2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
76 const struct ata_port_operations ata_base_port_ops
= {
77 .prereset
= ata_std_prereset
,
78 .postreset
= ata_std_postreset
,
79 .error_handler
= ata_std_error_handler
,
82 const struct ata_port_operations sata_port_ops
= {
83 .inherits
= &ata_base_port_ops
,
85 .qc_defer
= ata_std_qc_defer
,
86 .hardreset
= sata_std_hardreset
,
89 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
90 u16 heads
, u16 sectors
);
91 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
92 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
93 u8 enable
, u8 feature
);
94 static void ata_dev_xfermask(struct ata_device
*dev
);
95 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
97 unsigned int ata_print_id
= 1;
98 static struct workqueue_struct
*ata_wq
;
100 struct workqueue_struct
*ata_aux_wq
;
102 struct ata_force_param
{
106 unsigned long xfer_mask
;
107 unsigned int horkage_on
;
108 unsigned int horkage_off
;
112 struct ata_force_ent
{
115 struct ata_force_param param
;
118 static struct ata_force_ent
*ata_force_tbl
;
119 static int ata_force_tbl_size
;
121 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
124 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126 static int atapi_enabled
= 1;
127 module_param(atapi_enabled
, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
130 static int atapi_dmadir
= 0;
131 module_param(atapi_dmadir
, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
134 int atapi_passthru16
= 1;
135 module_param(atapi_passthru16
, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
139 module_param_named(fua
, libata_fua
, int, 0444);
140 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
142 static int ata_ignore_hpa
;
143 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
147 module_param_named(dma
, libata_dma_mask
, int, 0444);
148 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150 static int ata_probe_timeout
;
151 module_param(ata_probe_timeout
, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
154 int libata_noacpi
= 0;
155 module_param_named(noacpi
, libata_noacpi
, int, 0444);
156 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in probe/suspend/resume when set");
158 int libata_allow_tpm
= 0;
159 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
160 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands");
162 MODULE_AUTHOR("Jeff Garzik");
163 MODULE_DESCRIPTION("Library module for ATA devices");
164 MODULE_LICENSE("GPL");
165 MODULE_VERSION(DRV_VERSION
);
168 static bool ata_sstatus_online(u32 sstatus
)
170 return (sstatus
& 0xf) == 0x3;
174 * ata_link_next - link iteration helper
175 * @link: the previous link, NULL to start
176 * @ap: ATA port containing links to iterate
177 * @mode: iteration mode, one of ATA_LITER_*
180 * Host lock or EH context.
183 * Pointer to the next link.
185 struct ata_link
*ata_link_next(struct ata_link
*link
, struct ata_port
*ap
,
186 enum ata_link_iter_mode mode
)
188 BUG_ON(mode
!= ATA_LITER_EDGE
&&
189 mode
!= ATA_LITER_PMP_FIRST
&& mode
!= ATA_LITER_HOST_FIRST
);
191 /* NULL link indicates start of iteration */
195 case ATA_LITER_PMP_FIRST
:
196 if (sata_pmp_attached(ap
))
199 case ATA_LITER_HOST_FIRST
:
203 /* we just iterated over the host link, what's next? */
204 if (link
== &ap
->link
)
206 case ATA_LITER_HOST_FIRST
:
207 if (sata_pmp_attached(ap
))
210 case ATA_LITER_PMP_FIRST
:
211 if (unlikely(ap
->slave_link
))
212 return ap
->slave_link
;
218 /* slave_link excludes PMP */
219 if (unlikely(link
== ap
->slave_link
))
222 /* we were over a PMP link */
223 if (++link
< ap
->pmp_link
+ ap
->nr_pmp_links
)
226 if (mode
== ATA_LITER_PMP_FIRST
)
233 * ata_dev_next - device iteration helper
234 * @dev: the previous device, NULL to start
235 * @link: ATA link containing devices to iterate
236 * @mode: iteration mode, one of ATA_DITER_*
239 * Host lock or EH context.
242 * Pointer to the next device.
244 struct ata_device
*ata_dev_next(struct ata_device
*dev
, struct ata_link
*link
,
245 enum ata_dev_iter_mode mode
)
247 BUG_ON(mode
!= ATA_DITER_ENABLED
&& mode
!= ATA_DITER_ENABLED_REVERSE
&&
248 mode
!= ATA_DITER_ALL
&& mode
!= ATA_DITER_ALL_REVERSE
);
250 /* NULL dev indicates start of iteration */
253 case ATA_DITER_ENABLED
:
257 case ATA_DITER_ENABLED_REVERSE
:
258 case ATA_DITER_ALL_REVERSE
:
259 dev
= link
->device
+ ata_link_max_devices(link
) - 1;
264 /* move to the next one */
266 case ATA_DITER_ENABLED
:
268 if (++dev
< link
->device
+ ata_link_max_devices(link
))
271 case ATA_DITER_ENABLED_REVERSE
:
272 case ATA_DITER_ALL_REVERSE
:
273 if (--dev
>= link
->device
)
279 if ((mode
== ATA_DITER_ENABLED
|| mode
== ATA_DITER_ENABLED_REVERSE
) &&
280 !ata_dev_enabled(dev
))
286 * ata_dev_phys_link - find physical link for a device
287 * @dev: ATA device to look up physical link for
289 * Look up physical link which @dev is attached to. Note that
290 * this is different from @dev->link only when @dev is on slave
291 * link. For all other cases, it's the same as @dev->link.
297 * Pointer to the found physical link.
299 struct ata_link
*ata_dev_phys_link(struct ata_device
*dev
)
301 struct ata_port
*ap
= dev
->link
->ap
;
307 return ap
->slave_link
;
311 * ata_force_cbl - force cable type according to libata.force
312 * @ap: ATA port of interest
314 * Force cable type according to libata.force and whine about it.
315 * The last entry which has matching port number is used, so it
316 * can be specified as part of device force parameters. For
317 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 void ata_force_cbl(struct ata_port
*ap
)
327 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
328 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
330 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
333 if (fe
->param
.cbl
== ATA_CBL_NONE
)
336 ap
->cbl
= fe
->param
.cbl
;
337 ata_port_printk(ap
, KERN_NOTICE
,
338 "FORCE: cable set to %s\n", fe
->param
.name
);
344 * ata_force_link_limits - force link limits according to libata.force
345 * @link: ATA link of interest
347 * Force link flags and SATA spd limit according to libata.force
348 * and whine about it. When only the port part is specified
349 * (e.g. 1:), the limit applies to all links connected to both
350 * the host link and all fan-out ports connected via PMP. If the
351 * device part is specified as 0 (e.g. 1.00:), it specifies the
352 * first fan-out link not the host link. Device number 15 always
353 * points to the host link whether PMP is attached or not. If the
354 * controller has slave link, device number 16 points to it.
359 static void ata_force_link_limits(struct ata_link
*link
)
361 bool did_spd
= false;
362 int linkno
= link
->pmp
;
365 if (ata_is_host_link(link
))
368 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
369 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
371 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
374 if (fe
->device
!= -1 && fe
->device
!= linkno
)
377 /* only honor the first spd limit */
378 if (!did_spd
&& fe
->param
.spd_limit
) {
379 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
380 ata_link_printk(link
, KERN_NOTICE
,
381 "FORCE: PHY spd limit set to %s\n",
386 /* let lflags stack */
387 if (fe
->param
.lflags
) {
388 link
->flags
|= fe
->param
.lflags
;
389 ata_link_printk(link
, KERN_NOTICE
,
390 "FORCE: link flag 0x%x forced -> 0x%x\n",
391 fe
->param
.lflags
, link
->flags
);
397 * ata_force_xfermask - force xfermask according to libata.force
398 * @dev: ATA device of interest
400 * Force xfer_mask according to libata.force and whine about it.
401 * For consistency with link selection, device number 15 selects
402 * the first device connected to the host link.
407 static void ata_force_xfermask(struct ata_device
*dev
)
409 int devno
= dev
->link
->pmp
+ dev
->devno
;
410 int alt_devno
= devno
;
413 /* allow n.15/16 for devices attached to host port */
414 if (ata_is_host_link(dev
->link
))
417 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
418 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
419 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
421 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
424 if (fe
->device
!= -1 && fe
->device
!= devno
&&
425 fe
->device
!= alt_devno
)
428 if (!fe
->param
.xfer_mask
)
431 ata_unpack_xfermask(fe
->param
.xfer_mask
,
432 &pio_mask
, &mwdma_mask
, &udma_mask
);
434 dev
->udma_mask
= udma_mask
;
435 else if (mwdma_mask
) {
437 dev
->mwdma_mask
= mwdma_mask
;
441 dev
->pio_mask
= pio_mask
;
444 ata_dev_printk(dev
, KERN_NOTICE
,
445 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
451 * ata_force_horkage - force horkage according to libata.force
452 * @dev: ATA device of interest
454 * Force horkage according to libata.force and whine about it.
455 * For consistency with link selection, device number 15 selects
456 * the first device connected to the host link.
461 static void ata_force_horkage(struct ata_device
*dev
)
463 int devno
= dev
->link
->pmp
+ dev
->devno
;
464 int alt_devno
= devno
;
467 /* allow n.15/16 for devices attached to host port */
468 if (ata_is_host_link(dev
->link
))
471 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
472 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
474 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
477 if (fe
->device
!= -1 && fe
->device
!= devno
&&
478 fe
->device
!= alt_devno
)
481 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
482 !(dev
->horkage
& fe
->param
.horkage_off
))
485 dev
->horkage
|= fe
->param
.horkage_on
;
486 dev
->horkage
&= ~fe
->param
.horkage_off
;
488 ata_dev_printk(dev
, KERN_NOTICE
,
489 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495 * @opcode: SCSI opcode
497 * Determine ATAPI command type from @opcode.
503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 int atapi_cmd_type(u8 opcode
)
514 case GPCMD_WRITE_AND_VERIFY_10
:
518 case GPCMD_READ_CD_MSF
:
519 return ATAPI_READ_CD
;
523 if (atapi_passthru16
)
524 return ATAPI_PASS_THRU
;
532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533 * @tf: Taskfile to convert
534 * @pmp: Port multiplier port
535 * @is_cmd: This FIS is for command
536 * @fis: Buffer into which data will output
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
542 * Inherited from caller.
544 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
546 fis
[0] = 0x27; /* Register - Host to Device FIS */
547 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
549 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
551 fis
[2] = tf
->command
;
552 fis
[3] = tf
->feature
;
559 fis
[8] = tf
->hob_lbal
;
560 fis
[9] = tf
->hob_lbam
;
561 fis
[10] = tf
->hob_lbah
;
562 fis
[11] = tf
->hob_feature
;
565 fis
[13] = tf
->hob_nsect
;
576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577 * @fis: Buffer from which data will be input
578 * @tf: Taskfile to output
580 * Converts a serial ATA FIS structure to a standard ATA taskfile.
583 * Inherited from caller.
586 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
588 tf
->command
= fis
[2]; /* status */
589 tf
->feature
= fis
[3]; /* error */
596 tf
->hob_lbal
= fis
[8];
597 tf
->hob_lbam
= fis
[9];
598 tf
->hob_lbah
= fis
[10];
601 tf
->hob_nsect
= fis
[13];
604 static const u8 ata_rw_cmds
[] = {
608 ATA_CMD_READ_MULTI_EXT
,
609 ATA_CMD_WRITE_MULTI_EXT
,
613 ATA_CMD_WRITE_MULTI_FUA_EXT
,
617 ATA_CMD_PIO_READ_EXT
,
618 ATA_CMD_PIO_WRITE_EXT
,
631 ATA_CMD_WRITE_FUA_EXT
635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
636 * @tf: command to examine and configure
637 * @dev: device tf belongs to
639 * Examine the device configuration and tf->flags to calculate
640 * the proper read/write commands and protocol to use.
645 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
649 int index
, fua
, lba48
, write
;
651 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
652 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
653 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
655 if (dev
->flags
& ATA_DFLAG_PIO
) {
656 tf
->protocol
= ATA_PROT_PIO
;
657 index
= dev
->multi_count
? 0 : 8;
658 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
659 /* Unable to use DMA due to host limitation */
660 tf
->protocol
= ATA_PROT_PIO
;
661 index
= dev
->multi_count
? 0 : 8;
663 tf
->protocol
= ATA_PROT_DMA
;
667 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
676 * ata_tf_read_block - Read block address from ATA taskfile
677 * @tf: ATA taskfile of interest
678 * @dev: ATA device @tf belongs to
683 * Read block address from @tf. This function can handle all
684 * three address formats - LBA, LBA48 and CHS. tf->protocol and
685 * flags select the address format to use.
688 * Block address read from @tf.
690 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
694 if (tf
->flags
& ATA_TFLAG_LBA
) {
695 if (tf
->flags
& ATA_TFLAG_LBA48
) {
696 block
|= (u64
)tf
->hob_lbah
<< 40;
697 block
|= (u64
)tf
->hob_lbam
<< 32;
698 block
|= (u64
)tf
->hob_lbal
<< 24;
700 block
|= (tf
->device
& 0xf) << 24;
702 block
|= tf
->lbah
<< 16;
703 block
|= tf
->lbam
<< 8;
708 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
709 head
= tf
->device
& 0xf;
712 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
719 * ata_build_rw_tf - Build ATA taskfile for given read/write request
720 * @tf: Target ATA taskfile
721 * @dev: ATA device @tf belongs to
722 * @block: Block address
723 * @n_block: Number of blocks
724 * @tf_flags: RW/FUA etc...
730 * Build ATA taskfile @tf for read/write request described by
731 * @block, @n_block, @tf_flags and @tag on @dev.
735 * 0 on success, -ERANGE if the request is too large for @dev,
736 * -EINVAL if the request is invalid.
738 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
739 u64 block
, u32 n_block
, unsigned int tf_flags
,
742 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
743 tf
->flags
|= tf_flags
;
745 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
747 if (!lba_48_ok(block
, n_block
))
750 tf
->protocol
= ATA_PROT_NCQ
;
751 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
753 if (tf
->flags
& ATA_TFLAG_WRITE
)
754 tf
->command
= ATA_CMD_FPDMA_WRITE
;
756 tf
->command
= ATA_CMD_FPDMA_READ
;
758 tf
->nsect
= tag
<< 3;
759 tf
->hob_feature
= (n_block
>> 8) & 0xff;
760 tf
->feature
= n_block
& 0xff;
762 tf
->hob_lbah
= (block
>> 40) & 0xff;
763 tf
->hob_lbam
= (block
>> 32) & 0xff;
764 tf
->hob_lbal
= (block
>> 24) & 0xff;
765 tf
->lbah
= (block
>> 16) & 0xff;
766 tf
->lbam
= (block
>> 8) & 0xff;
767 tf
->lbal
= block
& 0xff;
770 if (tf
->flags
& ATA_TFLAG_FUA
)
771 tf
->device
|= 1 << 7;
772 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
773 tf
->flags
|= ATA_TFLAG_LBA
;
775 if (lba_28_ok(block
, n_block
)) {
777 tf
->device
|= (block
>> 24) & 0xf;
778 } else if (lba_48_ok(block
, n_block
)) {
779 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
783 tf
->flags
|= ATA_TFLAG_LBA48
;
785 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
787 tf
->hob_lbah
= (block
>> 40) & 0xff;
788 tf
->hob_lbam
= (block
>> 32) & 0xff;
789 tf
->hob_lbal
= (block
>> 24) & 0xff;
791 /* request too large even for LBA48 */
794 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
797 tf
->nsect
= n_block
& 0xff;
799 tf
->lbah
= (block
>> 16) & 0xff;
800 tf
->lbam
= (block
>> 8) & 0xff;
801 tf
->lbal
= block
& 0xff;
803 tf
->device
|= ATA_LBA
;
806 u32 sect
, head
, cyl
, track
;
808 /* The request -may- be too large for CHS addressing. */
809 if (!lba_28_ok(block
, n_block
))
812 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
815 /* Convert LBA to CHS */
816 track
= (u32
)block
/ dev
->sectors
;
817 cyl
= track
/ dev
->heads
;
818 head
= track
% dev
->heads
;
819 sect
= (u32
)block
% dev
->sectors
+ 1;
821 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
822 (u32
)block
, track
, cyl
, head
, sect
);
824 /* Check whether the converted CHS can fit.
828 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
831 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
842 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
843 * @pio_mask: pio_mask
844 * @mwdma_mask: mwdma_mask
845 * @udma_mask: udma_mask
847 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
848 * unsigned int xfer_mask.
856 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
857 unsigned long mwdma_mask
,
858 unsigned long udma_mask
)
860 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
861 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
862 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
866 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
867 * @xfer_mask: xfer_mask to unpack
868 * @pio_mask: resulting pio_mask
869 * @mwdma_mask: resulting mwdma_mask
870 * @udma_mask: resulting udma_mask
872 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
873 * Any NULL distination masks will be ignored.
875 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
876 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
879 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
881 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
883 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
886 static const struct ata_xfer_ent
{
890 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
891 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
892 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
897 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
898 * @xfer_mask: xfer_mask of interest
900 * Return matching XFER_* value for @xfer_mask. Only the highest
901 * bit of @xfer_mask is considered.
907 * Matching XFER_* value, 0xff if no match found.
909 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
911 int highbit
= fls(xfer_mask
) - 1;
912 const struct ata_xfer_ent
*ent
;
914 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
915 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
916 return ent
->base
+ highbit
- ent
->shift
;
921 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
922 * @xfer_mode: XFER_* of interest
924 * Return matching xfer_mask for @xfer_mode.
930 * Matching xfer_mask, 0 if no match found.
932 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
934 const struct ata_xfer_ent
*ent
;
936 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
937 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
938 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
939 & ~((1 << ent
->shift
) - 1);
944 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
945 * @xfer_mode: XFER_* of interest
947 * Return matching xfer_shift for @xfer_mode.
953 * Matching xfer_shift, -1 if no match found.
955 int ata_xfer_mode2shift(unsigned long xfer_mode
)
957 const struct ata_xfer_ent
*ent
;
959 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
960 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
966 * ata_mode_string - convert xfer_mask to string
967 * @xfer_mask: mask of bits supported; only highest bit counts.
969 * Determine string which represents the highest speed
970 * (highest bit in @modemask).
976 * Constant C string representing highest speed listed in
977 * @mode_mask, or the constant C string "<n/a>".
