sparc64: Set IRQF_DISABLED on LDC channel IRQs.
[linux-2.6/verdex.git] / arch / x86 / kvm / paging_tmpl.h
blob67785f635399fdf26e09528589e41c41a1202a7a
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
33 #define PT_LEVEL_BITS PT64_LEVEL_BITS
34 #ifdef CONFIG_X86_64
35 #define PT_MAX_FULL_LEVELS 4
36 #define CMPXCHG cmpxchg
37 #else
38 #define CMPXCHG cmpxchg64
39 #define PT_MAX_FULL_LEVELS 2
40 #endif
41 #elif PTTYPE == 32
42 #define pt_element_t u32
43 #define guest_walker guest_walker32
44 #define FNAME(name) paging##32_##name
45 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
46 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
47 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
48 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49 #define PT_LEVEL_BITS PT32_LEVEL_BITS
50 #define PT_MAX_FULL_LEVELS 2
51 #define CMPXCHG cmpxchg
52 #else
53 #error Invalid PTTYPE value
54 #endif
56 #define gpte_to_gfn FNAME(gpte_to_gfn)
57 #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
60 * The guest_walker structure emulates the behavior of the hardware page
61 * table walker.
63 struct guest_walker {
64 int level;
65 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
66 pt_element_t ptes[PT_MAX_FULL_LEVELS];
67 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
68 unsigned pt_access;
69 unsigned pte_access;
70 gfn_t gfn;
71 u32 error_code;
74 static gfn_t gpte_to_gfn(pt_element_t gpte)
76 return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
79 static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
81 return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
84 static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
85 gfn_t table_gfn, unsigned index,
86 pt_element_t orig_pte, pt_element_t new_pte)
88 pt_element_t ret;
89 pt_element_t *table;
90 struct page *page;
92 page = gfn_to_page(kvm, table_gfn);
94 table = kmap_atomic(page, KM_USER0);
95 ret = CMPXCHG(&table[index], orig_pte, new_pte);
96 kunmap_atomic(table, KM_USER0);
98 kvm_release_page_dirty(page);
100 return (ret != orig_pte);
103 static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
105 unsigned access;
107 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
108 #if PTTYPE == 64
109 if (is_nx(vcpu))
110 access &= ~(gpte >> PT64_NX_SHIFT);
111 #endif
112 return access;
116 * Fetch a guest pte for a guest virtual address
118 static int FNAME(walk_addr)(struct guest_walker *walker,
119 struct kvm_vcpu *vcpu, gva_t addr,
120 int write_fault, int user_fault, int fetch_fault)
122 pt_element_t pte;
123 gfn_t table_gfn;
124 unsigned index, pt_access, pte_access;
125 gpa_t pte_gpa;
126 int rsvd_fault = 0;
128 pgprintk("%s: addr %lx\n", __func__, addr);
129 walk:
130 walker->level = vcpu->arch.mmu.root_level;
131 pte = vcpu->arch.cr3;
132 #if PTTYPE == 64
133 if (!is_long_mode(vcpu)) {
134 pte = vcpu->arch.pdptrs[(addr >> 30) & 3];
135 if (!is_present_pte(pte))
136 goto not_present;
137 --walker->level;
139 #endif
140 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
141 (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
143 pt_access = ACC_ALL;
145 for (;;) {
146 index = PT_INDEX(addr, walker->level);
148 table_gfn = gpte_to_gfn(pte);
149 pte_gpa = gfn_to_gpa(table_gfn);
150 pte_gpa += index * sizeof(pt_element_t);
151 walker->table_gfn[walker->level - 1] = table_gfn;
152 walker->pte_gpa[walker->level - 1] = pte_gpa;
153 pgprintk("%s: table_gfn[%d] %lx\n", __func__,
154 walker->level - 1, table_gfn);
156 kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
158 if (!is_present_pte(pte))
159 goto not_present;
161 rsvd_fault = is_rsvd_bits_set(vcpu, pte, walker->level);
162 if (rsvd_fault)
163 goto access_error;
165 if (write_fault && !is_writeble_pte(pte))
166 if (user_fault || is_write_protection(vcpu))
167 goto access_error;
169 if (user_fault && !(pte & PT_USER_MASK))
