 tmp = (u64)delta_exec * weight;
873 * Check whether we'd overflow the 64-bit multiplication:
875 if (unlikely(tmp > WMULT_CONST))
876 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
877 WMULT_SHIFT/2);
878 else
879 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
881 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
884 static inline unsigned long
885 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
887 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
890 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
892 lw->weight += inc;
895 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
897 lw->weight -= dec;
901 * To aid in avoiding the subversion of "niceness" due to uneven distribution
902 * of tasks with abnormal "nice" values across CPUs the contribution that
903 * each task makes to its run queue's load is weighted according to its
904 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
905 * scaled version of the new time slice allocation that they receive on time
906 * slice expiry etc.
909 #define WEIGHT_IDLEPRIO 2
910 #define WMULT_IDLEPRIO (1 << 31)
913 * Nice levels are multiplicative, with a gentle 10% change for every
914 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
915 * nice 1, it will get ~10% less CPU time than another CPU-bound task
916 * that remained on nice 0.
918 * The "10% effect" is relative and cumulative: from _any_ nice level,
919 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
920 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
921 * If a task goes up by ~10% and another task goes down by ~10% then
922 * the relative distance between them is ~25%.)
924 static const int prio_to_weight[40] = {
925 /* -20 */ 88761, 71755, 56483, 46273, 36291,
926 /* -15 */ 29154, 23254, 18705, 14949, 11916,
927 /* -10 */ 9548, 7620, 6100, 4904, 3906,
928 /* -5 */ 3121, 2501, 1991, 1586, 1277,
929 /* 0 */ 1024, 820, 655, 526, 423,
930 /* 5 */ 335, 272, 215, 172, 137,
931 /* 10 */ 110, 87, 70, 56, 45,
932 /* 15 */ 36, 29, 23, 18, 15,
936 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
938 * In cases where the weight does not change often, we can use the
939 * precalculated inverse to speed up arithmetics by turning divisions
940 * into multiplications:
942 static const u32 prio_to_wmult[40] = {
943 /* -20 */ 48388, 59856, 76040, 92818, 118348,
944 /* -15 */ 147320, 184698, 229616, 287308, 360437,
945 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
946 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
947 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
948 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
949 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
950 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
953 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
956 * runqueue iterator, to support SMP load-balancing between different
957 * scheduling classes, without having to expose their internal data
958 * structures to the load-balancing proper:
960 struct rq_iterator {
961 void *arg;
962 struct task_struct *(*start)(void *);
963 struct task_struct *(*next)(void *);
966 #ifdef CONFIG_SMP
967 static unsigned long
968 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
969 unsigned long max_load_move, struct sched_domain *sd,
970 enum cpu_idle_type idle, int *all_pinned,
971 int *this_best_prio, struct rq_iterator *iterator);
973 static int
974 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
975 struct sched_domain *sd, enum cpu_idle_type idle,
976 struct rq_iterator *iterator);
977 #endif
979 #ifdef CONFIG_CGROUP_CPUACCT
980 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
981 #else
982 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
983 #endif
985 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
987 update_load_add(&rq->load, load);
990 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
992 update_load_sub(&rq->load, load);
995 #ifdef CONFIG_SMP
996 static unsigned long source_load(int cpu, int type);
997 static unsigned long target_load(int cpu, int type);
998 static unsigned long cpu_avg_load_per_task(int cpu);
999 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1000 #endif /* CONFIG_SMP */
1002 #include "sched_stats.h"
1003 #include "sched_idletask.c"
1004 #include "sched_fair.c"
1005 #include "sched_rt.c"
1006 #ifdef CONFIG_SCHED_DEBUG
1007 # include "sched_debug.c"
1008 #endif
1010 #define sched_class_highest (&rt_sched_class)
1012 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1014 rq->nr_running++;
1017 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1019 rq->nr_running--;
1022 static void set_load_weight(struct task_struct *p)
1024 if (task_has_rt_policy(p)) {
1025 p->se.load.weight = prio_to_weight[0] * 2;
1026 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1027 return;
1031 * SCHED_IDLE tasks get minimal weight:
1033 if (p->policy == SCHED_IDLE) {
1034 p->se.load.weight = WEIGHT_IDLEPRIO;
1035 p->se.load.inv_weight = WMULT_IDLEPRIO;
1036 return;
1039 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1040 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1043 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1045 sched_info_queued(p);
1046 p->sched_class->enqueue_task(rq, p, wakeup);
1047 p->se.on_rq = 1;
1050 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1052 p->sched_class->dequeue_task(rq, p, sleep);
1053 p->se.on_rq = 0;
1057 * __normal_prio - return the priority that is based on the static prio
1059 static inline int __normal_prio(struct task_struct *p)
1061 return p->static_prio;
1065 * Calculate the expected normal priority: i.e. priority
1066 * without taking RT-inheritance into account. Might be
1067 * boosted by interactivity modifiers. Changes upon fork,
1068 * setprio syscalls, and whenever the interactivity
1069 * estimator recalculates.
1071 static inline int normal_prio(struct task_struct *p)
1073 int prio;
1075 if (task_has_rt_policy(p))
1076 prio = MAX_RT_PRIO-1 - p->rt_priority;
1077 else
1078 prio = __normal_prio(p);
1079 return prio;
1083 * Calculate the current priority, i.e. the priority
1084 * taken into account by the scheduler. This value might
1085 * be boosted by RT tasks, or might be boosted by
1086 * interactivity modifiers. Will be RT if the task got
1087 * RT-boosted. If not then it returns p->normal_prio.
1089 static int effective_prio(struct task_struct *p)
1091 p->normal_prio = normal_prio(p);
1093 * If we are RT tasks or we were boosted to RT priority,
1094 * keep the priority unchanged. Otherwise, update priority
1095 * to the normal priority:
1097 if (!rt_prio(p->prio))
1098 return p->normal_prio;
1099 return p->prio;
1103 * activate_task - move a task to the runqueue.
1105 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1107 if (p->state == TASK_UNINTERRUPTIBLE)
1108 rq->nr_uninterruptible--;
1110 enqueue_task(rq, p, wakeup);
1111 inc_nr_running(p, rq);
1115 * deactivate_task - remove a task from the runqueue.
1117 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1119 if (p->state == TASK_UNINTERRUPTIBLE)
1120 rq->nr_uninterruptible++;
1122 dequeue_task(rq, p, sleep);
1123 dec_nr_running(p, rq);
1127 * task_curr - is this task currently executing on a CPU?
1128 * @p: the task in question.
1130 inline int task_curr(const struct task_struct *p)
1132 return cpu_curr(task_cpu(p)) == p;
1135 /* Used instead of source_load when we know the type == 0 */
1136 unsigned long weighted_cpuload(const int cpu)
1138 return cpu_rq(cpu)->load.weight;
1141 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1143 set_task_cfs_rq(p, cpu);
1144 #ifdef CONFIG_SMP
1146 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1147 * successfuly executed on another CPU. We must ensure that updates of
1148 * per-task data have been completed by this moment.
1150 smp_wmb();
1151 task_thread_info(p)->cpu = cpu;
1152 #endif
1155 #ifdef CONFIG_SMP
1158 * Is this task likely cache-hot:
1160 static int
1161 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1163 s64 delta;
1165 if (p->sched_class != &fair_sched_class)
1166 return 0;
1168 if (sysctl_sched_migration_cost == -1)
1169 return 1;
1170 if (sysctl_sched_migration_cost == 0)
1171 return 0;
1173 delta = now - p->se.exec_start;
1175 return delta < (s64)sysctl_sched_migration_cost;
1179 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1181 int old_cpu = task_cpu(p);
1182 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1183 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1184 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1185 u64 clock_offset;
1187 clock_offset = old_rq->clock - new_rq->clock;
1189 #ifdef CONFIG_SCHEDSTATS
1190 if (p->se.wait_start)
1191 p->se.wait_start -= clock_offset;
1192 if (p->se.sleep_start)
1193 p->se.sleep_start -= clock_offset;
1194 if (p->se.block_start)
1195 p->se.block_start -= clock_offset;
1196 if (old_cpu != new_cpu) {
1197 schedstat_inc(p, se.nr_migrations);
1198 if (task_hot(p, old_rq->clock, NULL))
1199 schedstat_inc(p, se.nr_forced2_migrations);
1201 #endif
1202 p->se.vruntime -= old_cfsrq->min_vruntime -
1203 new_cfsrq->min_vruntime;
1205 __set_task_cpu(p, new_cpu);
1208 struct migration_req {
1209 struct list_head list;
1211 struct task_struct *task;
1212 int dest_cpu;
1214 struct completion done;
1218 * The task's runqueue lock must be held.
1219 * Returns true if you have to wait for migration thread.
1221 static int
1222 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1224 struct rq *rq = task_rq(p);
1227 * If the task is not on a runqueue (and not running), then
1228 * it is sufficient to simply update the task's cpu field.
1230 if (!p->se.on_rq && !task_running(rq, p)) {
1231 set_task_cpu(p, dest_cpu);
1232 return 0;
1235 init_completion(&req->done);
1236 req->task = p;
1237 req->dest_cpu = dest_cpu;
1238 list_add(&req->list, &rq->migration_queue);
1240 return 1;
1244 * wait_task_inactive - wait for a thread to unschedule.
1246 * The caller must ensure that the task *will* unschedule sometime soon,
1247 * else this function might spin for a *long* time. This function can't
1248 * be called with interrupts off, or it may introduce deadlock with
1249 * smp_call_function() if an IPI is sent by the same process we are
1250 * waiting to become inactive.
1252 void wait_task_inactive(struct task_struct *p)
1254 unsigned long flags;
1255 int running, on_rq;
1256 struct rq *rq;
1258 for (;;) {
1260 * We do the initial early heuristics without holding
1261 * any task-queue locks at all. We'll only try to get
1262 * the runqueue lock when things look like they will
1263 * work out!
1265 rq = task_rq(p);
1268 * If the task is actively running on another CPU
1269 * still, just relax and busy-wait without holding
1270 * any locks.
1272 * NOTE! Since we don't hold any locks, it's not
1273 * even sure that "rq" stays as the right runqueue!
1274 * But we don't care, since "task_running()" will
1275 * return false if the runqueue has changed and p
1276 * is actually now running somewhere else!
1278 while (task_running(rq, p))
1279 cpu_relax();
1282 * Ok, time to look more closely! We need the rq
1283 * lock now, to be *sure*. If we're wrong, we'll
1284 * just go back and repeat.
1286 rq = task_rq_lock(p, &flags);
1287 running = task_running(rq, p);
1288 on_rq = p->se.on_rq;
1289 task_rq_unlock(rq, &flags);
1292 * Was it really running after all now that we
1293 * checked with the proper locks actually held?
1295 * Oops. Go back and try again..
1297 if (unlikely(running)) {
1298 cpu_relax();
1299 continue;
1303 * It's not enough that it's not actively running,
1304 * it must be off the runqueue _entirely_, and not
1305 * preempted!
1307 * So if it wa still runnable (but just not actively
1308 * running right now), it's preempted, and we should
1309 * yield - it could be a while.
1311 if (unlikely(on_rq)) {
1312 schedule_timeout_uninterruptible(1);
1313 continue;
1317 * Ahh, all good. It wasn't running, and it wasn't
1318 * runnable, which means that it will never become
1319 * running in the future either. We're all done!
1321 break;
1325 /***
1326 * kick_process - kick a running thread to enter/exit the kernel
1327 * @p: the to-be-kicked thread
1329 * Cause a process which is running on another CPU to enter
1330 * kernel-mode, without any delay. (to get signals handled.)
1332 * NOTE: this function doesnt have to take the runqueue lock,
1333 * because all it wants to ensure is that the remote task enters
1334 * the kernel. If the IPI races and the task has been migrated
1335 * to another CPU then no harm is done and the purpose has been
1336 * achieved as well.
1338 void kick_process(struct task_struct *p)
1340 int cpu;
1342 preempt_disable();
1343 cpu = task_cpu(p);
1344 if ((cpu != smp_processor_id()) && task_curr(p))
1345 smp_send_reschedule(cpu);
1346 preempt_enable();
1350 * Return a low guess at the load of a migration-source cpu weighted
1351 * according to the scheduling class and "nice" value.
1353 * We want to under-estimate the load of migration sources, to
1354 * balance conservatively.
1356 static unsigned long source_load(int cpu, int type)
1358 struct rq *rq = cpu_rq(cpu);
1359 unsigned long total = weighted_cpuload(cpu);
1361 if (type == 0)
1362 return total;
1364 return min(rq->cpu_load[type-1], total);
1368 * Return a high guess at the load of a migration-target cpu weighted
1369 * according to the scheduling class and "nice" value.
1371 static unsigned long target_load(int cpu, int type)
1373 struct rq *rq = cpu_rq(cpu);
1374 unsigned long total = weighted_cpuload(cpu);
1376 if (type == 0)
1377 return total;
1379 return max(rq->cpu_load[type-1], total);
1383 * Return the average load per task on the cpu's run queue
1385 static unsigned long cpu_avg_load_per_task(int cpu)
1387 struct rq *rq = cpu_rq(cpu);
1388 unsigned long total = weighted_cpuload(cpu);
1389 unsigned long n = rq->nr_running;
1391 return n ? total / n : SCHED_LOAD_SCALE;
1395 * find_idlest_group finds and returns the least busy CPU group within the
1396 * domain.
1398 static struct sched_group *
1399 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1401 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1402 unsigned long min_load = ULONG_MAX, this_load = 0;
1403 int load_idx = sd->forkexec_idx;
1404 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1406 do {
1407 unsigned long load, avg_load;
1408 int local_group;
1409 int i;
1411 /* Skip over this group if it has no CPUs allowed */
1412 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1413 continue;
1415 local_group = cpu_isset(this_cpu, group->cpumask);
1417 /* Tally up the load of all CPUs in the group */
1418 avg_load = 0;
1420 for_each_cpu_mask(i, group->cpumask) {
1421 /* Bias balancing toward cpus of our domain */
1422 if (local_group)
1423 load = source_load(i, load_idx);
1424 else
1425 load = target_load(i, load_idx);
1427 avg_load += load;
1430 /* Adjust by relative CPU power of the group */
1431 avg_load = sg_div_cpu_power(group,
1432 avg_load * SCHED_LOAD_SCALE);
1434 if (local_group) {
1435 this_load = avg_load;
1436 this = group;
1437 } else if (avg_load < min_load) {
1438 min_load = avg_load;
1439 idlest = group;
1441 } while (group = group->next, group != sd->groups);
1443 if (!idlest || 100*this_load < imbalance*min_load)
1444 return NULL;
1445 return idlest;
1449 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1451 static int
1452 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1454 cpumask_t tmp;
1455 unsigned long load, min_load = ULONG_MAX;
1456 int idlest = -1;
1457 int i;
1459 /* Traverse only the allowed CPUs */
1460 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1462 for_each_cpu_mask(i, tmp) {
1463 load = weighted_cpuload(i);
1465 if (load < min_load || (load == min_load && i == this_cpu)) {
1466 min_load = load;
1467 idlest = i;
1471 return idlest;
1475 * sched_balance_self: balance the current task (running on cpu) in domains
1476 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1477 * SD_BALANCE_EXEC.
1479 * Balance, ie. select the least loaded group.
1481 * Returns the target CPU number, or the same CPU if no balancing is needed.
1483 * preempt must be disabled.
1485 static int sched_balance_self(int cpu, int flag)
1487 struct task_struct *t = current;
1488 struct sched_domain *tmp, *sd = NULL;
1490 for_each_domain(cpu, tmp) {
1492 * If power savings logic is enabled for a domain, stop there.
1494 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1495 break;
1496 if (tmp->flags & flag)
1497 sd = tmp;
1500 while (sd) {
1501 cpumask_t span;
1502 struct sched_group *group;
1503 int new_cpu, weight;
1505 if (!(sd->flags & flag)) {
1506 sd = sd->child;
1507 continue;
1510 span = sd->span;
1511 group = find_idlest_group(sd, t, cpu);
1512 if (!group) {
1513 sd = sd->child;
1514 continue;
1517 new_cpu = find_idlest_cpu(group, t, cpu);
1518 if (new_cpu == -1 || new_cpu == cpu) {
1519 /* Now try balancing at a lower domain level of cpu */
1520 sd = sd->child;
1521 continue;
1524 /* Now try balancing at a lower domain level of new_cpu */
1525 cpu = new_cpu;
1526 sd = NULL;
1527 weight = cpus_weight(span);
1528 for_each_domain(cpu, tmp) {
1529 if (weight <= cpus_weight(tmp->span))
1530 break;
1531 if (tmp->flags & flag)
1532 sd = tmp;
1534 /* while loop will break here if sd == NULL */
1537 return cpu;
1540 #endif /* CONFIG_SMP */
1542 /***
1543 * try_to_wake_up - wake up a thread
1544 * @p: the to-be-woken-up thread
1545 * @state: the mask of task states that can be woken
1546 * @sync: do a synchronous wakeup?
1548 * Put it on the run-queue if it's not already there. The "current"
1549 * thread is always on the run-queue (except when the actual
1550 * re-schedule is in progress), and as such you're allowed to do
1551 * the simpler "current->state = TASK_RUNNING" to mark yourself
1552 * runnable without the overhead of this.
1554 * returns failure only if the task is already active.
1556 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1558 int cpu, orig_cpu, this_cpu, success = 0;
1559 unsigned long flags;
1560 long old_state;
1561 struct rq *rq;
1562 #ifdef CONFIG_SMP
1563 int new_cpu;
1564 #endif
1566 rq = task_rq_lock(p, &flags);
1567 old_state = p->state;
1568 if (!(old_state & state))
1569 goto out;
1571 if (p->se.on_rq)
1572 goto out_running;
1574 cpu = task_cpu(p);
1575 orig_cpu = cpu;
1576 this_cpu = smp_processor_id();
1578 #ifdef CONFIG_SMP
1579 if (unlikely(task_running(rq, p)))
1580 goto out_activate;
1582 new_cpu = p->sched_class->select_task_rq(p, sync);
1583 if (new_cpu != cpu) {
1584 set_task_cpu(p, new_cpu);
1585 task_rq_unlock(rq, &flags);
1586 /* might preempt at this point */
1587 rq = task_rq_lock(p, &flags);
1588 old_state = p->state;
1589 if (!(old_state & state))
1590 goto out;
1591 if (p->se.on_rq)
1592 goto out_running;
1594 this_cpu = smp_processor_id();
1595 cpu = task_cpu(p);
1598 #ifdef CONFIG_SCHEDSTATS
1599 schedstat_inc(rq, ttwu_count);
1600 if (cpu == this_cpu)
1601 schedstat_inc(rq, ttwu_local);
1602 else {
1603 struct sched_domain *sd;
1604 for_each_domain(this_cpu, sd) {
1605 if (cpu_isset(cpu, sd->span)) {
1606 schedstat_inc(sd, ttwu_wake_remote);
1607 break;
1612 #endif
1615 out_activate:
1616 #endif /* CONFIG_SMP */
1617 schedstat_inc(p, se.nr_wakeups);
1618 if (sync)
1619 schedstat_inc(p, se.nr_wakeups_sync);
1620 if (orig_cpu != cpu)
1621 schedstat_inc(p, se.nr_wakeups_migrate);
1622 if (cpu == this_cpu)
1623 schedstat_inc(p, se.nr_wakeups_local);
1624 else
1625 schedstat_inc(p, se.nr_wakeups_remote);
1626 update_rq_clock(rq);
1627 activate_task(rq, p, 1);
1628 check_preempt_curr(rq, p);
1629 success = 1;
1631 out_running:
1632 p->state = TASK_RUNNING;
1633 wakeup_balance_rt(rq, p);
1634 out:
1635 task_rq_unlock(rq, &flags);
1637 return success;
1640 int fastcall wake_up_process(struct task_struct *p)
1642 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1643 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1645 EXPORT_SYMBOL(wake_up_process);
1647 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1649 return try_to_wake_up(p, state, 0);
1653 * Perform scheduler related setup for a newly forked process p.
1654 * p is forked by current.
1656 * __sched_fork() is basic setup used by init_idle() too:
1658 static void __sched_fork(struct task_struct *p)
1660 p->se.exec_start = 0;
1661 p->se.sum_exec_runtime = 0;
1662 p->se.prev_sum_exec_runtime = 0;
1664 #ifdef CONFIG_SCHEDSTATS
1665 p->se.wait_start = 0;
1666 p->se.sum_sleep_runtime = 0;
1667 p->se.sleep_start = 0;
1668 p->se.block_start = 0;
1669 p->se.sleep_max = 0;
1670 p->se.block_max = 0;
1671 p->se.exec_max = 0;
1672 p->se.slice_max = 0;
1673 p->se.wait_max = 0;
1674 #endif
1676 INIT_LIST_HEAD(&p->run_list);
1677 p->se.on_rq = 0;
1679 #ifdef CONFIG_PREEMPT_NOTIFIERS
1680 INIT_HLIST_HEAD(&p->preempt_notifiers);
1681 #endif
1684 * We mark the process as running here, but have not actually
1685 * inserted it onto the runqueue yet. This guarantees that
1686 * nobody will actually run it, and a signal or other external
1687 * event cannot wake it up and insert it on the runqueue either.
1689 p->state = TASK_RUNNING;
1693 * fork()/clone()-time setup:
1695 void sched_fork(struct task_struct *p, int clone_flags)
1697 int cpu = get_cpu();
1699 __sched_fork(p);
1701 #ifdef CONFIG_SMP
1702 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1703 #endif
1704 set_task_cpu(p, cpu);
1707 * Make sure we do not leak PI boosting priority to the child:
1709 p->prio = current->normal_prio;
1710 if (!rt_prio(p->prio))
1711 p->sched_class = &fair_sched_class;
1713 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1714 if (likely(sched_info_on()))
1715 memset(&p->sched_info, 0, sizeof(p->sched_info));
1716 #endif
1717 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1718 p->oncpu = 0;
1719 #endif
1720 #ifdef CONFIG_PREEMPT
1721 /* Want to start with kernel preemption disabled. */
1722 task_thread_info(p)->preempt_count = 1;
1723 #endif
1724 put_cpu();
1728 * wake_up_new_task - wake up a newly created task for the first time.
1730 * This function will do some initial scheduler statistics housekeeping
1731 * that must be done for every newly created context, then puts the task
1732 * on the runqueue and wakes it.