979 const char *ata_mode_string(unsigned long xfer_mask
)
981 static const char * const xfer_mode_str
[] = {
1005 highbit
= fls(xfer_mask
) - 1;
1006 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
1007 return xfer_mode_str
[highbit
];
1011 static const char *sata_spd_string(unsigned int spd
)
1013 static const char * const spd_str
[] = {
1019 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
1021 return spd_str
[spd
- 1];
1024 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
1026 struct ata_link
*link
= dev
->link
;
1027 struct ata_port
*ap
= link
->ap
;
1029 unsigned int err_mask
;
1033 * disallow DIPM for drivers which haven't set
1034 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1035 * phy ready will be set in the interrupt status on
1036 * state changes, which will cause some drivers to
1037 * think there are errors - additionally drivers will
1038 * need to disable hot plug.
1040 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
1041 ap
->pm_policy
= NOT_AVAILABLE
;
1046 * For DIPM, we will only enable it for the
1047 * min_power setting.
1049 * Why? Because Disks are too stupid to know that
1050 * If the host rejects a request to go to SLUMBER
1051 * they should retry at PARTIAL, and instead it
1052 * just would give up. So, for medium_power to
1053 * work at all, we need to only allow HIPM.
1055 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
1061 /* no restrictions on IPM transitions */
1062 scontrol
&= ~(0x3 << 8);
1063 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1068 if (dev
->flags
& ATA_DFLAG_DIPM
)
1069 err_mask
= ata_dev_set_feature(dev
,
1070 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
1073 /* allow IPM to PARTIAL */
1074 scontrol
&= ~(0x1 << 8);
1075 scontrol
|= (0x2 << 8);
1076 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1081 * we don't have to disable DIPM since IPM flags
1082 * disallow transitions to SLUMBER, which effectively
1083 * disable DIPM if it does not support PARTIAL
1087 case MAX_PERFORMANCE
:
1088 /* disable all IPM transitions */
1089 scontrol
|= (0x3 << 8);
1090 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1095 * we don't have to disable DIPM since IPM flags
1096 * disallow all transitions which effectively
1097 * disable DIPM anyway.
1102 /* FIXME: handle SET FEATURES failure */
1109 * ata_dev_enable_pm - enable SATA interface power management
1110 * @dev: device to enable power management
1111 * @policy: the link power management policy
1113 * Enable SATA Interface power management. This will enable
1114 * Device Interface Power Management (DIPM) for min_power
1115 * policy, and then call driver specific callbacks for
1116 * enabling Host Initiated Power management.
1119 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1121 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
1124 struct ata_port
*ap
= dev
->link
->ap
;
1126 /* set HIPM first, then DIPM */
1127 if (ap
->ops
->enable_pm
)
1128 rc
= ap
->ops
->enable_pm(ap
, policy
);
1131 rc
= ata_dev_set_dipm(dev
, policy
);
1135 ap
->pm_policy
= MAX_PERFORMANCE
;
1137 ap
->pm_policy
= policy
;
1138 return /* rc */; /* hopefully we can use 'rc' eventually */
1143 * ata_dev_disable_pm - disable SATA interface power management
1144 * @dev: device to disable power management
1146 * Disable SATA Interface power management. This will disable
1147 * Device Interface Power Management (DIPM) without changing
1148 * policy, call driver specific callbacks for disabling Host
1149 * Initiated Power management.
1154 static void ata_dev_disable_pm(struct ata_device
*dev
)
1156 struct ata_port
*ap
= dev
->link
->ap
;
1158 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
1159 if (ap
->ops
->disable_pm
)
1160 ap
->ops
->disable_pm(ap
);
1162 #endif /* CONFIG_PM */
1164 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
1166 ap
->pm_policy
= policy
;
1167 ap
->link
.eh_info
.action
|= ATA_EH_LPM
;
1168 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
1169 ata_port_schedule_eh(ap
);
1173 static void ata_lpm_enable(struct ata_host
*host
)
1175 struct ata_link
*link
;
1176 struct ata_port
*ap
;
1177 struct ata_device
*dev
;
1180 for (i
= 0; i
< host
->n_ports
; i
++) {
1181 ap
= host
->ports
[i
];
1182 ata_for_each_link(link
, ap
, EDGE
) {
1183 ata_for_each_dev(dev
, link
, ALL
)
1184 ata_dev_disable_pm(dev
);
1189 static void ata_lpm_disable(struct ata_host
*host
)
1193 for (i
= 0; i
< host
->n_ports
; i
++) {
1194 struct ata_port
*ap
= host
->ports
[i
];
1195 ata_lpm_schedule(ap
, ap
->pm_policy
);
1198 #endif /* CONFIG_PM */
1201 * ata_dev_classify - determine device type based on ATA-spec signature
1202 * @tf: ATA taskfile register set for device to be identified
1204 * Determine from taskfile register contents whether a device is
1205 * ATA or ATAPI, as per "Signature and persistence" section
1206 * of ATA/PI spec (volume 1, sect 5.14).
1212 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1213 * %ATA_DEV_UNKNOWN the event of failure.
1215 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1217 /* Apple's open source Darwin code hints that some devices only
1218 * put a proper signature into the LBA mid/high registers,
1219 * So, we only check those. It's sufficient for uniqueness.
1221 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1222 * signatures for ATA and ATAPI devices attached on SerialATA,
1223 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1224 * spec has never mentioned about using different signatures
1225 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1226 * Multiplier specification began to use 0x69/0x96 to identify
1227 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1228 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1229 * 0x69/0x96 shortly and described them as reserved for
1232 * We follow the current spec and consider that 0x69/0x96
1233 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1235 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1236 DPRINTK("found ATA device by sig\n");
1240 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1241 DPRINTK("found ATAPI device by sig\n");
1242 return ATA_DEV_ATAPI
;
1245 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1246 DPRINTK("found PMP device by sig\n");
1250 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1251 printk(KERN_INFO
"ata: SEMB device ignored\n");
1252 return ATA_DEV_SEMB_UNSUP
; /* not yet */
1255 DPRINTK("unknown device\n");
1256 return ATA_DEV_UNKNOWN
;
1260 * ata_id_string - Convert IDENTIFY DEVICE page into string
1261 * @id: IDENTIFY DEVICE results we will examine
1262 * @s: string into which data is output
1263 * @ofs: offset into identify device page
1264 * @len: length of string to return. must be an even number.
1266 * The strings in the IDENTIFY DEVICE page are broken up into
1267 * 16-bit chunks. Run through the string, and output each
1268 * 8-bit chunk linearly, regardless of platform.
1274 void ata_id_string(const u16
*id
, unsigned char *s
,
1275 unsigned int ofs
, unsigned int len
)
1296 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1297 * @id: IDENTIFY DEVICE results we will examine
1298 * @s: string into which data is output
1299 * @ofs: offset into identify device page
1300 * @len: length of string to return. must be an odd number.
1302 * This function is identical to ata_id_string except that it
1303 * trims trailing spaces and terminates the resulting string with
1304 * null. @len must be actual maximum length (even number) + 1.
1309 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1310 unsigned int ofs
, unsigned int len
)
1314 ata_id_string(id
, s
, ofs
, len
- 1);
1316 p
= s
+ strnlen(s
, len
- 1);
1317 while (p
> s
&& p
[-1] == ' ')
1322 static u64
ata_id_n_sectors(const u16
*id
)
1324 if (ata_id_has_lba(id
)) {
1325 if (ata_id_has_lba48(id
))
1326 return ata_id_u64(id
, ATA_ID_LBA_CAPACITY_2
);
1328 return ata_id_u32(id
, ATA_ID_LBA_CAPACITY
);
1330 if (ata_id_current_chs_valid(id
))
1331 return id
[ATA_ID_CUR_CYLS
] * id
[ATA_ID_CUR_HEADS
] *
1332 id
[ATA_ID_CUR_SECTORS
];
1334 return id
[ATA_ID_CYLS
] * id
[ATA_ID_HEADS
] *
1339 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1343 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1344 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1345 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1346 sectors
|= (tf
->lbah
& 0xff) << 16;
1347 sectors
|= (tf
->lbam
& 0xff) << 8;
1348 sectors
|= (tf
->lbal
& 0xff);
1353 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1357 sectors
|= (tf
->device
& 0x0f) << 24;
1358 sectors
|= (tf
->lbah
& 0xff) << 16;
1359 sectors
|= (tf
->lbam
& 0xff) << 8;
1360 sectors
|= (tf
->lbal
& 0xff);
1366 * ata_read_native_max_address - Read native max address
1367 * @dev: target device
1368 * @max_sectors: out parameter for the result native max address
1370 * Perform an LBA48 or LBA28 native size query upon the device in
1374 * 0 on success, -EACCES if command is aborted by the drive.
1375 * -EIO on other errors.
1377 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1379 unsigned int err_mask
;
1380 struct ata_taskfile tf
;
1381 int lba48
= ata_id_has_lba48(dev
->id
);
1383 ata_tf_init(dev
, &tf
);
1385 /* always clear all address registers */
1386 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1389 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1390 tf
.flags
|= ATA_TFLAG_LBA48
;
1392 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1394 tf
.protocol
|= ATA_PROT_NODATA
;
1395 tf
.device
|= ATA_LBA
;
1397 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1399 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1400 "max address (err_mask=0x%x)\n", err_mask
);
1401 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1407 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1409 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1410 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1416 * ata_set_max_sectors - Set max sectors
1417 * @dev: target device
1418 * @new_sectors: new max sectors value to set for the device
1420 * Set max sectors of @dev to @new_sectors.
1423 * 0 on success, -EACCES if command is aborted or denied (due to
1424 * previous non-volatile SET_MAX) by the drive. -EIO on other
1427 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1429 unsigned int err_mask
;
1430 struct ata_taskfile tf
;
1431 int lba48
= ata_id_has_lba48(dev
->id
);
1435 ata_tf_init(dev
, &tf
);
1437 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1440 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1441 tf
.flags
|= ATA_TFLAG_LBA48
;
1443 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1444 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1445 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1447 tf
.command
= ATA_CMD_SET_MAX
;
1449 tf
.device
|= (new_sectors
>> 24) & 0xf;
1452 tf
.protocol
|= ATA_PROT_NODATA
;
1453 tf
.device
|= ATA_LBA
;
1455 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1456 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1457 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1459 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1461 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1462 "max address (err_mask=0x%x)\n", err_mask
);
1463 if (err_mask
== AC_ERR_DEV
&&
1464 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1473 * ata_hpa_resize - Resize a device with an HPA set
1474 * @dev: Device to resize
1476 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1477 * it if required to the full size of the media. The caller must check
1478 * the drive has the HPA feature set enabled.
1481 * 0 on success, -errno on failure.
1483 static int ata_hpa_resize(struct ata_device
*dev
)
1485 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1486 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1487 u64 sectors
= ata_id_n_sectors(dev
->id
);
1491 /* do we need to do it? */
1492 if (dev
->class != ATA_DEV_ATA
||
1493 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1494 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1497 /* read native max address */
1498 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1500 /* If device aborted the command or HPA isn't going to
1501 * be unlocked, skip HPA resizing.
1503 if (rc
== -EACCES
|| !ata_ignore_hpa
) {
1504 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1505 "broken, skipping HPA handling\n");
1506 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1508 /* we can continue if device aborted the command */
1516 /* nothing to do? */
1517 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1518 if (!print_info
|| native_sectors
== sectors
)
1521 if (native_sectors
> sectors
)
1522 ata_dev_printk(dev
, KERN_INFO
,
1523 "HPA detected: current %llu, native %llu\n",
1524 (unsigned long long)sectors
,
1525 (unsigned long long)native_sectors
);
1526 else if (native_sectors
< sectors
)
1527 ata_dev_printk(dev
, KERN_WARNING
,
1528 "native sectors (%llu) is smaller than "
1530 (unsigned long long)native_sectors
,
1531 (unsigned long long)sectors
);
1535 /* let's unlock HPA */
1536 rc
= ata_set_max_sectors(dev
, native_sectors
);
1537 if (rc
== -EACCES
) {
1538 /* if device aborted the command, skip HPA resizing */
1539 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1540 "(%llu -> %llu), skipping HPA handling\n",
1541 (unsigned long long)sectors
,
1542 (unsigned long long)native_sectors
);
1543 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1548 /* re-read IDENTIFY data */
1549 rc
= ata_dev_reread_id(dev
, 0);
1551 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1552 "data after HPA resizing\n");
1557 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1558 ata_dev_printk(dev
, KERN_INFO
,
1559 "HPA unlocked: %llu -> %llu, native %llu\n",
1560 (unsigned long long)sectors
,
1561 (unsigned long long)new_sectors
,
1562 (unsigned long long)native_sectors
);
1569 * ata_dump_id - IDENTIFY DEVICE info debugging output
1570 * @id: IDENTIFY DEVICE page to dump
1572 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1579 static inline void ata_dump_id(const u16
*id
)
1581 DPRINTK("49==0x%04x "
1591 DPRINTK("80==0x%04x "
1601 DPRINTK("88==0x%04x "
1608 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1609 * @id: IDENTIFY data to compute xfer mask from
1611 * Compute the xfermask for this device. This is not as trivial
1612 * as it seems if we must consider early devices correctly.
1614 * FIXME: pre IDE drive timing (do we care ?).
1622 unsigned long ata_id_xfermask(const u16
*id
)
1624 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1626 /* Usual case. Word 53 indicates word 64 is valid */
1627 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1628 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1632 /* If word 64 isn't valid then Word 51 high byte holds
1633 * the PIO timing number for the maximum. Turn it into
1636 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1637 if (mode
< 5) /* Valid PIO range */
1638 pio_mask
= (2 << mode
) - 1;
1642 /* But wait.. there's more. Design your standards by
1643 * committee and you too can get a free iordy field to
1644 * process. However its the speeds not the modes that
1645 * are supported... Note drivers using the timing API
1646 * will get this right anyway
1650 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1652 if (ata_id_is_cfa(id
)) {
1654 * Process compact flash extended modes
1656 int pio
= id
[163] & 0x7;
1657 int dma
= (id
[163] >> 3) & 7;
1660 pio_mask
|= (1 << 5);
1662 pio_mask
|= (1 << 6);
1664 mwdma_mask
|= (1 << 3);
1666 mwdma_mask
|= (1 << 4);
1670 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1671 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1673 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1677 * ata_pio_queue_task - Queue port_task
1678 * @ap: The ata_port to queue port_task for
1679 * @data: data for @fn to use
1680 * @delay: delay time in msecs for workqueue function
1682 * Schedule @fn(@data) for execution after @delay jiffies using
1683 * port_task. There is one port_task per port and it's the
1684 * user(low level driver)'s responsibility to make sure that only
1685 * one task is active at any given time.
1687 * libata core layer takes care of synchronization between
1688 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1692 * Inherited from caller.
1694 void ata_pio_queue_task(struct ata_port
*ap
, void *data
, unsigned long delay
)
1696 ap
->port_task_data
= data
;
1698 /* may fail if ata_port_flush_task() in progress */
1699 queue_delayed_work(ata_wq
, &ap
->port_task
, msecs_to_jiffies(delay
));
1703 * ata_port_flush_task - Flush port_task
1704 * @ap: The ata_port to flush port_task for
1706 * After this function completes, port_task is guranteed not to
1707 * be running or scheduled.
1710 * Kernel thread context (may sleep)
1712 void ata_port_flush_task(struct ata_port
*ap
)
1716 cancel_rearming_delayed_work(&ap
->port_task
);
1718 if (ata_msg_ctl(ap
))
1719 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1722 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1724 struct completion
*waiting
= qc
->private_data
;
1730 * ata_exec_internal_sg - execute libata internal command
1731 * @dev: Device to which the command is sent
1732 * @tf: Taskfile registers for the command and the result
1733 * @cdb: CDB for packet command
1734 * @dma_dir: Data tranfer direction of the command
1735 * @sgl: sg list for the data buffer of the command
1736 * @n_elem: Number of sg entries
1737 * @timeout: Timeout in msecs (0 for default)
1739 * Executes libata internal command with timeout. @tf contains
1740 * command on entry and result on return. Timeout and error
1741 * conditions are reported via return value. No recovery action
1742 * is taken after a command times out. It's caller's duty to
1743 * clean up after timeout.
1746 * None. Should be called with kernel context, might sleep.
1749 * Zero on success, AC_ERR_* mask on failure
1751 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1752 struct ata_taskfile
*tf
, const u8
*cdb
,
1753 int dma_dir
, struct scatterlist
*sgl
,
1754 unsigned int n_elem
, unsigned long timeout
)
1756 struct ata_link
*link
= dev
->link
;
1757 struct ata_port
*ap
= link
->ap
;
1758 u8 command
= tf
->command
;
1759 int auto_timeout
= 0;
1760 struct ata_queued_cmd
*qc
;
1761 unsigned int tag
, preempted_tag
;
1762 u32 preempted_sactive
, preempted_qc_active
;
1763 int preempted_nr_active_links
;
1764 DECLARE_COMPLETION_ONSTACK(wait
);
1765 unsigned long flags
;
1766 unsigned int err_mask
;
1769 spin_lock_irqsave(ap
->lock
, flags
);
1771 /* no internal command while frozen */
1772 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1773 spin_unlock_irqrestore(ap
->lock
, flags
);
1774 return AC_ERR_SYSTEM
;
1777 /* initialize internal qc */
1779 /* XXX: Tag 0 is used for drivers with legacy EH as some
1780 * drivers choke if any other tag is given. This breaks
1781 * ata_tag_internal() test for those drivers. Don't use new
1782 * EH stuff without converting to it.
1784 if (ap
->ops
->error_handler
)
1785 tag
= ATA_TAG_INTERNAL
;
1789 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1791 qc
= __ata_qc_from_tag(ap
, tag
);
1799 preempted_tag
= link
->active_tag
;
1800 preempted_sactive
= link
->sactive
;
1801 preempted_qc_active
= ap
->qc_active
;
1802 preempted_nr_active_links
= ap
->nr_active_links
;
1803 link
->active_tag
= ATA_TAG_POISON
;
1806 ap
->nr_active_links
= 0;
1808 /* prepare & issue qc */
1811 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1812 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1813 qc
->dma_dir
= dma_dir
;
1814 if (dma_dir
!= DMA_NONE
) {
1815 unsigned int i
, buflen
= 0;
1816 struct scatterlist
*sg
;
1818 for_each_sg(sgl
, sg
, n_elem
, i
)
1819 buflen
+= sg
->length
;
1821 ata_sg_init(qc
, sgl
, n_elem
);
1822 qc
->nbytes
= buflen
;
1825 qc
->private_data
= &wait
;
1826 qc
->complete_fn
= ata_qc_complete_internal
;
1830 spin_unlock_irqrestore(ap
->lock
, flags
);
1833 if (ata_probe_timeout
)
1834 timeout
= ata_probe_timeout
* 1000;
1836 timeout
= ata_internal_cmd_timeout(dev
, command
);
1841 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1843 ata_port_flush_task(ap
);
1846 spin_lock_irqsave(ap
->lock
, flags
);
1848 /* We're racing with irq here. If we lose, the
1849 * following test prevents us from completing the qc
1850 * twice. If we win, the port is frozen and will be
1851 * cleaned up by ->post_internal_cmd().