170 goto access_error;
172 #if PTTYPE == 64
173 if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
174 goto access_error;
175 #endif
177 if (!(pte & PT_ACCESSED_MASK)) {
178 mark_page_dirty(vcpu->kvm, table_gfn);
179 if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
180 index, pte, pte|PT_ACCESSED_MASK))
181 goto walk;
182 pte |= PT_ACCESSED_MASK;
185 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
187 walker->ptes[walker->level - 1] = pte;
189 if (walker->level == PT_PAGE_TABLE_LEVEL) {
190 walker->gfn = gpte_to_gfn(pte);
191 break;
194 if (walker->level == PT_DIRECTORY_LEVEL
195 && (pte & PT_PAGE_SIZE_MASK)
196 && (PTTYPE == 64 || is_pse(vcpu))) {
197 walker->gfn = gpte_to_gfn_pde(pte);
198 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
199 if (PTTYPE == 32 && is_cpuid_PSE36())
200 walker->gfn += pse36_gfn_delta(pte);
201 break;
204 pt_access = pte_access;
205 --walker->level;
208 if (write_fault && !is_dirty_pte(pte)) {
209 bool ret;
211 mark_page_dirty(vcpu->kvm, table_gfn);
212 ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
213 pte|PT_DIRTY_MASK);
214 if (ret)
215 goto walk;
216 pte |= PT_DIRTY_MASK;
217 walker->ptes[walker->level - 1] = pte;
220 walker->pt_access = pt_access;
221 walker->pte_access = pte_access;
222 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
223 __func__, (u64)pte, pt_access, pte_access);
224 return 1;
226 not_present:
227 walker->error_code = 0;
228 goto err;
230 access_error:
231 walker->error_code = PFERR_PRESENT_MASK;
233 err:
234 if (write_fault)
235 walker->error_code |= PFERR_WRITE_MASK;
236 if (user_fault)
237 walker->error_code |= PFERR_USER_MASK;
238 if (fetch_fault)
239 walker->error_code |= PFERR_FETCH_MASK;
240 if (rsvd_fault)
241 walker->error_code |= PFERR_RSVD_MASK;
242 return 0;
245 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
246 u64 *spte, const void *pte)
248 pt_element_t gpte;
249 unsigned pte_access;
250 pfn_t pfn;
251 int largepage = vcpu->arch.update_pte.largepage;
253 gpte = *(const pt_element_t *)pte;
254 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
255 if (!is_present_pte(gpte))
256 set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
257 return;
259 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
260 pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
261 if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
262 return;
263 pfn = vcpu->arch.update_pte.pfn;
264 if (is_error_pfn(pfn))
265 return;
266 if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
267 return;
268 kvm_get_pfn(pfn);
269 mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
270 gpte & PT_DIRTY_MASK, NULL, largepage,
271 gpte_to_gfn(gpte), pfn, true);
275 * Fetch a shadow pte for a specific level in the paging hierarchy.
277 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
278 struct guest_walker *gw,
279 int user_fault, int write_fault, int largepage,
280 int *ptwrite, pfn_t pfn)
282 unsigned access = gw->pt_access;
283 struct kvm_mmu_page *shadow_page;
284 u64 spte, *sptep = NULL;
285 int direct;
286 gfn_t table_gfn;
287 int r;
288 int level;
289 pt_element_t curr_pte;
290 struct kvm_shadow_walk_iterator iterator;
292 if (!is_present_pte(gw->ptes[gw->level - 1]))
293 return NULL;
295 for_each_shadow_entry(vcpu, addr, iterator) {
296 level = iterator.level;
297 sptep = iterator.sptep;
298 if (level == PT_PAGE_TABLE_LEVEL
299 || (largepage && level == PT_DIRECTORY_LEVEL)) {
300 mmu_set_spte(vcpu, sptep, access,
301 gw->pte_access & access,
302 user_fault, write_fault,
303 gw->ptes[gw->level-1] & PT_DIRTY_MASK,
304 ptwrite, largepage,
305 gw->gfn, pfn, false);
306 break;
309 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
310 continue;
312 if (is_large_pte(*sptep)) {
313 rmap_remove(vcpu->kvm, sptep);
314 set_shadow_pte(sptep, shadow_trap_nonpresent_pte);
315 kvm_flush_remote_tlbs(vcpu->kvm);