1734 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1736 unsigned long flags;
1737 struct rq *rq;
1739 rq = task_rq_lock(p, &flags);
1740 BUG_ON(p->state != TASK_RUNNING);
1741 update_rq_clock(rq);
1743 p->prio = effective_prio(p);
1745 if (!p->sched_class->task_new || !current->se.on_rq) {
1746 activate_task(rq, p, 0);
1747 } else {
1749 * Let the scheduling class do new task startup
1750 * management (if any):
1752 p->sched_class->task_new(rq, p);
1753 inc_nr_running(p, rq);
1755 check_preempt_curr(rq, p);
1756 wakeup_balance_rt(rq, p);
1757 task_rq_unlock(rq, &flags);
1760 #ifdef CONFIG_PREEMPT_NOTIFIERS
1763 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1764 * @notifier: notifier struct to register
1766 void preempt_notifier_register(struct preempt_notifier *notifier)
1768 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1770 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1773 * preempt_notifier_unregister - no longer interested in preemption notifications
1774 * @notifier: notifier struct to unregister
1776 * This is safe to call from within a preemption notifier.
1778 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1780 hlist_del(&notifier->link);
1782 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1784 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1786 struct preempt_notifier *notifier;
1787 struct hlist_node *node;
1789 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1790 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1793 static void
1794 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1795 struct task_struct *next)
1797 struct preempt_notifier *notifier;
1798 struct hlist_node *node;
1800 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1801 notifier->ops->sched_out(notifier, next);
1804 #else
1806 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1810 static void
1811 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1812 struct task_struct *next)
1816 #endif
1819 * prepare_task_switch - prepare to switch tasks
1820 * @rq: the runqueue preparing to switch
1821 * @prev: the current task that is being switched out
1822 * @next: the task we are going to switch to.
1824 * This is called with the rq lock held and interrupts off. It must
1825 * be paired with a subsequent finish_task_switch after the context
1826 * switch.
1828 * prepare_task_switch sets up locking and calls architecture specific
1829 * hooks.
1831 static inline void
1832 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1833 struct task_struct *next)
1835 fire_sched_out_preempt_notifiers(prev, next);
1836 prepare_lock_switch(rq, next);
1837 prepare_arch_switch(next);
1841 * finish_task_switch - clean up after a task-switch
1842 * @rq: runqueue associated with task-switch
1843 * @prev: the thread we just switched away from.
1845 * finish_task_switch must be called after the context switch, paired
1846 * with a prepare_task_switch call before the context switch.
1847 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1848 * and do any other architecture-specific cleanup actions.
1850 * Note that we may have delayed dropping an mm in context_switch(). If
1851 * so, we finish that here outside of the runqueue lock. (Doing it
1852 * with the lock held can cause deadlocks; see schedule() for
1853 * details.)
1855 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1856 __releases(rq->lock)
1858 struct mm_struct *mm = rq->prev_mm;
1859 long prev_state;
1861 rq->prev_mm = NULL;
1864 * A task struct has one reference for the use as "current".
1865 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1866 * schedule one last time. The schedule call will never return, and
1867 * the scheduled task must drop that reference.
1868 * The test for TASK_DEAD must occur while the runqueue locks are
1869 * still held, otherwise prev could be scheduled on another cpu, die
1870 * there before we look at prev->state, and then the reference would
1871 * be dropped twice.
1872 * Manfred Spraul <manfred@colorfullife.com>
1874 prev_state = prev->state;
1875 finish_arch_switch(prev);
1876 finish_lock_switch(rq, prev);
1877 schedule_tail_balance_rt(rq);
1879 fire_sched_in_preempt_notifiers(current);
1880 if (mm)
1881 mmdrop(mm);
1882 if (unlikely(prev_state == TASK_DEAD)) {
1884 * Remove function-return probe instances associated with this
1885 * task and put them back on the free list.
1887 kprobe_flush_task(prev);
1888 put_task_struct(prev);
1893 * schedule_tail - first thing a freshly forked thread must call.
1894 * @prev: the thread we just switched away from.
1896 asmlinkage void schedule_tail(struct task_struct *prev)
1897 __releases(rq->lock)
1899 struct rq *rq = this_rq();
1901 finish_task_switch(rq, prev);
1902 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1903 /* In this case, finish_task_switch does not reenable preemption */
1904 preempt_enable();
1905 #endif
1906 if (current->set_child_tid)
1907 put_user(task_pid_vnr(current), current->set_child_tid);
1911 * context_switch - switch to the new MM and the new
1912 * thread's register state.
1914 static inline void
1915 context_switch(struct rq *rq, struct task_struct *prev,
1916 struct task_struct *next)
1918 struct mm_struct *mm, *oldmm;
1920 prepare_task_switch(rq, prev, next);
1921 mm = next->mm;
1922 oldmm = prev->active_mm;
1924 * For paravirt, this is coupled with an exit in switch_to to
1925 * combine the page table reload and the switch backend into
1926 * one hypercall.
1928 arch_enter_lazy_cpu_mode();
1930 if (unlikely(!mm)) {
1931 next->active_mm = oldmm;
1932 atomic_inc(&oldmm->mm_count);
1933 enter_lazy_tlb(oldmm, next);
1934 } else
1935 switch_mm(oldmm, mm, next);
1937 if (unlikely(!prev->mm)) {
1938 prev->active_mm = NULL;
1939 rq->prev_mm = oldmm;
1942 * Since the runqueue lock will be released by the next
1943 * task (which is an invalid locking op but in the case
1944 * of the scheduler it's an obvious special-case), so we
1945 * do an early lockdep release here:
1947 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1948 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1949 #endif
1951 /* Here we just switch the register state and the stack. */
1952 switch_to(prev, next, prev);
1954 barrier();
1956 * this_rq must be evaluated again because prev may have moved
1957 * CPUs since it called schedule(), thus the 'rq' on its stack
1958 * frame will be invalid.
1960 finish_task_switch(this_rq(), prev);
1964 * nr_running, nr_uninterruptible and nr_context_switches:
1966 * externally visible scheduler statistics: current number of runnable
1967 * threads, current number of uninterruptible-sleeping threads, total
1968 * number of context switches performed since bootup.
1970 unsigned long nr_running(void)
1972 unsigned long i, sum = 0;
1974 for_each_online_cpu(i)
1975 sum += cpu_rq(i)->nr_running;
1977 return sum;
1980 unsigned long nr_uninterruptible(void)
1982 unsigned long i, sum = 0;
1984 for_each_possible_cpu(i)
1985 sum += cpu_rq(i)->nr_uninterruptible;
1988 * Since we read the counters lockless, it might be slightly
1989 * inaccurate. Do not allow it to go below zero though:
1991 if (unlikely((long)sum < 0))
1992 sum = 0;
1994 return sum;
1997 unsigned long long nr_context_switches(void)
1999 int i;
2000 unsigned long long sum = 0;
2002 for_each_possible_cpu(i)
2003 sum += cpu_rq(i)->nr_switches;
2005 return sum;
2008 unsigned long nr_iowait(void)
2010 unsigned long i, sum = 0;
2012 for_each_possible_cpu(i)
2013 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2015 return sum;
2018 unsigned long nr_active(void)
2020 unsigned long i, running = 0, uninterruptible = 0;
2022 for_each_online_cpu(i) {
2023 running += cpu_rq(i)->nr_running;
2024 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2027 if (unlikely((long)uninterruptible < 0))
2028 uninterruptible = 0;
2030 return running + uninterruptible;
2034 * Update rq->cpu_load[] statistics. This function is usually called every
2035 * scheduler tick (TICK_NSEC).
2037 static void update_cpu_load(struct rq *this_rq)
2039 unsigned long this_load = this_rq->load.weight;
2040 int i, scale;
2042 this_rq->nr_load_updates++;
2044 /* Update our load: */
2045 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2046 unsigned long old_load, new_load;
2048 /* scale is effectively 1 << i now, and >> i divides by scale */
2050 old_load = this_rq->cpu_load[i];
2051 new_load = this_load;
2053 * Round up the averaging division if load is increasing. This
2054 * prevents us from getting stuck on 9 if the load is 10, for
2055 * example.
2057 if (new_load > old_load)
2058 new_load += scale-1;
2059 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2063 #ifdef CONFIG_SMP
2066 * double_rq_lock - safely lock two runqueues
2068 * Note this does not disable interrupts like task_rq_lock,
2069 * you need to do so manually before calling.
2071 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2072 __acquires(rq1->lock)
2073 __acquires(rq2->lock)
2075 BUG_ON(!irqs_disabled());
2076 if (rq1 == rq2) {
2077 spin_lock(&rq1->lock);
2078 __acquire(rq2->lock); /* Fake it out ;) */
2079 } else {
2080 if (rq1 < rq2) {
2081 spin_lock(&rq1->lock);
2082 spin_lock(&rq2->lock);
2083 } else {
2084 spin_lock(&rq2->lock);
2085 spin_lock(&rq1->lock);
2088 update_rq_clock(rq1);
2089 update_rq_clock(rq2);
2093 * double_rq_unlock - safely unlock two runqueues
2095 * Note this does not restore interrupts like task_rq_unlock,
2096 * you need to do so manually after calling.
2098 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2099 __releases(rq1->lock)
2100 __releases(rq2->lock)
2102 spin_unlock(&rq1->lock);
2103 if (rq1 != rq2)
2104 spin_unlock(&rq2->lock);
2105 else
2106 __release(rq2->lock);
2110 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2112 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2113 __releases(this_rq->lock)
2114 __acquires(busiest->lock)
2115 __acquires(this_rq->lock)
2117 int ret = 0;
2119 if (unlikely(!irqs_disabled())) {
2120 /* printk() doesn't work good under rq->lock */
2121 spin_unlock(&this_rq->lock);
2122 BUG_ON(1);
2124 if (unlikely(!spin_trylock(&busiest->lock))) {
2125 if (busiest < this_rq) {
2126 spin_unlock(&this_rq->lock);
2127 spin_lock(&busiest->lock);
2128 spin_lock(&this_rq->lock);
2129 ret = 1;
2130 } else
2131 spin_lock(&busiest->lock);
2133 return ret;
2137 * If dest_cpu is allowed for this process, migrate the task to it.
2138 * This is accomplished by forcing the cpu_allowed mask to only
2139 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2140 * the cpu_allowed mask is restored.
2142 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2144 struct migration_req req;
2145 unsigned long flags;
2146 struct rq *rq;
2148 rq = task_rq_lock(p, &flags);
2149 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2150 || unlikely(cpu_is_offline(dest_cpu)))
2151 goto out;
2153 /* force the process onto the specified CPU */
2154 if (migrate_task(p, dest_cpu, &req)) {
2155 /* Need to wait for migration thread (might exit: take ref). */
2156 struct task_struct *mt = rq->migration_thread;
2158 get_task_struct(mt);
2159 task_rq_unlock(rq, &flags);
2160 wake_up_process(mt);
2161 put_task_struct(mt);
2162 wait_for_completion(&req.done);
2164 return;
2166 out:
2167 task_rq_unlock(rq, &flags);
2171 * sched_exec - execve() is a valuable balancing opportunity, because at
2172 * this point the task has the smallest effective memory and cache footprint.
2174 void sched_exec(void)
2176 int new_cpu, this_cpu = get_cpu();
2177 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2178 put_cpu();
2179 if (new_cpu != this_cpu)
2180 sched_migrate_task(current, new_cpu);
2184 * pull_task - move a task from a remote runqueue to the local runqueue.
2185 * Both runqueues must be locked.
2187 static void pull_task(struct rq *src_rq, struct task_struct *p,
2188 struct rq *this_rq, int this_cpu)
2190 deactivate_task(src_rq, p, 0);
2191 set_task_cpu(p, this_cpu);
2192 activate_task(this_rq, p, 0);
2194 * Note that idle threads have a prio of MAX_PRIO, for this test
2195 * to be always true for them.
2197 check_preempt_curr(this_rq, p);
2201 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2203 static
2204 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2205 struct sched_domain *sd, enum cpu_idle_type idle,
2206 int *all_pinned)
2209 * We do not migrate tasks that are:
2210 * 1) running (obviously), or
2211 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2212 * 3) are cache-hot on their current CPU.
2214 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2215 schedstat_inc(p, se.nr_failed_migrations_affine);
2216 return 0;
2218 *all_pinned = 0;
2220 if (task_running(rq, p)) {
2221 schedstat_inc(p, se.nr_failed_migrations_running);
2222 return 0;
2226 * Aggressive migration if:
2227 * 1) task is cache cold, or
2228 * 2) too many balance attempts have failed.
2231 if (!task_hot(p, rq->clock, sd) ||
2232 sd->nr_balance_failed > sd->cache_nice_tries) {
2233 #ifdef CONFIG_SCHEDSTATS
2234 if (task_hot(p, rq->clock, sd)) {
2235 schedstat_inc(sd, lb_hot_gained[idle]);
2236 schedstat_inc(p, se.nr_forced_migrations);
2238 #endif
2239 return 1;
2242 if (task_hot(p, rq->clock, sd)) {
2243 schedstat_inc(p, se.nr_failed_migrations_hot);
2244 return 0;
2246 return 1;
2249 static unsigned long
2250 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2251 unsigned long max_load_move, struct sched_domain *sd,
2252 enum cpu_idle_type idle, int *all_pinned,
2253 int *this_best_prio, struct rq_iterator *iterator)
2255 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2256 struct task_struct *p;
2257 long rem_load_move = max_load_move;
2259 if (max_load_move == 0)
2260 goto out;
2262 pinned = 1;
2265 * Start the load-balancing iterator:
2267 p = iterator->start(iterator->arg);
2268 next:
2269 if (!p || loops++ > sysctl_sched_nr_migrate)
2270 goto out;
2272 * To help distribute high priority tasks across CPUs we don't
2273 * skip a task if it will be the highest priority task (i.e. smallest
2274 * prio value) on its new queue regardless of its load weight
2276 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2277 SCHED_LOAD_SCALE_FUZZ;
2278 if ((skip_for_load && p->prio >= *this_best_prio) ||
2279 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2280 p = iterator->next(iterator->arg);
2281 goto next;
2284 pull_task(busiest, p, this_rq, this_cpu);
2285 pulled++;
2286 rem_load_move -= p->se.load.weight;
2289 * We only want to steal up to the prescribed amount of weighted load.
2291 if (rem_load_move > 0) {
2292 if (p->prio < *this_best_prio)
2293 *this_best_prio = p->prio;
2294 p = iterator->next(iterator->arg);
2295 goto next;
2297 out:
2299 * Right now, this is one of only two places pull_task() is called,
2300 * so we can safely collect pull_task() stats here rather than
2301 * inside pull_task().
2303 schedstat_add(sd, lb_gained[idle], pulled);
2305 if (all_pinned)
2306 *all_pinned = pinned;
2308 return max_load_move - rem_load_move;
2312 * move_tasks tries to move up to max_load_move weighted load from busiest to
2313 * this_rq, as part of a balancing operation within domain "sd".
2314 * Returns 1 if successful and 0 otherwise.
2316 * Called with both runqueues locked.
2318 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2319 unsigned long max_load_move,
2320 struct sched_domain *sd, enum cpu_idle_type idle,
2321 int *all_pinned)
2323 const struct sched_class *class = sched_class_highest;
2324 unsigned long total_load_moved = 0;
2325 int this_best_prio = this_rq->curr->prio;
2327 do {
2328 total_load_moved +=
2329 class->load_balance(this_rq, this_cpu, busiest,
2330 max_load_move - total_load_moved,
2331 sd, idle, all_pinned, &this_best_prio);
2332 class = class->next;
2333 } while (class && max_load_move > total_load_moved);
2335 return total_load_moved > 0;
2338 static int
2339 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2340 struct sched_domain *sd, enum cpu_idle_type idle,
2341 struct rq_iterator *iterator)
2343 struct task_struct *p = iterator->start(iterator->arg);
2344 int pinned = 0;
2346 while (p) {
2347 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2348 pull_task(busiest, p, this_rq, this_cpu);
2350 * Right now, this is only the second place pull_task()
2351 * is called, so we can safely collect pull_task()
2352 * stats here rather than inside pull_task().
2354 schedstat_inc(sd, lb_gained[idle]);
2356 return 1;
2358 p = iterator->next(iterator->arg);
2361 return 0;
2365 * move_one_task tries to move exactly one task from busiest to this_rq, as
2366 * part of active balancing operations within "domain".
2367 * Returns 1 if successful and 0 otherwise.
2369 * Called with both runqueues locked.
2371 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2372 struct sched_domain *sd, enum cpu_idle_type idle)
2374 const struct sched_class *class;
2376 for (class = sched_class_highest; class; class = class->next)
2377 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2378 return 1;
2380 return 0;
2384 * find_busiest_group finds and returns the busiest CPU group within the
2385 * domain. It calculates and returns the amount of weighted load which
2386 * should be moved to restore balance via the imbalance parameter.
2388 static struct sched_group *
2389 find_busiest_group(struct sched_domain *sd, int this_cpu,
2390 unsigned long *imbalance, enum cpu_idle_type idle,
2391 int *sd_idle, cpumask_t *cpus, int *balance)
2393 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2394 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2395 unsigned long max_pull;
2396 unsigned long busiest_load_per_task, busiest_nr_running;
2397 unsigned long this_load_per_task, this_nr_running;
2398 int load_idx, group_imb = 0;
2399 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2400 int power_savings_balance = 1;
2401 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2402 unsigned long min_nr_running = ULONG_MAX;
2403 struct sched_group *group_min = NULL, *group_leader = NULL;
2404 #endif
2406 max_load = this_load = total_load = total_pwr = 0;
2407 busiest_load_per_task = busiest_nr_running = 0;
2408 this_load_per_task = this_nr_running = 0;
2409 if (idle == CPU_NOT_IDLE)
2410 load_idx = sd->busy_idx;
2411 else if (idle == CPU_NEWLY_IDLE)
2412 load_idx = sd->newidle_idx;
2413 else
2414 load_idx = sd->idle_idx;
2416 do {
2417 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2418 int local_group;
2419 int i;
2420 int __group_imb = 0;
2421 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2422 unsigned long sum_nr_running, sum_weighted_load;
2424 local_group = cpu_isset(this_cpu, group->cpumask);
2426 if (local_group)
2427 balance_cpu = first_cpu(group->cpumask);
2429 /* Tally up the load of all CPUs in the group */
2430 sum_weighted_load = sum_nr_running = avg_load = 0;
2431 max_cpu_load = 0;
2432 min_cpu_load = ~0UL;
2434 for_each_cpu_mask(i, group->cpumask) {
2435 struct rq *rq;
2437 if (!cpu_isset(i, *cpus))
2438 continue;
2440 rq = cpu_rq(i);
2442 if (*sd_idle && rq->nr_running)
2443 *sd_idle = 0;
2445 /* Bias balancing toward cpus of our domain */
2446 if (local_group) {
2447 if (idle_cpu(i) && !first_idle_cpu) {
2448 first_idle_cpu = 1;
2449 balance_cpu = i;
2452 load = target_load(i, load_idx);
2453 } else {
2454 load = source_load(i, load_idx);
2455 if (load > max_cpu_load)
2456 max_cpu_load = load;
2457 if (min_cpu_load > load)
2458 min_cpu_load = load;
2461 avg_load += load;
2462 sum_nr_running += rq->nr_running;
2463 sum_weighted_load += weighted_cpuload(i);
2467 * First idle cpu or the first cpu(busiest) in this sched group
2468 * is eligible for doing load balancing at this and above
2469 * domains. In the newly idle case, we will allow all the cpu's
2470 * to do the newly idle load balance.
2472 if (idle != CPU_NEWLY_IDLE && local_group &&
2473 balance_cpu != this_cpu && balance) {
2474 *balance = 0;
2475 goto ret;
2478 total_load += avg_load;
2479 total_pwr += group->__cpu_power;
2481 /* Adjust by relative CPU power of the group */
2482 avg_load = sg_div_cpu_power(group,
2483 avg_load * SCHED_LOAD_SCALE);
2485 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2486 __group_imb = 1;
2488 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2490 if (local_group) {
2491 this_load = avg_load;
2492 this = group;
2493 this_nr_running = sum_nr_running;
2494 this_load_per_task = sum_weighted_load;
2495 } else if (avg_load > max_load &&
2496 (sum_nr_running > group_capacity || __group_imb)) {
2497 max_load = avg_load;
2498 busiest = group;
2499 busiest_nr_running = sum_nr_running;
2500 busiest_load_per_task = sum_weighted_load;
2501 group_imb = __group_imb;
2504 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2506 * Busy processors will not participate in power savings
2507 * balance.
2509 if (idle == CPU_NOT_IDLE ||
2510 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2511 goto group_next;
2514 * If the local group is idle or completely loaded
2515 * no need to do power savings balance at this domain
2517 if (local_group && (this_nr_running >= group_capacity ||
2518 !this_nr_running))
2519 power_savings_balance = 0;
2522 * If a group is already running at full capacity or idle,
2523 * don't include that group in power savings calculations
2525 if (!power_savings_balance || sum_nr_running >= group_capacity
2526 || !sum_nr_running)
2527 goto group_next;
2530 * Calculate the group which has the least non-idle load.
2531 * This is the group from where we need to pick up the load
2532 * for saving power
2534 if ((sum_nr_running < min_nr_running) ||
2535 (sum_nr_running == min_nr_running &&
2536 first_cpu(group->cpumask) <
2537 first_cpu(group_min->cpumask))) {
2538 group_min = group;
2539 min_nr_running = sum_nr_running;
2540 min_load_per_task = sum_weighted_load /
2541 sum_nr_running;
2545 * Calculate the group which is almost near its
2546 * capacity but still has some space to pick up some load
2547 * from other group and save more power
2549 if (sum_nr_running <= group_capacity - 1) {
2550 if (sum_nr_running > leader_nr_running ||
2551 (sum_nr_running == leader_nr_running &&
2552 first_cpu(group->cpumask) >
2553 first_cpu(group_leader->cpumask))) {
2554 group_leader = group;
2555 leader_nr_running = sum_nr_running;
2558 group_next:
2559 #endif
2560 group = group->next;
2561 } while (group != sd->groups);
2563 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2564 goto out_balanced;
2566 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2568 if (this_load >= avg_load ||
2569 100*max_load <= sd->imbalance_pct*this_load)
2570 goto out_balanced;
2572 busiest_load_per_task /= busiest_nr_running;
2573 if (group_imb)
2574 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2577 * We're trying to get all the cpus to the average_load, so we don't
2578 * want to push ourselves above the average load, nor do we wish to
2579 * reduce the max loaded cpu below the average load, as either of these
2580 * actions would just result in more rebalancing later, and ping-pong
2581 * tasks around. Thus we look for the minimum possible imbalance.
2582 * Negative imbalances (*we* are more loaded than anyone else) will
2583 * be counted as no imbalance for these purposes -- we can't fix that
2584 * by pulling tasks to us. Be careful of negative numbers as they'll
2585 * appear as very large values with unsigned longs.
2587 if (max_load <= busiest_load_per_task)
2588 goto out_balanced;
2591 * In the presence of smp nice balancing, certain scenarios can have
2592 * max load less than avg load(as we skip the groups at or below
2593 * its cpu_power, while calculating max_load..)