1853 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1854 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1856 if (ap
->ops
->error_handler
)
1857 ata_port_freeze(ap
);
1859 ata_qc_complete(qc
);
1861 if (ata_msg_warn(ap
))
1862 ata_dev_printk(dev
, KERN_WARNING
,
1863 "qc timeout (cmd 0x%x)\n", command
);
1866 spin_unlock_irqrestore(ap
->lock
, flags
);
1869 /* do post_internal_cmd */
1870 if (ap
->ops
->post_internal_cmd
)
1871 ap
->ops
->post_internal_cmd(qc
);
1873 /* perform minimal error analysis */
1874 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1875 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1876 qc
->err_mask
|= AC_ERR_DEV
;
1879 qc
->err_mask
|= AC_ERR_OTHER
;
1881 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1882 qc
->err_mask
&= ~AC_ERR_OTHER
;
1886 spin_lock_irqsave(ap
->lock
, flags
);
1888 *tf
= qc
->result_tf
;
1889 err_mask
= qc
->err_mask
;
1892 link
->active_tag
= preempted_tag
;
1893 link
->sactive
= preempted_sactive
;
1894 ap
->qc_active
= preempted_qc_active
;
1895 ap
->nr_active_links
= preempted_nr_active_links
;
1897 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1898 * Until those drivers are fixed, we detect the condition
1899 * here, fail the command with AC_ERR_SYSTEM and reenable the
1902 * Note that this doesn't change any behavior as internal
1903 * command failure results in disabling the device in the
1904 * higher layer for LLDDs without new reset/EH callbacks.
1906 * Kill the following code as soon as those drivers are fixed.
1908 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1909 err_mask
|= AC_ERR_SYSTEM
;
1913 spin_unlock_irqrestore(ap
->lock
, flags
);
1915 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1916 ata_internal_cmd_timed_out(dev
, command
);
1922 * ata_exec_internal - execute libata internal command
1923 * @dev: Device to which the command is sent
1924 * @tf: Taskfile registers for the command and the result
1925 * @cdb: CDB for packet command
1926 * @dma_dir: Data tranfer direction of the command
1927 * @buf: Data buffer of the command
1928 * @buflen: Length of data buffer
1929 * @timeout: Timeout in msecs (0 for default)
1931 * Wrapper around ata_exec_internal_sg() which takes simple
1932 * buffer instead of sg list.
1935 * None. Should be called with kernel context, might sleep.
1938 * Zero on success, AC_ERR_* mask on failure
1940 unsigned ata_exec_internal(struct ata_device
*dev
,
1941 struct ata_taskfile
*tf
, const u8
*cdb
,
1942 int dma_dir
, void *buf
, unsigned int buflen
,
1943 unsigned long timeout
)
1945 struct scatterlist
*psg
= NULL
, sg
;
1946 unsigned int n_elem
= 0;
1948 if (dma_dir
!= DMA_NONE
) {
1950 sg_init_one(&sg
, buf
, buflen
);
1955 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1960 * ata_do_simple_cmd - execute simple internal command
1961 * @dev: Device to which the command is sent
1962 * @cmd: Opcode to execute
1964 * Execute a 'simple' command, that only consists of the opcode
1965 * 'cmd' itself, without filling any other registers
1968 * Kernel thread context (may sleep).
1971 * Zero on success, AC_ERR_* mask on failure
1973 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1975 struct ata_taskfile tf
;
1977 ata_tf_init(dev
, &tf
);
1980 tf
.flags
|= ATA_TFLAG_DEVICE
;
1981 tf
.protocol
= ATA_PROT_NODATA
;
1983 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1987 * ata_pio_need_iordy - check if iordy needed
1990 * Check if the current speed of the device requires IORDY. Used
1991 * by various controllers for chip configuration.
1994 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1996 /* Controller doesn't support IORDY. Probably a pointless check
1997 as the caller should know this */
1998 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
2000 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2001 if (ata_id_is_cfa(adev
->id
)
2002 && (adev
->pio_mode
== XFER_PIO_5
|| adev
->pio_mode
== XFER_PIO_6
))
2004 /* PIO3 and higher it is mandatory */
2005 if (adev
->pio_mode
> XFER_PIO_2
)
2007 /* We turn it on when possible */
2008 if (ata_id_has_iordy(adev
->id
))
2014 * ata_pio_mask_no_iordy - Return the non IORDY mask
2017 * Compute the highest mode possible if we are not using iordy. Return
2018 * -1 if no iordy mode is available.
2021 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
2023 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2024 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
2025 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
2026 /* Is the speed faster than the drive allows non IORDY ? */
2028 /* This is cycle times not frequency - watch the logic! */
2029 if (pio
> 240) /* PIO2 is 240nS per cycle */
2030 return 3 << ATA_SHIFT_PIO
;
2031 return 7 << ATA_SHIFT_PIO
;
2034 return 3 << ATA_SHIFT_PIO
;
2038 * ata_do_dev_read_id - default ID read method
2040 * @tf: proposed taskfile
2043 * Issue the identify taskfile and hand back the buffer containing
2044 * identify data. For some RAID controllers and for pre ATA devices
2045 * this function is wrapped or replaced by the driver
2047 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
2048 struct ata_taskfile
*tf
, u16
*id
)
2050 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
2051 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
2055 * ata_dev_read_id - Read ID data from the specified device
2056 * @dev: target device
2057 * @p_class: pointer to class of the target device (may be changed)
2058 * @flags: ATA_READID_* flags
2059 * @id: buffer to read IDENTIFY data into
2061 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2062 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2063 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2064 * for pre-ATA4 drives.
2066 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2067 * now we abort if we hit that case.
2070 * Kernel thread context (may sleep)
2073 * 0 on success, -errno otherwise.
2075 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
2076 unsigned int flags
, u16
*id
)
2078 struct ata_port
*ap
= dev
->link
->ap
;
2079 unsigned int class = *p_class
;
2080 struct ata_taskfile tf
;
2081 unsigned int err_mask
= 0;
2083 int may_fallback
= 1, tried_spinup
= 0;
2086 if (ata_msg_ctl(ap
))
2087 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2090 ata_tf_init(dev
, &tf
);
2094 tf
.command
= ATA_CMD_ID_ATA
;
2097 tf
.command
= ATA_CMD_ID_ATAPI
;
2101 reason
= "unsupported class";
2105 tf
.protocol
= ATA_PROT_PIO
;
2107 /* Some devices choke if TF registers contain garbage. Make
2108 * sure those are properly initialized.
2110 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2112 /* Device presence detection is unreliable on some
2113 * controllers. Always poll IDENTIFY if available.
2115 tf
.flags
|= ATA_TFLAG_POLLING
;
2117 if (ap
->ops
->read_id
)
2118 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
2120 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
2123 if (err_mask
& AC_ERR_NODEV_HINT
) {
2124 ata_dev_printk(dev
, KERN_DEBUG
,
2125 "NODEV after polling detection\n");
2129 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
2130 /* Device or controller might have reported
2131 * the wrong device class. Give a shot at the
2132 * other IDENTIFY if the current one is
2133 * aborted by the device.
2138 if (class == ATA_DEV_ATA
)
2139 class = ATA_DEV_ATAPI
;
2141 class = ATA_DEV_ATA
;
2145 /* Control reaches here iff the device aborted
2146 * both flavors of IDENTIFYs which happens
2147 * sometimes with phantom devices.
2149 ata_dev_printk(dev
, KERN_DEBUG
,
2150 "both IDENTIFYs aborted, assuming NODEV\n");
2155 reason
= "I/O error";
2159 /* Falling back doesn't make sense if ID data was read
2160 * successfully at least once.
2164 swap_buf_le16(id
, ATA_ID_WORDS
);
2168 reason
= "device reports invalid type";
2170 if (class == ATA_DEV_ATA
) {
2171 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
2174 if (ata_id_is_ata(id
))
2178 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2181 * Drive powered-up in standby mode, and requires a specific
2182 * SET_FEATURES spin-up subcommand before it will accept
2183 * anything other than the original IDENTIFY command.
2185 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2186 if (err_mask
&& id
[2] != 0x738c) {
2188 reason
= "SPINUP failed";
2192 * If the drive initially returned incomplete IDENTIFY info,
2193 * we now must reissue the IDENTIFY command.
2195 if (id
[2] == 0x37c8)
2199 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2201 * The exact sequence expected by certain pre-ATA4 drives is:
2203 * IDENTIFY (optional in early ATA)
2204 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2206 * Some drives were very specific about that exact sequence.
2208 * Note that ATA4 says lba is mandatory so the second check
2209 * shoud never trigger.
2211 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2212 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2215 reason
= "INIT_DEV_PARAMS failed";
2219 /* current CHS translation info (id[53-58]) might be
2220 * changed. reread the identify device info.
2222 flags
&= ~ATA_READID_POSTRESET
;
2232 if (ata_msg_warn(ap
))
2233 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2234 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2238 static int ata_do_link_spd_horkage(struct ata_device
*dev
)
2240 struct ata_link
*plink
= ata_dev_phys_link(dev
);
2241 u32 target
, target_limit
;
2243 if (!sata_scr_valid(plink
))
2246 if (dev
->horkage
& ATA_HORKAGE_1_5_GBPS
)
2251 target_limit
= (1 << target
) - 1;
2253 /* if already on stricter limit, no need to push further */
2254 if (plink
->sata_spd_limit
<= target_limit
)
2257 plink
->sata_spd_limit
= target_limit
;
2259 /* Request another EH round by returning -EAGAIN if link is
2260 * going faster than the target speed. Forward progress is
2261 * guaranteed by setting sata_spd_limit to target_limit above.
2263 if (plink
->sata_spd
> target
) {
2264 ata_dev_printk(dev
, KERN_INFO
,
2265 "applying link speed limit horkage to %s\n",
2266 sata_spd_string(target
));
2272 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2274 struct ata_port
*ap
= dev
->link
->ap
;
2276 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_BRIDGE_OK
)
2279 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2282 static void ata_dev_config_ncq(struct ata_device
*dev
,
2283 char *desc
, size_t desc_sz
)
2285 struct ata_port
*ap
= dev
->link
->ap
;
2286 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2288 if (!ata_id_has_ncq(dev
->id
)) {
2292 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2293 snprintf(desc
, desc_sz
, "NCQ (not used)");
2296 if (ap
->flags
& ATA_FLAG_NCQ
) {
2297 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2298 dev
->flags
|= ATA_DFLAG_NCQ
;
2301 if (hdepth
>= ddepth
)
2302 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
2304 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
2308 * ata_dev_configure - Configure the specified ATA/ATAPI device
2309 * @dev: Target device to configure
2311 * Configure @dev according to @dev->id. Generic and low-level
2312 * driver specific fixups are also applied.
2315 * Kernel thread context (may sleep)
2318 * 0 on success, -errno otherwise
2320 int ata_dev_configure(struct ata_device
*dev
)
2322 struct ata_port
*ap
= dev
->link
->ap
;
2323 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2324 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2325 const u16
*id
= dev
->id
;
2326 unsigned long xfer_mask
;
2327 char revbuf
[7]; /* XYZ-99\0 */
2328 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2329 char modelbuf
[ATA_ID_PROD_LEN
+1];
2332 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2333 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2338 if (ata_msg_probe(ap
))
2339 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2342 dev
->horkage
|= ata_dev_blacklisted(dev
);
2343 ata_force_horkage(dev
);
2345 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2346 ata_dev_printk(dev
, KERN_INFO
,
2347 "unsupported device, disabling\n");
2348 ata_dev_disable(dev
);
2352 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2353 dev
->class == ATA_DEV_ATAPI
) {
2354 ata_dev_printk(dev
, KERN_WARNING
,
2355 "WARNING: ATAPI is %s, device ignored.\n",
2356 atapi_enabled
? "not supported with this driver"
2358 ata_dev_disable(dev
);
2362 rc
= ata_do_link_spd_horkage(dev
);
2366 /* let ACPI work its magic */
2367 rc
= ata_acpi_on_devcfg(dev
);
2371 /* massage HPA, do it early as it might change IDENTIFY data */
2372 rc
= ata_hpa_resize(dev
);
2376 /* print device capabilities */
2377 if (ata_msg_probe(ap
))
2378 ata_dev_printk(dev
, KERN_DEBUG
,
2379 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2380 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2382 id
[49], id
[82], id
[83], id
[84],
2383 id
[85], id
[86], id
[87], id
[88]);
2385 /* initialize to-be-configured parameters */
2386 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2387 dev
->max_sectors
= 0;
2393 dev
->multi_count
= 0;
2396 * common ATA, ATAPI feature tests
2399 /* find max transfer mode; for printk only */
2400 xfer_mask
= ata_id_xfermask(id
);
2402 if (ata_msg_probe(ap
))
2405 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2406 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2409 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2412 /* ATA-specific feature tests */
2413 if (dev
->class == ATA_DEV_ATA
) {
2414 if (ata_id_is_cfa(id
)) {
2415 if (id
[162] & 1) /* CPRM may make this media unusable */
2416 ata_dev_printk(dev
, KERN_WARNING
,
2417 "supports DRM functions and may "
2418 "not be fully accessable.\n");
2419 snprintf(revbuf
, 7, "CFA");
2421 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2422 /* Warn the user if the device has TPM extensions */
2423 if (ata_id_has_tpm(id
))
2424 ata_dev_printk(dev
, KERN_WARNING
,
2425 "supports DRM functions and may "
2426 "not be fully accessable.\n");
2429 dev
->n_sectors
= ata_id_n_sectors(id
);
2431 /* get current R/W Multiple count setting */
2432 if ((dev
->id
[47] >> 8) == 0x80 && (dev
->id
[59] & 0x100)) {
2433 unsigned int max
= dev
->id
[47] & 0xff;
2434 unsigned int cnt
= dev
->id
[59] & 0xff;
2435 /* only recognize/allow powers of two here */
2436 if (is_power_of_2(max
) && is_power_of_2(cnt
))
2438 dev
->multi_count
= cnt
;
2441 if (ata_id_has_lba(id
)) {
2442 const char *lba_desc
;
2446 dev
->flags
|= ATA_DFLAG_LBA
;
2447 if (ata_id_has_lba48(id
)) {
2448 dev
->flags
|= ATA_DFLAG_LBA48
;
2451 if (dev
->n_sectors
>= (1UL << 28) &&
2452 ata_id_has_flush_ext(id
))
2453 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2457 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2459 /* print device info to dmesg */
2460 if (ata_msg_drv(ap
) && print_info
) {
2461 ata_dev_printk(dev
, KERN_INFO
,
2462 "%s: %s, %s, max %s\n",
2463 revbuf
, modelbuf
, fwrevbuf
,
2464 ata_mode_string(xfer_mask
));
2465 ata_dev_printk(dev
, KERN_INFO
,
2466 "%Lu sectors, multi %u: %s %s\n",
2467 (unsigned long long)dev
->n_sectors
,
2468 dev
->multi_count
, lba_desc
, ncq_desc
);
2473 /* Default translation */
2474 dev
->cylinders
= id
[1];
2476 dev
->sectors
= id
[6];
2478 if (ata_id_current_chs_valid(id
)) {
2479 /* Current CHS translation is valid. */
2480 dev
->cylinders
= id
[54];
2481 dev
->heads
= id
[55];
2482 dev
->sectors
= id
[56];
2485 /* print device info to dmesg */
2486 if (ata_msg_drv(ap
) && print_info
) {
2487 ata_dev_printk(dev
, KERN_INFO
,
2488 "%s: %s, %s, max %s\n",
2489 revbuf
, modelbuf
, fwrevbuf
,
2490 ata_mode_string(xfer_mask
));
2491 ata_dev_printk(dev
, KERN_INFO
,
2492 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2493 (unsigned long long)dev
->n_sectors
,
2494 dev
->multi_count
, dev
->cylinders
,
2495 dev
->heads
, dev
->sectors
);
2502 /* ATAPI-specific feature tests */
2503 else if (dev
->class == ATA_DEV_ATAPI
) {
2504 const char *cdb_intr_string
= "";
2505 const char *atapi_an_string
= "";
2506 const char *dma_dir_string
= "";
2509 rc
= atapi_cdb_len(id
);
2510 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2511 if (ata_msg_warn(ap
))
2512 ata_dev_printk(dev
, KERN_WARNING
,
2513 "unsupported CDB len\n");
2517 dev
->cdb_len
= (unsigned int) rc
;
2519 /* Enable ATAPI AN if both the host and device have
2520 * the support. If PMP is attached, SNTF is required
2521 * to enable ATAPI AN to discern between PHY status
2522 * changed notifications and ATAPI ANs.