318 if (level == PT_DIRECTORY_LEVEL
319 && gw->level == PT_DIRECTORY_LEVEL) {
320 direct = 1;
321 if (!is_dirty_pte(gw->ptes[level - 1]))
322 access &= ~ACC_WRITE_MASK;
323 table_gfn = gpte_to_gfn(gw->ptes[level - 1]);
324 } else {
325 direct = 0;
326 table_gfn = gw->table_gfn[level - 2];
328 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
329 direct, access, sptep);
330 if (!direct) {
331 r = kvm_read_guest_atomic(vcpu->kvm,
332 gw->pte_gpa[level - 2],
333 &curr_pte, sizeof(curr_pte));
334 if (r || curr_pte != gw->ptes[level - 2]) {
335 kvm_mmu_put_page(shadow_page, sptep);
336 kvm_release_pfn_clean(pfn);
337 sptep = NULL;
338 break;
342 spte = __pa(shadow_page->spt)
343 | PT_PRESENT_MASK | PT_ACCESSED_MASK
344 | PT_WRITABLE_MASK | PT_USER_MASK;
345 *sptep = spte;
348 return sptep;
352 * Page fault handler. There are several causes for a page fault:
353 * - there is no shadow pte for the guest pte
354 * - write access through a shadow pte marked read only so that we can set
355 * the dirty bit
356 * - write access to a shadow pte marked read only so we can update the page
357 * dirty bitmap, when userspace requests it
358 * - mmio access; in this case we will never install a present shadow pte
359 * - normal guest page fault due to the guest pte marked not present, not
360 * writable, or not executable
362 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
363 * a negative value on error.
365 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
366 u32 error_code)
368 int write_fault = error_code & PFERR_WRITE_MASK;
369 int user_fault = error_code & PFERR_USER_MASK;
370 int fetch_fault = error_code & PFERR_FETCH_MASK;
371 struct guest_walker walker;
372 u64 *shadow_pte;
373 int write_pt = 0;
374 int r;
375 pfn_t pfn;
376 int largepage = 0;
377 unsigned long mmu_seq;
379 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
380 kvm_mmu_audit(vcpu, "pre page fault");
382 r = mmu_topup_memory_caches(vcpu);
383 if (r)
384 return r;
387 * Look up the guest pte for the faulting address.
389 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
390 fetch_fault);
393 * The page is not mapped by the guest. Let the guest handle it.
395 if (!r) {
396 pgprintk("%s: guest page fault\n", __func__);
397 inject_page_fault(vcpu, addr, walker.error_code);
398 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
399 return 0;
402 if (walker.level == PT_DIRECTORY_LEVEL) {
403 gfn_t large_gfn;
404 large_gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE-1);
405 if (is_largepage_backed(vcpu, large_gfn)) {
406 walker.gfn = large_gfn;
407 largepage = 1;
410 mmu_seq = vcpu->kvm->mmu_notifier_seq;
411 smp_rmb();
412 pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
414 /* mmio */
415 if (is_error_pfn(pfn)) {
416 pgprintk("gfn %lx is mmio\n", walker.gfn);
417 kvm_release_pfn_clean(pfn);
418 return 1;
421 spin_lock(&vcpu->kvm->mmu_lock);
422 if (mmu_notifier_retry(vcpu, mmu_seq))
423 goto out_unlock;
424 kvm_mmu_free_some_pages(vcpu);
425 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
426 largepage, &write_pt, pfn);
428 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
429 shadow_pte, *shadow_pte, write_pt);
431 if (!write_pt)
432 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
434 ++vcpu->stat.pf_fixed;
435 kvm_mmu_audit(vcpu, "post page fault (fixed)");
436 spin_unlock(&vcpu->kvm->mmu_lock);
438 return write_pt;
440 out_unlock:
441 spin_unlock(&vcpu->kvm->mmu_lock);
442 kvm_release_pfn_clean(pfn);
443 return 0;
446 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
448 struct kvm_shadow_walk_iterator iterator;
449 pt_element_t gpte;
450 gpa_t pte_gpa = -1;
451 int level;
452 u64 *sptep;
453 int need_flush = 0;
455 spin_lock(&vcpu->kvm->mmu_lock);
457 for_each_shadow_entry(vcpu, gva, iterator) {
458 level = iterator.level;
459 sptep = iterator.sptep;