2595 if (max_load < avg_load) {
2596 *imbalance = 0;
2597 goto small_imbalance;
2600 /* Don't want to pull so many tasks that a group would go idle */
2601 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2603 /* How much load to actually move to equalise the imbalance */
2604 *imbalance = min(max_pull * busiest->__cpu_power,
2605 (avg_load - this_load) * this->__cpu_power)
2606 / SCHED_LOAD_SCALE;
2609 * if *imbalance is less than the average load per runnable task
2610 * there is no gaurantee that any tasks will be moved so we'll have
2611 * a think about bumping its value to force at least one task to be
2612 * moved
2614 if (*imbalance < busiest_load_per_task) {
2615 unsigned long tmp, pwr_now, pwr_move;
2616 unsigned int imbn;
2618 small_imbalance:
2619 pwr_move = pwr_now = 0;
2620 imbn = 2;
2621 if (this_nr_running) {
2622 this_load_per_task /= this_nr_running;
2623 if (busiest_load_per_task > this_load_per_task)
2624 imbn = 1;
2625 } else
2626 this_load_per_task = SCHED_LOAD_SCALE;
2628 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2629 busiest_load_per_task * imbn) {
2630 *imbalance = busiest_load_per_task;
2631 return busiest;
2635 * OK, we don't have enough imbalance to justify moving tasks,
2636 * however we may be able to increase total CPU power used by
2637 * moving them.
2640 pwr_now += busiest->__cpu_power *
2641 min(busiest_load_per_task, max_load);
2642 pwr_now += this->__cpu_power *
2643 min(this_load_per_task, this_load);
2644 pwr_now /= SCHED_LOAD_SCALE;
2646 /* Amount of load we'd subtract */
2647 tmp = sg_div_cpu_power(busiest,
2648 busiest_load_per_task * SCHED_LOAD_SCALE);
2649 if (max_load > tmp)
2650 pwr_move += busiest->__cpu_power *
2651 min(busiest_load_per_task, max_load - tmp);
2653 /* Amount of load we'd add */
2654 if (max_load * busiest->__cpu_power <
2655 busiest_load_per_task * SCHED_LOAD_SCALE)
2656 tmp = sg_div_cpu_power(this,
2657 max_load * busiest->__cpu_power);
2658 else
2659 tmp = sg_div_cpu_power(this,
2660 busiest_load_per_task * SCHED_LOAD_SCALE);
2661 pwr_move += this->__cpu_power *
2662 min(this_load_per_task, this_load + tmp);
2663 pwr_move /= SCHED_LOAD_SCALE;
2665 /* Move if we gain throughput */
2666 if (pwr_move > pwr_now)
2667 *imbalance = busiest_load_per_task;
2670 return busiest;
2672 out_balanced:
2673 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2674 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2675 goto ret;
2677 if (this == group_leader && group_leader != group_min) {
2678 *imbalance = min_load_per_task;
2679 return group_min;
2681 #endif
2682 ret:
2683 *imbalance = 0;
2684 return NULL;
2688 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2690 static struct rq *
2691 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2692 unsigned long imbalance, cpumask_t *cpus)
2694 struct rq *busiest = NULL, *rq;
2695 unsigned long max_load = 0;
2696 int i;
2698 for_each_cpu_mask(i, group->cpumask) {
2699 unsigned long wl;
2701 if (!cpu_isset(i, *cpus))
2702 continue;
2704 rq = cpu_rq(i);
2705 wl = weighted_cpuload(i);
2707 if (rq->nr_running == 1 && wl > imbalance)
2708 continue;
2710 if (wl > max_load) {
2711 max_load = wl;
2712 busiest = rq;
2716 return busiest;
2720 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2721 * so long as it is large enough.
2723 #define MAX_PINNED_INTERVAL 512
2726 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2727 * tasks if there is an imbalance.
2729 static int load_balance(int this_cpu, struct rq *this_rq,
2730 struct sched_domain *sd, enum cpu_idle_type idle,
2731 int *balance)
2733 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2734 struct sched_group *group;
2735 unsigned long imbalance;
2736 struct rq *busiest;
2737 cpumask_t cpus = CPU_MASK_ALL;
2738 unsigned long flags;
2741 * When power savings policy is enabled for the parent domain, idle
2742 * sibling can pick up load irrespective of busy siblings. In this case,
2743 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2744 * portraying it as CPU_NOT_IDLE.
2746 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2747 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2748 sd_idle = 1;
2750 schedstat_inc(sd, lb_count[idle]);
2752 redo:
2753 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2754 &cpus, balance);
2756 if (*balance == 0)
2757 goto out_balanced;
2759 if (!group) {
2760 schedstat_inc(sd, lb_nobusyg[idle]);
2761 goto out_balanced;
2764 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2765 if (!busiest) {
2766 schedstat_inc(sd, lb_nobusyq[idle]);
2767 goto out_balanced;
2770 BUG_ON(busiest == this_rq);
2772 schedstat_add(sd, lb_imbalance[idle], imbalance);
2774 ld_moved = 0;
2775 if (busiest->nr_running > 1) {
2777 * Attempt to move tasks. If find_busiest_group has found
2778 * an imbalance but busiest->nr_running <= 1, the group is
2779 * still unbalanced. ld_moved simply stays zero, so it is
2780 * correctly treated as an imbalance.
2782 local_irq_save(flags);
2783 double_rq_lock(this_rq, busiest);
2784 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2785 imbalance, sd, idle, &all_pinned);
2786 double_rq_unlock(this_rq, busiest);
2787 local_irq_restore(flags);
2790 * some other cpu did the load balance for us.
2792 if (ld_moved && this_cpu != smp_processor_id())
2793 resched_cpu(this_cpu);
2795 /* All tasks on this runqueue were pinned by CPU affinity */
2796 if (unlikely(all_pinned)) {
2797 cpu_clear(cpu_of(busiest), cpus);
2798 if (!cpus_empty(cpus))
2799 goto redo;
2800 goto out_balanced;
2804 if (!ld_moved) {
2805 schedstat_inc(sd, lb_failed[idle]);
2806 sd->nr_balance_failed++;
2808 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2810 spin_lock_irqsave(&busiest->lock, flags);
2812 /* don't kick the migration_thread, if the curr
2813 * task on busiest cpu can't be moved to this_cpu
2815 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2816 spin_unlock_irqrestore(&busiest->lock, flags);
2817 all_pinned = 1;
2818 goto out_one_pinned;
2821 if (!busiest->active_balance) {
2822 busiest->active_balance = 1;
2823 busiest->push_cpu = this_cpu;
2824 active_balance = 1;
2826 spin_unlock_irqrestore(&busiest->lock, flags);
2827 if (active_balance)
2828 wake_up_process(busiest->migration_thread);
2831 * We've kicked active balancing, reset the failure
2832 * counter.
2834 sd->nr_balance_failed = sd->cache_nice_tries+1;
2836 } else
2837 sd->nr_balance_failed = 0;
2839 if (likely(!active_balance)) {
2840 /* We were unbalanced, so reset the balancing interval */
2841 sd->balance_interval = sd->min_interval;
2842 } else {
2844 * If we've begun active balancing, start to back off. This
2845 * case may not be covered by the all_pinned logic if there
2846 * is only 1 task on the busy runqueue (because we don't call
2847 * move_tasks).
2849 if (sd->balance_interval < sd->max_interval)
2850 sd->balance_interval *= 2;
2853 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2854 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2855 return -1;
2856 return ld_moved;
2858 out_balanced:
2859 schedstat_inc(sd, lb_balanced[idle]);
2861 sd->nr_balance_failed = 0;
2863 out_one_pinned:
2864 /* tune up the balancing interval */
2865 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2866 (sd->balance_interval < sd->max_interval))
2867 sd->balance_interval *= 2;
2869 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2870 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2871 return -1;
2872 return 0;
2876 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2877 * tasks if there is an imbalance.
2879 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2880 * this_rq is locked.
2882 static int
2883 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2885 struct sched_group *group;
2886 struct rq *busiest = NULL;
2887 unsigned long imbalance;
2888 int ld_moved = 0;
2889 int sd_idle = 0;
2890 int all_pinned = 0;
2891 cpumask_t cpus = CPU_MASK_ALL;
2894 * When power savings policy is enabled for the parent domain, idle
2895 * sibling can pick up load irrespective of busy siblings. In this case,
2896 * let the state of idle sibling percolate up as IDLE, instead of
2897 * portraying it as CPU_NOT_IDLE.
2899 if (sd->flags & SD_SHARE_CPUPOWER &&
2900 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2901 sd_idle = 1;
2903 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2904 redo:
2905 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2906 &sd_idle, &cpus, NULL);
2907 if (!group) {
2908 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2909 goto out_balanced;
2912 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2913 &cpus);
2914 if (!busiest) {
2915 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2916 goto out_balanced;
2919 BUG_ON(busiest == this_rq);
2921 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2923 ld_moved = 0;
2924 if (busiest->nr_running > 1) {
2925 /* Attempt to move tasks */
2926 double_lock_balance(this_rq, busiest);
2927 /* this_rq->clock is already updated */
2928 update_rq_clock(busiest);
2929 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2930 imbalance, sd, CPU_NEWLY_IDLE,
2931 &all_pinned);
2932 spin_unlock(&busiest->lock);
2934 if (unlikely(all_pinned)) {
2935 cpu_clear(cpu_of(busiest), cpus);
2936 if (!cpus_empty(cpus))
2937 goto redo;
2941 if (!ld_moved) {
2942 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2943 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2944 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2945 return -1;
2946 } else
2947 sd->nr_balance_failed = 0;
2949 return ld_moved;
2951 out_balanced:
2952 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2953 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2954 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2955 return -1;
2956 sd->nr_balance_failed = 0;
2958 return 0;
2962 * idle_balance is called by schedule() if this_cpu is about to become
2963 * idle. Attempts to pull tasks from other CPUs.
2965 static void idle_balance(int this_cpu, struct rq *this_rq)
2967 struct sched_domain *sd;
2968 int pulled_task = -1;
2969 unsigned long next_balance = jiffies + HZ;
2971 for_each_domain(this_cpu, sd) {
2972 unsigned long interval;
2974 if (!(sd->flags & SD_LOAD_BALANCE))
2975 continue;
2977 if (sd->flags & SD_BALANCE_NEWIDLE)
2978 /* If we've pulled tasks over stop searching: */
2979 pulled_task = load_balance_newidle(this_cpu,
2980 this_rq, sd);
2982 interval = msecs_to_jiffies(sd->balance_interval);
2983 if (time_after(next_balance, sd->last_balance + interval))
2984 next_balance = sd->last_balance + interval;
2985 if (pulled_task)
2986 break;
2988 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2990 * We are going idle. next_balance may be set based on
2991 * a busy processor. So reset next_balance.
2993 this_rq->next_balance = next_balance;
2998 * active_load_balance is run by migration threads. It pushes running tasks
2999 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3000 * running on each physical CPU where possible, and avoids physical /
3001 * logical imbalances.
3003 * Called with busiest_rq locked.
3005 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3007 int target_cpu = busiest_rq->push_cpu;
3008 struct sched_domain *sd;
3009 struct rq *target_rq;
3011 /* Is there any task to move? */
3012 if (busiest_rq->nr_running <= 1)
3013 return;
3015 target_rq = cpu_rq(target_cpu);
3018 * This condition is "impossible", if it occurs
3019 * we need to fix it. Originally reported by
3020 * Bjorn Helgaas on a 128-cpu setup.
3022 BUG_ON(busiest_rq == target_rq);
3024 /* move a task from busiest_rq to target_rq */
3025 double_lock_balance(busiest_rq, target_rq);
3026 update_rq_clock(busiest_rq);
3027 update_rq_clock(target_rq);
3029 /* Search for an sd spanning us and the target CPU. */
3030 for_each_domain(target_cpu, sd) {
3031 if ((sd->flags & SD_LOAD_BALANCE) &&
3032 cpu_isset(busiest_cpu, sd->span))
3033 break;
3036 if (likely(sd)) {
3037 schedstat_inc(sd, alb_count);
3039 if (move_one_task(target_rq, target_cpu, busiest_rq,
3040 sd, CPU_IDLE))
3041 schedstat_inc(sd, alb_pushed);
3042 else
3043 schedstat_inc(sd, alb_failed);
3045 spin_unlock(&target_rq->lock);
3048 #ifdef CONFIG_NO_HZ
3049 static struct {
3050 atomic_t load_balancer;
3051 cpumask_t cpu_mask;
3052 } nohz ____cacheline_aligned = {
3053 .load_balancer = ATOMIC_INIT(-1),
3054 .cpu_mask = CPU_MASK_NONE,
3058 * This routine will try to nominate the ilb (idle load balancing)
3059 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3060 * load balancing on behalf of all those cpus. If all the cpus in the system
3061 * go into this tickless mode, then there will be no ilb owner (as there is
3062 * no need for one) and all the cpus will sleep till the next wakeup event
3063 * arrives...
3065 * For the ilb owner, tick is not stopped. And this tick will be used
3066 * for idle load balancing. ilb owner will still be part of
3067 * nohz.cpu_mask..
3069 * While stopping the tick, this cpu will become the ilb owner if there
3070 * is no other owner. And will be the owner till that cpu becomes busy
3071 * or if all cpus in the system stop their ticks at which point
3072 * there is no need for ilb owner.
3074 * When the ilb owner becomes busy, it nominates another owner, during the
3075 * next busy scheduler_tick()
3077 int select_nohz_load_balancer(int stop_tick)
3079 int cpu = smp_processor_id();
3081 if (stop_tick) {
3082 cpu_set(cpu, nohz.cpu_mask);
3083 cpu_rq(cpu)->in_nohz_recently = 1;
3086 * If we are going offline and still the leader, give up!
3088 if (cpu_is_offline(cpu) &&
3089 atomic_read(&nohz.load_balancer) == cpu) {
3090 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3091 BUG();
3092 return 0;
3095 /* time for ilb owner also to sleep */
3096 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3097 if (atomic_read(&nohz.load_balancer) == cpu)
3098 atomic_set(&nohz.load_balancer, -1);
3099 return 0;
3102 if (atomic_read(&nohz.load_balancer) == -1) {
3103 /* make me the ilb owner */
3104 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3105 return 1;
3106 } else if (atomic_read(&nohz.load_balancer) == cpu)
3107 return 1;
3108 } else {
3109 if (!cpu_isset(cpu, nohz.cpu_mask))
3110 return 0;
3112 cpu_clear(cpu, nohz.cpu_mask);
3114 if (atomic_read(&nohz.load_balancer) == cpu)
3115 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3116 BUG();
3118 return 0;
3120 #endif
3122 static DEFINE_SPINLOCK(balancing);
3125 * It checks each scheduling domain to see if it is due to be balanced,
3126 * and initiates a balancing operation if so.
3128 * Balancing parameters are set up in arch_init_sched_domains.
3130 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3132 int balance = 1;
3133 struct rq *rq = cpu_rq(cpu);
3134 unsigned long interval;
3135 struct sched_domain *sd;
3136 /* Earliest time when we have to do rebalance again */
3137 unsigned long next_balance = jiffies + 60*HZ;
3138 int update_next_balance = 0;
3140 for_each_domain(cpu, sd) {
3141 if (!(sd->flags & SD_LOAD_BALANCE))
3142 continue;
3144 interval = sd->balance_interval;
3145 if (idle != CPU_IDLE)
3146 interval *= sd->busy_factor;
3148 /* scale ms to jiffies */
3149 interval = msecs_to_jiffies(interval);
3150 if (unlikely(!interval))
3151 interval = 1;
3152 if (interval > HZ*NR_CPUS/10)
3153 interval = HZ*NR_CPUS/10;
3156 if (sd->flags & SD_SERIALIZE) {
3157 if (!spin_trylock(&balancing))
3158 goto out;
3161 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3162 if (load_balance(cpu, rq, sd, idle, &balance)) {
3164 * We've pulled tasks over so either we're no
3165 * longer idle, or one of our SMT siblings is
3166 * not idle.
3168 idle = CPU_NOT_IDLE;
3170 sd->last_balance = jiffies;
3172 if (sd->flags & SD_SERIALIZE)
3173 spin_unlock(&balancing);
3174 out:
3175 if (time_after(next_balance, sd->last_balance + interval)) {
3176 next_balance = sd->last_balance + interval;
3177 update_next_balance = 1;
3181 * Stop the load balance at this level. There is another
3182 * CPU in our sched group which is doing load balancing more
3183 * actively.
3185 if (!balance)
3186 break;
3190 * next_balance will be updated only when there is a need.
3191 * When the cpu is attached to null domain for ex, it will not be
3192 * updated.
3194 if (likely(update_next_balance))
3195 rq->next_balance = next_balance;
3199 * run_rebalance_domains is triggered when needed from the scheduler tick.
3200 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3201 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3203 static void run_rebalance_domains(struct softirq_action *h)
3205 int this_cpu = smp_processor_id();
3206 struct rq *this_rq = cpu_rq(this_cpu);
3207 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3208 CPU_IDLE : CPU_NOT_IDLE;
3210 rebalance_domains(this_cpu, idle);
3212 #ifdef CONFIG_NO_HZ
3214 * If this cpu is the owner for idle load balancing, then do the
3215 * balancing on behalf of the other idle cpus whose ticks are
3216 * stopped.
3218 if (this_rq->idle_at_tick &&
3219 atomic_read(&nohz.load_balancer) == this_cpu) {
3220 cpumask_t cpus = nohz.cpu_mask;
3221 struct rq *rq;
3222 int balance_cpu;
3224 cpu_clear(this_cpu, cpus);
3225 for_each_cpu_mask(balance_cpu, cpus) {
3227 * If this cpu gets work to do, stop the load balancing
3228 * work being done for other cpus. Next load
3229 * balancing owner will pick it up.
3231 if (need_resched())
3232 break;
3234 rebalance_domains(balance_cpu, CPU_IDLE);
3236 rq = cpu_rq(balance_cpu);
3237 if (time_after(this_rq->next_balance, rq->next_balance))
3238 this_rq->next_balance = rq->next_balance;
3241 #endif
3245 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3247 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3248 * idle load balancing owner or decide to stop the periodic load balancing,
3249 * if the whole system is idle.
3251 static inline void trigger_load_balance(struct rq *rq, int cpu)
3253 #ifdef CONFIG_NO_HZ
3255 * If we were in the nohz mode recently and busy at the current
3256 * scheduler tick, then check if we need to nominate new idle
3257 * load balancer.
3259 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3260 rq->in_nohz_recently = 0;
3262 if (atomic_read(&nohz.load_balancer) == cpu) {
3263 cpu_clear(cpu, nohz.cpu_mask);
3264 atomic_set(&nohz.load_balancer, -1);
3267 if (atomic_read(&nohz.load_balancer) == -1) {
3269 * simple selection for now: Nominate the
3270 * first cpu in the nohz list to be the next
3271 * ilb owner.
3273 * TBD: Traverse the sched domains and nominate
3274 * the nearest cpu in the nohz.cpu_mask.
3276 int ilb = first_cpu(nohz.cpu_mask);
3278 if (ilb != NR_CPUS)
3279 resched_cpu(ilb);
3284 * If this cpu is idle and doing idle load balancing for all the
3285 * cpus with ticks stopped, is it time for that to stop?
3287 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3288 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3289 resched_cpu(cpu);
3290 return;
3294 * If this cpu is idle and the idle load balancing is done by
3295 * someone else, then no need raise the SCHED_SOFTIRQ
3297 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3298 cpu_isset(cpu, nohz.cpu_mask))
3299 return;
3300 #endif
3301 if (time_after_eq(jiffies, rq->next_balance))
3302 raise_softirq(SCHED_SOFTIRQ);
3305 #else /* CONFIG_SMP */
3308 * on UP we do not need to balance between CPUs:
3310 static inline void idle_balance(int cpu, struct rq *rq)
3314 #endif
3316 DEFINE_PER_CPU(struct kernel_stat, kstat);
3318 EXPORT_PER_CPU_SYMBOL(kstat);
3321 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3322 * that have not yet been banked in case the task is currently running.
3324 unsigned long long task_sched_runtime(struct task_struct *p)
3326 unsigned long flags;
3327 u64 ns, delta_exec;
3328 struct rq *rq;
3330 rq = task_rq_lock(p, &flags);
3331 ns = p->se.sum_exec_runtime;
3332 if (task_current(rq, p)) {
3333 update_rq_clock(rq);
3334 delta_exec = rq->clock - p->se.exec_start;
3335 if ((s64)delta_exec > 0)
3336 ns += delta_exec;
3338 task_rq_unlock(rq, &flags);
3340 return ns;
3344 * Account user cpu time to a process.
3345 * @p: the process that the cpu time gets accounted to
3346 * @cputime: the cpu time spent in user space since the last update
3348 void account_user_time(struct task_struct *p, cputime_t cputime)
3350 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3351 cputime64_t tmp;
3353 p->utime = cputime_add(p->utime, cputime);
3355 /* Add user time to cpustat. */
3356 tmp = cputime_to_cputime64(cputime);
3357 if (TASK_NICE(p) > 0)
3358 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3359 else
3360 cpustat->user = cputime64_add(cpustat->user, tmp);
3364 * Account guest cpu time to a process.
3365 * @p: the process that the cpu time gets accounted to
3366 * @cputime: the cpu time spent in virtual machine since the last update
3368 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3370 cputime64_t tmp;
3371 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3373 tmp = cputime_to_cputime64(cputime);
3375 p->utime = cputime_add(p->utime, cputime);
3376 p->gtime = cputime_add(p->gtime, cputime);
3378 cpustat->user = cputime64_add(cpustat->user, tmp);
3379 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3383 * Account scaled user cpu time to a process.
3384 * @p: the process that the cpu time gets accounted to
3385 * @cputime: the cpu time spent in user space since the last update
3387 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3389 p->utimescaled = cputime_add(p->utimescaled, cputime);
3393 * Account system cpu time to a process.
3394 * @p: the process that the cpu time gets accounted to
3395 * @hardirq_offset: the offset to subtract from hardirq_count()
3396 * @cputime: the cpu time spent in kernel space since the last update
3398 void account_system_time(struct task_struct *p, int hardirq_offset,
3399 cputime_t cputime)
3401 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3402 struct rq *rq = this_rq();
3403 cputime64_t tmp;
3405 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3406 return account_guest_time(p, cputime);
3408 p->stime = cputime_add(p->stime, cputime);
3410 /* Add system time to cpustat. */
3411 tmp = cputime_to_cputime64(cputime);
3412 if (hardirq_count() - hardirq_offset)
3413 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3414 else if (softirq_count())
3415 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3416 else if (p != rq->idle)
3417 cpustat->system = cputime64_add(cpustat->system, tmp);
3418 else if (atomic_read(&rq->nr_iowait) > 0)
3419 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3420 else
3421 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3422 /* Account for system time used */
3423 acct_update_integrals(p);
3427 * Account scaled system cpu time to a process.