2524 if ((ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2525 (!sata_pmp_attached(ap
) ||
2526 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2527 unsigned int err_mask
;
2529 /* issue SET feature command to turn this on */
2530 err_mask
= ata_dev_set_feature(dev
,
2531 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2533 ata_dev_printk(dev
, KERN_ERR
,
2534 "failed to enable ATAPI AN "
2535 "(err_mask=0x%x)\n", err_mask
);
2537 dev
->flags
|= ATA_DFLAG_AN
;
2538 atapi_an_string
= ", ATAPI AN";
2542 if (ata_id_cdb_intr(dev
->id
)) {
2543 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2544 cdb_intr_string
= ", CDB intr";
2547 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2548 dev
->flags
|= ATA_DFLAG_DMADIR
;
2549 dma_dir_string
= ", DMADIR";
2552 /* print device info to dmesg */
2553 if (ata_msg_drv(ap
) && print_info
)
2554 ata_dev_printk(dev
, KERN_INFO
,
2555 "ATAPI: %s, %s, max %s%s%s%s\n",
2557 ata_mode_string(xfer_mask
),
2558 cdb_intr_string
, atapi_an_string
,
2562 /* determine max_sectors */
2563 dev
->max_sectors
= ATA_MAX_SECTORS
;
2564 if (dev
->flags
& ATA_DFLAG_LBA48
)
2565 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2567 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2568 if (ata_id_has_hipm(dev
->id
))
2569 dev
->flags
|= ATA_DFLAG_HIPM
;
2570 if (ata_id_has_dipm(dev
->id
))
2571 dev
->flags
|= ATA_DFLAG_DIPM
;
2574 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2576 if (ata_dev_knobble(dev
)) {
2577 if (ata_msg_drv(ap
) && print_info
)
2578 ata_dev_printk(dev
, KERN_INFO
,
2579 "applying bridge limits\n");
2580 dev
->udma_mask
&= ATA_UDMA5
;
2581 dev
->max_sectors
= ATA_MAX_SECTORS
;
2584 if ((dev
->class == ATA_DEV_ATAPI
) &&
2585 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2586 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2587 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2590 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2591 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2594 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2595 dev
->horkage
|= ATA_HORKAGE_IPM
;
2597 /* reset link pm_policy for this port to no pm */
2598 ap
->pm_policy
= MAX_PERFORMANCE
;
2601 if (ap
->ops
->dev_config
)
2602 ap
->ops
->dev_config(dev
);
2604 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2605 /* Let the user know. We don't want to disallow opens for
2606 rescue purposes, or in case the vendor is just a blithering
2607 idiot. Do this after the dev_config call as some controllers
2608 with buggy firmware may want to avoid reporting false device
2612 ata_dev_printk(dev
, KERN_WARNING
,
2613 "Drive reports diagnostics failure. This may indicate a drive\n");
2614 ata_dev_printk(dev
, KERN_WARNING
,
2615 "fault or invalid emulation. Contact drive vendor for information.\n");
2619 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2620 ata_dev_printk(dev
, KERN_WARNING
, "WARNING: device requires "
2621 "firmware update to be fully functional.\n");
2622 ata_dev_printk(dev
, KERN_WARNING
, " contact the vendor "
2623 "or visit http://ata.wiki.kernel.org.\n");
2629 if (ata_msg_probe(ap
))
2630 ata_dev_printk(dev
, KERN_DEBUG
,
2631 "%s: EXIT, err\n", __func__
);
2636 * ata_cable_40wire - return 40 wire cable type
2639 * Helper method for drivers which want to hardwire 40 wire cable
2643 int ata_cable_40wire(struct ata_port
*ap
)
2645 return ATA_CBL_PATA40
;
2649 * ata_cable_80wire - return 80 wire cable type
2652 * Helper method for drivers which want to hardwire 80 wire cable
2656 int ata_cable_80wire(struct ata_port
*ap
)
2658 return ATA_CBL_PATA80
;
2662 * ata_cable_unknown - return unknown PATA cable.
2665 * Helper method for drivers which have no PATA cable detection.
2668 int ata_cable_unknown(struct ata_port
*ap
)
2670 return ATA_CBL_PATA_UNK
;
2674 * ata_cable_ignore - return ignored PATA cable.
2677 * Helper method for drivers which don't use cable type to limit
2680 int ata_cable_ignore(struct ata_port
*ap
)
2682 return ATA_CBL_PATA_IGN
;
2686 * ata_cable_sata - return SATA cable type
2689 * Helper method for drivers which have SATA cables
2692 int ata_cable_sata(struct ata_port
*ap
)
2694 return ATA_CBL_SATA
;
2698 * ata_bus_probe - Reset and probe ATA bus
2701 * Master ATA bus probing function. Initiates a hardware-dependent
2702 * bus reset, then attempts to identify any devices found on
2706 * PCI/etc. bus probe sem.
2709 * Zero on success, negative errno otherwise.
2712 int ata_bus_probe(struct ata_port
*ap
)
2714 unsigned int classes
[ATA_MAX_DEVICES
];
2715 int tries
[ATA_MAX_DEVICES
];
2717 struct ata_device
*dev
;
2721 ata_for_each_dev(dev
, &ap
->link
, ALL
)
2722 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2725 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2726 /* If we issue an SRST then an ATA drive (not ATAPI)
2727 * may change configuration and be in PIO0 timing. If
2728 * we do a hard reset (or are coming from power on)
2729 * this is true for ATA or ATAPI. Until we've set a
2730 * suitable controller mode we should not touch the
2731 * bus as we may be talking too fast.
2733 dev
->pio_mode
= XFER_PIO_0
;
2735 /* If the controller has a pio mode setup function
2736 * then use it to set the chipset to rights. Don't
2737 * touch the DMA setup as that will be dealt with when
2738 * configuring devices.
2740 if (ap
->ops
->set_piomode
)
2741 ap
->ops
->set_piomode(ap
, dev
);
2744 /* reset and determine device classes */
2745 ap
->ops
->phy_reset(ap
);
2747 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2748 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2749 dev
->class != ATA_DEV_UNKNOWN
)
2750 classes
[dev
->devno
] = dev
->class;
2752 classes
[dev
->devno
] = ATA_DEV_NONE
;
2754 dev
->class = ATA_DEV_UNKNOWN
;
2759 /* read IDENTIFY page and configure devices. We have to do the identify
2760 specific sequence bass-ackwards so that PDIAG- is released by
2763 ata_for_each_dev(dev
, &ap
->link
, ALL_REVERSE
) {
2764 if (tries
[dev
->devno
])
2765 dev
->class = classes
[dev
->devno
];
2767 if (!ata_dev_enabled(dev
))
2770 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2776 /* Now ask for the cable type as PDIAG- should have been released */
2777 if (ap
->ops
->cable_detect
)
2778 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2780 /* We may have SATA bridge glue hiding here irrespective of
2781 * the reported cable types and sensed types. When SATA
2782 * drives indicate we have a bridge, we don't know which end
2783 * of the link the bridge is which is a problem.
2785 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2786 if (ata_id_is_sata(dev
->id
))
2787 ap
->cbl
= ATA_CBL_SATA
;
2789 /* After the identify sequence we can now set up the devices. We do
2790 this in the normal order so that the user doesn't get confused */
2792 ata_for_each_dev(dev
, &ap
->link
, ENABLED
) {
2793 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2794 rc
= ata_dev_configure(dev
);
2795 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2800 /* configure transfer mode */
2801 rc
= ata_set_mode(&ap
->link
, &dev
);
2805 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2808 /* no device present, disable port */
2809 ata_port_disable(ap
);
2813 tries
[dev
->devno
]--;
2817 /* eeek, something went very wrong, give up */
2818 tries
[dev
->devno
] = 0;
2822 /* give it just one more chance */
2823 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2825 if (tries
[dev
->devno
] == 1) {
2826 /* This is the last chance, better to slow
2827 * down than lose it.
2829 sata_down_spd_limit(&ap
->link
, 0);
2830 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2834 if (!tries
[dev
->devno
])
2835 ata_dev_disable(dev
);
2841 * ata_port_probe - Mark port as enabled
2842 * @ap: Port for which we indicate enablement
2844 * Modify @ap data structure such that the system
2845 * thinks that the entire port is enabled.
2847 * LOCKING: host lock, or some other form of
2851 void ata_port_probe(struct ata_port
*ap
)
2853 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2857 * sata_print_link_status - Print SATA link status
2858 * @link: SATA link to printk link status about
2860 * This function prints link speed and status of a SATA link.
2865 static void sata_print_link_status(struct ata_link
*link
)
2867 u32 sstatus
, scontrol
, tmp
;
2869 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2871 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2873 if (ata_phys_link_online(link
)) {
2874 tmp
= (sstatus
>> 4) & 0xf;
2875 ata_link_printk(link
, KERN_INFO
,
2876 "SATA link up %s (SStatus %X SControl %X)\n",
2877 sata_spd_string(tmp
), sstatus
, scontrol
);
2879 ata_link_printk(link
, KERN_INFO
,
2880 "SATA link down (SStatus %X SControl %X)\n",
2886 * ata_dev_pair - return other device on cable
2889 * Obtain the other device on the same cable, or if none is
2890 * present NULL is returned
2893 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2895 struct ata_link
*link
= adev
->link
;
2896 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2897 if (!ata_dev_enabled(pair
))
2903 * ata_port_disable - Disable port.
2904 * @ap: Port to be disabled.
2906 * Modify @ap data structure such that the system
2907 * thinks that the entire port is disabled, and should
2908 * never attempt to probe or communicate with devices
2911 * LOCKING: host lock, or some other form of
2915 void ata_port_disable(struct ata_port
*ap
)
2917 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2918 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2919 ap
->flags
|= ATA_FLAG_DISABLED
;
2923 * sata_down_spd_limit - adjust SATA spd limit downward
2924 * @link: Link to adjust SATA spd limit for
2925 * @spd_limit: Additional limit
2927 * Adjust SATA spd limit of @link downward. Note that this
2928 * function only adjusts the limit. The change must be applied
2929 * using sata_set_spd().
2931 * If @spd_limit is non-zero, the speed is limited to equal to or
2932 * lower than @spd_limit if such speed is supported. If
2933 * @spd_limit is slower than any supported speed, only the lowest
2934 * supported speed is allowed.
2937 * Inherited from caller.
2940 * 0 on success, negative errno on failure
2942 int sata_down_spd_limit(struct ata_link
*link
, u32 spd_limit
)
2944 u32 sstatus
, spd
, mask
;
2947 if (!sata_scr_valid(link
))
2950 /* If SCR can be read, use it to determine the current SPD.
2951 * If not, use cached value in link->sata_spd.
2953 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2954 if (rc
== 0 && ata_sstatus_online(sstatus
))
2955 spd
= (sstatus
>> 4) & 0xf;
2957 spd
= link
->sata_spd
;
2959 mask
= link
->sata_spd_limit
;
2963 /* unconditionally mask off the highest bit */
2964 bit
= fls(mask
) - 1;
2965 mask
&= ~(1 << bit
);
2967 /* Mask off all speeds higher than or equal to the current
2968 * one. Force 1.5Gbps if current SPD is not available.
2971 mask
&= (1 << (spd
- 1)) - 1;
2975 /* were we already at the bottom? */
2980 if (mask
& ((1 << spd_limit
) - 1))
2981 mask
&= (1 << spd_limit
) - 1;
2983 bit
= ffs(mask
) - 1;
2988 link
->sata_spd_limit
= mask
;
2990 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2991 sata_spd_string(fls(mask
)));
2996 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2998 struct ata_link
*host_link
= &link
->ap
->link
;
2999 u32 limit
, target
, spd
;
3001 limit
= link
->sata_spd_limit
;
3003 /* Don't configure downstream link faster than upstream link.
3004 * It doesn't speed up anything and some PMPs choke on such
3007 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
3008 limit
&= (1 << host_link
->sata_spd
) - 1;
3010 if (limit
== UINT_MAX
)
3013 target
= fls(limit
);
3015 spd
= (*scontrol
>> 4) & 0xf;
3016 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
3018 return spd
!= target
;
3022 * sata_set_spd_needed - is SATA spd configuration needed
3023 * @link: Link in question
3025 * Test whether the spd limit in SControl matches
3026 * @link->sata_spd_limit. This function is used to determine
3027 * whether hardreset is necessary to apply SATA spd
3031 * Inherited from caller.
3034 * 1 if SATA spd configuration is needed, 0 otherwise.
3036 static int sata_set_spd_needed(struct ata_link
*link
)
3040 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
3043 return __sata_set_spd_needed(link
, &scontrol
);
3047 * sata_set_spd - set SATA spd according to spd limit
3048 * @link: Link to set SATA spd for
3050 * Set SATA spd of @link according to sata_spd_limit.
3053 * Inherited from caller.
3056 * 0 if spd doesn't need to be changed, 1 if spd has been
3057 * changed. Negative errno if SCR registers are inaccessible.
3059 int sata_set_spd(struct ata_link
*link
)
3064 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3067 if (!__sata_set_spd_needed(link
, &scontrol
))
3070 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3077 * This mode timing computation functionality is ported over from
3078 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3081 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3082 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3083 * for UDMA6, which is currently supported only by Maxtor drives.
3085 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3088 static const struct ata_timing ata_timing
[] = {
3089 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3090 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3091 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3092 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3093 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3094 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3095 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3096 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3098 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3099 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3100 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3102 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3103 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3104 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3105 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3106 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3108 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3109 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3110 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3111 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3112 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3113 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3114 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3115 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3120 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3121 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3123 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
3125 q
->setup
= EZ(t
->setup
* 1000, T
);
3126 q
->act8b
= EZ(t
->act8b
* 1000, T
);
3127 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
3128 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
3129 q
->active
= EZ(t
->active
* 1000, T
);
3130 q
->recover
= EZ(t
->recover
* 1000, T
);
3131 q
->dmack_hold
= EZ(t
->dmack_hold
* 1000, T
);
3132 q
->cycle
= EZ(t
->cycle
* 1000, T
);
3133 q
->udma
= EZ(t
->udma
* 1000, UT
);
3136 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
3137 struct ata_timing
*m
, unsigned int what
)
3139 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
3140 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
3141 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
3142 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
3143 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
3144 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
3145 if (what
& ATA_TIMING_DMACK_HOLD
) m
->dmack_hold
= max(a
->dmack_hold
, b
->dmack_hold
);
3146 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
3147 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
3150 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
3152 const struct ata_timing
*t
= ata_timing
;
3154 while (xfer_mode
> t
->mode
)
3157 if (xfer_mode
== t
->mode
)
3162 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3163 struct ata_timing
*t
, int T
, int UT
)
3165 const struct ata_timing
*s
;
3166 struct ata_timing p
;
3172 if (!(s
= ata_timing_find_mode(speed
)))
3175 memcpy(t
, s
, sizeof(*s
));
3178 * If the drive is an EIDE drive, it can tell us it needs extended
3179 * PIO/MW_DMA cycle timing.
3182 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3183 memset(&p
, 0, sizeof(p
));
3184 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
3185 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
3186 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
3187 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
3188 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
3190 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3194 * Convert the timing to bus clock counts.
3197 ata_timing_quantize(t
, t
, T
, UT
);
3200 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3201 * S.M.A.R.T * and some other commands. We have to ensure that the
3202 * DMA cycle timing is slower/equal than the fastest PIO timing.
3205 if (speed
> XFER_PIO_6
) {
3206 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3207 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3211 * Lengthen active & recovery time so that cycle time is correct.
3214 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3215 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3216 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3219 if (t
->active
+ t
->recover
< t
->cycle
) {
3220 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3221 t
->recover
= t
->cycle
- t
->active
;
3224 /* In a few cases quantisation may produce enough errors to
3225 leave t->cycle too low for the sum of active and recovery
3226 if so we must correct this */
3227 if (t
->active
+ t
->recover
> t
->cycle
)
3228 t
->cycle
= t
->active
+ t
->recover
;
3234 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3235 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3236 * @cycle: cycle duration in ns
3238 * Return matching xfer mode for @cycle. The returned mode is of
3239 * the transfer type specified by @xfer_shift. If @cycle is too
3240 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3241 * than the fastest known mode, the fasted mode is returned.
3247 * Matching xfer_mode, 0xff if no match found.
3249 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3251 u8 base_mode
= 0xff, last_mode
= 0xff;
3252 const struct ata_xfer_ent
*ent
;
3253 const struct ata_timing
*t
;
3255 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3256 if (ent
->shift
== xfer_shift
)
3257 base_mode
= ent
->base
;
3259 for (t
= ata_timing_find_mode(base_mode
);
3260 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3261 unsigned short this_cycle
;
3263 switch (xfer_shift
) {
3265 case ATA_SHIFT_MWDMA
:
3266 this_cycle
= t
->cycle
;
3268 case ATA_SHIFT_UDMA
:
3269 this_cycle
= t
->udma
;
3275 if (cycle
> this_cycle
)
3278 last_mode
= t
->mode
;
3285 * ata_down_xfermask_limit - adjust dev xfer masks downward
3286 * @dev: Device to adjust xfer masks
3287 * @sel: ATA_DNXFER_* selector
3289 * Adjust xfer masks of @dev downward. Note that this function
3290 * does not apply the change. Invoking ata_set_mode() afterwards
3291 * will apply the limit.
3294 * Inherited from caller.
3297 * 0 on success, negative errno on failure
3299 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3302 unsigned long orig_mask
, xfer_mask
;
3303 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3306 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3307 sel
&= ~ATA_DNXFER_QUIET
;
3309 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3312 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3315 case ATA_DNXFER_PIO
:
3316 highbit
= fls(pio_mask
) - 1;
3317 pio_mask
&= ~(1 << highbit
);
3320 case ATA_DNXFER_DMA
:
3322 highbit
= fls(udma_mask
) - 1;
3323 udma_mask
&= ~(1 << highbit
);
3326 } else if (mwdma_mask
) {
3327 highbit
= fls(mwdma_mask
) - 1;
3328 mwdma_mask
&= ~(1 << highbit
);
3334 case ATA_DNXFER_40C
:
3335 udma_mask
&= ATA_UDMA_MASK_40C
;
3338 case ATA_DNXFER_FORCE_PIO0
:
3340 case ATA_DNXFER_FORCE_PIO
:
3349 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3351 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3355 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3356 snprintf(buf
, sizeof(buf
), "%s:%s",
3357 ata_mode_string(xfer_mask
),
3358 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3360 snprintf(buf
, sizeof(buf
), "%s",
3361 ata_mode_string(xfer_mask
));
3363 ata_dev_printk(dev
, KERN_WARNING
,
3364 "limiting speed to %s\n", buf
);
3367 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3373 static int ata_dev_set_mode(struct ata_device
*dev
)
3375 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3376 const char *dev_err_whine
= "";
3377 int ign_dev_err
= 0;
3378 unsigned int err_mask
;
3381 dev
->flags
&= ~ATA_DFLAG_PIO
;
3382 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3383 dev
->flags
|= ATA_DFLAG_PIO
;
3385 err_mask
= ata_dev_set_xfermode(dev
);
3387 if (err_mask
& ~AC_ERR_DEV
)
3391 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3392 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3393 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3397 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3398 /* Old CFA may refuse this command, which is just fine */
3399 if (ata_id_is_cfa(dev
->id
))
3401 /* Catch several broken garbage emulations plus some pre
3403 if (ata_id_major_version(dev
->id
) == 0 &&
3404 dev
->pio_mode
<= XFER_PIO_2
)
3406 /* Some very old devices and some bad newer ones fail
3407 any kind of SET_XFERMODE request but support PIO0-2
3408 timings and no IORDY */
3409 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3412 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3413 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3414 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3415 dev
->dma_mode
== XFER_MW_DMA_0
&&
3416 (dev
->id
[63] >> 8) & 1)
3419 /* if the device is actually configured correctly, ignore dev err */
3420 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3423 if (err_mask
& AC_ERR_DEV
) {
3427 dev_err_whine
= " (device error ignored)";
3430 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3431 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3433 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3434 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3440 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3441 "(err_mask=0x%x)\n", err_mask
);
3446 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3447 * @link: link on which timings will be programmed
3448 * @r_failed_dev: out parameter for failed device
3450 * Standard implementation of the function used to tune and set
3451 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3452 * ata_dev_set_mode() fails, pointer to the failing device is
3453 * returned in @r_failed_dev.