461 /* FIXME: properly handle invlpg on large guest pages */
462 if (level == PT_PAGE_TABLE_LEVEL ||
463 ((level == PT_DIRECTORY_LEVEL) && is_large_pte(*sptep))) {
464 struct kvm_mmu_page *sp = page_header(__pa(sptep));
466 pte_gpa = (sp->gfn << PAGE_SHIFT);
467 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
469 if (is_shadow_present_pte(*sptep)) {
470 rmap_remove(vcpu->kvm, sptep);
471 if (is_large_pte(*sptep))
472 --vcpu->kvm->stat.lpages;
473 need_flush = 1;
475 set_shadow_pte(sptep, shadow_trap_nonpresent_pte);
476 break;
479 if (!is_shadow_present_pte(*sptep))
480 break;
483 if (need_flush)
484 kvm_flush_remote_tlbs(vcpu->kvm);
485 spin_unlock(&vcpu->kvm->mmu_lock);
487 if (pte_gpa == -1)
488 return;
489 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
490 sizeof(pt_element_t)))
491 return;
492 if (is_present_pte(gpte) && (gpte & PT_ACCESSED_MASK)) {
493 if (mmu_topup_memory_caches(vcpu))
494 return;
495 kvm_mmu_pte_write(vcpu, pte_gpa, (const u8 *)&gpte,
496 sizeof(pt_element_t), 0);
500 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
502 struct guest_walker walker;
503 gpa_t gpa = UNMAPPED_GVA;
504 int r;
506 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
508 if (r) {
509 gpa = gfn_to_gpa(walker.gfn);
510 gpa |= vaddr & ~PAGE_MASK;
513 return gpa;
516 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
517 struct kvm_mmu_page *sp)
519 int i, j, offset, r;
520 pt_element_t pt[256 / sizeof(pt_element_t)];
521 gpa_t pte_gpa;
523 if (sp->role.direct
524 || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
525 nonpaging_prefetch_page(vcpu, sp);
526 return;
529 pte_gpa = gfn_to_gpa(sp->gfn);
530 if (PTTYPE == 32) {
531 offset = sp->role.quadrant << PT64_LEVEL_BITS;
532 pte_gpa += offset * sizeof(pt_element_t);
535 for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
536 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
537 pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
538 for (j = 0; j < ARRAY_SIZE(pt); ++j)
539 if (r || is_present_pte(pt[j]))
540 sp->spt[i+j] = shadow_trap_nonpresent_pte;
541 else
542 sp->spt[i+j] = shadow_notrap_nonpresent_pte;
547 * Using the cached information from sp->gfns is safe because:
548 * - The spte has a reference to the struct page, so the pfn for a given gfn
549 * can't change unless all sptes pointing to it are nuked first.
550 * - Alias changes zap the entire shadow cache.
552 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
554 int i, offset, nr_present;
556 offset = nr_present = 0;
558 if (PTTYPE == 32)
559 offset = sp->role.quadrant << PT64_LEVEL_BITS;
561 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
562 unsigned pte_access;
563 pt_element_t gpte;
564 gpa_t pte_gpa;
565 gfn_t gfn = sp->gfns[i];
567 if (!is_shadow_present_pte(sp->spt[i]))
568 continue;
570 pte_gpa = gfn_to_gpa(sp->gfn);
571 pte_gpa += (i+offset) * sizeof(pt_element_t);
573 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
574 sizeof(pt_element_t)))
575 return -EINVAL;
577 if (gpte_to_gfn(gpte) != gfn || !is_present_pte(gpte) ||
578 !(gpte & PT_ACCESSED_MASK)) {
579 u64 nonpresent;
581 rmap_remove(vcpu->kvm, &sp->spt[i]);
582 if (is_present_pte(gpte))
583 nonpresent = shadow_trap_nonpresent_pte;
584 else
585 nonpresent = shadow_notrap_nonpresent_pte;
586 set_shadow_pte(&sp->spt[i], nonpresent);
587 continue;
590 nr_present++;
591 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
592 set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
593 is_dirty_pte(gpte), 0, gfn,
594 spte_to_pfn(sp->spt[i]), true, false);
597 return !nr_present;
600 #undef pt_element_t
601 #undef guest_walker
602 #undef FNAME
603 #undef PT_BASE_ADDR_MASK
604 #undef PT_INDEX
605 #undef PT_LEVEL_MASK
606 #undef PT_DIR_BASE_ADDR_MASK
607 #undef PT_LEVEL_BITS
608 #undef PT_MAX_FULL_LEVELS
609 #undef gpte_to_gfn
610 #undef gpte_to_gfn_pde
611 #undef CMPXCHG