3428 * @p: the process that the cpu time gets accounted to
3429 * @hardirq_offset: the offset to subtract from hardirq_count()
3430 * @cputime: the cpu time spent in kernel space since the last update
3432 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3434 p->stimescaled = cputime_add(p->stimescaled, cputime);
3438 * Account for involuntary wait time.
3439 * @p: the process from which the cpu time has been stolen
3440 * @steal: the cpu time spent in involuntary wait
3442 void account_steal_time(struct task_struct *p, cputime_t steal)
3444 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3445 cputime64_t tmp = cputime_to_cputime64(steal);
3446 struct rq *rq = this_rq();
3448 if (p == rq->idle) {
3449 p->stime = cputime_add(p->stime, steal);
3450 if (atomic_read(&rq->nr_iowait) > 0)
3451 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3452 else
3453 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3454 } else
3455 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3459 * This function gets called by the timer code, with HZ frequency.
3460 * We call it with interrupts disabled.
3462 * It also gets called by the fork code, when changing the parent's
3463 * timeslices.
3465 void scheduler_tick(void)
3467 int cpu = smp_processor_id();
3468 struct rq *rq = cpu_rq(cpu);
3469 struct task_struct *curr = rq->curr;
3470 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3472 spin_lock(&rq->lock);
3473 __update_rq_clock(rq);
3475 * Let rq->clock advance by at least TICK_NSEC:
3477 if (unlikely(rq->clock < next_tick))
3478 rq->clock = next_tick;
3479 rq->tick_timestamp = rq->clock;
3480 update_cpu_load(rq);
3481 if (curr != rq->idle) /* FIXME: needed? */
3482 curr->sched_class->task_tick(rq, curr);
3483 spin_unlock(&rq->lock);
3485 #ifdef CONFIG_SMP
3486 rq->idle_at_tick = idle_cpu(cpu);
3487 trigger_load_balance(rq, cpu);
3488 #endif
3491 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3493 void fastcall add_preempt_count(int val)
3496 * Underflow?
3498 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3499 return;
3500 preempt_count() += val;
3502 * Spinlock count overflowing soon?
3504 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3505 PREEMPT_MASK - 10);
3507 EXPORT_SYMBOL(add_preempt_count);
3509 void fastcall sub_preempt_count(int val)
3512 * Underflow?
3514 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3515 return;
3517 * Is the spinlock portion underflowing?
3519 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3520 !(preempt_count() & PREEMPT_MASK)))
3521 return;
3523 preempt_count() -= val;
3525 EXPORT_SYMBOL(sub_preempt_count);
3527 #endif
3530 * Print scheduling while atomic bug:
3532 static noinline void __schedule_bug(struct task_struct *prev)
3534 struct pt_regs *regs = get_irq_regs();
3536 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3537 prev->comm, prev->pid, preempt_count());
3539 debug_show_held_locks(prev);
3540 if (irqs_disabled())
3541 print_irqtrace_events(prev);
3543 if (regs)
3544 show_regs(regs);
3545 else
3546 dump_stack();
3550 * Various schedule()-time debugging checks and statistics:
3552 static inline void schedule_debug(struct task_struct *prev)
3555 * Test if we are atomic. Since do_exit() needs to call into
3556 * schedule() atomically, we ignore that path for now.
3557 * Otherwise, whine if we are scheduling when we should not be.
3559 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3560 __schedule_bug(prev);
3562 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3564 schedstat_inc(this_rq(), sched_count);
3565 #ifdef CONFIG_SCHEDSTATS
3566 if (unlikely(prev->lock_depth >= 0)) {
3567 schedstat_inc(this_rq(), bkl_count);
3568 schedstat_inc(prev, sched_info.bkl_count);
3570 #endif
3574 * Pick up the highest-prio task:
3576 static inline struct task_struct *
3577 pick_next_task(struct rq *rq, struct task_struct *prev)
3579 const struct sched_class *class;
3580 struct task_struct *p;
3583 * Optimization: we know that if all tasks are in
3584 * the fair class we can call that function directly:
3586 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3587 p = fair_sched_class.pick_next_task(rq);
3588 if (likely(p))
3589 return p;
3592 class = sched_class_highest;
3593 for ( ; ; ) {
3594 p = class->pick_next_task(rq);
3595 if (p)
3596 return p;
3598 * Will never be NULL as the idle class always
3599 * returns a non-NULL p:
3601 class = class->next;
3606 * schedule() is the main scheduler function.
3608 asmlinkage void __sched schedule(void)
3610 struct task_struct *prev, *next;
3611 long *switch_count;
3612 struct rq *rq;
3613 int cpu;
3615 need_resched:
3616 preempt_disable();
3617 cpu = smp_processor_id();
3618 rq = cpu_rq(cpu);
3619 rcu_qsctr_inc(cpu);
3620 prev = rq->curr;
3621 switch_count = &prev->nivcsw;
3623 release_kernel_lock(prev);
3624 need_resched_nonpreemptible:
3626 schedule_debug(prev);
3629 * Do the rq-clock update outside the rq lock:
3631 local_irq_disable();
3632 __update_rq_clock(rq);
3633 spin_lock(&rq->lock);
3634 clear_tsk_need_resched(prev);
3636 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3637 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3638 unlikely(signal_pending(prev)))) {
3639 prev->state = TASK_RUNNING;
3640 } else {
3641 deactivate_task(rq, prev, 1);
3643 switch_count = &prev->nvcsw;
3646 schedule_balance_rt(rq, prev);
3648 if (unlikely(!rq->nr_running))
3649 idle_balance(cpu, rq);
3651 prev->sched_class->put_prev_task(rq, prev);
3652 next = pick_next_task(rq, prev);
3654 sched_info_switch(prev, next);
3656 if (likely(prev != next)) {
3657 rq->nr_switches++;
3658 rq->curr = next;
3659 ++*switch_count;
3661 context_switch(rq, prev, next); /* unlocks the rq */
3662 } else
3663 spin_unlock_irq(&rq->lock);
3665 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3666 cpu = smp_processor_id();
3667 rq = cpu_rq(cpu);
3668 goto need_resched_nonpreemptible;
3670 preempt_enable_no_resched();
3671 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3672 goto need_resched;
3674 EXPORT_SYMBOL(schedule);
3676 #ifdef CONFIG_PREEMPT
3678 * this is the entry point to schedule() from in-kernel preemption
3679 * off of preempt_enable. Kernel preemptions off return from interrupt
3680 * occur there and call schedule directly.
3682 asmlinkage void __sched preempt_schedule(void)
3684 struct thread_info *ti = current_thread_info();
3685 #ifdef CONFIG_PREEMPT_BKL
3686 struct task_struct *task = current;
3687 int saved_lock_depth;
3688 #endif
3690 * If there is a non-zero preempt_count or interrupts are disabled,
3691 * we do not want to preempt the current task. Just return..
3693 if (likely(ti->preempt_count || irqs_disabled()))
3694 return;
3696 do {
3697 add_preempt_count(PREEMPT_ACTIVE);
3700 * We keep the big kernel semaphore locked, but we
3701 * clear ->lock_depth so that schedule() doesnt
3702 * auto-release the semaphore:
3704 #ifdef CONFIG_PREEMPT_BKL
3705 saved_lock_depth = task->lock_depth;
3706 task->lock_depth = -1;
3707 #endif
3708 schedule();
3709 #ifdef CONFIG_PREEMPT_BKL
3710 task->lock_depth = saved_lock_depth;
3711 #endif
3712 sub_preempt_count(PREEMPT_ACTIVE);
3715 * Check again in case we missed a preemption opportunity
3716 * between schedule and now.
3718 barrier();
3719 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3721 EXPORT_SYMBOL(preempt_schedule);
3724 * this is the entry point to schedule() from kernel preemption
3725 * off of irq context.
3726 * Note, that this is called and return with irqs disabled. This will
3727 * protect us against recursive calling from irq.
3729 asmlinkage void __sched preempt_schedule_irq(void)
3731 struct thread_info *ti = current_thread_info();
3732 #ifdef CONFIG_PREEMPT_BKL
3733 struct task_struct *task = current;
3734 int saved_lock_depth;
3735 #endif
3736 /* Catch callers which need to be fixed */
3737 BUG_ON(ti->preempt_count || !irqs_disabled());
3739 do {
3740 add_preempt_count(PREEMPT_ACTIVE);
3743 * We keep the big kernel semaphore locked, but we
3744 * clear ->lock_depth so that schedule() doesnt
3745 * auto-release the semaphore:
3747 #ifdef CONFIG_PREEMPT_BKL
3748 saved_lock_depth = task->lock_depth;
3749 task->lock_depth = -1;
3750 #endif
3751 local_irq_enable();
3752 schedule();
3753 local_irq_disable();
3754 #ifdef CONFIG_PREEMPT_BKL
3755 task->lock_depth = saved_lock_depth;
3756 #endif
3757 sub_preempt_count(PREEMPT_ACTIVE);
3760 * Check again in case we missed a preemption opportunity
3761 * between schedule and now.
3763 barrier();
3764 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3767 #endif /* CONFIG_PREEMPT */
3769 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3770 void *key)
3772 return try_to_wake_up(curr->private, mode, sync);
3774 EXPORT_SYMBOL(default_wake_function);
3777 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3778 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3779 * number) then we wake all the non-exclusive tasks and one exclusive task.
3781 * There are circumstances in which we can try to wake a task which has already
3782 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3783 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3785 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3786 int nr_exclusive, int sync, void *key)
3788 wait_queue_t *curr, *next;
3790 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3791 unsigned flags = curr->flags;
3793 if (curr->func(curr, mode, sync, key) &&
3794 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3795 break;
3800 * __wake_up - wake up threads blocked on a waitqueue.
3801 * @q: the waitqueue
3802 * @mode: which threads
3803 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3804 * @key: is directly passed to the wakeup function
3806 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3807 int nr_exclusive, void *key)
3809 unsigned long flags;
3811 spin_lock_irqsave(&q->lock, flags);
3812 __wake_up_common(q, mode, nr_exclusive, 0, key);
3813 spin_unlock_irqrestore(&q->lock, flags);
3815 EXPORT_SYMBOL(__wake_up);
3818 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3820 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3822 __wake_up_common(q, mode, 1, 0, NULL);
3826 * __wake_up_sync - wake up threads blocked on a waitqueue.
3827 * @q: the waitqueue
3828 * @mode: which threads
3829 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3831 * The sync wakeup differs that the waker knows that it will schedule
3832 * away soon, so while the target thread will be woken up, it will not
3833 * be migrated to another CPU - ie. the two threads are 'synchronized'
3834 * with each other. This can prevent needless bouncing between CPUs.
3836 * On UP it can prevent extra preemption.
3838 void fastcall
3839 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3841 unsigned long flags;
3842 int sync = 1;
3844 if (unlikely(!q))
3845 return;
3847 if (unlikely(!nr_exclusive))
3848 sync = 0;
3850 spin_lock_irqsave(&q->lock, flags);
3851 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3852 spin_unlock_irqrestore(&q->lock, flags);
3854 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3856 void complete(struct completion *x)
3858 unsigned long flags;
3860 spin_lock_irqsave(&x->wait.lock, flags);
3861 x->done++;
3862 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3863 1, 0, NULL);
3864 spin_unlock_irqrestore(&x->wait.lock, flags);
3866 EXPORT_SYMBOL(complete);
3868 void complete_all(struct completion *x)
3870 unsigned long flags;
3872 spin_lock_irqsave(&x->wait.lock, flags);
3873 x->done += UINT_MAX/2;
3874 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3875 0, 0, NULL);
3876 spin_unlock_irqrestore(&x->wait.lock, flags);
3878 EXPORT_SYMBOL(complete_all);
3880 static inline long __sched
3881 do_wait_for_common(struct completion *x, long timeout, int state)
3883 if (!x->done) {
3884 DECLARE_WAITQUEUE(wait, current);
3886 wait.flags |= WQ_FLAG_EXCLUSIVE;
3887 __add_wait_queue_tail(&x->wait, &wait);
3888 do {
3889 if (state == TASK_INTERRUPTIBLE &&
3890 signal_pending(current)) {
3891 __remove_wait_queue(&x->wait, &wait);
3892 return -ERESTARTSYS;
3894 __set_current_state(state);
3895 spin_unlock_irq(&x->wait.lock);
3896 timeout = schedule_timeout(timeout);
3897 spin_lock_irq(&x->wait.lock);
3898 if (!timeout) {
3899 __remove_wait_queue(&x->wait, &wait);
3900 return timeout;
3902 } while (!x->done);
3903 __remove_wait_queue(&x->wait, &wait);
3905 x->done--;
3906 return timeout;
3909 static long __sched
3910 wait_for_common(struct completion *x, long timeout, int state)
3912 might_sleep();
3914 spin_lock_irq(&x->wait.lock);
3915 timeout = do_wait_for_common(x, timeout, state);
3916 spin_unlock_irq(&x->wait.lock);
3917 return timeout;
3920 void __sched wait_for_completion(struct completion *x)
3922 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3924 EXPORT_SYMBOL(wait_for_completion);
3926 unsigned long __sched
3927 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3929 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3931 EXPORT_SYMBOL(wait_for_completion_timeout);
3933 int __sched wait_for_completion_interruptible(struct completion *x)
3935 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3936 if (t == -ERESTARTSYS)
3937 return t;
3938 return 0;
3940 EXPORT_SYMBOL(wait_for_completion_interruptible);
3942 unsigned long __sched
3943 wait_for_completion_interruptible_timeout(struct completion *x,
3944 unsigned long timeout)
3946 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3948 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3950 static long __sched
3951 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3953 unsigned long flags;
3954 wait_queue_t wait;
3956 init_waitqueue_entry(&wait, current);
3958 __set_current_state(state);
3960 spin_lock_irqsave(&q->lock, flags);
3961 __add_wait_queue(q, &wait);
3962 spin_unlock(&q->lock);
3963 timeout = schedule_timeout(timeout);
3964 spin_lock_irq(&q->lock);
3965 __remove_wait_queue(q, &wait);
3966 spin_unlock_irqrestore(&q->lock, flags);
3968 return timeout;
3971 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3973 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3975 EXPORT_SYMBOL(interruptible_sleep_on);
3977 long __sched
3978 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3980 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3982 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3984 void __sched sleep_on(wait_queue_head_t *q)
3986 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3988 EXPORT_SYMBOL(sleep_on);
3990 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3992 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3994 EXPORT_SYMBOL(sleep_on_timeout);
3996 #ifdef CONFIG_RT_MUTEXES
3999 * rt_mutex_setprio - set the current priority of a task
4000 * @p: task
4001 * @prio: prio value (kernel-internal form)
4003 * This function changes the 'effective' priority of a task. It does
4004 * not touch ->normal_prio like __setscheduler().
4006 * Used by the rt_mutex code to implement priority inheritance logic.
4008 void rt_mutex_setprio(struct task_struct *p, int prio)
4010 unsigned long flags;
4011 int oldprio, on_rq, running;
4012 struct rq *rq;
4014 BUG_ON(prio < 0 || prio > MAX_PRIO);
4016 rq = task_rq_lock(p, &flags);
4017 update_rq_clock(rq);
4019 oldprio = p->prio;
4020 on_rq = p->se.on_rq;
4021 running = task_current(rq, p);
4022 if (on_rq) {
4023 dequeue_task(rq, p, 0);
4024 if (running)
4025 p->sched_class->put_prev_task(rq, p);
4028 if (rt_prio(prio))
4029 p->sched_class = &rt_sched_class;
4030 else
4031 p->sched_class = &fair_sched_class;
4033 p->prio = prio;
4035 if (on_rq) {
4036 if (running)
4037 p->sched_class->set_curr_task(rq);
4038 enqueue_task(rq, p, 0);
4040 * Reschedule if we are currently running on this runqueue and
4041 * our priority decreased, or if we are not currently running on
4042 * this runqueue and our priority is higher than the current's
4044 if (running) {
4045 if (p->prio > oldprio)
4046 resched_task(rq->curr);
4047 } else {
4048 check_preempt_curr(rq, p);
4051 task_rq_unlock(rq, &flags);
4054 #endif
4056 void set_user_nice(struct task_struct *p, long nice)
4058 int old_prio, delta, on_rq;
4059 unsigned long flags;
4060 struct rq *rq;
4062 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4063 return;
4065 * We have to be careful, if called from sys_setpriority(),
4066 * the task might be in the middle of scheduling on another CPU.
4068 rq = task_rq_lock(p, &flags);
4069 update_rq_clock(rq);
4071 * The RT priorities are set via sched_setscheduler(), but we still
4072 * allow the 'normal' nice value to be set - but as expected
4073 * it wont have any effect on scheduling until the task is
4074 * SCHED_FIFO/SCHED_RR:
4076 if (task_has_rt_policy(p)) {
4077 p->static_prio = NICE_TO_PRIO(nice);
4078 goto out_unlock;
4080 on_rq = p->se.on_rq;
4081 if (on_rq)
4082 dequeue_task(rq, p, 0);
4084 p->static_prio = NICE_TO_PRIO(nice);
4085 set_load_weight(p);
4086 old_prio = p->prio;
4087 p->prio = effective_prio(p);
4088 delta = p->prio - old_prio;
4090 if (on_rq) {
4091 enqueue_task(rq, p, 0);
4093 * If the task increased its priority or is running and
4094 * lowered its priority, then reschedule its CPU:
4096 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4097 resched_task(rq->curr);
4099 out_unlock:
4100 task_rq_unlock(rq, &flags);
4102 EXPORT_SYMBOL(set_user_nice);
4105 * can_nice - check if a task can reduce its nice value
4106 * @p: task
4107 * @nice: nice value
4109 int can_nice(const struct task_struct *p, const int nice)
4111 /* convert nice value [19,-20] to rlimit style value [1,40] */
4112 int nice_rlim = 20 - nice;
4114 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4115 capable(CAP_SYS_NICE));
4118 #ifdef __ARCH_WANT_SYS_NICE
4121 * sys_nice - change the priority of the current process.
4122 * @increment: priority increment
4124 * sys_setpriority is a more generic, but much slower function that
4125 * does similar things.
4127 asmlinkage long sys_nice(int increment)
4129 long nice, retval;
4132 * Setpriority might change our priority at the same moment.
4133 * We don't have to worry. Conceptually one call occurs first
4134 * and we have a single winner.
4136 if (increment < -40)
4137 increment = -40;
4138 if (increment > 40)
4139 increment = 40;
4141 nice = PRIO_TO_NICE(current->static_prio) + increment;
4142 if (nice < -20)
4143 nice = -20;
4144 if (nice > 19)
4145 nice = 19;
4147 if (increment < 0 && !can_nice(current, nice))
4148 return -EPERM;
4150 retval = security_task_setnice(current, nice);
4151 if (retval)
4152 return retval;
4154 set_user_nice(current, nice);
4155 return 0;
4158 #endif
4161 * task_prio - return the priority value of a given task.
4162 * @p: the task in question.
4164 * This is the priority value as seen by users in /proc.
4165 * RT tasks are offset by -200. Normal tasks are centered
4166 * around 0, value goes from -16 to +15.
4168 int task_prio(const struct task_struct *p)
4170 return p->prio - MAX_RT_PRIO;
4174 * task_nice - return the nice value of a given task.
4175 * @p: the task in question.
4177 int task_nice(const struct task_struct *p)
4179 return TASK_NICE(p);
4181 EXPORT_SYMBOL_GPL(task_nice);
4184 * idle_cpu - is a given cpu idle currently?
4185 * @cpu: the processor in question.
4187 int idle_cpu(int cpu)
4189 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4193 * idle_task - return the idle task for a given cpu.
4194 * @cpu: the processor in question.
4196 struct task_struct *idle_task(int cpu)
4198 return cpu_rq(cpu)->idle;
4202 * find_process_by_pid - find a process with a matching PID value.
4203 * @pid: the pid in question.
4205 static struct task_struct *find_process_by_pid(pid_t pid)
4207 return pid ? find_task_by_vpid(pid) : current;
4210 /* Actually do priority change: must hold rq lock. */
4211 static void
4212 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4214 BUG_ON(p->se.on_rq);
4216 p->policy = policy;
4217 switch (p->policy) {
4218 case SCHED_NORMAL:
4219 case SCHED_BATCH:
4220 case SCHED_IDLE:
4221 p->sched_class = &fair_sched_class;
4222 break;
4223 case SCHED_FIFO:
4224 case SCHED_RR:
4225 p->sched_class = &rt_sched_class;
4226 break;
4229 p->rt_priority = prio;
4230 p->normal_prio = normal_prio(p);
4231 /* we are holding p->pi_lock already */
4232 p->prio = rt_mutex_getprio(p);
4233 set_load_weight(p);
4237 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4238 * @p: the task in question.
4239 * @policy: new policy.
4240 * @param: structure containing the new RT priority.
4242 * NOTE that the task may be already dead.
4244 int sched_setscheduler(struct task_struct *p, int policy,
4245 struct sched_param *param)
4247 int retval, oldprio, oldpolicy = -1, on_rq, running;
4248 unsigned long flags;
4249 struct rq *rq;
4251 /* may grab non-irq protected spin_locks */
4252 BUG_ON(in_interrupt());
4253 recheck:
4254 /* double check policy once rq lock held */
4255 if (policy < 0)
4256 policy = oldpolicy = p->policy;
4257 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4258 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4259 policy != SCHED_IDLE)
4260 return -EINVAL;
4262 * Valid priorities for SCHED_FIFO and SCHED_RR are
4263 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4264 * SCHED_BATCH and SCHED_IDLE is 0.
4266 if (param->sched_priority < 0 ||
4267 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4268 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4269 return -EINVAL;
4270 if (rt_policy(policy) != (param->sched_priority != 0))
4271 return -EINVAL;
4274 * Allow unprivileged RT tasks to decrease priority:
4276 if (!capable(CAP_SYS_NICE)) {
4277 if (rt_policy(policy)) {
4278 unsigned long rlim_rtprio;
4280 if (!lock_task_sighand(p, &flags))
4281 return -ESRCH;
4282 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4283 unlock_task_sighand(p, &flags);
4285 /* can't set/change the rt policy */
4286 if (policy != p->policy && !rlim_rtprio)
4287 return -EPERM;
4289 /* can't increase priority */
4290 if (param->sched_priority > p->rt_priority &&
4291 param->sched_priority > rlim_rtprio)
4292 return -EPERM;
4295 * Like positive nice levels, dont allow tasks to
4296 * move out of SCHED_IDLE either:
4298 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4299 return -EPERM;
4301 /* can't change other user's priorities */
4302 if ((current->euid != p->euid) &&
4303 (current->euid != p->uid))
4304 return -EPERM;
4307 retval = security_task_setscheduler(p, policy, param);
4308 if (retval)
4309 return retval;
4311 * make sure no PI-waiters arrive (or leave) while we are
4312 * changing the priority of the task:
4314 spin_lock_irqsave(&p->pi_lock, flags);
4316 * To be able to change p->policy safely, the apropriate
4317 * runqueue lock must be held.