3456 * PCI/etc. bus probe sem.
3459 * 0 on success, negative errno otherwise
3462 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3464 struct ata_port
*ap
= link
->ap
;
3465 struct ata_device
*dev
;
3466 int rc
= 0, used_dma
= 0, found
= 0;
3468 /* step 1: calculate xfer_mask */
3469 ata_for_each_dev(dev
, link
, ENABLED
) {
3470 unsigned long pio_mask
, dma_mask
;
3471 unsigned int mode_mask
;
3473 mode_mask
= ATA_DMA_MASK_ATA
;
3474 if (dev
->class == ATA_DEV_ATAPI
)
3475 mode_mask
= ATA_DMA_MASK_ATAPI
;
3476 else if (ata_id_is_cfa(dev
->id
))
3477 mode_mask
= ATA_DMA_MASK_CFA
;
3479 ata_dev_xfermask(dev
);
3480 ata_force_xfermask(dev
);
3482 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3483 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3485 if (libata_dma_mask
& mode_mask
)
3486 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3490 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3491 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3494 if (ata_dma_enabled(dev
))
3500 /* step 2: always set host PIO timings */
3501 ata_for_each_dev(dev
, link
, ENABLED
) {
3502 if (dev
->pio_mode
== 0xff) {
3503 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3508 dev
->xfer_mode
= dev
->pio_mode
;
3509 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3510 if (ap
->ops
->set_piomode
)
3511 ap
->ops
->set_piomode(ap
, dev
);
3514 /* step 3: set host DMA timings */
3515 ata_for_each_dev(dev
, link
, ENABLED
) {
3516 if (!ata_dma_enabled(dev
))
3519 dev
->xfer_mode
= dev
->dma_mode
;
3520 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3521 if (ap
->ops
->set_dmamode
)
3522 ap
->ops
->set_dmamode(ap
, dev
);
3525 /* step 4: update devices' xfer mode */
3526 ata_for_each_dev(dev
, link
, ENABLED
) {
3527 rc
= ata_dev_set_mode(dev
);
3532 /* Record simplex status. If we selected DMA then the other
3533 * host channels are not permitted to do so.
3535 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3536 ap
->host
->simplex_claimed
= ap
;
3540 *r_failed_dev
= dev
;
3545 * ata_wait_ready - wait for link to become ready
3546 * @link: link to be waited on
3547 * @deadline: deadline jiffies for the operation
3548 * @check_ready: callback to check link readiness
3550 * Wait for @link to become ready. @check_ready should return
3551 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3552 * link doesn't seem to be occupied, other errno for other error
3555 * Transient -ENODEV conditions are allowed for
3556 * ATA_TMOUT_FF_WAIT.
3562 * 0 if @linke is ready before @deadline; otherwise, -errno.
3564 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3565 int (*check_ready
)(struct ata_link
*link
))
3567 unsigned long start
= jiffies
;
3568 unsigned long nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3571 /* Slave readiness can't be tested separately from master. On
3572 * M/S emulation configuration, this function should be called
3573 * only on the master and it will handle both master and slave.
3575 WARN_ON(link
== link
->ap
->slave_link
);
3577 if (time_after(nodev_deadline
, deadline
))
3578 nodev_deadline
= deadline
;
3581 unsigned long now
= jiffies
;
3584 ready
= tmp
= check_ready(link
);
3588 /* -ENODEV could be transient. Ignore -ENODEV if link
3589 * is online. Also, some SATA devices take a long
3590 * time to clear 0xff after reset. For example,
3591 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3592 * GoVault needs even more than that. Wait for
3593 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3595 * Note that some PATA controllers (pata_ali) explode
3596 * if status register is read more than once when
3597 * there's no device attached.
3599 if (ready
== -ENODEV
) {
3600 if (ata_link_online(link
))
3602 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3603 !ata_link_offline(link
) &&
3604 time_before(now
, nodev_deadline
))
3610 if (time_after(now
, deadline
))
3613 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3614 (deadline
- now
> 3 * HZ
)) {
3615 ata_link_printk(link
, KERN_WARNING
,
3616 "link is slow to respond, please be patient "
3617 "(ready=%d)\n", tmp
);
3626 * ata_wait_after_reset - wait for link to become ready after reset
3627 * @link: link to be waited on
3628 * @deadline: deadline jiffies for the operation
3629 * @check_ready: callback to check link readiness
3631 * Wait for @link to become ready after reset.
3637 * 0 if @linke is ready before @deadline; otherwise, -errno.
3639 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3640 int (*check_ready
)(struct ata_link
*link
))
3642 msleep(ATA_WAIT_AFTER_RESET
);
3644 return ata_wait_ready(link
, deadline
, check_ready
);
3648 * sata_link_debounce - debounce SATA phy status
3649 * @link: ATA link to debounce SATA phy status for
3650 * @params: timing parameters { interval, duratinon, timeout } in msec
3651 * @deadline: deadline jiffies for the operation
3653 * Make sure SStatus of @link reaches stable state, determined by
3654 * holding the same value where DET is not 1 for @duration polled
3655 * every @interval, before @timeout. Timeout constraints the
3656 * beginning of the stable state. Because DET gets stuck at 1 on
3657 * some controllers after hot unplugging, this functions waits
3658 * until timeout then returns 0 if DET is stable at 1.
3660 * @timeout is further limited by @deadline. The sooner of the
3664 * Kernel thread context (may sleep)
3667 * 0 on success, -errno on failure.
3669 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3670 unsigned long deadline
)
3672 unsigned long interval
= params
[0];
3673 unsigned long duration
= params
[1];
3674 unsigned long last_jiffies
, t
;
3678 t
= ata_deadline(jiffies
, params
[2]);
3679 if (time_before(t
, deadline
))
3682 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3687 last_jiffies
= jiffies
;
3691 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3697 if (cur
== 1 && time_before(jiffies
, deadline
))
3699 if (time_after(jiffies
,
3700 ata_deadline(last_jiffies
, duration
)))
3705 /* unstable, start over */
3707 last_jiffies
= jiffies
;
3709 /* Check deadline. If debouncing failed, return
3710 * -EPIPE to tell upper layer to lower link speed.
3712 if (time_after(jiffies
, deadline
))
3718 * sata_link_resume - resume SATA link
3719 * @link: ATA link to resume SATA
3720 * @params: timing parameters { interval, duratinon, timeout } in msec
3721 * @deadline: deadline jiffies for the operation
3723 * Resume SATA phy @link and debounce it.
3726 * Kernel thread context (may sleep)
3729 * 0 on success, -errno on failure.
3731 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3732 unsigned long deadline
)
3734 u32 scontrol
, serror
;
3737 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3740 scontrol
= (scontrol
& 0x0f0) | 0x300;
3742 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3745 /* Some PHYs react badly if SStatus is pounded immediately
3746 * after resuming. Delay 200ms before debouncing.
3750 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3753 /* clear SError, some PHYs require this even for SRST to work */
3754 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3755 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3757 return rc
!= -EINVAL
? rc
: 0;
3761 * ata_std_prereset - prepare for reset
3762 * @link: ATA link to be reset
3763 * @deadline: deadline jiffies for the operation
3765 * @link is about to be reset. Initialize it. Failure from
3766 * prereset makes libata abort whole reset sequence and give up
3767 * that port, so prereset should be best-effort. It does its
3768 * best to prepare for reset sequence but if things go wrong, it
3769 * should just whine, not fail.
3772 * Kernel thread context (may sleep)
3775 * 0 on success, -errno otherwise.
3777 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3779 struct ata_port
*ap
= link
->ap
;
3780 struct ata_eh_context
*ehc
= &link
->eh_context
;
3781 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3784 /* if we're about to do hardreset, nothing more to do */
3785 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3788 /* if SATA, resume link */
3789 if (ap
->flags
& ATA_FLAG_SATA
) {
3790 rc
= sata_link_resume(link
, timing
, deadline
);
3791 /* whine about phy resume failure but proceed */
3792 if (rc
&& rc
!= -EOPNOTSUPP
)
3793 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3794 "link for reset (errno=%d)\n", rc
);
3797 /* no point in trying softreset on offline link */
3798 if (ata_phys_link_offline(link
))
3799 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3805 * sata_link_hardreset - reset link via SATA phy reset
3806 * @link: link to reset
3807 * @timing: timing parameters { interval, duratinon, timeout } in msec
3808 * @deadline: deadline jiffies for the operation
3809 * @online: optional out parameter indicating link onlineness
3810 * @check_ready: optional callback to check link readiness
3812 * SATA phy-reset @link using DET bits of SControl register.
3813 * After hardreset, link readiness is waited upon using
3814 * ata_wait_ready() if @check_ready is specified. LLDs are
3815 * allowed to not specify @check_ready and wait itself after this
3816 * function returns. Device classification is LLD's
3819 * *@online is set to one iff reset succeeded and @link is online
3823 * Kernel thread context (may sleep)
3826 * 0 on success, -errno otherwise.
3828 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3829 unsigned long deadline
,
3830 bool *online
, int (*check_ready
)(struct ata_link
*))
3840 if (sata_set_spd_needed(link
)) {
3841 /* SATA spec says nothing about how to reconfigure
3842 * spd. To be on the safe side, turn off phy during
3843 * reconfiguration. This works for at least ICH7 AHCI
3846 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3849 scontrol
= (scontrol
& 0x0f0) | 0x304;
3851 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3857 /* issue phy wake/reset */
3858 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3861 scontrol
= (scontrol
& 0x0f0) | 0x301;
3863 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3866 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3867 * 10.4.2 says at least 1 ms.
3871 /* bring link back */
3872 rc
= sata_link_resume(link
, timing
, deadline
);
3875 /* if link is offline nothing more to do */
3876 if (ata_phys_link_offline(link
))
3879 /* Link is online. From this point, -ENODEV too is an error. */
3883 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3884 /* If PMP is supported, we have to do follow-up SRST.
3885 * Some PMPs don't send D2H Reg FIS after hardreset if
3886 * the first port is empty. Wait only for
3887 * ATA_TMOUT_PMP_SRST_WAIT.
3890 unsigned long pmp_deadline
;
3892 pmp_deadline
= ata_deadline(jiffies
,
3893 ATA_TMOUT_PMP_SRST_WAIT
);
3894 if (time_after(pmp_deadline
, deadline
))
3895 pmp_deadline
= deadline
;
3896 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3904 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3906 if (rc
&& rc
!= -EAGAIN
) {
3907 /* online is set iff link is online && reset succeeded */
3910 ata_link_printk(link
, KERN_ERR
,
3911 "COMRESET failed (errno=%d)\n", rc
);
3913 DPRINTK("EXIT, rc=%d\n", rc
);
3918 * sata_std_hardreset - COMRESET w/o waiting or classification
3919 * @link: link to reset
3920 * @class: resulting class of attached device
3921 * @deadline: deadline jiffies for the operation
3923 * Standard SATA COMRESET w/o waiting or classification.
3926 * Kernel thread context (may sleep)
3929 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3931 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3932 unsigned long deadline
)
3934 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3939 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
3940 return online
? -EAGAIN
: rc
;
3944 * ata_std_postreset - standard postreset callback
3945 * @link: the target ata_link
3946 * @classes: classes of attached devices
3948 * This function is invoked after a successful reset. Note that
3949 * the device might have been reset more than once using
3950 * different reset methods before postreset is invoked.
3953 * Kernel thread context (may sleep)
3955 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
3961 /* reset complete, clear SError */
3962 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
3963 sata_scr_write(link
, SCR_ERROR
, serror
);
3965 /* print link status */
3966 sata_print_link_status(link
);
3972 * ata_dev_same_device - Determine whether new ID matches configured device
3973 * @dev: device to compare against
3974 * @new_class: class of the new device
3975 * @new_id: IDENTIFY page of the new device
3977 * Compare @new_class and @new_id against @dev and determine
3978 * whether @dev is the device indicated by @new_class and
3985 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3987 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3990 const u16
*old_id
= dev
->id
;
3991 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3992 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3994 if (dev
->class != new_class
) {
3995 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3996 dev
->class, new_class
);
4000 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
4001 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
4002 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
4003 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
4005 if (strcmp(model
[0], model
[1])) {
4006 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
4007 "'%s' != '%s'\n", model
[0], model
[1]);
4011 if (strcmp(serial
[0], serial
[1])) {
4012 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
4013 "'%s' != '%s'\n", serial
[0], serial
[1]);
4021 * ata_dev_reread_id - Re-read IDENTIFY data
4022 * @dev: target ATA device
4023 * @readid_flags: read ID flags
4025 * Re-read IDENTIFY page and make sure @dev is still attached to
4029 * Kernel thread context (may sleep)
4032 * 0 on success, negative errno otherwise
4034 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
4036 unsigned int class = dev
->class;
4037 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
4041 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
4045 /* is the device still there? */
4046 if (!ata_dev_same_device(dev
, class, id
))
4049 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
4054 * ata_dev_revalidate - Revalidate ATA device
4055 * @dev: device to revalidate
4056 * @new_class: new class code
4057 * @readid_flags: read ID flags
4059 * Re-read IDENTIFY page, make sure @dev is still attached to the
4060 * port and reconfigure it according to the new IDENTIFY page.
4063 * Kernel thread context (may sleep)
4066 * 0 on success, negative errno otherwise
4068 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4069 unsigned int readid_flags
)
4071 u64 n_sectors
= dev
->n_sectors
;
4074 if (!ata_dev_enabled(dev
))
4077 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4078 if (ata_class_enabled(new_class
) &&
4079 new_class
!= ATA_DEV_ATA
&& new_class
!= ATA_DEV_ATAPI
) {
4080 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
4081 dev
->class, new_class
);
4087 rc
= ata_dev_reread_id(dev
, readid_flags
);
4091 /* configure device according to the new ID */
4092 rc
= ata_dev_configure(dev
);
4096 /* verify n_sectors hasn't changed */
4097 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
4098 dev
->n_sectors
!= n_sectors
) {
4099 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
4101 (unsigned long long)n_sectors
,
4102 (unsigned long long)dev
->n_sectors
);
4104 /* restore original n_sectors */
4105 dev
->n_sectors
= n_sectors
;
4114 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
4118 struct ata_blacklist_entry
{
4119 const char *model_num
;
4120 const char *model_rev
;
4121 unsigned long horkage
;
4124 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4125 /* Devices with DMA related problems under Linux */
4126 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4127 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4128 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4129 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4130 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4131 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4132 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4133 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4134 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4135 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
4136 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
4137 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4138 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4139 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4140 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4141 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4142 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
4143 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
4144 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4145 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4146 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4147 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4148 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4149 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4150 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4151 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4152 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4153 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4154 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4155 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4156 /* Odd clown on sil3726/4726 PMPs */
4157 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
4159 /* Weird ATAPI devices */
4160 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4161 { "QUANTUM DAT DAT72-000", NULL
, ATA_HORKAGE_ATAPI_MOD16_DMA
},
4163 /* Devices we expect to fail diagnostics */
4165 /* Devices where NCQ should be avoided */
4167 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4168 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4169 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4170 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4172 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4173 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4174 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4175 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4176 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ
},
4178 /* Seagate NCQ + FLUSH CACHE firmware bug */
4179 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ
|
4180 ATA_HORKAGE_FIRMWARE_WARN
},
4181 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ
|
4182 ATA_HORKAGE_FIRMWARE_WARN
},
4183 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ
|
4184 ATA_HORKAGE_FIRMWARE_WARN
},
4185 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ
|
4186 ATA_HORKAGE_FIRMWARE_WARN
},
4187 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ
|
4188 ATA_HORKAGE_FIRMWARE_WARN
},
4190 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ
|
4191 ATA_HORKAGE_FIRMWARE_WARN
},
4192 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ
|
4193 ATA_HORKAGE_FIRMWARE_WARN
},
4194 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ
|
4195 ATA_HORKAGE_FIRMWARE_WARN
},
4196 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ
|
4197 ATA_HORKAGE_FIRMWARE_WARN
},
4198 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ
|
4199 ATA_HORKAGE_FIRMWARE_WARN
},
4201 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ
|
4202 ATA_HORKAGE_FIRMWARE_WARN
},
4203 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ
|
4204 ATA_HORKAGE_FIRMWARE_WARN
},
4205 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ
|
4206 ATA_HORKAGE_FIRMWARE_WARN
},
4207 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ
|
4208 ATA_HORKAGE_FIRMWARE_WARN
},
4209 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ
|
4210 ATA_HORKAGE_FIRMWARE_WARN
},
4212 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ
|
4213 ATA_HORKAGE_FIRMWARE_WARN
},
4214 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ
|
4215 ATA_HORKAGE_FIRMWARE_WARN
},
4216 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ
|
4217 ATA_HORKAGE_FIRMWARE_WARN
},
4218 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ
|
4219 ATA_HORKAGE_FIRMWARE_WARN
},
4220 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ
|
4221 ATA_HORKAGE_FIRMWARE_WARN
},
4223 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ
|
4224 ATA_HORKAGE_FIRMWARE_WARN
},
4225 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ
|
4226 ATA_HORKAGE_FIRMWARE_WARN
},
4227 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ
|
4228 ATA_HORKAGE_FIRMWARE_WARN
},
4229 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ
|
4230 ATA_HORKAGE_FIRMWARE_WARN
},
4231 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ
|
4232 ATA_HORKAGE_FIRMWARE_WARN
},
4234 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ
|
4235 ATA_HORKAGE_FIRMWARE_WARN
},
4236 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ
|
4237 ATA_HORKAGE_FIRMWARE_WARN
},
4238 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ
|
4239 ATA_HORKAGE_FIRMWARE_WARN
},
4240 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ
|
4241 ATA_HORKAGE_FIRMWARE_WARN
},
4242 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ
|
4243 ATA_HORKAGE_FIRMWARE_WARN
},
4245 /* Blacklist entries taken from Silicon Image 3124/3132
4246 Windows driver .inf file - also several Linux problem reports */
4247 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4248 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4249 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4251 /* devices which puke on READ_NATIVE_MAX */
4252 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4253 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4254 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4255 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4257 /* Devices which report 1 sector over size HPA */
4258 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4259 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4260 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4262 /* Devices which get the IVB wrong */
4263 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4264 /* Maybe we should just blacklist TSSTcorp... */
4265 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB
, },
4266 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB
, },
4267 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
4268 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
4269 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
4270 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
4272 /* Devices that do not need bridging limits applied */
4273 { "MTRON MSP-SATA*", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4275 /* Devices which aren't very happy with higher link speeds */
4276 { "WD My Book", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4282 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
4288 * check for trailing wildcard: *\0
4290 p
= strchr(patt
, wildchar
);
4291 if (p
&& ((*(p
+ 1)) == 0))
4302 return strncmp(patt
, name
, len
);
4305 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4307 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4308 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4309 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4311 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4312 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4314 while (ad
->model_num
) {
4315 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
4316 if (ad
->model_rev
== NULL
)
4318 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
4326 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4328 /* We don't support polling DMA.