4319 rq = __task_rq_lock(p);
4320 /* recheck policy now with rq lock held */
4321 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4322 policy = oldpolicy = -1;
4323 __task_rq_unlock(rq);
4324 spin_unlock_irqrestore(&p->pi_lock, flags);
4325 goto recheck;
4327 update_rq_clock(rq);
4328 on_rq = p->se.on_rq;
4329 running = task_current(rq, p);
4330 if (on_rq) {
4331 deactivate_task(rq, p, 0);
4332 if (running)
4333 p->sched_class->put_prev_task(rq, p);
4336 oldprio = p->prio;
4337 __setscheduler(rq, p, policy, param->sched_priority);
4339 if (on_rq) {
4340 if (running)
4341 p->sched_class->set_curr_task(rq);
4342 activate_task(rq, p, 0);
4344 * Reschedule if we are currently running on this runqueue and
4345 * our priority decreased, or if we are not currently running on
4346 * this runqueue and our priority is higher than the current's
4348 if (running) {
4349 if (p->prio > oldprio)
4350 resched_task(rq->curr);
4351 } else {
4352 check_preempt_curr(rq, p);
4355 __task_rq_unlock(rq);
4356 spin_unlock_irqrestore(&p->pi_lock, flags);
4358 rt_mutex_adjust_pi(p);
4360 return 0;
4362 EXPORT_SYMBOL_GPL(sched_setscheduler);
4364 static int
4365 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4367 struct sched_param lparam;
4368 struct task_struct *p;
4369 int retval;
4371 if (!param || pid < 0)
4372 return -EINVAL;
4373 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4374 return -EFAULT;
4376 rcu_read_lock();
4377 retval = -ESRCH;
4378 p = find_process_by_pid(pid);
4379 if (p != NULL)
4380 retval = sched_setscheduler(p, policy, &lparam);
4381 rcu_read_unlock();
4383 return retval;
4387 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4388 * @pid: the pid in question.
4389 * @policy: new policy.
4390 * @param: structure containing the new RT priority.
4392 asmlinkage long
4393 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4395 /* negative values for policy are not valid */
4396 if (policy < 0)
4397 return -EINVAL;
4399 return do_sched_setscheduler(pid, policy, param);
4403 * sys_sched_setparam - set/change the RT priority of a thread
4404 * @pid: the pid in question.
4405 * @param: structure containing the new RT priority.
4407 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4409 return do_sched_setscheduler(pid, -1, param);
4413 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4414 * @pid: the pid in question.
4416 asmlinkage long sys_sched_getscheduler(pid_t pid)
4418 struct task_struct *p;
4419 int retval;
4421 if (pid < 0)
4422 return -EINVAL;
4424 retval = -ESRCH;
4425 read_lock(&tasklist_lock);
4426 p = find_process_by_pid(pid);
4427 if (p) {
4428 retval = security_task_getscheduler(p);
4429 if (!retval)
4430 retval = p->policy;
4432 read_unlock(&tasklist_lock);
4433 return retval;
4437 * sys_sched_getscheduler - get the RT priority of a thread
4438 * @pid: the pid in question.
4439 * @param: structure containing the RT priority.
4441 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4443 struct sched_param lp;
4444 struct task_struct *p;
4445 int retval;
4447 if (!param || pid < 0)
4448 return -EINVAL;
4450 read_lock(&tasklist_lock);
4451 p = find_process_by_pid(pid);
4452 retval = -ESRCH;
4453 if (!p)
4454 goto out_unlock;
4456 retval = security_task_getscheduler(p);
4457 if (retval)
4458 goto out_unlock;
4460 lp.sched_priority = p->rt_priority;
4461 read_unlock(&tasklist_lock);
4464 * This one might sleep, we cannot do it with a spinlock held ...
4466 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4468 return retval;
4470 out_unlock:
4471 read_unlock(&tasklist_lock);
4472 return retval;
4475 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4477 cpumask_t cpus_allowed;
4478 struct task_struct *p;
4479 int retval;
4481 get_online_cpus();
4482 read_lock(&tasklist_lock);
4484 p = find_process_by_pid(pid);
4485 if (!p) {
4486 read_unlock(&tasklist_lock);
4487 put_online_cpus();
4488 return -ESRCH;
4492 * It is not safe to call set_cpus_allowed with the
4493 * tasklist_lock held. We will bump the task_struct's
4494 * usage count and then drop tasklist_lock.
4496 get_task_struct(p);
4497 read_unlock(&tasklist_lock);
4499 retval = -EPERM;
4500 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4501 !capable(CAP_SYS_NICE))
4502 goto out_unlock;
4504 retval = security_task_setscheduler(p, 0, NULL);
4505 if (retval)
4506 goto out_unlock;
4508 cpus_allowed = cpuset_cpus_allowed(p);
4509 cpus_and(new_mask, new_mask, cpus_allowed);
4510 again:
4511 retval = set_cpus_allowed(p, new_mask);
4513 if (!retval) {
4514 cpus_allowed = cpuset_cpus_allowed(p);
4515 if (!cpus_subset(new_mask, cpus_allowed)) {
4517 * We must have raced with a concurrent cpuset
4518 * update. Just reset the cpus_allowed to the
4519 * cpuset's cpus_allowed
4521 new_mask = cpus_allowed;
4522 goto again;
4525 out_unlock:
4526 put_task_struct(p);
4527 put_online_cpus();
4528 return retval;
4531 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4532 cpumask_t *new_mask)
4534 if (len < sizeof(cpumask_t)) {
4535 memset(new_mask, 0, sizeof(cpumask_t));
4536 } else if (len > sizeof(cpumask_t)) {
4537 len = sizeof(cpumask_t);
4539 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4543 * sys_sched_setaffinity - set the cpu affinity of a process
4544 * @pid: pid of the process
4545 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4546 * @user_mask_ptr: user-space pointer to the new cpu mask
4548 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4549 unsigned long __user *user_mask_ptr)
4551 cpumask_t new_mask;
4552 int retval;
4554 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4555 if (retval)
4556 return retval;
4558 return sched_setaffinity(pid, new_mask);
4562 * Represents all cpu's present in the system
4563 * In systems capable of hotplug, this map could dynamically grow
4564 * as new cpu's are detected in the system via any platform specific
4565 * method, such as ACPI for e.g.
4568 cpumask_t cpu_present_map __read_mostly;
4569 EXPORT_SYMBOL(cpu_present_map);
4571 #ifndef CONFIG_SMP
4572 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4573 EXPORT_SYMBOL(cpu_online_map);
4575 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4576 EXPORT_SYMBOL(cpu_possible_map);
4577 #endif
4579 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4581 struct task_struct *p;
4582 int retval;
4584 get_online_cpus();
4585 read_lock(&tasklist_lock);
4587 retval = -ESRCH;
4588 p = find_process_by_pid(pid);
4589 if (!p)
4590 goto out_unlock;
4592 retval = security_task_getscheduler(p);
4593 if (retval)
4594 goto out_unlock;
4596 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4598 out_unlock:
4599 read_unlock(&tasklist_lock);
4600 put_online_cpus();
4602 return retval;
4606 * sys_sched_getaffinity - get the cpu affinity of a process
4607 * @pid: pid of the process
4608 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4609 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4611 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4612 unsigned long __user *user_mask_ptr)
4614 int ret;
4615 cpumask_t mask;
4617 if (len < sizeof(cpumask_t))
4618 return -EINVAL;
4620 ret = sched_getaffinity(pid, &mask);
4621 if (ret < 0)
4622 return ret;
4624 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4625 return -EFAULT;
4627 return sizeof(cpumask_t);
4631 * sys_sched_yield - yield the current processor to other threads.
4633 * This function yields the current CPU to other tasks. If there are no
4634 * other threads running on this CPU then this function will return.
4636 asmlinkage long sys_sched_yield(void)
4638 struct rq *rq = this_rq_lock();
4640 schedstat_inc(rq, yld_count);
4641 current->sched_class->yield_task(rq);
4644 * Since we are going to call schedule() anyway, there's
4645 * no need to preempt or enable interrupts:
4647 __release(rq->lock);
4648 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4649 _raw_spin_unlock(&rq->lock);
4650 preempt_enable_no_resched();
4652 schedule();
4654 return 0;
4657 static void __cond_resched(void)
4659 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4660 __might_sleep(__FILE__, __LINE__);
4661 #endif
4663 * The BKS might be reacquired before we have dropped
4664 * PREEMPT_ACTIVE, which could trigger a second
4665 * cond_resched() call.
4667 do {
4668 add_preempt_count(PREEMPT_ACTIVE);
4669 schedule();
4670 sub_preempt_count(PREEMPT_ACTIVE);
4671 } while (need_resched());
4674 int __sched cond_resched(void)
4676 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4677 system_state == SYSTEM_RUNNING) {
4678 __cond_resched();
4679 return 1;
4681 return 0;
4683 EXPORT_SYMBOL(cond_resched);
4686 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4687 * call schedule, and on return reacquire the lock.
4689 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4690 * operations here to prevent schedule() from being called twice (once via
4691 * spin_unlock(), once by hand).
4693 int cond_resched_lock(spinlock_t *lock)
4695 int ret = 0;
4697 if (need_lockbreak(lock)) {
4698 spin_unlock(lock);
4699 cpu_relax();
4700 ret = 1;
4701 spin_lock(lock);
4703 if (need_resched() && system_state == SYSTEM_RUNNING) {
4704 spin_release(&lock->dep_map, 1, _THIS_IP_);
4705 _raw_spin_unlock(lock);
4706 preempt_enable_no_resched();
4707 __cond_resched();
4708 ret = 1;
4709 spin_lock(lock);
4711 return ret;
4713 EXPORT_SYMBOL(cond_resched_lock);
4715 int __sched cond_resched_softirq(void)
4717 BUG_ON(!in_softirq());
4719 if (need_resched() && system_state == SYSTEM_RUNNING) {
4720 local_bh_enable();
4721 __cond_resched();
4722 local_bh_disable();
4723 return 1;
4725 return 0;
4727 EXPORT_SYMBOL(cond_resched_softirq);
4730 * yield - yield the current processor to other threads.
4732 * This is a shortcut for kernel-space yielding - it marks the
4733 * thread runnable and calls sys_sched_yield().
4735 void __sched yield(void)
4737 set_current_state(TASK_RUNNING);
4738 sys_sched_yield();
4740 EXPORT_SYMBOL(yield);
4743 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4744 * that process accounting knows that this is a task in IO wait state.
4746 * But don't do that if it is a deliberate, throttling IO wait (this task
4747 * has set its backing_dev_info: the queue against which it should throttle)
4749 void __sched io_schedule(void)
4751 struct rq *rq = &__raw_get_cpu_var(runqueues);
4753 delayacct_blkio_start();
4754 atomic_inc(&rq->nr_iowait);
4755 schedule();
4756 atomic_dec(&rq->nr_iowait);
4757 delayacct_blkio_end();
4759 EXPORT_SYMBOL(io_schedule);
4761 long __sched io_schedule_timeout(long timeout)
4763 struct rq *rq = &__raw_get_cpu_var(runqueues);
4764 long ret;
4766 delayacct_blkio_start();
4767 atomic_inc(&rq->nr_iowait);
4768 ret = schedule_timeout(timeout);
4769 atomic_dec(&rq->nr_iowait);
4770 delayacct_blkio_end();
4771 return ret;
4775 * sys_sched_get_priority_max - return maximum RT priority.
4776 * @policy: scheduling class.
4778 * this syscall returns the maximum rt_priority that can be used
4779 * by a given scheduling class.
4781 asmlinkage long sys_sched_get_priority_max(int policy)
4783 int ret = -EINVAL;
4785 switch (policy) {
4786 case SCHED_FIFO:
4787 case SCHED_RR:
4788 ret = MAX_USER_RT_PRIO-1;
4789 break;
4790 case SCHED_NORMAL:
4791 case SCHED_BATCH:
4792 case SCHED_IDLE:
4793 ret = 0;
4794 break;
4796 return ret;
4800 * sys_sched_get_priority_min - return minimum RT priority.
4801 * @policy: scheduling class.
4803 * this syscall returns the minimum rt_priority that can be used
4804 * by a given scheduling class.
4806 asmlinkage long sys_sched_get_priority_min(int policy)
4808 int ret = -EINVAL;
4810 switch (policy) {
4811 case SCHED_FIFO:
4812 case SCHED_RR:
4813 ret = 1;
4814 break;
4815 case SCHED_NORMAL:
4816 case SCHED_BATCH:
4817 case SCHED_IDLE:
4818 ret = 0;
4820 return ret;
4824 * sys_sched_rr_get_interval - return the default timeslice of a process.
4825 * @pid: pid of the process.
4826 * @interval: userspace pointer to the timeslice value.
4828 * this syscall writes the default timeslice value of a given process
4829 * into the user-space timespec buffer. A value of '0' means infinity.
4831 asmlinkage
4832 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4834 struct task_struct *p;
4835 unsigned int time_slice;
4836 int retval;
4837 struct timespec t;
4839 if (pid < 0)
4840 return -EINVAL;
4842 retval = -ESRCH;
4843 read_lock(&tasklist_lock);
4844 p = find_process_by_pid(pid);
4845 if (!p)
4846 goto out_unlock;
4848 retval = security_task_getscheduler(p);
4849 if (retval)
4850 goto out_unlock;
4853 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4854 * tasks that are on an otherwise idle runqueue:
4856 time_slice = 0;
4857 if (p->policy == SCHED_RR) {
4858 time_slice = DEF_TIMESLICE;
4859 } else {
4860 struct sched_entity *se = &p->se;
4861 unsigned long flags;
4862 struct rq *rq;
4864 rq = task_rq_lock(p, &flags);
4865 if (rq->cfs.load.weight)
4866 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4867 task_rq_unlock(rq, &flags);
4869 read_unlock(&tasklist_lock);
4870 jiffies_to_timespec(time_slice, &t);
4871 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4872 return retval;
4874 out_unlock:
4875 read_unlock(&tasklist_lock);
4876 return retval;
4879 static const char stat_nam[] = "RSDTtZX";
4881 void sched_show_task(struct task_struct *p)
4883 unsigned long free = 0;
4884 unsigned state;
4886 state = p->state ? __ffs(p->state) + 1 : 0;
4887 printk(KERN_INFO "%-13.13s %c", p->comm,
4888 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4889 #if BITS_PER_LONG == 32
4890 if (state == TASK_RUNNING)
4891 printk(KERN_CONT " running ");
4892 else
4893 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4894 #else
4895 if (state == TASK_RUNNING)
4896 printk(KERN_CONT " running task ");
4897 else
4898 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4899 #endif
4900 #ifdef CONFIG_DEBUG_STACK_USAGE
4902 unsigned long *n = end_of_stack(p);
4903 while (!*n)
4904 n++;
4905 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4907 #endif
4908 printk(KERN_CONT "%5lu %5d %6d\n", free,
4909 task_pid_nr(p), task_pid_nr(p->real_parent));
4911 if (state != TASK_RUNNING)
4912 show_stack(p, NULL);
4915 void show_state_filter(unsigned long state_filter)
4917 struct task_struct *g, *p;
4919 #if BITS_PER_LONG == 32
4920 printk(KERN_INFO
4921 " task PC stack pid father\n");
4922 #else
4923 printk(KERN_INFO
4924 " task PC stack pid father\n");
4925 #endif
4926 read_lock(&tasklist_lock);
4927 do_each_thread(g, p) {
4929 * reset the NMI-timeout, listing all files on a slow
4930 * console might take alot of time:
4932 touch_nmi_watchdog();
4933 if (!state_filter || (p->state & state_filter))
4934 sched_show_task(p);
4935 } while_each_thread(g, p);
4937 touch_all_softlockup_watchdogs();
4939 #ifdef CONFIG_SCHED_DEBUG
4940 sysrq_sched_debug_show();
4941 #endif
4942 read_unlock(&tasklist_lock);
4944 * Only show locks if all tasks are dumped:
4946 if (state_filter == -1)
4947 debug_show_all_locks();
4950 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4952 idle->sched_class = &idle_sched_class;
4956 * init_idle - set up an idle thread for a given CPU
4957 * @idle: task in question
4958 * @cpu: cpu the idle task belongs to
4960 * NOTE: this function does not set the idle thread's NEED_RESCHED
4961 * flag, to make booting more robust.
4963 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4965 struct rq *rq = cpu_rq(cpu);
4966 unsigned long flags;
4968 __sched_fork(idle);
4969 idle->se.exec_start = sched_clock();
4971 idle->prio = idle->normal_prio = MAX_PRIO;
4972 idle->cpus_allowed = cpumask_of_cpu(cpu);
4973 __set_task_cpu(idle, cpu);
4975 spin_lock_irqsave(&rq->lock, flags);
4976 rq->curr = rq->idle = idle;
4977 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4978 idle->oncpu = 1;
4979 #endif
4980 spin_unlock_irqrestore(&rq->lock, flags);
4982 /* Set the preempt count _outside_ the spinlocks! */
4983 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4984 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4985 #else
4986 task_thread_info(idle)->preempt_count = 0;
4987 #endif
4989 * The idle tasks have their own, simple scheduling class:
4991 idle->sched_class = &idle_sched_class;
4995 * In a system that switches off the HZ timer nohz_cpu_mask
4996 * indicates which cpus entered this state. This is used
4997 * in the rcu update to wait only for active cpus. For system
4998 * which do not switch off the HZ timer nohz_cpu_mask should
4999 * always be CPU_MASK_NONE.
5001 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5004 * Increase the granularity value when there are more CPUs,
5005 * because with more CPUs the 'effective latency' as visible
5006 * to users decreases. But the relationship is not linear,
5007 * so pick a second-best guess by going with the log2 of the
5008 * number of CPUs.
5010 * This idea comes from the SD scheduler of Con Kolivas:
5012 static inline void sched_init_granularity(void)
5014 unsigned int factor = 1 + ilog2(num_online_cpus());
5015 const unsigned long limit = 200000000;
5017 sysctl_sched_min_granularity *= factor;
5018 if (sysctl_sched_min_granularity > limit)
5019 sysctl_sched_min_granularity = limit;
5021 sysctl_sched_latency *= factor;
5022 if (sysctl_sched_latency > limit)
5023 sysctl_sched_latency = limit;
5025 sysctl_sched_wakeup_granularity *= factor;
5026 sysctl_sched_batch_wakeup_granularity *= factor;
5029 #ifdef CONFIG_SMP
5031 * This is how migration works:
5033 * 1) we queue a struct migration_req structure in the source CPU's
5034 * runqueue and wake up that CPU's migration thread.
5035 * 2) we down() the locked semaphore => thread blocks.
5036 * 3) migration thread wakes up (implicitly it forces the migrated
5037 * thread off the CPU)
5038 * 4) it gets the migration request and checks whether the migrated
5039 * task is still in the wrong runqueue.
5040 * 5) if it's in the wrong runqueue then the migration thread removes
5041 * it and puts it into the right queue.
5042 * 6) migration thread up()s the semaphore.
5043 * 7) we wake up and the migration is done.
5047 * Change a given task's CPU affinity. Migrate the thread to a
5048 * proper CPU and schedule it away if the CPU it's executing on
5049 * is removed from the allowed bitmask.
5051 * NOTE: the caller must have a valid reference to the task, the
5052 * task must not exit() & deallocate itself prematurely. The
5053 * call is not atomic; no spinlocks may be held.
5055 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5057 struct migration_req req;
5058 unsigned long flags;
5059 struct rq *rq;
5060 int ret = 0;
5062 rq = task_rq_lock(p, &flags);
5063 if (!cpus_intersects(new_mask, cpu_online_map)) {
5064 ret = -EINVAL;
5065 goto out;
5068 if (p->sched_class->set_cpus_allowed)
5069 p->sched_class->set_cpus_allowed(p, &new_mask);
5070 else {
5071 p->cpus_allowed = new_mask;
5072 p->nr_cpus_allowed = cpus_weight(new_mask);
5075 /* Can the task run on the task's current CPU? If so, we're done */
5076 if (cpu_isset(task_cpu(p), new_mask))
5077 goto out;
5079 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5080 /* Need help from migration thread: drop lock and wait. */
5081 task_rq_unlock(rq, &flags);
5082 wake_up_process(rq->migration_thread);
5083 wait_for_completion(&req.done);
5084 tlb_migrate_finish(p->mm);
5085 return 0;
5087 out:
5088 task_rq_unlock(rq, &flags);
5090 return ret;
5092 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5095 * Move (not current) task off this cpu, onto dest cpu. We're doing
5096 * this because either it can't run here any more (set_cpus_allowed()
5097 * away from this CPU, or CPU going down), or because we're
5098 * attempting to rebalance this task on exec (sched_exec).
5100 * So we race with normal scheduler movements, but that's OK, as long
5101 * as the task is no longer on this CPU.
5103 * Returns non-zero if task was successfully migrated.
5105 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5107 struct rq *rq_dest, *rq_src;
5108 int ret = 0, on_rq;
5110 if (unlikely(cpu_is_offline(dest_cpu)))
5111 return ret;
5113 rq_src = cpu_rq(src_cpu);
5114 rq_dest = cpu_rq(dest_cpu);
5116 double_rq_lock(rq_src, rq_dest);
5117 /* Already moved. */
5118 if (task_cpu(p) != src_cpu)
5119 goto out;
5120 /* Affinity changed (again). */
5121 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5122 goto out;
5124 on_rq = p->se.on_rq;
5125 if (on_rq)
5126 deactivate_task(rq_src, p, 0);
5128 set_task_cpu(p, dest_cpu);
5129 if (on_rq) {
5130 activate_task(rq_dest, p, 0);
5131 check_preempt_curr(rq_dest, p);
5133 ret = 1;
5134 out:
5135 double_rq_unlock(rq_src, rq_dest);
5136 return ret;
5140 * migration_thread - this is a highprio system thread that performs
5141 * thread migration by bumping thread off CPU then 'pushing' onto
5142 * another runqueue.
5144 static int migration_thread(void *data)
5146 int cpu = (long)data;
5147 struct rq *rq;
5149 rq = cpu_rq(cpu);
5150 BUG_ON(rq->migration_thread != current);
5152 set_current_state(TASK_INTERRUPTIBLE);
5153 while (!kthread_should_stop()) {
5154 struct migration_req *req;
5155 struct list_head *head;
5157 spin_lock_irq(&rq->lock);
5159 if (cpu_is_offline(cpu)) {
5160 spin_unlock_irq(&rq->lock);
5161 goto wait_to_die;
5164 if (rq->active_balance) {
5165 active_load_balance(rq, cpu);
5166 rq->active_balance = 0;
5169 head = &rq->migration_queue;
5171 if (list_empty(head)) {
5172 spin_unlock_irq(&rq->lock);
5173 schedule();
5174 set_current_state(TASK_INTERRUPTIBLE);
5175 continue;
5177 req = list_entry(head->next, struct migration_req, list);
5178 list_del_init(head->next);
5180 spin_unlock(&rq->lock);
5181 __migrate_task(req->task, cpu, req->dest_cpu);
5182 local_irq_enable();
5184 complete(&req->done);
5186 __set_current_state(TASK_RUNNING);
5187 return 0;
5189 wait_to_die:
5190 /* Wait for kthread_stop */
5191 set_current_state(TASK_INTERRUPTIBLE);
5192 while (!kthread_should_stop()) {
5193 schedule();
5194 set_current_state(TASK_INTERRUPTIBLE);
5196 __set_current_state(TASK_RUNNING);
5197 return 0;
5200 #ifdef CONFIG_HOTPLUG_CPU
5202 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5204 int ret;
5206 local_irq_disable();
5207 ret = __migrate_task(p, src_cpu, dest_cpu);
5208 local_irq_enable();
5209 return ret;
5213 * Figure out where task on dead CPU should go, use force if necessary.
5214 * NOTE: interrupts should be disabled by the caller
5216 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5218 unsigned long flags;
5219 cpumask_t mask;
5220 struct rq *rq;
5221 int dest_cpu;
5223 do {
5224 /* On same node? */
5225 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5226 cpus_and(mask, mask, p->cpus_allowed);
5227 dest_cpu = any_online_cpu(mask);
5229 /* On any allowed CPU? */
5230 if (dest_cpu == NR_CPUS)
5231 dest_cpu = any_online_cpu(p->cpus_allowed);
5233 /* No more Mr. Nice Guy. */
5234 if (dest_cpu == NR_CPUS) {
5235 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5237 * Try to stay on the same cpuset, where the
5238 * current cpuset may be a subset of all cpus.
5239 * The cpuset_cpus_allowed_locked() variant of
5240 * cpuset_cpus_allowed() will not block. It must be
5241 * called within calls to cpuset_lock/cpuset_unlock.
5243 rq = task_rq_lock(p, &flags);
5244 p->cpus_allowed = cpus_allowed;
5245 dest_cpu = any_online_cpu(p->cpus_allowed);
5246 task_rq_unlock(rq, &flags);
5249 * Don't tell them about moving exiting tasks or
5250 * kernel threads (both mm NULL), since they never
5251 * leave kernel.
5253 if (p->mm && printk_ratelimit()) {
5254 printk(KERN_INFO "process %d (%s) no "
5255 "longer affine to cpu%d\n",
5256 task_pid_nr(p), p->comm, dead_cpu);
5259 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5263 * While a dead CPU has no uninterruptible tasks queued at this point,
5264 * it might still have a nonzero ->nr_uninterruptible counter, because
5265 * for performance reasons the counter is not stricly tracking tasks to
5266 * their home CPUs. So we just add the counter to another CPU's counter,
5267 * to keep the global sum constant after CPU-down:
5269 static void migrate_nr_uninterruptible(struct rq *rq_src)
5271 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5272 unsigned long flags;
5274 local_irq_save(flags);
5275 double_rq_lock(rq_src, rq_dest);
5276 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5277 rq_src->nr_uninterruptible = 0;
5278 double_rq_unlock(rq_src, rq_dest);
5279 local_irq_restore(flags);
5282 /* Run through task list and migrate tasks from the dead cpu. */
5283 static void migrate_live_tasks(int src_cpu)
5285 struct task_struct *p, *t;
5287 read_lock(&tasklist_lock);
5289 do_each_thread(t, p) {
5290 if (p == current)
5291 continue;
5293 if (task_cpu(p) == src_cpu)
5294 move_task_off_dead_cpu(src_cpu, p);
5295 } while_each_thread(t, p);
5297 read_unlock(&tasklist_lock);
5301 * Schedules idle task to be the next runnable task on current CPU.
5302 * It does so by boosting its priority to highest possible.
5303 * Used by CPU offline code.
5305 void sched_idle_next(void)
5307 int this_cpu = smp_processor_id();
5308 struct rq *rq = cpu_rq(this_cpu);
5309 struct task_struct *p = rq->idle;
5310 unsigned long flags;
5312 /* cpu has to be offline */
5313 BUG_ON(cpu_online(this_cpu));
5316 * Strictly not necessary since rest of the CPUs are stopped by now
5317 * and interrupts disabled on the current cpu.
5319 spin_lock_irqsave(&rq->lock, flags);
5321 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5323 update_rq_clock(rq);
5324 activate_task(rq, p, 0);
5326 spin_unlock_irqrestore(&rq->lock, flags);
5330 * Ensures that the idle task is using init_mm right before its cpu goes
5331 * offline.
5333 void idle_task_exit(void)
5335 struct mm_struct *mm = current->active_mm;
5337 BUG_ON(cpu_online(smp_processor_id()));
5339 if (mm != &init_mm)
5340 switch_mm(mm, &init_mm, current);
5341 mmdrop(mm);
5344 /* called under rq->lock with disabled interrupts */
5345 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5347 struct rq *rq = cpu_rq(dead_cpu);
5349 /* Must be exiting, otherwise would be on tasklist. */
5350 BUG_ON(!p->exit_state);
5352 /* Cannot have done final schedule yet: would have vanished. */
5353 BUG_ON(p->state == TASK_DEAD);
5355 get_task_struct(p);
5358 * Drop lock around migration; if someone else moves it,
5359 * that's OK. No task can be added to this CPU, so iteration is
5360 * fine.
5362 spin_unlock_irq(&rq->lock);
5363 move_task_off_dead_cpu(dead_cpu, p);
5364 spin_lock_irq(&rq->lock);
5366 put_task_struct(p);
5369 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5370 static void migrate_dead_tasks(unsigned int dead_cpu)
5372 struct rq *rq = cpu_rq(dead_cpu);
5373 struct task_struct *next;
5375 for ( ; ; ) {
5376 if (!rq->nr_running)
5377 break;
5378 update_rq_clock(rq);
5379 next = pick_next_task(rq, rq->curr);
5380 if (!next)
5381 break;
5382 migrate_dead(dead_cpu, next);
5386 #endif /* CONFIG_HOTPLUG_CPU */
5388 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5390 static struct ctl_table sd_ctl_dir[] = {
5392 .procname = "sched_domain",
5393 .mode = 0555,
5395 {0, },
5398 static struct ctl_table sd_ctl_root[] = {
5400 .ctl_name = CTL_KERN,
5401 .procname = "kernel",
5402 .mode = 0555,
5403 .child = sd_ctl_dir,
5405 {0, },
5408 static struct ctl_table *sd_alloc_ctl_entry(int n)
5410 struct ctl_table *entry =
5411 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5413 return entry;
5416 static void sd_free_ctl_entry(struct ctl_table **tablep)
5418 struct ctl_table *entry;
5421 * In the intermediate directories, both the child directory and
5422 * procname are dynamically allocated and could fail but the mode
5423 * will always be set. In the lowest directory the names are
5424 * static strings and all have proc handlers.
5426 for (entry = *tablep; entry->mode; entry++) {
5427 if (entry->child)
5428 sd_free_ctl_entry(&entry->child);
5429 if (entry->proc_handler == NULL)
5430 kfree(entry->procname);
5433 kfree(*tablep);
5434 *tablep = NULL;
5437 static void
5438 set_table_entry(struct ctl_table *entry,
5439 const char *procname, void *data, int maxlen,
5440 mode_t mode, proc_handler *proc_handler)
5442 entry->procname = procname;
5443 entry->data = data;
5444 entry->maxlen = maxlen;
5445 entry->mode = mode;
5446 entry->proc_handler = proc_handler;
5449 static struct ctl_table *
5450 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5452 struct ctl_table *table = sd_alloc_ctl_entry(12);
5454 if (table == NULL)
5455 return NULL;
5457 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5458 sizeof(long), 0644, proc_doulongvec_minmax);
5459 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5460 sizeof(long), 0644, proc_doulongvec_minmax);
5461 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5462 sizeof(int), 0644, proc_dointvec_minmax);
5463 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5464 sizeof(int), 0644, proc_dointvec_minmax);
5465 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5466 sizeof(int), 0644, proc_dointvec_minmax);
5467 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5468 sizeof(int), 0644, proc_dointvec_minmax);
5469 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5470 sizeof(int), 0644, proc_dointvec_minmax);
5471 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5472 sizeof(int), 0644, proc_dointvec_minmax);
5473 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5474 sizeof(int), 0644, proc_dointvec_minmax);
5475 set_table_entry(&table[9], "cache_nice_tries",
5476 &sd->cache_nice_tries,
5477 sizeof(int), 0644, proc_dointvec_minmax);
5478 set_table_entry(&table[10], "flags", &sd->flags,
5479 sizeof(int), 0644, proc_dointvec_minmax);
5480 /* &table[11] is terminator */
5482 return table;
5485 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5487 struct ctl_table *entry, *table;
5488 struct sched_domain *sd;
5489 int domain_num = 0, i;
5490 char buf[32];
5492 for_each_domain(cpu, sd)
5493 domain_num++;
5494 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5495 if (table == NULL)
5496 return NULL;
5498 i = 0;
5499 for_each_domain(cpu, sd) {
5500 snprintf(buf, 32, "domain%d", i);
5501 entry->procname = kstrdup(buf, GFP_KERNEL);
5502 entry->mode = 0555;
5503 entry->child = sd_alloc_ctl_domain_table(sd);
5504 entry++;
5505 i++;
5507 return table;
5510 static struct ctl_table_header *sd_sysctl_header;
5511 static void register_sched_domain_sysctl(void)
5513 int i, cpu_num = num_online_cpus();
5514 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5515 char buf[32];
5517 WARN_ON(sd_ctl_dir[0].child);
5518 sd_ctl_dir[0].child = entry;
5520 if (entry == NULL)
5521 return;
5523 for_each_online_cpu(i) {
5524 snprintf(buf, 32, "cpu%d", i);
5525 entry->procname = kstrdup(buf, GFP_KERNEL);
5526 entry->mode = 0555;
5527 entry->child = sd_alloc_ctl_cpu_table(i);
5528 entry++;
5531 WARN_ON(sd_sysctl_header);
5532 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5535 /* may be called multiple times per register */
5536 static void unregister_sched_domain_sysctl(void)
5538 if (sd_sysctl_header)
5539 unregister_sysctl_table(sd_sysctl_header);
5540 sd_sysctl_header = NULL;
5541 if (sd_ctl_dir[0].child)
5542 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5544 #else
5545 static void register_sched_domain_sysctl(void)
5548 static void unregister_sched_domain_sysctl(void)
5551 #endif
5554 * migration_call - callback that gets triggered when a CPU is added.
5555 * Here we can start up the necessary migration thread for the new CPU.
5557 static int __cpuinit
5558 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5560 struct task_struct *p;
5561 int cpu = (long)hcpu;
5562 unsigned long flags;
5563 struct rq *rq;
5565 switch (action) {
5567 case CPU_UP_PREPARE:
5568 case CPU_UP_PREPARE_FROZEN:
5569 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5570 if (IS_ERR(p))
5571 return NOTIFY_BAD;
5572 kthread_bind(p, cpu);
5573 /* Must be high prio: stop_machine expects to yield to it. */
5574 rq = task_rq_lock(p, &flags);
5575 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5576 task_rq_unlock(rq, &flags);
5577 cpu_rq(cpu)->migration_thread = p;
5578 break;
5580 case CPU_ONLINE:
5581 case CPU_ONLINE_FROZEN:
5582 /* Strictly unnecessary, as first user will wake it. */
5583 wake_up_process(cpu_rq(cpu)->migration_thread);
5585 /* Update our root-domain */
5586 rq = cpu_rq(cpu);
5587 spin_lock_irqsave(&rq->lock, flags);
5588 if (rq->rd) {
5589 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5590 cpu_set(cpu, rq->rd->online);
5592 spin_unlock_irqrestore(&rq->lock, flags);
5593 break;
5595 #ifdef CONFIG_HOTPLUG_CPU
5596 case CPU_UP_CANCELED:
5597 case CPU_UP_CANCELED_FROZEN:
5598 if (!cpu_rq(cpu)->migration_thread)
5599 break;
5600 /* Unbind it from offline cpu so it can run. Fall thru. */
5601 kthread_bind(cpu_rq(cpu)->migration_thread,
5602 any_online_cpu(cpu_online_map));
5603 kthread_stop(cpu_rq(cpu)->migration_thread);
5604 cpu_rq(cpu)->migration_thread = NULL;
5605 break;
5607 case CPU_DEAD:
5608 case CPU_DEAD_FROZEN:
5609 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5610 migrate_live_tasks(cpu);
5611 rq = cpu_rq(cpu);
5612 kthread_stop(rq->migration_thread);
5613 rq->migration_thread = NULL;
5614 /* Idle task back to normal (off runqueue, low prio) */
5615 spin_lock_irq(&rq->lock);
5616 update_rq_clock(rq);
5617 deactivate_task(rq, rq->idle, 0);
5618 rq->idle->static_prio = MAX_PRIO;
5619 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5620 rq->idle->sched_class = &idle_sched_class;
5621 migrate_dead_tasks(cpu);
5622 spin_unlock_irq(&rq->lock);
5623 cpuset_unlock();
5624 migrate_nr_uninterruptible(rq);
5625 BUG_ON(rq->nr_running != 0);
5628 * No need to migrate the tasks: it was best-effort if
5629 * they didn't take sched_hotcpu_mutex. Just wake up
5630 * the requestors.
5632 spin_lock_irq(&rq->lock);
5633 while (!list_empty(&rq->migration_queue)) {
5634 struct migration_req *req;
5636 req = list_entry(rq->migration_queue.next,
5637 struct migration_req, list);
5638 list_del_init(&req->list);
5639 complete(&req->done);
5641 spin_unlock_irq(&rq->lock);
5642 break;
5644 case CPU_DOWN_PREPARE:
5645 /* Update our root-domain */
5646 rq = cpu_rq(cpu);
5647 spin_lock_irqsave(&rq->lock, flags);
5648 if (rq->rd) {
5649 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5650 cpu_clear(cpu, rq->rd->online);
5652 spin_unlock_irqrestore(&rq->lock, flags);
5653 break;
5654 #endif
5656 return NOTIFY_OK;
5659 /* Register at highest priority so that task migration (migrate_all_tasks)
5660 * happens before everything else.
5662 static struct notifier_block __cpuinitdata migration_notifier = {
5663 .notifier_call = migration_call,
5664 .priority = 10
5667 void __init migration_init(void)
5669 void *cpu = (void *)(long)smp_processor_id();
5670 int err;
5672 /* Start one for the boot CPU: */
5673 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5674 BUG_ON(err == NOTIFY_BAD);
5675 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5676 register_cpu_notifier(&migration_notifier);
5678 #endif
5680 #ifdef CONFIG_SMP
5682 /* Number of possible processor ids */
5683 int nr_cpu_ids __read_mostly = NR_CPUS;
5684 EXPORT_SYMBOL(nr_cpu_ids);
5686 #ifdef CONFIG_SCHED_DEBUG
5688 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5690 struct sched_group *group = sd->groups;
5691 cpumask_t groupmask;
5692 char str[NR_CPUS];
5694 cpumask_scnprintf(str, NR_CPUS, sd->span);
5695 cpus_clear(groupmask);
5697 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5699 if (!(sd->flags & SD_LOAD_BALANCE)) {
5700 printk("does not load-balance\n");
5701 if (sd->parent)
5702 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5703 " has parent");
5704 return -1;
5707 printk(KERN_CONT "span %s\n", str);
5709 if (!cpu_isset(cpu, sd->span)) {
5710 printk(KERN_ERR "ERROR: domain->span does not contain "
5711 "CPU%d\n", cpu);
5713 if (!cpu_isset(cpu, group->cpumask)) {
5714 printk(KERN_ERR "ERROR: domain->groups does not contain"
5715 " CPU%d\n", cpu);
5718 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5719 do {
5720 if (!group) {
5721 printk("\n");
5722 printk(KERN_ERR "ERROR: group is NULL\n");
5723 break;
5726 if (!group->__cpu_power) {
5727 printk(KERN_CONT "\n");
5728 printk(KERN_ERR "ERROR: domain->cpu_power not "
5729 "set\n");
5730 break;
5733 if (!cpus_weight(group->cpumask)) {
5734 printk(KERN_CONT "\n");
5735 printk(KERN_ERR "ERROR: empty group\n");
5736 break;
5739 if (cpus_intersects(groupmask, group->cpumask)) {
5740 printk(KERN_CONT "\n");
5741 printk(KERN_ERR "ERROR: repeated CPUs\n");
5742 break;
5745 cpus_or(groupmask, groupmask, group->cpumask);
5747 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5748 printk(KERN_CONT " %s", str);
5750 group = group->next;
5751 } while (group != sd->groups);
5752 printk(KERN_CONT "\n");
5754 if (!cpus_equal(sd->span, groupmask))
5755 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5757 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5758 printk(KERN_ERR "ERROR: parent span is not a superset "
5759 "of domain->span\n");
5760 return 0;
5763 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5765 int level = 0;
5767 if (!sd) {
5768 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5769 return;
5772 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5774 for (;;) {
5775 if (sched_domain_debug_one(sd, cpu, level))
5776 break;
5777 level++;
5778 sd = sd->parent;
5779 if (!sd)
5780 break;
5783 #else
5784 # define sched_domain_debug(sd, cpu) do { } while (0)
5785 #endif
5787 static int sd_degenerate(struct sched_domain *sd)
5789 if (cpus_weight(sd->span) == 1)
5790 return 1;
5792 /* Following flags need at least 2 groups */
5793 if (sd->flags & (SD_LOAD_BALANCE |
5794 SD_BALANCE_NEWIDLE |
5795 SD_BALANCE_FORK |
5796 SD_BALANCE_EXEC |
5797 SD_SHARE_CPUPOWER |
5798 SD_SHARE_PKG_RESOURCES)) {
5799 if (sd->groups != sd->groups->next)
5800 return 0;
5803 /* Following flags don't use groups */
5804 if (sd->flags & (SD_WAKE_IDLE |
5805 SD_WAKE_AFFINE |
5806 SD_WAKE_BALANCE))
5807 return 0;
5809 return 1;
5812 static int
5813 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5815 unsigned long cflags = sd->flags, pflags = parent->flags;
5817 if (sd_degenerate(parent))
5818 return 1;
5820 if (!cpus_equal(sd->span, parent->span))
5821 return 0;
5823 /* Does parent contain flags not in child? */
5824 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5825 if (cflags & SD_WAKE_AFFINE)
5826 pflags &= ~SD_WAKE_BALANCE;
5827 /* Flags needing groups don't count if only 1 group in parent */
5828 if (parent->groups == parent->groups->next) {
5829 pflags &= ~(SD_LOAD_BALANCE |
5830 SD_BALANCE_NEWIDLE |
5831 SD_BALANCE_FORK |
5832 SD_BALANCE_EXEC |
5833 SD_SHARE_CPUPOWER |
5834 SD_SHARE_PKG_RESOURCES);
5836 if (~cflags & pflags)
5837 return 0;
5839 return 1;
5842 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5844 unsigned long flags;
5845 const struct sched_class *class;
5847 spin_lock_irqsave(&rq->lock, flags);
5849 if (rq->rd) {
5850 struct root_domain *old_rd = rq->rd;
5852 for (class = sched_class_highest; class; class = class->next) {
5853 if (class->leave_domain)
5854 class->leave_domain(rq);
5857 if (atomic_dec_and_test(&old_rd->refcount))
5858 kfree(old_rd);
5861 atomic_inc(&rd->refcount);
5862 rq->rd = rd;
5864 for (class = sched_class_highest; class; class = class->next) {
5865 if (class->join_domain)
5866 class->join_domain(rq);
5869 spin_unlock_irqrestore(&rq->lock, flags);
5872 static void init_rootdomain(struct root_domain *rd, const cpumask_t *map)
5874 memset(rd, 0, sizeof(*rd));
5876 rd->span = *map;
5877 cpus_and(rd->online, rd->span, cpu_online_map);
5880 static void init_defrootdomain(void)
5882 cpumask_t cpus = CPU_MASK_ALL;
5884 init_rootdomain(&def_root_domain, &cpus);
5885 atomic_set(&def_root_domain.refcount, 1);
5888 static struct root_domain *alloc_rootdomain(const cpumask_t *map)
5890 struct root_domain *rd;
5892 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5893 if (!rd)
5894 return NULL;
5896 init_rootdomain(rd, map);
5898 return rd;
5902 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5903 * hold the hotplug lock.
5905 static void
5906 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5908 struct rq *rq = cpu_rq(cpu);
5909 struct sched_domain *tmp;
5911 /* Remove the sched domains which do not contribute to scheduling. */
5912 for (tmp = sd; tmp; tmp = tmp->parent) {
5913 struct sched_domain *parent = tmp->parent;
5914 if (!parent)
5915 break;
5916 if (sd_parent_degenerate(tmp, parent)) {
5917 tmp->parent = parent->parent;
5918 if (parent->parent)
5919 parent->parent->child = tmp;
5923 if (sd && sd_degenerate(sd)) {
5924 sd = sd->parent;
5925 if (sd)
5926 sd->child = NULL;
5929 sched_domain_debug(sd, cpu);
5931 rq_attach_root(rq, rd);
5932 rcu_assign_pointer(rq->sd, sd);
5935 /* cpus with isolated domains */
5936 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5938 /* Setup the mask of cpus configured for isolated domains */
5939 static int __init isolated_cpu_setup(char *str)
5941 int ints[NR_CPUS], i;
5943 str = get_options(str, ARRAY_SIZE(ints), ints);
5944 cpus_clear(cpu_isolated_map);
5945 for (i = 1; i <= ints[0]; i++)
5946 if (ints[i] < NR_CPUS)
5947 cpu_set(ints[i], cpu_isolated_map);
5948 return 1;
5951 __setup("isolcpus=", isolated_cpu_setup);
5954 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5955 * to a function which identifies what group(along with sched group) a CPU
5956 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5957 * (due to the fact that we keep track of groups covered with a cpumask_t).
5959 * init_sched_build_groups will build a circular linked list of the groups
5960 * covered by the given span, and will set each group's ->cpumask correctly,
5961 * and ->cpu_power to 0.
5963 static void
5964 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5965 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5966 struct sched_group **sg))
5968 struct sched_group *first = NULL, *last = NULL;
5969 cpumask_t covered = CPU_MASK_NONE;
5970 int i;
5972 for_each_cpu_mask(i, span) {
5973 struct sched_group *sg;
5974 int group = group_fn(i, cpu_map, &sg);
5975 int j;
5977 if (cpu_isset(i, covered))
5978 continue;
5980 sg->cpumask = CPU_MASK_NONE;
5981 sg->__cpu_power = 0;
5983 for_each_cpu_mask(j, span) {
5984 if (group_fn(j, cpu_map, NULL) != group)
5985 continue;
5987 cpu_set(j, covered);
5988 cpu_set(j, sg->cpumask);
5990 if (!first)
5991 first = sg;
5992 if (last)
5993 last->next = sg;
5994 last = sg;
5996 last->next = first;
5999 #define SD_NODES_PER_DOMAIN 16
6001 #ifdef CONFIG_NUMA
6004 * find_next_best_node - find the next node to include in a sched_domain
6005 * @node: node whose sched_domain we're building
6006 * @used_nodes: nodes already in the sched_domain
6008 * Find the next node to include in a given scheduling domain. Simply
6009 * finds the closest node not already in the @used_nodes map.