4329 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4330 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4332 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4333 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4335 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4339 * ata_is_40wire - check drive side detection
4342 * Perform drive side detection decoding, allowing for device vendors
4343 * who can't follow the documentation.
4346 static int ata_is_40wire(struct ata_device
*dev
)
4348 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4349 return ata_drive_40wire_relaxed(dev
->id
);
4350 return ata_drive_40wire(dev
->id
);
4354 * cable_is_40wire - 40/80/SATA decider
4355 * @ap: port to consider
4357 * This function encapsulates the policy for speed management
4358 * in one place. At the moment we don't cache the result but
4359 * there is a good case for setting ap->cbl to the result when
4360 * we are called with unknown cables (and figuring out if it
4361 * impacts hotplug at all).
4363 * Return 1 if the cable appears to be 40 wire.
4366 static int cable_is_40wire(struct ata_port
*ap
)
4368 struct ata_link
*link
;
4369 struct ata_device
*dev
;
4371 /* If the controller thinks we are 40 wire, we are. */
4372 if (ap
->cbl
== ATA_CBL_PATA40
)
4375 /* If the controller thinks we are 80 wire, we are. */
4376 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4379 /* If the system is known to be 40 wire short cable (eg
4380 * laptop), then we allow 80 wire modes even if the drive
4383 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4386 /* If the controller doesn't know, we scan.
4388 * Note: We look for all 40 wire detects at this point. Any
4389 * 80 wire detect is taken to be 80 wire cable because
4390 * - in many setups only the one drive (slave if present) will
4391 * give a valid detect
4392 * - if you have a non detect capable drive you don't want it
4393 * to colour the choice
4395 ata_for_each_link(link
, ap
, EDGE
) {
4396 ata_for_each_dev(dev
, link
, ENABLED
) {
4397 if (!ata_is_40wire(dev
))
4405 * ata_dev_xfermask - Compute supported xfermask of the given device
4406 * @dev: Device to compute xfermask for
4408 * Compute supported xfermask of @dev and store it in
4409 * dev->*_mask. This function is responsible for applying all
4410 * known limits including host controller limits, device
4416 static void ata_dev_xfermask(struct ata_device
*dev
)
4418 struct ata_link
*link
= dev
->link
;
4419 struct ata_port
*ap
= link
->ap
;
4420 struct ata_host
*host
= ap
->host
;
4421 unsigned long xfer_mask
;
4423 /* controller modes available */
4424 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4425 ap
->mwdma_mask
, ap
->udma_mask
);
4427 /* drive modes available */
4428 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4429 dev
->mwdma_mask
, dev
->udma_mask
);
4430 xfer_mask
&= ata_id_xfermask(dev
->id
);
4433 * CFA Advanced TrueIDE timings are not allowed on a shared
4436 if (ata_dev_pair(dev
)) {
4437 /* No PIO5 or PIO6 */
4438 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4439 /* No MWDMA3 or MWDMA 4 */
4440 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4443 if (ata_dma_blacklisted(dev
)) {
4444 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4445 ata_dev_printk(dev
, KERN_WARNING
,
4446 "device is on DMA blacklist, disabling DMA\n");
4449 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4450 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4451 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4452 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4453 "other device, disabling DMA\n");
4456 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4457 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4459 if (ap
->ops
->mode_filter
)
4460 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4462 /* Apply cable rule here. Don't apply it early because when
4463 * we handle hot plug the cable type can itself change.
4464 * Check this last so that we know if the transfer rate was
4465 * solely limited by the cable.
4466 * Unknown or 80 wire cables reported host side are checked
4467 * drive side as well. Cases where we know a 40wire cable
4468 * is used safely for 80 are not checked here.
4470 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4471 /* UDMA/44 or higher would be available */
4472 if (cable_is_40wire(ap
)) {
4473 ata_dev_printk(dev
, KERN_WARNING
,
4474 "limited to UDMA/33 due to 40-wire cable\n");
4475 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4478 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4479 &dev
->mwdma_mask
, &dev
->udma_mask
);
4483 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4484 * @dev: Device to which command will be sent
4486 * Issue SET FEATURES - XFER MODE command to device @dev
4490 * PCI/etc. bus probe sem.
4493 * 0 on success, AC_ERR_* mask otherwise.
4496 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4498 struct ata_taskfile tf
;
4499 unsigned int err_mask
;
4501 /* set up set-features taskfile */
4502 DPRINTK("set features - xfer mode\n");
4504 /* Some controllers and ATAPI devices show flaky interrupt
4505 * behavior after setting xfer mode. Use polling instead.
4507 ata_tf_init(dev
, &tf
);
4508 tf
.command
= ATA_CMD_SET_FEATURES
;
4509 tf
.feature
= SETFEATURES_XFER
;
4510 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4511 tf
.protocol
= ATA_PROT_NODATA
;
4512 /* If we are using IORDY we must send the mode setting command */
4513 if (ata_pio_need_iordy(dev
))
4514 tf
.nsect
= dev
->xfer_mode
;
4515 /* If the device has IORDY and the controller does not - turn it off */
4516 else if (ata_id_has_iordy(dev
->id
))
4518 else /* In the ancient relic department - skip all of this */
4521 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4523 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4527 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4528 * @dev: Device to which command will be sent
4529 * @enable: Whether to enable or disable the feature
4530 * @feature: The sector count represents the feature to set
4532 * Issue SET FEATURES - SATA FEATURES command to device @dev
4533 * on port @ap with sector count
4536 * PCI/etc. bus probe sem.
4539 * 0 on success, AC_ERR_* mask otherwise.
4541 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4544 struct ata_taskfile tf
;
4545 unsigned int err_mask
;
4547 /* set up set-features taskfile */
4548 DPRINTK("set features - SATA features\n");
4550 ata_tf_init(dev
, &tf
);
4551 tf
.command
= ATA_CMD_SET_FEATURES
;
4552 tf
.feature
= enable
;
4553 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4554 tf
.protocol
= ATA_PROT_NODATA
;
4557 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4559 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4564 * ata_dev_init_params - Issue INIT DEV PARAMS command
4565 * @dev: Device to which command will be sent
4566 * @heads: Number of heads (taskfile parameter)
4567 * @sectors: Number of sectors (taskfile parameter)
4570 * Kernel thread context (may sleep)
4573 * 0 on success, AC_ERR_* mask otherwise.
4575 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4576 u16 heads
, u16 sectors
)
4578 struct ata_taskfile tf
;
4579 unsigned int err_mask
;
4581 /* Number of sectors per track 1-255. Number of heads 1-16 */
4582 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4583 return AC_ERR_INVALID
;
4585 /* set up init dev params taskfile */
4586 DPRINTK("init dev params \n");
4588 ata_tf_init(dev
, &tf
);
4589 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4590 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4591 tf
.protocol
= ATA_PROT_NODATA
;
4593 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4595 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4596 /* A clean abort indicates an original or just out of spec drive
4597 and we should continue as we issue the setup based on the
4598 drive reported working geometry */
4599 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4602 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4607 * ata_sg_clean - Unmap DMA memory associated with command
4608 * @qc: Command containing DMA memory to be released
4610 * Unmap all mapped DMA memory associated with this command.
4613 * spin_lock_irqsave(host lock)
4615 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4617 struct ata_port
*ap
= qc
->ap
;
4618 struct scatterlist
*sg
= qc
->sg
;
4619 int dir
= qc
->dma_dir
;
4621 WARN_ON_ONCE(sg
== NULL
);
4623 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4626 dma_unmap_sg(ap
->dev
, sg
, qc
->orig_n_elem
, dir
);
4628 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4633 * atapi_check_dma - Check whether ATAPI DMA can be supported
4634 * @qc: Metadata associated with taskfile to check
4636 * Allow low-level driver to filter ATA PACKET commands, returning
4637 * a status indicating whether or not it is OK to use DMA for the
4638 * supplied PACKET command.
4641 * spin_lock_irqsave(host lock)
4643 * RETURNS: 0 when ATAPI DMA can be used
4646 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4648 struct ata_port
*ap
= qc
->ap
;
4650 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4651 * few ATAPI devices choke on such DMA requests.
4653 if (!(qc
->dev
->horkage
& ATA_HORKAGE_ATAPI_MOD16_DMA
) &&
4654 unlikely(qc
->nbytes
& 15))
4657 if (ap
->ops
->check_atapi_dma
)
4658 return ap
->ops
->check_atapi_dma(qc
);
4664 * ata_std_qc_defer - Check whether a qc needs to be deferred
4665 * @qc: ATA command in question
4667 * Non-NCQ commands cannot run with any other command, NCQ or
4668 * not. As upper layer only knows the queue depth, we are
4669 * responsible for maintaining exclusion. This function checks
4670 * whether a new command @qc can be issued.
4673 * spin_lock_irqsave(host lock)
4676 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4678 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4680 struct ata_link
*link
= qc
->dev
->link
;
4682 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4683 if (!ata_tag_valid(link
->active_tag
))
4686 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4690 return ATA_DEFER_LINK
;
4693 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4696 * ata_sg_init - Associate command with scatter-gather table.
4697 * @qc: Command to be associated
4698 * @sg: Scatter-gather table.
4699 * @n_elem: Number of elements in s/g table.
4701 * Initialize the data-related elements of queued_cmd @qc
4702 * to point to a scatter-gather table @sg, containing @n_elem
4706 * spin_lock_irqsave(host lock)
4708 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4709 unsigned int n_elem
)
4712 qc
->n_elem
= n_elem
;
4717 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4718 * @qc: Command with scatter-gather table to be mapped.
4720 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4723 * spin_lock_irqsave(host lock)
4726 * Zero on success, negative on error.
4729 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4731 struct ata_port
*ap
= qc
->ap
;
4732 unsigned int n_elem
;
4734 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4736 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4740 DPRINTK("%d sg elements mapped\n", n_elem
);
4741 qc
->orig_n_elem
= qc
->n_elem
;
4742 qc
->n_elem
= n_elem
;
4743 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4749 * swap_buf_le16 - swap halves of 16-bit words in place
4750 * @buf: Buffer to swap
4751 * @buf_words: Number of 16-bit words in buffer.
4753 * Swap halves of 16-bit words if needed to convert from
4754 * little-endian byte order to native cpu byte order, or
4758 * Inherited from caller.
4760 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4765 for (i
= 0; i
< buf_words
; i
++)
4766 buf
[i
] = le16_to_cpu(buf
[i
]);
4767 #endif /* __BIG_ENDIAN */
4771 * ata_qc_new - Request an available ATA command, for queueing
4778 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4780 struct ata_queued_cmd
*qc
= NULL
;
4783 /* no command while frozen */
4784 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4787 /* the last tag is reserved for internal command. */
4788 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4789 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4790 qc
= __ata_qc_from_tag(ap
, i
);
4801 * ata_qc_new_init - Request an available ATA command, and initialize it
4802 * @dev: Device from whom we request an available command structure
4808 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4810 struct ata_port
*ap
= dev
->link
->ap
;
4811 struct ata_queued_cmd
*qc
;
4813 qc
= ata_qc_new(ap
);
4826 * ata_qc_free - free unused ata_queued_cmd
4827 * @qc: Command to complete
4829 * Designed to free unused ata_queued_cmd object
4830 * in case something prevents using it.
4833 * spin_lock_irqsave(host lock)
4835 void ata_qc_free(struct ata_queued_cmd
*qc
)
4837 struct ata_port
*ap
= qc
->ap
;
4840 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4844 if (likely(ata_tag_valid(tag
))) {
4845 qc
->tag
= ATA_TAG_POISON
;
4846 clear_bit(tag
, &ap
->qc_allocated
);
4850 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4852 struct ata_port
*ap
= qc
->ap
;
4853 struct ata_link
*link
= qc
->dev
->link
;
4855 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4856 WARN_ON_ONCE(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4858 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4861 /* command should be marked inactive atomically with qc completion */
4862 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4863 link
->sactive
&= ~(1 << qc
->tag
);
4865 ap
->nr_active_links
--;
4867 link
->active_tag
= ATA_TAG_POISON
;
4868 ap
->nr_active_links
--;
4871 /* clear exclusive status */
4872 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4873 ap
->excl_link
== link
))
4874 ap
->excl_link
= NULL
;
4876 /* atapi: mark qc as inactive to prevent the interrupt handler
4877 * from completing the command twice later, before the error handler
4878 * is called. (when rc != 0 and atapi request sense is needed)
4880 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4881 ap
->qc_active
&= ~(1 << qc
->tag
);
4883 /* call completion callback */
4884 qc
->complete_fn(qc
);
4887 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4889 struct ata_port
*ap
= qc
->ap
;
4891 qc
->result_tf
.flags
= qc
->tf
.flags
;
4892 ap
->ops
->qc_fill_rtf(qc
);
4895 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
4897 struct ata_device
*dev
= qc
->dev
;
4899 if (ata_tag_internal(qc
->tag
))
4902 if (ata_is_nodata(qc
->tf
.protocol
))
4905 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
4908 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
4912 * ata_qc_complete - Complete an active ATA command
4913 * @qc: Command to complete
4915 * Indicate to the mid and upper layers that an ATA
4916 * command has completed, with either an ok or not-ok status.
4919 * spin_lock_irqsave(host lock)
4921 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4923 struct ata_port
*ap
= qc
->ap
;
4925 /* XXX: New EH and old EH use different mechanisms to
4926 * synchronize EH with regular execution path.
4928 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4929 * Normal execution path is responsible for not accessing a
4930 * failed qc. libata core enforces the rule by returning NULL
4931 * from ata_qc_from_tag() for failed qcs.
4933 * Old EH depends on ata_qc_complete() nullifying completion
4934 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4935 * not synchronize with interrupt handler. Only PIO task is
4938 if (ap
->ops
->error_handler
) {
4939 struct ata_device
*dev
= qc
->dev
;
4940 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
4942 WARN_ON_ONCE(ap
->pflags
& ATA_PFLAG_FROZEN
);
4944 if (unlikely(qc
->err_mask
))
4945 qc
->flags
|= ATA_QCFLAG_FAILED
;
4947 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4948 if (!ata_tag_internal(qc
->tag
)) {
4949 /* always fill result TF for failed qc */
4951 ata_qc_schedule_eh(qc
);
4956 /* read result TF if requested */
4957 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4960 /* Some commands need post-processing after successful
4963 switch (qc
->tf
.command
) {
4964 case ATA_CMD_SET_FEATURES
:
4965 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
4966 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
4969 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
4970 case ATA_CMD_SET_MULTI
: /* multi_count changed */
4971 /* revalidate device */
4972 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
4973 ata_port_schedule_eh(ap
);
4977 dev
->flags
|= ATA_DFLAG_SLEEPING
;
4981 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
4982 ata_verify_xfer(qc
);
4984 __ata_qc_complete(qc
);
4986 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
4989 /* read result TF if failed or requested */
4990 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4993 __ata_qc_complete(qc
);
4998 * ata_qc_complete_multiple - Complete multiple qcs successfully
4999 * @ap: port in question
5000 * @qc_active: new qc_active mask
5002 * Complete in-flight commands. This functions is meant to be
5003 * called from low-level driver's interrupt routine to complete
5004 * requests normally. ap->qc_active and @qc_active is compared
5005 * and commands are completed accordingly.
5008 * spin_lock_irqsave(host lock)
5011 * Number of completed commands on success, -errno otherwise.
5013 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
5019 done_mask
= ap
->qc_active
^ qc_active
;
5021 if (unlikely(done_mask
& qc_active
)) {
5022 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5023 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5027 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
5028 struct ata_queued_cmd
*qc
;
5030 if (!(done_mask
& (1 << i
)))
5033 if ((qc
= ata_qc_from_tag(ap
, i
))) {
5034 ata_qc_complete(qc
);
5043 * ata_qc_issue - issue taskfile to device
5044 * @qc: command to issue to device
5046 * Prepare an ATA command to submission to device.
5047 * This includes mapping the data into a DMA-able
5048 * area, filling in the S/G table, and finally
5049 * writing the taskfile to hardware, starting the command.
5052 * spin_lock_irqsave(host lock)
5054 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5056 struct ata_port
*ap
= qc
->ap
;
5057 struct ata_link
*link
= qc
->dev
->link
;
5058 u8 prot
= qc
->tf
.protocol
;
5060 /* Make sure only one non-NCQ command is outstanding. The
5061 * check is skipped for old EH because it reuses active qc to
5062 * request ATAPI sense.
5064 WARN_ON_ONCE(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5066 if (ata_is_ncq(prot
)) {
5067 WARN_ON_ONCE(link
->sactive
& (1 << qc
->tag
));
5070 ap
->nr_active_links
++;
5071 link
->sactive
|= 1 << qc
->tag
;
5073 WARN_ON_ONCE(link
->sactive
);
5075 ap
->nr_active_links
++;
5076 link
->active_tag
= qc
->tag
;
5079 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5080 ap
->qc_active
|= 1 << qc
->tag
;
5082 /* We guarantee to LLDs that they will have at least one
5083 * non-zero sg if the command is a data command.
5085 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
5087 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5088 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5089 if (ata_sg_setup(qc
))
5092 /* if device is sleeping, schedule reset and abort the link */
5093 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5094 link
->eh_info
.action
|= ATA_EH_RESET
;
5095 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5096 ata_link_abort(link
);
5100 ap
->ops
->qc_prep(qc
);
5102 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5103 if (unlikely(qc
->err_mask
))
5108 qc
->err_mask
|= AC_ERR_SYSTEM
;
5110 ata_qc_complete(qc
);
5114 * sata_scr_valid - test whether SCRs are accessible
5115 * @link: ATA link to test SCR accessibility for
5117 * Test whether SCRs are accessible for @link.