6011 * Should use nodemask_t.
6013 static int find_next_best_node(int node, unsigned long *used_nodes)
6015 int i, n, val, min_val, best_node = 0;
6017 min_val = INT_MAX;
6019 for (i = 0; i < MAX_NUMNODES; i++) {
6020 /* Start at @node */
6021 n = (node + i) % MAX_NUMNODES;
6023 if (!nr_cpus_node(n))
6024 continue;
6026 /* Skip already used nodes */
6027 if (test_bit(n, used_nodes))
6028 continue;
6030 /* Simple min distance search */
6031 val = node_distance(node, n);
6033 if (val < min_val) {
6034 min_val = val;
6035 best_node = n;
6039 set_bit(best_node, used_nodes);
6040 return best_node;
6044 * sched_domain_node_span - get a cpumask for a node's sched_domain
6045 * @node: node whose cpumask we're constructing
6046 * @size: number of nodes to include in this span
6048 * Given a node, construct a good cpumask for its sched_domain to span. It
6049 * should be one that prevents unnecessary balancing, but also spreads tasks
6050 * out optimally.
6052 static cpumask_t sched_domain_node_span(int node)
6054 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6055 cpumask_t span, nodemask;
6056 int i;
6058 cpus_clear(span);
6059 bitmap_zero(used_nodes, MAX_NUMNODES);
6061 nodemask = node_to_cpumask(node);
6062 cpus_or(span, span, nodemask);
6063 set_bit(node, used_nodes);
6065 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6066 int next_node = find_next_best_node(node, used_nodes);
6068 nodemask = node_to_cpumask(next_node);
6069 cpus_or(span, span, nodemask);
6072 return span;
6074 #endif
6076 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6079 * SMT sched-domains:
6081 #ifdef CONFIG_SCHED_SMT
6082 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6083 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6085 static int
6086 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6088 if (sg)
6089 *sg = &per_cpu(sched_group_cpus, cpu);
6090 return cpu;
6092 #endif
6095 * multi-core sched-domains:
6097 #ifdef CONFIG_SCHED_MC
6098 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6099 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6100 #endif
6102 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6103 static int
6104 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6106 int group;
6107 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6108 cpus_and(mask, mask, *cpu_map);
6109 group = first_cpu(mask);
6110 if (sg)
6111 *sg = &per_cpu(sched_group_core, group);
6112 return group;
6114 #elif defined(CONFIG_SCHED_MC)
6115 static int
6116 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6118 if (sg)
6119 *sg = &per_cpu(sched_group_core, cpu);
6120 return cpu;
6122 #endif
6124 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6125 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6127 static int
6128 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6130 int group;
6131 #ifdef CONFIG_SCHED_MC
6132 cpumask_t mask = cpu_coregroup_map(cpu);
6133 cpus_and(mask, mask, *cpu_map);
6134 group = first_cpu(mask);
6135 #elif defined(CONFIG_SCHED_SMT)
6136 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6137 cpus_and(mask, mask, *cpu_map);
6138 group = first_cpu(mask);
6139 #else
6140 group = cpu;
6141 #endif
6142 if (sg)
6143 *sg = &per_cpu(sched_group_phys, group);
6144 return group;
6147 #ifdef CONFIG_NUMA
6149 * The init_sched_build_groups can't handle what we want to do with node
6150 * groups, so roll our own. Now each node has its own list of groups which
6151 * gets dynamically allocated.
6153 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6154 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6156 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6157 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6159 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6160 struct sched_group **sg)
6162 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6163 int group;
6165 cpus_and(nodemask, nodemask, *cpu_map);
6166 group = first_cpu(nodemask);
6168 if (sg)
6169 *sg = &per_cpu(sched_group_allnodes, group);
6170 return group;
6173 static void init_numa_sched_groups_power(struct sched_group *group_head)
6175 struct sched_group *sg = group_head;
6176 int j;
6178 if (!sg)
6179 return;
6180 do {
6181 for_each_cpu_mask(j, sg->cpumask) {
6182 struct sched_domain *sd;
6184 sd = &per_cpu(phys_domains, j);
6185 if (j != first_cpu(sd->groups->cpumask)) {
6187 * Only add "power" once for each
6188 * physical package.
6190 continue;
6193 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6195 sg = sg->next;
6196 } while (sg != group_head);
6198 #endif
6200 #ifdef CONFIG_NUMA
6201 /* Free memory allocated for various sched_group structures */
6202 static void free_sched_groups(const cpumask_t *cpu_map)
6204 int cpu, i;
6206 for_each_cpu_mask(cpu, *cpu_map) {
6207 struct sched_group **sched_group_nodes
6208 = sched_group_nodes_bycpu[cpu];
6210 if (!sched_group_nodes)
6211 continue;
6213 for (i = 0; i < MAX_NUMNODES; i++) {
6214 cpumask_t nodemask = node_to_cpumask(i);
6215 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6217 cpus_and(nodemask, nodemask, *cpu_map);
6218 if (cpus_empty(nodemask))
6219 continue;
6221 if (sg == NULL)
6222 continue;
6223 sg = sg->next;
6224 next_sg:
6225 oldsg = sg;
6226 sg = sg->next;
6227 kfree(oldsg);
6228 if (oldsg != sched_group_nodes[i])
6229 goto next_sg;
6231 kfree(sched_group_nodes);
6232 sched_group_nodes_bycpu[cpu] = NULL;
6235 #else
6236 static void free_sched_groups(const cpumask_t *cpu_map)
6239 #endif
6242 * Initialize sched groups cpu_power.
6244 * cpu_power indicates the capacity of sched group, which is used while
6245 * distributing the load between different sched groups in a sched domain.
6246 * Typically cpu_power for all the groups in a sched domain will be same unless
6247 * there are asymmetries in the topology. If there are asymmetries, group
6248 * having more cpu_power will pickup more load compared to the group having
6249 * less cpu_power.
6251 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6252 * the maximum number of tasks a group can handle in the presence of other idle
6253 * or lightly loaded groups in the same sched domain.
6255 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6257 struct sched_domain *child;
6258 struct sched_group *group;
6260 WARN_ON(!sd || !sd->groups);
6262 if (cpu != first_cpu(sd->groups->cpumask))
6263 return;
6265 child = sd->child;
6267 sd->groups->__cpu_power = 0;
6270 * For perf policy, if the groups in child domain share resources
6271 * (for example cores sharing some portions of the cache hierarchy
6272 * or SMT), then set this domain groups cpu_power such that each group
6273 * can handle only one task, when there are other idle groups in the
6274 * same sched domain.
6276 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6277 (child->flags &
6278 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6279 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6280 return;
6284 * add cpu_power of each child group to this groups cpu_power
6286 group = child->groups;
6287 do {
6288 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6289 group = group->next;
6290 } while (group != child->groups);
6294 * Build sched domains for a given set of cpus and attach the sched domains
6295 * to the individual cpus
6297 static int build_sched_domains(const cpumask_t *cpu_map)
6299 int i;
6300 struct root_domain *rd;
6301 #ifdef CONFIG_NUMA
6302 struct sched_group **sched_group_nodes = NULL;
6303 int sd_allnodes = 0;
6306 * Allocate the per-node list of sched groups
6308 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6309 GFP_KERNEL);
6310 if (!sched_group_nodes) {
6311 printk(KERN_WARNING "Can not alloc sched group node list\n");
6312 return -ENOMEM;
6314 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6315 #endif
6317 rd = alloc_rootdomain(cpu_map);
6318 if (!rd) {
6319 printk(KERN_WARNING "Cannot alloc root domain\n");
6320 return -ENOMEM;
6324 * Set up domains for cpus specified by the cpu_map.
6326 for_each_cpu_mask(i, *cpu_map) {
6327 struct sched_domain *sd = NULL, *p;
6328 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6330 cpus_and(nodemask, nodemask, *cpu_map);
6332 #ifdef CONFIG_NUMA
6333 if (cpus_weight(*cpu_map) >
6334 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6335 sd = &per_cpu(allnodes_domains, i);
6336 *sd = SD_ALLNODES_INIT;
6337 sd->span = *cpu_map;
6338 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6339 p = sd;
6340 sd_allnodes = 1;
6341 } else
6342 p = NULL;
6344 sd = &per_cpu(node_domains, i);
6345 *sd = SD_NODE_INIT;
6346 sd->span = sched_domain_node_span(cpu_to_node(i));
6347 sd->parent = p;
6348 if (p)
6349 p->child = sd;
6350 cpus_and(sd->span, sd->span, *cpu_map);
6351 #endif
6353 p = sd;
6354 sd = &per_cpu(phys_domains, i);
6355 *sd = SD_CPU_INIT;
6356 sd->span = nodemask;
6357 sd->parent = p;
6358 if (p)
6359 p->child = sd;
6360 cpu_to_phys_group(i, cpu_map, &sd->groups);
6362 #ifdef CONFIG_SCHED_MC
6363 p = sd;
6364 sd = &per_cpu(core_domains, i);
6365 *sd = SD_MC_INIT;
6366 sd->span = cpu_coregroup_map(i);
6367 cpus_and(sd->span, sd->span, *cpu_map);
6368 sd->parent = p;
6369 p->child = sd;
6370 cpu_to_core_group(i, cpu_map, &sd->groups);
6371 #endif
6373 #ifdef CONFIG_SCHED_SMT
6374 p = sd;
6375 sd = &per_cpu(cpu_domains, i);
6376 *sd = SD_SIBLING_INIT;
6377 sd->span = per_cpu(cpu_sibling_map, i);
6378 cpus_and(sd->span, sd->span, *cpu_map);
6379 sd->parent = p;
6380 p->child = sd;
6381 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6382 #endif
6385 #ifdef CONFIG_SCHED_SMT
6386 /* Set up CPU (sibling) groups */
6387 for_each_cpu_mask(i, *cpu_map) {
6388 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6389 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6390 if (i != first_cpu(this_sibling_map))
6391 continue;
6393 init_sched_build_groups(this_sibling_map, cpu_map,
6394 &cpu_to_cpu_group);
6396 #endif
6398 #ifdef CONFIG_SCHED_MC
6399 /* Set up multi-core groups */
6400 for_each_cpu_mask(i, *cpu_map) {
6401 cpumask_t this_core_map = cpu_coregroup_map(i);
6402 cpus_and(this_core_map, this_core_map, *cpu_map);
6403 if (i != first_cpu(this_core_map))
6404 continue;
6405 init_sched_build_groups(this_core_map, cpu_map,
6406 &cpu_to_core_group);
6408 #endif
6410 /* Set up physical groups */
6411 for (i = 0; i < MAX_NUMNODES; i++) {
6412 cpumask_t nodemask = node_to_cpumask(i);
6414 cpus_and(nodemask, nodemask, *cpu_map);
6415 if (cpus_empty(nodemask))
6416 continue;
6418 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6421 #ifdef CONFIG_NUMA
6422 /* Set up node groups */
6423 if (sd_allnodes)
6424 init_sched_build_groups(*cpu_map, cpu_map,
6425 &cpu_to_allnodes_group);
6427 for (i = 0; i < MAX_NUMNODES; i++) {
6428 /* Set up node groups */
6429 struct sched_group *sg, *prev;
6430 cpumask_t nodemask = node_to_cpumask(i);
6431 cpumask_t domainspan;
6432 cpumask_t covered = CPU_MASK_NONE;
6433 int j;
6435 cpus_and(nodemask, nodemask, *cpu_map);
6436 if (cpus_empty(nodemask)) {
6437 sched_group_nodes[i] = NULL;
6438 continue;
6441 domainspan = sched_domain_node_span(i);
6442 cpus_and(domainspan, domainspan, *cpu_map);
6444 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6445 if (!sg) {
6446 printk(KERN_WARNING "Can not alloc domain group for "
6447 "node %d\n", i);
6448 goto error;
6450 sched_group_nodes[i] = sg;
6451 for_each_cpu_mask(j, nodemask) {
6452 struct sched_domain *sd;
6454 sd = &per_cpu(node_domains, j);
6455 sd->groups = sg;
6457 sg->__cpu_power = 0;
6458 sg->cpumask = nodemask;
6459 sg->next = sg;
6460 cpus_or(covered, covered, nodemask);
6461 prev = sg;
6463 for (j = 0; j < MAX_NUMNODES; j++) {
6464 cpumask_t tmp, notcovered;
6465 int n = (i + j) % MAX_NUMNODES;
6467 cpus_complement(notcovered, covered);
6468 cpus_and(tmp, notcovered, *cpu_map);
6469 cpus_and(tmp, tmp, domainspan);
6470 if (cpus_empty(tmp))
6471 break;
6473 nodemask = node_to_cpumask(n);
6474 cpus_and(tmp, tmp, nodemask);
6475 if (cpus_empty(tmp))
6476 continue;
6478 sg = kmalloc_node(sizeof(struct sched_group),
6479 GFP_KERNEL, i);
6480 if (!sg) {
6481 printk(KERN_WARNING
6482 "Can not alloc domain group for node %d\n", j);
6483 goto error;
6485 sg->__cpu_power = 0;
6486 sg->cpumask = tmp;
6487 sg->next = prev->next;
6488 cpus_or(covered, covered, tmp);
6489 prev->next = sg;
6490 prev = sg;
6493 #endif
6495 /* Calculate CPU power for physical packages and nodes */
6496 #ifdef CONFIG_SCHED_SMT
6497 for_each_cpu_mask(i, *cpu_map) {
6498 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6500 init_sched_groups_power(i, sd);
6502 #endif
6503 #ifdef CONFIG_SCHED_MC
6504 for_each_cpu_mask(i, *cpu_map) {
6505 struct sched_domain *sd = &per_cpu(core_domains, i);
6507 init_sched_groups_power(i, sd);
6509 #endif
6511 for_each_cpu_mask(i, *cpu_map) {
6512 struct sched_domain *sd = &per_cpu(phys_domains, i);
6514 init_sched_groups_power(i, sd);
6517 #ifdef CONFIG_NUMA
6518 for (i = 0; i < MAX_NUMNODES; i++)
6519 init_numa_sched_groups_power(sched_group_nodes[i]);
6521 if (sd_allnodes) {
6522 struct sched_group *sg;
6524 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6525 init_numa_sched_groups_power(sg);
6527 #endif
6529 /* Attach the domains */
6530 for_each_cpu_mask(i, *cpu_map) {
6531 struct sched_domain *sd;
6532 #ifdef CONFIG_SCHED_SMT
6533 sd = &per_cpu(cpu_domains, i);
6534 #elif defined(CONFIG_SCHED_MC)
6535 sd = &per_cpu(core_domains, i);
6536 #else
6537 sd = &per_cpu(phys_domains, i);
6538 #endif
6539 cpu_attach_domain(sd, rd, i);
6542 return 0;
6544 #ifdef CONFIG_NUMA
6545 error:
6546 free_sched_groups(cpu_map);
6547 return -ENOMEM;
6548 #endif
6551 static cpumask_t *doms_cur; /* current sched domains */
6552 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6555 * Special case: If a kmalloc of a doms_cur partition (array of
6556 * cpumask_t) fails, then fallback to a single sched domain,
6557 * as determined by the single cpumask_t fallback_doms.
6559 static cpumask_t fallback_doms;
6562 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6563 * For now this just excludes isolated cpus, but could be used to
6564 * exclude other special cases in the future.
6566 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6568 int err;
6570 ndoms_cur = 1;
6571 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6572 if (!doms_cur)
6573 doms_cur = &fallback_doms;
6574 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6575 err = build_sched_domains(doms_cur);
6576 register_sched_domain_sysctl();
6578 return err;
6581 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6583 free_sched_groups(cpu_map);
6587 * Detach sched domains from a group of cpus specified in cpu_map
6588 * These cpus will now be attached to the NULL domain
6590 static void detach_destroy_domains(const cpumask_t *cpu_map)
6592 int i;
6594 unregister_sched_domain_sysctl();
6596 for_each_cpu_mask(i, *cpu_map)
6597 cpu_attach_domain(NULL, &def_root_domain, i);
6598 synchronize_sched();
6599 arch_destroy_sched_domains(cpu_map);
6603 * Partition sched domains as specified by the 'ndoms_new'
6604 * cpumasks in the array doms_new[] of cpumasks. This compares
6605 * doms_new[] to the current sched domain partitioning, doms_cur[].
6606 * It destroys each deleted domain and builds each new domain.
6608 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6609 * The masks don't intersect (don't overlap.) We should setup one
6610 * sched domain for each mask. CPUs not in any of the cpumasks will
6611 * not be load balanced. If the same cpumask appears both in the
6612 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6613 * it as it is.
6615 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6616 * ownership of it and will kfree it when done with it. If the caller
6617 * failed the kmalloc call, then it can pass in doms_new == NULL,
6618 * and partition_sched_domains() will fallback to the single partition
6619 * 'fallback_doms'.
6621 * Call with hotplug lock held
6623 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6625 int i, j;
6627 lock_doms_cur();
6629 /* always unregister in case we don't destroy any domains */
6630 unregister_sched_domain_sysctl();
6632 if (doms_new == NULL) {
6633 ndoms_new = 1;
6634 doms_new = &fallback_doms;
6635 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6638 /* Destroy deleted domains */
6639 for (i = 0; i < ndoms_cur; i++) {
6640 for (j = 0; j < ndoms_new; j++) {
6641 if (cpus_equal(doms_cur[i], doms_new[j]))
6642 goto match1;
6644 /* no match - a current sched domain not in new doms_new[] */
6645 detach_destroy_domains(doms_cur + i);
6646 match1:
6650 /* Build new domains */
6651 for (i = 0; i < ndoms_new; i++) {
6652 for (j = 0; j < ndoms_cur; j++) {
6653 if (cpus_equal(doms_new[i], doms_cur[j]))
6654 goto match2;
6656 /* no match - add a new doms_new */
6657 build_sched_domains(doms_new + i);
6658 match2:
6662 /* Remember the new sched domains */
6663 if (doms_cur != &fallback_doms)
6664 kfree(doms_cur);
6665 doms_cur = doms_new;
6666 ndoms_cur = ndoms_new;
6668 register_sched_domain_sysctl();
6670 unlock_doms_cur();
6673 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6674 static int arch_reinit_sched_domains(void)
6676 int err;
6678 get_online_cpus();
6679 detach_destroy_domains(&cpu_online_map);
6680 err = arch_init_sched_domains(&cpu_online_map);
6681 put_online_cpus();
6683 return err;
6686 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6688 int ret;
6690 if (buf[0] != '0' && buf[0] != '1')
6691 return -EINVAL;
6693 if (smt)
6694 sched_smt_power_savings = (buf[0] == '1');
6695 else
6696 sched_mc_power_savings = (buf[0] == '1');
6698 ret = arch_reinit_sched_domains();
6700 return ret ? ret : count;
6703 #ifdef CONFIG_SCHED_MC
6704 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6706 return sprintf(page, "%u\n", sched_mc_power_savings);
6708 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6709 const char *buf, size_t count)
6711 return sched_power_savings_store(buf, count, 0);
6713 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6714 sched_mc_power_savings_store);
6715 #endif
6717 #ifdef CONFIG_SCHED_SMT
6718 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6720 return sprintf(page, "%u\n", sched_smt_power_savings);
6722 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6723 const char *buf, size_t count)
6725 return sched_power_savings_store(buf, count, 1);
6727 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6728 sched_smt_power_savings_store);
6729 #endif
6731 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6733 int err = 0;
6735 #ifdef CONFIG_SCHED_SMT
6736 if (smt_capable())
6737 err = sysfs_create_file(&cls->kset.kobj,
6738 &attr_sched_smt_power_savings.attr);
6739 #endif
6740 #ifdef CONFIG_SCHED_MC
6741 if (!err && mc_capable())
6742 err = sysfs_create_file(&cls->kset.kobj,
6743 &attr_sched_mc_power_savings.attr);
6744 #endif
6745 return err;
6747 #endif
6750 * Force a reinitialization of the sched domains hierarchy. The domains
6751 * and groups cannot be updated in place without racing with the balancing
6752 * code, so we temporarily attach all running cpus to the NULL domain
6753 * which will prevent rebalancing while the sched domains are recalculated.
6755 static int update_sched_domains(struct notifier_block *nfb,
6756 unsigned long action, void *hcpu)
6758 switch (action) {
6759 case CPU_UP_PREPARE:
6760 case CPU_UP_PREPARE_FROZEN:
6761 case CPU_DOWN_PREPARE:
6762 case CPU_DOWN_PREPARE_FROZEN:
6763 detach_destroy_domains(&cpu_online_map);
6764 return NOTIFY_OK;
6766 case CPU_UP_CANCELED:
6767 case CPU_UP_CANCELED_FROZEN:
6768 case CPU_DOWN_FAILED:
6769 case CPU_DOWN_FAILED_FROZEN:
6770 case CPU_ONLINE:
6771 case CPU_ONLINE_FROZEN:
6772 case CPU_DEAD:
6773 case CPU_DEAD_FROZEN:
6775 * Fall through and re-initialise the domains.
6777 break;
6778 default:
6779 return NOTIFY_DONE;
6782 /* The hotplug lock is already held by cpu_up/cpu_down */
6783 arch_init_sched_domains(&cpu_online_map);
6785 return NOTIFY_OK;
6788 void __init sched_init_smp(void)
6790 cpumask_t non_isolated_cpus;
6792 get_online_cpus();
6793 arch_init_sched_domains(&cpu_online_map);
6794 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6795 if (cpus_empty(non_isolated_cpus))
6796 cpu_set(smp_processor_id(), non_isolated_cpus);
6797 put_online_cpus();
6798 /* XXX: Theoretical race here - CPU may be hotplugged now */
6799 hotcpu_notifier(update_sched_domains, 0);
6801 /* Move init over to a non-isolated CPU */
6802 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6803 BUG();
6804 sched_init_granularity();
6806 #ifdef CONFIG_FAIR_GROUP_SCHED
6807 if (nr_cpu_ids == 1)
6808 return;
6810 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6811 "group_balance");
6812 if (!IS_ERR(lb_monitor_task)) {
6813 lb_monitor_task->flags |= PF_NOFREEZE;
6814 wake_up_process(lb_monitor_task);
6815 } else {
6816 printk(KERN_ERR "Could not create load balance monitor thread"
6817 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6819 #endif
6821 #else
6822 void __init sched_init_smp(void)
6824 sched_init_granularity();
6826 #endif /* CONFIG_SMP */
6828 int in_sched_functions(unsigned long addr)
6830 return in_lock_functions(addr) ||
6831 (addr >= (unsigned long)__sched_text_start
6832 && addr < (unsigned long)__sched_text_end);
6835 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6837 cfs_rq->tasks_timeline = RB_ROOT;
6838 #ifdef CONFIG_FAIR_GROUP_SCHED
6839 cfs_rq->rq = rq;
6840 #endif
6841 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6844 void __init sched_init(void)
6846 int highest_cpu = 0;
6847 int i, j;
6849 #ifdef CONFIG_SMP
6850 init_defrootdomain();
6851 #endif
6853 for_each_possible_cpu(i) {
6854 struct rt_prio_array *array;
6855 struct rq *rq;
6857 rq = cpu_rq(i);
6858 spin_lock_init(&rq->lock);
6859 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6860 rq->nr_running = 0;
6861 rq->clock = 1;
6862 init_cfs_rq(&rq->cfs, rq);
6863 #ifdef CONFIG_FAIR_GROUP_SCHED
6864 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6866 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6867 struct sched_entity *se =
6868 &per_cpu(init_sched_entity, i);
6870 init_cfs_rq_p[i] = cfs_rq;
6871 init_cfs_rq(cfs_rq, rq);
6872 cfs_rq->tg = &init_task_group;
6873 list_add(&cfs_rq->leaf_cfs_rq_list,
6874 &rq->leaf_cfs_rq_list);
6876 init_sched_entity_p[i] = se;
6877 se->cfs_rq = &rq->cfs;
6878 se->my_q = cfs_rq;
6879 se->load.weight = init_task_group_load;
6880 se->load.inv_weight =
6881 div64_64(1ULL<<32, init_task_group_load);
6882 se->parent = NULL;
6884 init_task_group.shares = init_task_group_load;
6885 #endif
6887 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6888 rq->cpu_load[j] = 0;
6889 #ifdef CONFIG_SMP
6890 rq->sd = NULL;
6891 rq->rd = NULL;
6892 rq_attach_root(rq, &def_root_domain);
6893 rq->active_balance = 0;
6894 rq->next_balance = jiffies;
6895 rq->push_cpu = 0;
6896 rq->cpu = i;
6897 rq->migration_thread = NULL;
6898 INIT_LIST_HEAD(&rq->migration_queue);
6899 rq->rt.highest_prio = MAX_RT_PRIO;
6900 rq->rt.overloaded = 0;
6901 #endif
6902 atomic_set(&rq->nr_iowait, 0);
6904 array = &rq->rt.active;
6905 for (j = 0; j < MAX_RT_PRIO; j++) {
6906 INIT_LIST_HEAD(array->queue + j);
6907 __clear_bit(j, array->bitmap);
6909 highest_cpu = i;
6910 /* delimiter for bitsearch: */
6911 __set_bit(MAX_RT_PRIO, array->bitmap);
6914 set_load_weight(&init_task);
6916 #ifdef CONFIG_PREEMPT_NOTIFIERS
6917 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6918 #endif
6920 #ifdef CONFIG_SMP
6921 nr_cpu_ids = highest_cpu + 1;
6922 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6923 #endif
6925 #ifdef CONFIG_RT_MUTEXES
6926 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6927 #endif
6930 * The boot idle thread does lazy MMU switching as well:
6932 atomic_inc(&init_mm.mm_count);
6933 enter_lazy_tlb(&init_mm, current);
6936 * Make us the idle thread. Technically, schedule() should not be
6937 * called from this thread, however somewhere below it might be,
6938 * but because we are the idle thread, we just pick up running again
6939 * when this runqueue becomes "idle".
6941 init_idle(current, smp_processor_id());
6943 * During early bootup we pretend to be a normal task:
6945 current->sched_class = &fair_sched_class;
6948 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6949 void __might_sleep(char *file, int line)
6951 #ifdef in_atomic
6952 static unsigned long prev_jiffy; /* ratelimiting */
6954 if ((in_atomic() || irqs_disabled()) &&
6955 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6956 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6957 return;
6958 prev_jiffy = jiffies;
6959 printk(KERN_ERR "BUG: sleeping function called from invalid"
6960 " context at %s:%d\n", file, line);
6961 printk("in_atomic():%d, irqs_disabled():%d\n",
6962 in_atomic(), irqs_disabled());
6963 debug_show_held_locks(current);
6964 if (irqs_disabled())
6965 print_irqtrace_events(current);
6966 dump_stack();
6968 #endif
6970 EXPORT_SYMBOL(__might_sleep);
6971 #endif
6973 #ifdef CONFIG_MAGIC_SYSRQ
6974 static void normalize_task(struct rq *rq, struct task_struct *p)
6976 int on_rq;
6977 update_rq_clock(rq);
6978 on_rq = p->se.on_rq;
6979 if (on_rq)
6980 deactivate_task(rq, p, 0);
6981 __setscheduler(rq, p, SCHED_NORMAL, 0);
6982 if (on_rq) {
6983 activate_task(rq, p, 0);
6984 resched_task(rq->curr);
6988 void normalize_rt_tasks(void)
6990 struct task_struct *g, *p;
6991 unsigned long flags;
6992 struct rq *rq;
6994 read_lock_irq(&tasklist_lock);
6995 do_each_thread(g, p) {
6997 * Only normalize user tasks:
6999 if (!p->mm)
7000 continue;
7002 p->se.exec_start = 0;
7003 #ifdef CONFIG_SCHEDSTATS
7004 p->se.wait_start = 0;
7005 p->se.sleep_start = 0;
7006 p->se.block_start = 0;
7007 #endif
7008 task_rq(p)->clock = 0;
7010 if (!rt_task(p)) {
7012 * Renice negative nice level userspace
7013 * tasks back to 0:
7015 if (TASK_NICE(p) < 0 && p->mm)
7016 set_user_nice(p, 0);
7017 continue;
7020 spin_lock_irqsave(&p->pi_lock, flags);
7021 rq = __task_rq_lock(p);
7023 normalize_task(rq, p);
7025 __task_rq_unlock(rq);
7026 spin_unlock_irqrestore(&p->pi_lock, flags);
7027 } while_each_thread(g, p);
7029 read_unlock_irq(&tasklist_lock);
7032 #endif /* CONFIG_MAGIC_SYSRQ */
7034 #ifdef CONFIG_IA64
7036 * These functions are only useful for the IA64 MCA handling.
7038 * They can only be called when the whole system has been
7039 * stopped - every CPU needs to be quiescent, and no scheduling
7040 * activity can take place. Using them for anything else would
7041 * be a serious bug, and as a result, they aren't even visible
7042 * under any other configuration.
7046 * curr_task - return the current task for a given cpu.
7047 * @cpu: the processor in question.
7049 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7051 struct task_struct *curr_task(int cpu)
7053 return cpu_curr(cpu);
7057 * set_curr_task - set the current task for a given cpu.
7058 * @cpu: the processor in question.
7059 * @p: the task pointer to set.
7061 * Description: This function must only be used when non-maskable interrupts
7062 * are serviced on a separate stack. It allows the architecture to switch the
7063 * notion of the current task on a cpu in a non-blocking manner. This function
7064 * must be called with all CPU's synchronized, and interrupts disabled, the
7065 * and caller must save the original value of the current task (see
7066 * curr_task() above) and restore that value before reenabling interrupts and
7067 * re-starting the system.
7069 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7071 void set_curr_task(int cpu, struct task_struct *p)
7073 cpu_curr(cpu) = p;
7076 #endif
7078 #ifdef CONFIG_FAIR_GROUP_SCHED
7080 #ifdef CONFIG_SMP
7082 * distribute shares of all task groups among their schedulable entities,
7083 * to reflect load distrbution across cpus.
7085 static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7087 struct cfs_rq *cfs_rq;
7088 struct rq *rq = cpu_rq(this_cpu);
7089 cpumask_t sdspan = sd->span;
7090 int balanced = 1;
7092 /* Walk thr' all the task groups that we have */
7093 for_each_leaf_cfs_rq(rq, cfs_rq) {
7094 int i;
7095 unsigned long total_load = 0, total_shares;
7096 struct task_group *tg = cfs_rq->tg;
7098 /* Gather total task load of this group across cpus */
7099 for_each_cpu_mask(i, sdspan)
7100 total_load += tg->cfs_rq[i]->load.weight;
7102 /* Nothing to do if this group has no load */
7103 if (!total_load)
7104 continue;
7107 * tg->shares represents the number of cpu shares the task group
7108 * is eligible to hold on a single cpu. On N cpus, it is
7109 * eligible to hold (N * tg->shares) number of cpu shares.
7111 total_shares = tg->shares * cpus_weight(sdspan);
7114 * redistribute total_shares across cpus as per the task load
7115 * distribution.
7117 for_each_cpu_mask(i, sdspan) {
7118 unsigned long local_load, local_shares;
7120 local_load = tg->cfs_rq[i]->load.weight;
7121 local_shares = (local_load * total_shares) / total_load;
7122 if (!local_shares)
7123 local_shares = MIN_GROUP_SHARES;
7124 if (local_shares == tg->se[i]->load.weight)
7125 continue;
7127 spin_lock_irq(&cpu_rq(i)->lock);
7128 set_se_shares(tg->se[i], local_shares);
7129 spin_unlock_irq(&cpu_rq(i)->lock);
7130 balanced = 0;
7134 return balanced;
7138 * How frequently should we rebalance_shares() across cpus?
7140 * The more frequently we rebalance shares, the more accurate is the fairness
7141 * of cpu bandwidth distribution between task groups. However higher frequency
7142 * also implies increased scheduling overhead.
7144 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7145 * consecutive calls to rebalance_shares() in the same sched domain.
7147 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7148 * consecutive calls to rebalance_shares() in the same sched domain.
7150 * These settings allows for the appropriate tradeoff between accuracy of
7151 * fairness and the associated overhead.
7155 /* default: 8ms, units: milliseconds */
7156 const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7158 /* default: 128ms, units: milliseconds */
7159 const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7161 /* kernel thread that runs rebalance_shares() periodically */
7162 static int load_balance_monitor(void *unused)
7164 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7165 struct sched_param schedparm;
7166 int ret;
7169 * We don't want this thread's execution to be limited by the shares
7170 * assigned to default group (init_task_group). Hence make it run
7171 * as a SCHED_RR RT task at the lowest priority.
7173 schedparm.sched_priority = 1;
7174 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7175 if (ret)
7176 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7177 " monitor thread (error = %d) \n", ret);
7179 while (!kthread_should_stop()) {
7180 int i, cpu, balanced = 1;
7182 /* Prevent cpus going down or coming up */
7183 get_online_cpus();
7184 /* lockout changes to doms_cur[] array */
7185 lock_doms_cur();
7187 * Enter a rcu read-side critical section to safely walk rq->sd
7188 * chain on various cpus and to walk task group list
7189 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7191 rcu_read_lock();
7193 for (i = 0; i < ndoms_cur; i++) {
7194 cpumask_t cpumap = doms_cur[i];
7195 struct sched_domain *sd = NULL, *sd_prev = NULL;
7197 cpu = first_cpu(cpumap);
7199 /* Find the highest domain at which to balance shares */
7200 for_each_domain(cpu, sd) {
7201 if (!(sd->flags & SD_LOAD_BALANCE))
7202 continue;
7203 sd_prev = sd;
7206 sd = sd_prev;
7207 /* sd == NULL? No load balance reqd in this domain */
7208 if (!sd)
7209 continue;
7211 balanced &= rebalance_shares(sd, cpu);
7214 rcu_read_unlock();
7216 unlock_doms_cur();
7217 put_online_cpus();
7219 if (!balanced)
7220 timeout = sysctl_sched_min_bal_int_shares;
7221 else if (timeout < sysctl_sched_max_bal_int_shares)
7222 timeout *= 2;
7224 msleep_interruptible(timeout);
7227 return 0;
7229 #endif /* CONFIG_SMP */
7231 /* allocate runqueue etc for a new task group */
7232 struct task_group *sched_create_group(void)
7234 struct task_group *tg;
7235 struct cfs_rq *cfs_rq;
7236 struct sched_entity *se;
7237 struct rq *rq;
7238 int i;
7240 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7241 if (!tg)
7242 return ERR_PTR(-ENOMEM);
7244 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7245 if (!tg->cfs_rq)
7246 goto err;
7247 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7248 if (!tg->se)
7249 goto err;
7251 for_each_possible_cpu(i) {
7252 rq = cpu_rq(i);
7254 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7255 cpu_to_node(i));
7256 if (!cfs_rq)
7257 goto err;
7259 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7260 cpu_to_node(i));
7261 if (!se)
7262 goto err;
7264 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7265 memset(se, 0, sizeof(struct sched_entity));
7267 tg->cfs_rq[i] = cfs_rq;
7268 init_cfs_rq(cfs_rq, rq);
7269 cfs_rq->tg = tg;
7271 tg->se[i] = se;
7272 se->cfs_rq = &rq->cfs;
7273 se->my_q = cfs_rq;
7274 se->load.weight = NICE_0_LOAD;
7275 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7276 se->parent = NULL;
7279 tg->shares = NICE_0_LOAD;
7281 lock_task_group_list();
7282 for_each_possible_cpu(i) {
7283 rq = cpu_rq(i);
7284 cfs_rq = tg->cfs_rq[i];
7285 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7287 unlock_task_group_list();
7289 return tg;
7291 err:
7292 for_each_possible_cpu(i) {
7293 if (tg->cfs_rq)
7294 kfree(tg->cfs_rq[i]);
7295 if (tg->se)
7296 kfree(tg->se[i]);
7298 kfree(tg->cfs_rq);
7299 kfree(tg->se);
7300 kfree(tg);
7302 return ERR_PTR(-ENOMEM);
7305 /* rcu callback to free various structures associated with a task group */
7306 static void free_sched_group(struct rcu_head *rhp)
7308 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7309 struct cfs_rq *cfs_rq;
7310 struct sched_entity *se;
7311 int i;
7313 /* now it should be safe to free those cfs_rqs */
7314 for_each_possible_cpu(i) {
7315 cfs_rq = tg->cfs_rq[i];
7316 kfree(cfs_rq);
7318 se = tg->se[i];
7319 kfree(se);
7322 kfree(tg->cfs_rq);
7323 kfree(tg->se);
7324 kfree(tg);
7327 /* Destroy runqueue etc associated with a task group */
7328 void sched_destroy_group(struct task_group *tg)
7330 struct cfs_rq *cfs_rq = NULL;
7331 int i;
7333 lock_task_group_list();
7334 for_each_possible_cpu(i) {
7335 cfs_rq = tg->cfs_rq[i];
7336 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7338 unlock_task_group_list();
7340 BUG_ON(!cfs_rq);
7342 /* wait for possible concurrent references to cfs_rqs complete */
7343 call_rcu(&tg->rcu, free_sched_group);
7346 /* change task's runqueue when it moves between groups.
7347 * The caller of this function should have put the task in its new group
7348 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7349 * reflect its new group.
7351 void sched_move_task(struct task_struct *tsk)
7353 int on_rq, running;
7354 unsigned long flags;
7355 struct rq *rq;
7357 rq = task_rq_lock(tsk, &flags);
7359 if (tsk->sched_class != &fair_sched_class) {
7360 set_task_cfs_rq(tsk, task_cpu(tsk));
7361 goto done;
7364 update_rq_clock(rq);
7366 running = task_current(rq, tsk);
7367 on_rq = tsk->se.on_rq;
7369 if (on_rq) {
7370 dequeue_task(rq, tsk, 0);
7371 if (unlikely(running))
7372 tsk->sched_class->put_prev_task(rq, tsk);
7375 set_task_cfs_rq(tsk, task_cpu(tsk));
7377 if (on_rq) {
7378 if (unlikely(running))
7379 tsk->sched_class->set_curr_task(rq);
7380 enqueue_task(rq, tsk, 0);
7383 done:
7384 task_rq_unlock(rq, &flags);
7387 /* rq->lock to be locked by caller */
7388 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7390 struct cfs_rq *cfs_rq = se->cfs_rq;
7391 struct rq *rq = cfs_rq->rq;
7392 int on_rq;
7394 if (!shares)
7395 shares = MIN_GROUP_SHARES;
7397 on_rq = se->on_rq;
7398 if (on_rq) {
7399 dequeue_entity(cfs_rq, se, 0);
7400 dec_cpu_load(rq, se->load.weight);
7403 se->load.weight = shares;
7404 se->load.inv_weight = div64_64((1ULL<<32), shares);
7406 if (on_rq) {
7407 enqueue_entity(cfs_rq, se, 0);
7408 inc_cpu_load(rq, se->load.weight);
7412 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7414 int i;
7415 struct cfs_rq *cfs_rq;
7416 struct rq *rq;
7418 lock_task_group_list();
7419 if (tg->shares == shares)
7420 goto done;
7422 if (shares < MIN_GROUP_SHARES)
7423 shares = MIN_GROUP_SHARES;
7426 * Prevent any load balance activity (rebalance_shares,
7427 * load_balance_fair) from referring to this group first,
7428 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7430 for_each_possible_cpu(i) {
7431 cfs_rq = tg->cfs_rq[i];
7432 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7435 /* wait for any ongoing reference to this group to finish */
7436 synchronize_sched();
7439 * Now we are free to modify the group's share on each cpu
7440 * w/o tripping rebalance_share or load_balance_fair.
7442 tg->shares = shares;
7443 for_each_possible_cpu(i) {
7444 spin_lock_irq(&cpu_rq(i)->lock);
7445 set_se_shares(tg->se[i], shares);
7446 spin_unlock_irq(&cpu_rq(i)->lock);
7450 * Enable load balance activity on this group, by inserting it back on
7451 * each cpu's rq->leaf_cfs_rq_list.
7453 for_each_possible_cpu(i) {
7454 rq = cpu_rq(i);
7455 cfs_rq = tg->cfs_rq[i];
7456 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7458 done:
7459 unlock_task_group_list();
7460 return 0;
7463 unsigned long sched_group_shares(struct task_group *tg)
7465 return tg->shares;
7468 #endif /* CONFIG_FAIR_GROUP_SCHED */
7470 #ifdef CONFIG_FAIR_CGROUP_SCHED
7472 /* return corresponding task_group object of a cgroup */
7473 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7475 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7476 struct task_group, css);
7479 static struct cgroup_subsys_state *
7480 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7482 struct task_group *tg;
7484 if (!cgrp->parent) {
7485 /* This is early initialization for the top cgroup */
7486 init_task_group.css.cgroup = cgrp;
7487 return &init_task_group.css;
7490 /* we support only 1-level deep hierarchical scheduler atm */
7491 if (cgrp->parent->parent)
7492 return ERR_PTR(-EINVAL);
7494 tg = sched_create_group();
7495 if (IS_ERR(tg))
7496 return ERR_PTR(-ENOMEM);
7498 /* Bind the cgroup to task_group object we just created */
7499 tg->css.cgroup = cgrp;
7501 return &tg->css;
7504 static void
7505 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7507 struct task_group *tg = cgroup_tg(cgrp);
7509 sched_destroy_group(tg);
7512 static int
7513 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7514 struct task_struct *tsk)
7516 /* We don't support RT-tasks being in separate groups */
7517 if (tsk->sched_class != &fair_sched_class)
7518 return -EINVAL;
7520 return 0;
7523 static void
7524 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7525 struct cgroup *old_cont, struct task_struct *tsk)
7527 sched_move_task(tsk);
7530 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7531 u64 shareval)
7533 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7536 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7538 struct task_group *tg = cgroup_tg(cgrp);
7540 return (u64) tg->shares;
7543 static struct cftype cpu_files[] = {
7545 .name = "shares",
7546 .read_uint = cpu_shares_read_uint,
7547 .write_uint = cpu_shares_write_uint,
7551 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7553 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7556 struct cgroup_subsys cpu_cgroup_subsys = {
7557 .name = "cpu",
7558 .create = cpu_cgroup_create,
7559 .destroy = cpu_cgroup_destroy,
7560 .can_attach = cpu_cgroup_can_attach,
7561 .attach = cpu_cgroup_attach,
7562 .populate = cpu_cgroup_populate,
7563 .subsys_id = cpu_cgroup_subsys_id,
7564 .early_init = 1,
7567 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7569 #ifdef CONFIG_CGROUP_CPUACCT
7572 * CPU accounting code for task groups.
7574 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7575 * (balbir@in.ibm.com).
7578 /* track cpu usage of a group of tasks */
7579 struct cpuacct {
7580 struct cgroup_subsys_state css;
7581 /* cpuusage holds pointer to a u64-type object on every cpu */
7582 u64 *cpuusage;
7585 struct cgroup_subsys cpuacct_subsys;
7587 /* return cpu accounting group corresponding to this container */
7588 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7590 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7591 struct cpuacct, css);
7594 /* return cpu accounting group to which this task belongs */
7595 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7597 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7598 struct cpuacct, css);
7601 /* create a new cpu accounting group */
7602 static struct cgroup_subsys_state *cpuacct_create(
7603 struct cgroup_subsys *ss, struct cgroup *cont)
7605 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7607 if (!ca)
7608 return ERR_PTR(-ENOMEM);
7610 ca->cpuusage = alloc_percpu(u64);
7611 if (!ca->cpuusage) {
7612 kfree(ca);
7613 return ERR_PTR(-ENOMEM);
7616 return &ca->css;
7619 /* destroy an existing cpu accounting group */
7620 static void
7621 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7623 struct cpuacct *ca = cgroup_ca(cont);
7625 free_percpu(ca->cpuusage);
7626 kfree(ca);
7629 /* return total cpu usage (in nanoseconds) of a group */
7630 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7632 struct cpuacct *ca = cgroup_ca(cont);
7633 u64 totalcpuusage = 0;
7634 int i;
7636 for_each_possible_cpu(i) {
7637 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7640 * Take rq->lock to make 64-bit addition safe on 32-bit
7641 * platforms.
7643 spin_lock_irq(&cpu_rq(i)->lock);
7644 totalcpuusage += *cpuusage;
7645 spin_unlock_irq(&cpu_rq(i)->lock);
7648 return totalcpuusage;
7651 static struct cftype files[] = {
7653 .name = "usage",
7654 .read_uint = cpuusage_read,
7658 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7660 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7664 * charge this task's execution time to its accounting group.
7666 * called with rq->lock held.
7668 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7670 struct cpuacct *ca;
7672 if (!cpuacct_subsys.active)
7673 return;
7675 ca = task_ca(tsk);
7676 if (ca) {
7677 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7679 *cpuusage += cputime;
7683 struct cgroup_subsys cpuacct_subsys = {
7684 .name = "cpuacct",
7685 .create = cpuacct_create,
7686 .destroy = cpuacct_destroy,
7687 .populate = cpuacct_populate,
7688 .subsys_id = cpuacct_subsys_id,
7690 #endif /* CONFIG_CGROUP_CPUACCT */