5123 * 1 if SCRs are accessible, 0 otherwise.
5125 int sata_scr_valid(struct ata_link
*link
)
5127 struct ata_port
*ap
= link
->ap
;
5129 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
5133 * sata_scr_read - read SCR register of the specified port
5134 * @link: ATA link to read SCR for
5136 * @val: Place to store read value
5138 * Read SCR register @reg of @link into *@val. This function is
5139 * guaranteed to succeed if @link is ap->link, the cable type of
5140 * the port is SATA and the port implements ->scr_read.
5143 * None if @link is ap->link. Kernel thread context otherwise.
5146 * 0 on success, negative errno on failure.
5148 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
5150 if (ata_is_host_link(link
)) {
5151 if (sata_scr_valid(link
))
5152 return link
->ap
->ops
->scr_read(link
, reg
, val
);
5156 return sata_pmp_scr_read(link
, reg
, val
);
5160 * sata_scr_write - write SCR register of the specified port
5161 * @link: ATA link to write SCR for
5162 * @reg: SCR to write
5163 * @val: value to write
5165 * Write @val to SCR register @reg of @link. This function is
5166 * guaranteed to succeed if @link is ap->link, the cable type of
5167 * the port is SATA and the port implements ->scr_read.
5170 * None if @link is ap->link. Kernel thread context otherwise.
5173 * 0 on success, negative errno on failure.
5175 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
5177 if (ata_is_host_link(link
)) {
5178 if (sata_scr_valid(link
))
5179 return link
->ap
->ops
->scr_write(link
, reg
, val
);
5183 return sata_pmp_scr_write(link
, reg
, val
);
5187 * sata_scr_write_flush - write SCR register of the specified port and flush
5188 * @link: ATA link to write SCR for
5189 * @reg: SCR to write
5190 * @val: value to write
5192 * This function is identical to sata_scr_write() except that this
5193 * function performs flush after writing to the register.
5196 * None if @link is ap->link. Kernel thread context otherwise.
5199 * 0 on success, negative errno on failure.
5201 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5203 if (ata_is_host_link(link
)) {
5206 if (sata_scr_valid(link
)) {
5207 rc
= link
->ap
->ops
->scr_write(link
, reg
, val
);
5209 rc
= link
->ap
->ops
->scr_read(link
, reg
, &val
);
5215 return sata_pmp_scr_write(link
, reg
, val
);
5219 * ata_phys_link_online - test whether the given link is online
5220 * @link: ATA link to test
5222 * Test whether @link is online. Note that this function returns
5223 * 0 if online status of @link cannot be obtained, so
5224 * ata_link_online(link) != !ata_link_offline(link).
5230 * True if the port online status is available and online.
5232 bool ata_phys_link_online(struct ata_link
*link
)
5236 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5237 ata_sstatus_online(sstatus
))
5243 * ata_phys_link_offline - test whether the given link is offline
5244 * @link: ATA link to test
5246 * Test whether @link is offline. Note that this function
5247 * returns 0 if offline status of @link cannot be obtained, so
5248 * ata_link_online(link) != !ata_link_offline(link).
5254 * True if the port offline status is available and offline.
5256 bool ata_phys_link_offline(struct ata_link
*link
)
5260 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5261 !ata_sstatus_online(sstatus
))
5267 * ata_link_online - test whether the given link is online
5268 * @link: ATA link to test
5270 * Test whether @link is online. This is identical to
5271 * ata_phys_link_online() when there's no slave link. When
5272 * there's a slave link, this function should only be called on
5273 * the master link and will return true if any of M/S links is
5280 * True if the port online status is available and online.
5282 bool ata_link_online(struct ata_link
*link
)
5284 struct ata_link
*slave
= link
->ap
->slave_link
;
5286 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5288 return ata_phys_link_online(link
) ||
5289 (slave
&& ata_phys_link_online(slave
));
5293 * ata_link_offline - test whether the given link is offline
5294 * @link: ATA link to test
5296 * Test whether @link is offline. This is identical to
5297 * ata_phys_link_offline() when there's no slave link. When
5298 * there's a slave link, this function should only be called on
5299 * the master link and will return true if both M/S links are
5306 * True if the port offline status is available and offline.
5308 bool ata_link_offline(struct ata_link
*link
)
5310 struct ata_link
*slave
= link
->ap
->slave_link
;
5312 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5314 return ata_phys_link_offline(link
) &&
5315 (!slave
|| ata_phys_link_offline(slave
));
5319 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5320 unsigned int action
, unsigned int ehi_flags
,
5323 unsigned long flags
;
5326 for (i
= 0; i
< host
->n_ports
; i
++) {
5327 struct ata_port
*ap
= host
->ports
[i
];
5328 struct ata_link
*link
;
5330 /* Previous resume operation might still be in
5331 * progress. Wait for PM_PENDING to clear.
5333 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5334 ata_port_wait_eh(ap
);
5335 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5338 /* request PM ops to EH */
5339 spin_lock_irqsave(ap
->lock
, flags
);
5344 ap
->pm_result
= &rc
;
5347 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5348 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5349 link
->eh_info
.action
|= action
;
5350 link
->eh_info
.flags
|= ehi_flags
;
5353 ata_port_schedule_eh(ap
);
5355 spin_unlock_irqrestore(ap
->lock
, flags
);
5357 /* wait and check result */
5359 ata_port_wait_eh(ap
);
5360 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5370 * ata_host_suspend - suspend host
5371 * @host: host to suspend
5374 * Suspend @host. Actual operation is performed by EH. This
5375 * function requests EH to perform PM operations and waits for EH
5379 * Kernel thread context (may sleep).
5382 * 0 on success, -errno on failure.
5384 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5389 * disable link pm on all ports before requesting
5392 ata_lpm_enable(host
);
5394 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5396 host
->dev
->power
.power_state
= mesg
;
5401 * ata_host_resume - resume host
5402 * @host: host to resume
5404 * Resume @host. Actual operation is performed by EH. This
5405 * function requests EH to perform PM operations and returns.
5406 * Note that all resume operations are performed parallely.
5409 * Kernel thread context (may sleep).
5411 void ata_host_resume(struct ata_host
*host
)
5413 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_RESET
,
5414 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5415 host
->dev
->power
.power_state
= PMSG_ON
;
5417 /* reenable link pm */
5418 ata_lpm_disable(host
);
5423 * ata_port_start - Set port up for dma.
5424 * @ap: Port to initialize
5426 * Called just after data structures for each port are
5427 * initialized. Allocates space for PRD table.
5429 * May be used as the port_start() entry in ata_port_operations.
5432 * Inherited from caller.
5434 int ata_port_start(struct ata_port
*ap
)
5436 struct device
*dev
= ap
->dev
;
5438 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5447 * ata_dev_init - Initialize an ata_device structure
5448 * @dev: Device structure to initialize
5450 * Initialize @dev in preparation for probing.
5453 * Inherited from caller.
5455 void ata_dev_init(struct ata_device
*dev
)
5457 struct ata_link
*link
= ata_dev_phys_link(dev
);
5458 struct ata_port
*ap
= link
->ap
;
5459 unsigned long flags
;
5461 /* SATA spd limit is bound to the attached device, reset together */
5462 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5465 /* High bits of dev->flags are used to record warm plug
5466 * requests which occur asynchronously. Synchronize using
5469 spin_lock_irqsave(ap
->lock
, flags
);
5470 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5472 spin_unlock_irqrestore(ap
->lock
, flags
);
5474 memset((void *)dev
+ ATA_DEVICE_CLEAR_BEGIN
, 0,
5475 ATA_DEVICE_CLEAR_END
- ATA_DEVICE_CLEAR_BEGIN
);
5476 dev
->pio_mask
= UINT_MAX
;
5477 dev
->mwdma_mask
= UINT_MAX
;
5478 dev
->udma_mask
= UINT_MAX
;
5482 * ata_link_init - Initialize an ata_link structure
5483 * @ap: ATA port link is attached to
5484 * @link: Link structure to initialize
5485 * @pmp: Port multiplier port number
5490 * Kernel thread context (may sleep)
5492 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5496 /* clear everything except for devices */
5497 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
5501 link
->active_tag
= ATA_TAG_POISON
;
5502 link
->hw_sata_spd_limit
= UINT_MAX
;
5504 /* can't use iterator, ap isn't initialized yet */
5505 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5506 struct ata_device
*dev
= &link
->device
[i
];
5509 dev
->devno
= dev
- link
->device
;
5515 * sata_link_init_spd - Initialize link->sata_spd_limit
5516 * @link: Link to configure sata_spd_limit for
5518 * Initialize @link->[hw_]sata_spd_limit to the currently
5522 * Kernel thread context (may sleep).
5525 * 0 on success, -errno on failure.
5527 int sata_link_init_spd(struct ata_link
*link
)
5532 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5536 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5538 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5540 ata_force_link_limits(link
);
5542 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5548 * ata_port_alloc - allocate and initialize basic ATA port resources
5549 * @host: ATA host this allocated port belongs to
5551 * Allocate and initialize basic ATA port resources.
5554 * Allocate ATA port on success, NULL on failure.
5557 * Inherited from calling layer (may sleep).
5559 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5561 struct ata_port
*ap
;
5565 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5569 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
5570 ap
->lock
= &host
->lock
;
5571 ap
->flags
= ATA_FLAG_DISABLED
;
5573 ap
->ctl
= ATA_DEVCTL_OBS
;
5575 ap
->dev
= host
->dev
;
5576 ap
->last_ctl
= 0xFF;
5578 #if defined(ATA_VERBOSE_DEBUG)
5579 /* turn on all debugging levels */
5580 ap
->msg_enable
= 0x00FF;
5581 #elif defined(ATA_DEBUG)
5582 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5584 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5587 #ifdef CONFIG_ATA_SFF
5588 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
5590 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
5592 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5593 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5594 INIT_LIST_HEAD(&ap
->eh_done_q
);
5595 init_waitqueue_head(&ap
->eh_wait_q
);
5596 init_completion(&ap
->park_req_pending
);
5597 init_timer_deferrable(&ap
->fastdrain_timer
);
5598 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5599 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5601 ap
->cbl
= ATA_CBL_NONE
;
5603 ata_link_init(ap
, &ap
->link
, 0);
5606 ap
->stats
.unhandled_irq
= 1;
5607 ap
->stats
.idle_irq
= 1;
5612 static void ata_host_release(struct device
*gendev
, void *res
)
5614 struct ata_host
*host
= dev_get_drvdata(gendev
);
5617 for (i
= 0; i
< host
->n_ports
; i
++) {
5618 struct ata_port
*ap
= host
->ports
[i
];
5624 scsi_host_put(ap
->scsi_host
);
5626 kfree(ap
->pmp_link
);
5627 kfree(ap
->slave_link
);
5629 host
->ports
[i
] = NULL
;
5632 dev_set_drvdata(gendev
, NULL
);
5636 * ata_host_alloc - allocate and init basic ATA host resources
5637 * @dev: generic device this host is associated with
5638 * @max_ports: maximum number of ATA ports associated with this host
5640 * Allocate and initialize basic ATA host resources. LLD calls
5641 * this function to allocate a host, initializes it fully and
5642 * attaches it using ata_host_register().
5644 * @max_ports ports are allocated and host->n_ports is
5645 * initialized to @max_ports. The caller is allowed to decrease
5646 * host->n_ports before calling ata_host_register(). The unused
5647 * ports will be automatically freed on registration.
5650 * Allocate ATA host on success, NULL on failure.
5653 * Inherited from calling layer (may sleep).
5655 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5657 struct ata_host
*host
;
5663 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5666 /* alloc a container for our list of ATA ports (buses) */
5667 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5668 /* alloc a container for our list of ATA ports (buses) */
5669 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5673 devres_add(dev
, host
);
5674 dev_set_drvdata(dev
, host
);
5676 spin_lock_init(&host
->lock
);
5678 host
->n_ports
= max_ports
;
5680 /* allocate ports bound to this host */
5681 for (i
= 0; i
< max_ports
; i
++) {
5682 struct ata_port
*ap
;
5684 ap
= ata_port_alloc(host
);
5689 host
->ports
[i
] = ap
;
5692 devres_remove_group(dev
, NULL
);
5696 devres_release_group(dev
, NULL
);
5701 * ata_host_alloc_pinfo - alloc host and init with port_info array
5702 * @dev: generic device this host is associated with
5703 * @ppi: array of ATA port_info to initialize host with
5704 * @n_ports: number of ATA ports attached to this host
5706 * Allocate ATA host and initialize with info from @ppi. If NULL
5707 * terminated, @ppi may contain fewer entries than @n_ports. The
5708 * last entry will be used for the remaining ports.
5711 * Allocate ATA host on success, NULL on failure.
5714 * Inherited from calling layer (may sleep).
5716 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5717 const struct ata_port_info
* const * ppi
,
5720 const struct ata_port_info
*pi
;
5721 struct ata_host
*host
;
5724 host
= ata_host_alloc(dev
, n_ports
);
5728 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5729 struct ata_port
*ap
= host
->ports
[i
];
5734 ap
->pio_mask
= pi
->pio_mask
;
5735 ap
->mwdma_mask
= pi
->mwdma_mask
;
5736 ap
->udma_mask
= pi
->udma_mask
;
5737 ap
->flags
|= pi
->flags
;
5738 ap
->link
.flags
|= pi
->link_flags
;
5739 ap
->ops
= pi
->port_ops
;
5741 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5742 host
->ops
= pi
->port_ops
;
5749 * ata_slave_link_init - initialize slave link
5750 * @ap: port to initialize slave link for
5752 * Create and initialize slave link for @ap. This enables slave
5753 * link handling on the port.
5755 * In libata, a port contains links and a link contains devices.
5756 * There is single host link but if a PMP is attached to it,
5757 * there can be multiple fan-out links. On SATA, there's usually
5758 * a single device connected to a link but PATA and SATA
5759 * controllers emulating TF based interface can have two - master
5762 * However, there are a few controllers which don't fit into this
5763 * abstraction too well - SATA controllers which emulate TF
5764 * interface with both master and slave devices but also have
5765 * separate SCR register sets for each device. These controllers
5766 * need separate links for physical link handling
5767 * (e.g. onlineness, link speed) but should be treated like a
5768 * traditional M/S controller for everything else (e.g. command
5769 * issue, softreset).
5771 * slave_link is libata's way of handling this class of
5772 * controllers without impacting core layer too much. For
5773 * anything other than physical link handling, the default host
5774 * link is used for both master and slave. For physical link
5775 * handling, separate @ap->slave_link is used. All dirty details
5776 * are implemented inside libata core layer. From LLD's POV, the
5777 * only difference is that prereset, hardreset and postreset are
5778 * called once more for the slave link, so the reset sequence
5779 * looks like the following.
5781 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5782 * softreset(M) -> postreset(M) -> postreset(S)
5784 * Note that softreset is called only for the master. Softreset
5785 * resets both M/S by definition, so SRST on master should handle
5786 * both (the standard method will work just fine).
5789 * Should be called before host is registered.
5792 * 0 on success, -errno on failure.
5794 int ata_slave_link_init(struct ata_port
*ap
)
5796 struct ata_link
*link
;
5798 WARN_ON(ap
->slave_link
);
5799 WARN_ON(ap
->flags
& ATA_FLAG_PMP
);
5801 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
5805 ata_link_init(ap
, link
, 1);
5806 ap
->slave_link
= link
;
5810 static void ata_host_stop(struct device
*gendev
, void *res
)
5812 struct ata_host
*host
= dev_get_drvdata(gendev
);
5815 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5817 for (i
= 0; i
< host
->n_ports
; i
++) {
5818 struct ata_port
*ap
= host
->ports
[i
];
5820 if (ap
->ops
->port_stop
)
5821 ap
->ops
->port_stop(ap
);
5824 if (host
->ops
->host_stop
)
5825 host
->ops
->host_stop(host
);
5829 * ata_finalize_port_ops - finalize ata_port_operations
5830 * @ops: ata_port_operations to finalize
5832 * An ata_port_operations can inherit from another ops and that
5833 * ops can again inherit from another. This can go on as many
5834 * times as necessary as long as there is no loop in the
5835 * inheritance chain.
5837 * Ops tables are finalized when the host is started. NULL or
5838 * unspecified entries are inherited from the closet ancestor
5839 * which has the method and the entry is populated with it.
5840 * After finalization, the ops table directly points to all the
5841 * methods and ->inherits is no longer necessary and cleared.
5843 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5848 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5850 static DEFINE_SPINLOCK(lock
);
5851 const struct ata_port_operations
*cur
;
5852 void **begin
= (void **)ops
;
5853 void **end
= (void **)&ops
->inherits
;
5856 if (!ops
|| !ops
->inherits
)
5861 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
5862 void **inherit
= (void **)cur
;
5864 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
5869 for (pp
= begin
; pp
< end
; pp
++)
5873 ops
->inherits
= NULL
;
5879 * ata_host_start - start and freeze ports of an ATA host
5880 * @host: ATA host to start ports for
5882 * Start and then freeze ports of @host. Started status is
5883 * recorded in host->flags, so this function can be called
5884 * multiple times. Ports are guaranteed to get started only
5885 * once. If host->ops isn't initialized yet, its set to the
5886 * first non-dummy port ops.
5889 * Inherited from calling layer (may sleep).
5892 * 0 if all ports are started successfully, -errno otherwise.
5894 int ata_host_start(struct ata_host
*host
)
5897 void *start_dr
= NULL
;
5900 if (host
->flags
& ATA_HOST_STARTED
)
5903 ata_finalize_port_ops(host
->ops
);
5905 for (i
= 0; i
< host
->n_ports
; i
++) {
5906 struct ata_port
*ap
= host
->ports
[i
];
5908 ata_finalize_port_ops(ap
->ops
);
5910 if (!host
->ops
&& !ata_port_is_dummy(ap
))
5911 host
->ops
= ap
->ops
;
5913 if (ap
->ops
->port_stop
)
5917 if (host
->ops
->host_stop
)
5921 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
5926 for (i
= 0; i
< host
->n_ports
; i
++) {
5927 struct ata_port
*ap
= host
->ports
[i
];
5929 if (ap
->ops
->port_start
) {
5930 rc
= ap
->ops
->port_start(ap
);
5933 dev_printk(KERN_ERR
, host
->dev
,
5934 "failed to start port %d "
5935 "(errno=%d)\n", i
, rc
);
5939 ata_eh_freeze_port(ap
);
5943 devres_add(host
->dev
, start_dr
);
5944 host
->flags
|= ATA_HOST_STARTED
;
5949 struct ata_port
*ap
= host
->ports
[i
];
5951 if (ap
->ops
->port_stop
)
5952 ap
->ops
->port_stop(ap
);
5954 devres_free(start_dr
);
5959 * ata_sas_host_init - Initialize a host struct
5960 * @host: host to initialize
5961 * @dev: device host is attached to
5962 * @flags: host flags
5966 * PCI/etc. bus probe sem.
5969 /* KILLME - the only user left is ipr */
5970 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
5971 unsigned long flags
, struct ata_port_operations
*ops
)
5973 spin_lock_init(&host
->lock
);
5975 host
->flags
= flags
;
5980 static void async_port_probe(void *data
, async_cookie_t cookie
)
5983 struct ata_port
*ap
= data
;
5986 * If we're not allowed to scan this host in parallel,
5987 * we need to wait until all previous scans have completed
5988 * before going further.
5989 * Jeff Garzik says this is only within a controller, so we
5990 * don't need to wait for port 0, only for later ports.
5992 if (!(ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
) && ap
->port_no
!= 0)
5993 async_synchronize_cookie(cookie
);
5996 if (ap
->ops
->error_handler
) {
5997 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
5998 unsigned long flags
;
6002 /* kick EH for boot probing */
6003 spin_lock_irqsave(ap
->lock
, flags
);
6005 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
6006 ehi
->action
|= ATA_EH_RESET
| ATA_EH_LPM
;
6007 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6009 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
6010 ap
->pflags
|= ATA_PFLAG_LOADING
;
6011 ata_port_schedule_eh(ap
);
6013 spin_unlock_irqrestore(ap
->lock
, flags
);
6015 /* wait for EH to finish */
6016 ata_port_wait_eh(ap
);
6018 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6019 rc
= ata_bus_probe(ap
);
6020 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6023 /* FIXME: do something useful here?
6024 * Current libata behavior will
6025 * tear down everything when
6026 * the module is removed
6027 * or the h/w is unplugged.
6032 /* in order to keep device order, we need to synchronize at this point */
6033 async_synchronize_cookie(cookie
);
6035 ata_scsi_scan_host(ap
, 1);
6039 * ata_host_register - register initialized ATA host
6040 * @host: ATA host to register
6041 * @sht: template for SCSI host
6043 * Register initialized ATA host. @host is allocated using
6044 * ata_host_alloc() and fully initialized by LLD. This function
6045 * starts ports, registers @host with ATA and SCSI layers and
6046 * probe registered devices.
6049 * Inherited from calling layer (may sleep).
6052 * 0 on success, -errno otherwise.
6054 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6058 /* host must have been started */
6059 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6060 dev_printk(KERN_ERR
, host
->dev
,
6061 "BUG: trying to register unstarted host\n");
6066 /* Blow away unused ports. This happens when LLD can't
6067 * determine the exact number of ports to allocate at
6070 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6071 kfree(host
->ports
[i
]);
6073 /* give ports names and add SCSI hosts */
6074 for (i
= 0; i
< host
->n_ports
; i
++)
6075 host
->ports
[i
]->print_id
= ata_print_id
++;
6077 rc
= ata_scsi_add_hosts(host
, sht
);
6081 /* associate with ACPI nodes */
6082 ata_acpi_associate(host
);
6084 /* set cable, sata_spd_limit and report */
6085 for (i
= 0; i
< host
->n_ports
; i
++) {
6086 struct ata_port
*ap
= host
->ports
[i
];
6087 unsigned long xfer_mask
;
6089 /* set SATA cable type if still unset */
6090 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6091 ap
->cbl
= ATA_CBL_SATA
;
6093 /* init sata_spd_limit to the current value */
6094 sata_link_init_spd(&ap
->link
);
6096 sata_link_init_spd(ap
->slave_link
);
6098 /* print per-port info to dmesg */
6099 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6102 if (!ata_port_is_dummy(ap
)) {
6103 ata_port_printk(ap
, KERN_INFO
,
6104 "%cATA max %s %s\n",
6105 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
6106 ata_mode_string(xfer_mask
),
6107 ap
->link
.eh_info
.desc
);
6108 ata_ehi_clear_desc(&ap
->link
.eh_info
);
6110 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
6113 /* perform each probe synchronously */
6114 DPRINTK("probe begin\n");
6115 for (i
= 0; i
< host
->n_ports
; i
++) {
6116 struct ata_port
*ap
= host
->ports
[i
];
6117 async_schedule(async_port_probe
, ap
);
6119 DPRINTK("probe end\n");
6125 * ata_host_activate - start host, request IRQ and register it
6126 * @host: target ATA host
6127 * @irq: IRQ to request
6128 * @irq_handler: irq_handler used when requesting IRQ
6129 * @irq_flags: irq_flags used when requesting IRQ
6130 * @sht: scsi_host_template to use when registering the host
6132 * After allocating an ATA host and initializing it, most libata
6133 * LLDs perform three steps to activate the host - start host,
6134 * request IRQ and register it. This helper takes necessasry
6135 * arguments and performs the three steps in one go.
6137 * An invalid IRQ skips the IRQ registration and expects the host to
6138 * have set polling mode on the port. In this case, @irq_handler
6142 * Inherited from calling layer (may sleep).
6145 * 0 on success, -errno otherwise.
6147 int ata_host_activate(struct ata_host
*host
, int irq
,
6148 irq_handler_t irq_handler
, unsigned long irq_flags
,
6149 struct scsi_host_template
*sht
)
6153 rc
= ata_host_start(host
);
6157 /* Special case for polling mode */
6159 WARN_ON(irq_handler
);
6160 return ata_host_register(host
, sht
);
6163 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6164 dev_driver_string(host
->dev
), host
);
6168 for (i
= 0; i
< host
->n_ports
; i
++)
6169 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
6171 rc
= ata_host_register(host
, sht
);
6172 /* if failed, just free the IRQ and leave ports alone */
6174 devm_free_irq(host
->dev
, irq
, host
);
6180 * ata_port_detach - Detach ATA port in prepration of device removal
6181 * @ap: ATA port to be detached
6183 * Detach all ATA devices and the associated SCSI devices of @ap;
6184 * then, remove the associated SCSI host. @ap is guaranteed to
6185 * be quiescent on return from this function.
6188 * Kernel thread context (may sleep).
6190 static void ata_port_detach(struct ata_port
*ap
)
6192 unsigned long flags
;
6194 if (!ap
->ops
->error_handler
)
6197 /* tell EH we're leaving & flush EH */
6198 spin_lock_irqsave(ap
->lock
, flags
);
6199 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6200 ata_port_schedule_eh(ap
);
6201 spin_unlock_irqrestore(ap
->lock
, flags
);
6203 /* wait till EH commits suicide */
6204 ata_port_wait_eh(ap
);
6206 /* it better be dead now */
6207 WARN_ON(!(ap
->pflags
& ATA_PFLAG_UNLOADED
));
6209 cancel_rearming_delayed_work(&ap
->hotplug_task
);
6212 /* remove the associated SCSI host */
6213 scsi_remove_host(ap
->scsi_host
);
6217 * ata_host_detach - Detach all ports of an ATA host
6218 * @host: Host to detach
6220 * Detach all ports of @host.
6223 * Kernel thread context (may sleep).
6225 void ata_host_detach(struct ata_host
*host
)
6229 for (i
= 0; i
< host
->n_ports
; i
++)
6230 ata_port_detach(host
->ports
[i
]);
6232 /* the host is dead now, dissociate ACPI */
6233 ata_acpi_dissociate(host
);
6239 * ata_pci_remove_one - PCI layer callback for device removal
6240 * @pdev: PCI device that was removed
6242 * PCI layer indicates to libata via this hook that hot-unplug or
6243 * module unload event has occurred. Detach all ports. Resource
6244 * release is handled via devres.
6247 * Inherited from PCI layer (may sleep).
6249 void ata_pci_remove_one(struct pci_dev
*pdev
)
6251 struct device
*dev
= &pdev
->dev
;
6252 struct ata_host
*host
= dev_get_drvdata(dev
);
6254 ata_host_detach(host
);
6257 /* move to PCI subsystem */
6258 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6260 unsigned long tmp
= 0;
6262 switch (bits
->width
) {
6265 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6271 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6277 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6288 return (tmp
== bits
->val
) ? 1 : 0;
6292 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6294 pci_save_state(pdev
);
6295 pci_disable_device(pdev
);
6297 if (mesg
.event
& PM_EVENT_SLEEP
)
6298 pci_set_power_state(pdev
, PCI_D3hot
);
6301 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6305 pci_set_power_state(pdev
, PCI_D0
);
6306 pci_restore_state(pdev
);
6308 rc
= pcim_enable_device(pdev
);
6310 dev_printk(KERN_ERR
, &pdev
->dev
,
6311 "failed to enable device after resume (%d)\n", rc
);
6315 pci_set_master(pdev
);
6319 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6321 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6324 rc
= ata_host_suspend(host
, mesg
);
6328 ata_pci_device_do_suspend(pdev
, mesg
);
6333 int ata_pci_device_resume(struct pci_dev
*pdev
)
6335 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6338 rc
= ata_pci_device_do_resume(pdev
);
6340 ata_host_resume(host
);
6343 #endif /* CONFIG_PM */
6345 #endif /* CONFIG_PCI */
6347 static int __init
ata_parse_force_one(char **cur
,
6348 struct ata_force_ent
*force_ent
,
6349 const char **reason
)
6351 /* FIXME: Currently, there's no way to tag init const data and
6352 * using __initdata causes build failure on some versions of
6353 * gcc. Once __initdataconst is implemented, add const to the
6354 * following structure.
6356 static struct ata_force_param force_tbl
[] __initdata
= {
6357 { "40c", .cbl
= ATA_CBL_PATA40
},
6358 { "80c", .cbl
= ATA_CBL_PATA80
},
6359 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6360 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6361 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6362 { "sata", .cbl
= ATA_CBL_SATA
},
6363 { "1.5Gbps", .spd_limit
= 1 },
6364 { "3.0Gbps", .spd_limit
= 2 },
6365 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6366 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6367 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6368 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6369 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6370 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6371 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6372 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6373 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6374 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6375 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6376 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6377 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6378 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6379 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6380 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6381 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6382 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6383 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6384 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6385 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6386 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6387 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6388 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6389 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6390 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6391 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6392 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6393 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6394 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6395 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6396 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6397 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6398 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6399 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6400 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6401 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6402 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6403 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6405 char *start
= *cur
, *p
= *cur
;
6406 char *id
, *val
, *endp
;
6407 const struct ata_force_param
*match_fp
= NULL
;
6408 int nr_matches
= 0, i
;
6410 /* find where this param ends and update *cur */
6411 while (*p
!= '\0' && *p
!= ',')
6422 p
= strchr(start
, ':');
6424 val
= strstrip(start
);
6429 id
= strstrip(start
);
6430 val
= strstrip(p
+ 1);
6433 p
= strchr(id
, '.');
6436 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6437 if (p
== endp
|| *endp
!= '\0') {
6438 *reason
= "invalid device";
6443 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6444 if (p
== endp
|| *endp
!= '\0') {
6445 *reason
= "invalid port/link";
6450 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6451 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6452 const struct ata_force_param
*fp
= &force_tbl
[i
];
6454 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6460 if (strcasecmp(val
, fp
->name
) == 0) {
6467 *reason
= "unknown value";
6470 if (nr_matches
> 1) {
6471 *reason
= "ambigious value";
6475 force_ent
->param
= *match_fp
;
6480 static void __init
ata_parse_force_param(void)
6482 int idx
= 0, size
= 1;
6483 int last_port
= -1, last_device
= -1;
6484 char *p
, *cur
, *next
;
6486 /* calculate maximum number of params and allocate force_tbl */
6487 for (p
= ata_force_param_buf
; *p
; p
++)
6491 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6492 if (!ata_force_tbl
) {
6493 printk(KERN_WARNING
"ata: failed to extend force table, "
6494 "libata.force ignored\n");
6498 /* parse and populate the table */
6499 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6500 const char *reason
= "";
6501 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6504 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6505 printk(KERN_WARNING
"ata: failed to parse force "
6506 "parameter \"%s\" (%s)\n",
6511 if (te
.port
== -1) {
6512 te
.port
= last_port
;
6513 te
.device
= last_device
;
6516 ata_force_tbl
[idx
++] = te
;
6518 last_port
= te
.port
;
6519 last_device
= te
.device
;
6522 ata_force_tbl_size
= idx
;
6525 static int __init
ata_init(void)
6527 ata_parse_force_param();
6529 ata_wq
= create_workqueue("ata");
6531 goto free_force_tbl
;
6533 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6537 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6541 destroy_workqueue(ata_wq
);
6543 kfree(ata_force_tbl
);
6547 static void __exit
ata_exit(void)
6549 kfree(ata_force_tbl
);
6550 destroy_workqueue(ata_wq
);
6551 destroy_workqueue(ata_aux_wq
);
6554 subsys_initcall(ata_init
);
6555 module_exit(ata_exit
);
6557 static unsigned long ratelimit_time
;
6558 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6560 int ata_ratelimit(void)
6563 unsigned long flags
;
6565 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6567 if (time_after(jiffies
, ratelimit_time
)) {
6569 ratelimit_time
= jiffies
+ (HZ
/5);
6573 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6579 * ata_wait_register - wait until register value changes
6580 * @reg: IO-mapped register
6581 * @mask: Mask to apply to read register value
6582 * @val: Wait condition
6583 * @interval: polling interval in milliseconds
6584 * @timeout: timeout in milliseconds
6586 * Waiting for some bits of register to change is a common
6587 * operation for ATA controllers. This function reads 32bit LE
6588 * IO-mapped register @reg and tests for the following condition.
6590 * (*@reg & mask) != val
6592 * If the condition is met, it returns; otherwise, the process is
6593 * repeated after @interval_msec until timeout.
6596 * Kernel thread context (may sleep)
6599 * The final register value.
6601 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6602 unsigned long interval
, unsigned long timeout
)
6604 unsigned long deadline
;
6607 tmp
= ioread32(reg
);
6609 /* Calculate timeout _after_ the first read to make sure
6610 * preceding writes reach the controller before starting to
6611 * eat away the timeout.
6613 deadline
= ata_deadline(jiffies
, timeout
);
6615 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
6617 tmp
= ioread32(reg
);
6626 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6628 return AC_ERR_SYSTEM
;
6631 static void ata_dummy_error_handler(struct ata_port
*ap
)
6636 struct ata_port_operations ata_dummy_port_ops
= {
6637 .qc_prep
= ata_noop_qc_prep
,
6638 .qc_issue
= ata_dummy_qc_issue
,
6639 .error_handler
= ata_dummy_error_handler
,
6642 const struct ata_port_info ata_dummy_port_info
= {
6643 .port_ops
= &ata_dummy_port_ops
,
6647 * libata is essentially a library of internal helper functions for
6648 * low-level ATA host controller drivers. As such, the API/ABI is
6649 * likely to change as new drivers are added and updated.
6650 * Do not depend on ABI/API stability.
6652 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6653 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6654 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6655 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6656 EXPORT_SYMBOL_GPL(sata_port_ops
);
6657 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6658 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6659 EXPORT_SYMBOL_GPL(ata_link_next
);
6660 EXPORT_SYMBOL_GPL(ata_dev_next
);
6661 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6662 EXPORT_SYMBOL_GPL(ata_host_init
);
6663 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6664 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6665 EXPORT_SYMBOL_GPL(ata_slave_link_init
);
6666 EXPORT_SYMBOL_GPL(ata_host_start
);
6667 EXPORT_SYMBOL_GPL(ata_host_register
);
6668 EXPORT_SYMBOL_GPL(ata_host_activate
);
6669 EXPORT_SYMBOL_GPL(ata_host_detach
);
6670 EXPORT_SYMBOL_GPL(ata_sg_init
);
6671 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6672 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6673 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6674 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6675 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6676 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6677 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6678 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6679 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6680 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6681 EXPORT_SYMBOL_GPL(ata_mode_string
);
6682 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6683 EXPORT_SYMBOL_GPL(ata_port_start
);
6684 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6685 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6686 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6687 EXPORT_SYMBOL_GPL(ata_port_probe
);
6688 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6689 EXPORT_SYMBOL_GPL(sata_set_spd
);
6690 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6691 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6692 EXPORT_SYMBOL_GPL(sata_link_resume
);
6693 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6694 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6695 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6696 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6697 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6698 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6699 EXPORT_SYMBOL_GPL(ata_port_disable
);
6700 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6701 EXPORT_SYMBOL_GPL(ata_wait_register
);
6702 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6703 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6704 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6705 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6706 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6707 EXPORT_SYMBOL_GPL(sata_scr_read
);
6708 EXPORT_SYMBOL_GPL(sata_scr_write
);
6709 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6710 EXPORT_SYMBOL_GPL(ata_link_online
);
6711 EXPORT_SYMBOL_GPL(ata_link_offline
);
6713 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6714 EXPORT_SYMBOL_GPL(ata_host_resume
);
6715 #endif /* CONFIG_PM */
6716 EXPORT_SYMBOL_GPL(ata_id_string
);
6717 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6718 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
6719 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6721 EXPORT_SYMBOL_GPL(ata_pio_queue_task
);
6722 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6723 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6724 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6725 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6726 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6729 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6730 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6732 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6733 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6734 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6735 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6736 #endif /* CONFIG_PM */
6737 #endif /* CONFIG_PCI */
6739 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
6740 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
6741 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
6742 EXPORT_SYMBOL_GPL(ata_port_desc
);
6744 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
6745 #endif /* CONFIG_PCI */
6746 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6747 EXPORT_SYMBOL_GPL(ata_link_abort
);
6748 EXPORT_SYMBOL_GPL(ata_port_abort
);
6749 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6750 EXPORT_SYMBOL_GPL(sata_async_notification
);
6751 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6752 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6753 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6754 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6755 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
6756 EXPORT_SYMBOL_GPL(ata_do_eh
);
6757 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
6759 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6760 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6761 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6762 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
6763 EXPORT_SYMBOL_GPL(ata_cable_sata
);